

Porous 3D Cu structures with adaptive heat dissipation properties

Jean-François Silvain, Helies Boumali, Julie Bourret, Pierre-Marie Geffroy, Sébastien Fourcade, Thomas Batigne, Karim Sinno, Yongfeng Lu, Loic Constantin

▶ To cite this version:

Jean-François Silvain, Helies Boumali, Julie Bourret, Pierre-Marie Geffroy, Sébastien Fourcade, et al.. Porous 3D Cu structures with adaptive heat dissipation properties. MRS Communications, 2022, 12, pp.753-758. 10.1557/s43579-022-00224-2 . hal-03761379

HAL Id: hal-03761379 https://hal.science/hal-03761379v1

Submitted on 26 Aug 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2	Porous 3D Cu structures with adaptive heat dissipation properties
3	
4	Jean-François Silvain ^{a,d,*} , Helies Boumali ^a , Julie Bourret ^b , Pierre-Marie Geffroy ^b ,
5	Sebastien Fourcade ^a , Thomas Batigne ^c , Karim Sinno ^c , Yongfeng Lu ^d , and Loic
6	Constantin ^{a,d}
7	
8 9 10 11 12	^a Institut de Chimie de la Matière Condensée de Bordeaux, ICMCB, UMR 5026, University of Bordeaux, CNRS, Bordeaux INP, 87 Avenue du Docteur Schweitzer 33600 Pessac, France ^b Institute of Research for Ceramics, IRCER, CNRS, Université de Limoges, CEC, 12 Rue Atlantis, 87068 Limoges, France ^c Lynxter, 9 rue Pierre Georges Latecoere, 64100 Bayonne, France
13	^d Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-
14	0511, USA
15	*Corresponding author: jean-francois.silvain@icmcb.cnrs.fr
16	

17

Abstract

This study focuses on the formulation of copper paste with optimal properties to micro-extrude porous Cu heat sinks, using extrusion additive manufacturing. The influence of the debinding and sintering conditions on the porosity level and the heat dissipation behavior have been investigated. Open air debinding leads to a density increases from 200 up to 400 °C, then decreases from 400 down to 600 °C. This behavior is a result from a competition between densification and the oxidation. Heat dissipation of the copper heat sink increases in respect to the porosity ratio of the sintered part.

25 Keywords: 3D printing; Cu; debinding; sintering; Additive manufacturing; thermal conductivity

- 26
- 27

28 1. Introduction

29 With the emerging of new technologies, the field of transport tends to rely more on electrical systems, such 30 as auxiliary controls as well as traction requirements. The aerospace industry is turning to the manufacture of more electric planes, which allow better management of the rationalization / management of energy on board. 31 The increasing share of electricity in airplanes reduces fuel consumption, cuts costs and maintenance time. As 32 33 a result, the electrical power used on board in transport systems is increasingly important. During operation, electronic systems undergo thermal gradients, which generate thermomechanical stresses at the interfaces 34 35 between these different layers of electronic systems. These interfacial stresses, induced by the differences in thermal expansion coefficient between the different layers, then produce thermal fatigue, which leads to 36 37 irreversible physical degradation of the system. The on-board electronic components are also temperature 38 sensitive and have temperature limits for reliable operations (e.g., ~140 °C maximum for silicon). The heat dissipation in these components is essential to ensure an operating temperature below this maximum 39 40 temperature. Thus, cooling systems have been then developed by several teams around the world to increase the heat dissipation performance through studying new materials and geometries [1-3]. 41

42 Constantin et. al [4] has shown that increasing the specific surface area of a material improves the heat 43 dissipation properties of the same material. So, two strategies can be envisioned through: 1) producing 44 complex shapes in order to obtain parts with a large specific surface area, and 2) developing materials 45 intrinsically having larger specific surface areas (i.e., porous materials).

The high thermal conductivity (~ 400 W/mK) of pure copper (Cu) makes it an essential material for thermal
management in numerous industries, such as microelectronics, power plants, and aerospace [5-7]. However,
the shape (*i.e.*, surface area) of heat sinks, playing a crucial role in heat dissipation, is limited to simple
geometries in current fabrication techniques [8-9].

For obtaining exceptional properties, many methods of producing porous metals have been developed around the world, such as sol-gel chemistry, the use of space-holders, and additive manufacturing [10]. The latter is a layer-by-layer approach allowing quick and cost-effective manufacturing of highly complex parts in small quantities without the necessity of specific tools. Using porous structures in manufacturing has a few advantages, including the cost reduction as compared to the powder bed fusion as compared to other technologies such as inkjet or thermoplastic extrusion in which non eco-friendly binders are used.

The main objective of the study is to obtain porous materials by 3D printing, using an extrusion additive manufacturing (EAM) method and eco-friendly paste, to convert pastes to porous structures with ideal heat dissipation properties. Initially, pastes with properties suitable for micro-extrusion are formulated. The pastes must be sufficiently fluid to be extruded, but sufficiently viscous to hold the shapes during the printing process (extrusion and drying) and post treatment (debinding and sintering). For this purpose, the nature of the binder together with the morphology of the fillers and their volume percentage are controlled. The formulation of the 62 Cu pastes was based on the work by J. Bourret *et al.* [11] using eco-friendly additives. The binder and pastes 63 were characterized macroscopically. The powders are characterized by X-ray diffraction, scanning electron 64 microscopy, and laser granulometry. Secondly, to control porosity, regular parts were printed to study the 65 impact of heat treatments (debinding, sintering) on the structure and microstructure of the parts, which will be 66 characterized. Finally, the physical properties of parts with controlled porosity were studied by heat dissipation 67 and Vickers hardness.

68

69 2. Experimental method

70 2.1. Preparation of the Cu paste

The Cu pastes were prepared using a spherical Cu powder (ECKA[®] Granules (Germany, GmbH) with a 71 72 medium particle size d₅₀ close to 20 µm. Glycerol (Alfa Aesar A16205.AP, Thermo Fisher GmbH, Germany) 73 was used as a plasticizer. The binder was obtained by acoustic mixing during 3 minutes (Labram, Resodyn, 74 USA) of 5 wt.% of a water-soluble polysaccharide powder with distilled water as a solvent. This polyssacharide is eco-friendly and found in a wide range of applications thanks in part to its thickening, 75 76 stabilizing, gelling and binding properties: food, cosmetic, medical and pharmaceutical industries [12]. Their 77 nontoxicity, life cycles and low cost make them ideal natural additives. Due to its high hydrophilic properties, 78 it is able to form a network due to the swelling of their particles [13]. After preparation, pseudo-gels are 79 obtained and were kept in the refrigerator at 8 °C for around 24 hours.

Cu powders were introduced into a container with the pseudo-gel at room temperature (binder + plasticizer). The Cu pastes were prepared by mixing all these components in an acoustic mixer for 3 minutes. Once mixing was finished, the Cu paste was then kept in the refrigerator at 8 °C for a minimum of 24 hours of rest before being used in micro-extrusion. In our study, the formulation for the micro-extrusion contains 50 vol.% of Cu particles. This ratio corresponds to a best compromise between suitable rheological properties of the paste (with low viscosity) and the maximum ratio of metallic particles in the extrusion paste [11].

86

87 *2.2. 3D printing*

The micro-extrusion tests have been performed with a 3D printer (S600D, Lynxter, Bayonne, France) with the PAS11 tool head. Simple 3D cubes $(10x10x10 \text{ mm}^3)$ parts were obtained from a CAD file; sliced using a software (Simplify 3D) to obtain the printing path with the computer G-code language executed by the printer. The diameter of the nozzle and the distance between 2 strands are equal to 0.86 mm.

92

93 2.3. Consolidation by heat treatments

94 After extrusion, the parts were dried at room temperature and then debinded and sintered. Nabertherm RD

30/200/11 tube furnace is use for debinding and sintering. To determine the debinding cycle, thermal analysis was carried out on the binder powder. Several dwell temperatures of debinding (T° = 300, 400, 500, and 600 °C) in air and argon (Ar), with a flow of 200 mL/min, were tested to evaluate the impact of these parameters on the parts' density and microstructure. However, the heating ramp was fixed at 5 °C/min with a dwell time of 1 hour.

Sintering was used to obtain parts with a density lower than 60% to maximize specific surface areas with optimized thermal dissipation. Sintering was performed at 700 °C for 60 min in an Ar/H₂(5%) atmosphere with a flow of 200 mL/min. The heating ramp is equal to 6 °C/min with a dwell time of 2 hours.

103

104 2.4. Structural and micro-structural characterization

105 The Archimedes method (Mettler Toledo AT201) was used to measure the real density of the samples and the mercury intrusion porosimeter to measure the pore volume and porosity of the Cu materials. The relative 106 density was calculated by dividing the real density by the theoretical density of Cu, CuO and Cu₂O ($d_{Cu} = 8.96$ 107 g/cm^3 , $d_{CuO} = 6.31 g/cm^3$, $d_{Cu2O} = 6 g/cm^3$) knowing the amount of Cu, CuO and Cu₂O inside the densified 108 109 materials. The microstructure of printed parts was analyzed by Scanning Electron Microscopy (SEM, VEGA II SBH, TESCAN). The surface area is the main factor in thermal management. To demonstrate the benefit of 110 additive manufacturing in thermal management, the heat dissipation performance of different structures 111 printed was measured and compared to a dense Cu. In the experimental set-up [4], the heat sink was attached 112 to a memory card chip placed on a hot plate heated to 200 °C. A fan was located 10 cm from the top of the 113 heat sink to produce an airflow. The temperature of the electronic chip was measured using an IR camera 114 about 0.5 m from the heat sink with a precision of \pm 2 °C. 115

116

117 3. Results and discussion

118 *3.1 Debinding of the Cu materials printed*

The diffractograms in Figure 1 show that during debinding under argon, whatever the debinding temperature, the structure of the parts is identical to that of the starting powder; it is highly crystallized cubic copper with well-defined peaks. On the other hand, when debinding is carried out in air, the structure evolves. CuO and Cu₂O peaks appear from 200 °C.

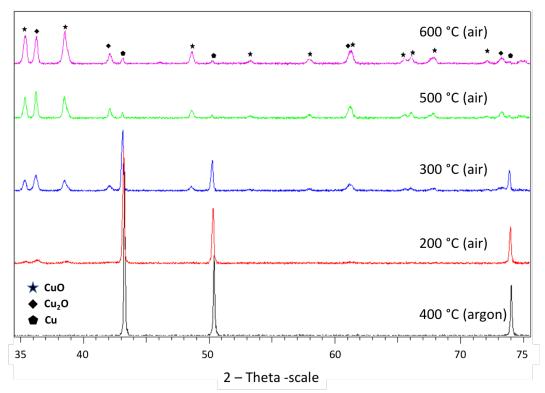


Figure 1: Typical diffraction diagram of Cu materials debinding under argon and ai5 atmosphere at different temperature

127

133

The predominance of the phases has been plotted as a function of the debinding temperature in air in Figure 2. Figure 2a shows that when the debinding temperature increases, the Cu phase is gradually consumed in favor of the oxide phases; it is completely consumed at 600°C. The proportion of the Cu₂O phase stabilizes between 20 and 30% while the CuO phase becomes predominant at 525°C. The Cu₂O phase does not increase because it serves as a reaction intermediate for the formation of the CuO phase.

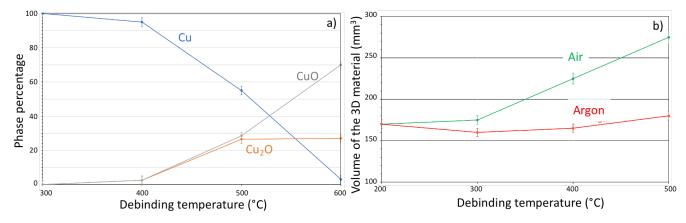


Figure 2: Evolution of a) the chemical composition, with air debinding temperature, of the Cu materials and,
b) the volume of the materials, in mm³ of the Cu materials at different air debinding temperatures

In Fig. 2b, it notes the variation of the Cu part volume in mm³, in relation with the debinding temperature. As 137 it can be seen in the Fig. 2a, the concentration of Cu oxide increases for a temperature greater then 300 °C and 138 therefore shows the transformation of metal Cu to two different Cu oxides, Cu₂O and CuO. Cu oxides have 139 lattice parameters greater than that of pure Cu; this induces volume differences in the unit cell: $V_{Cu} = 47.24$ 140 Å, $V_{Cu2O} = 77.83$ Å and $V_{CuO} = 81.22$ Å [15]. These variations of the cell volume induced the increasing of 141 the volume of the Cu parts during the debinding under air. Fig. 2b shows that for the parts debinded in argon, 142 the volume is quite stable up to 400 °C and slightly increase after this temperature. For parts debinded in air, 143 the volume of the parts is almost stable up to 300 °C, and then increases afterwards. This behavior results from 144 a competition between two phenomena: A first phenomenon of densification caused by pre-sintering of Cu 145 particles is preponderant up to 300 °C. For temperature higher than 300 °C, oxidation of Cu is predominant. 146 147 This observation agrees with the micrography in Fig. 3a which shows that there is no visible evolution of the Cu powders after a heat treatment under Argon, which compare with the same temperature under air (cf. Fig. 148 3b and 3c). Fig. 3c shows the growth of nanowires on top of the Cu particles. The CuO nanowires start 149 appearing when the temperature reaches 400 °C and grow continuously as the annealing time increases. It is 150 151 assumed that the formation of these CuO nanowires is driven by the thermal oxidation of Cu during annealing [15]. Such a phenomenon has already been observed by Jiang et al. [16]. A step-by-step kinetic study of the 152 153 growth process shows that the CuO nanowires start appearing when the temperature reaches 400 °C and grow continuously as the annealing time increases, reaching lengths of several microns after 2 h of annealing. It is 154 assumed that the formation of these CuO nanowires is driven by the thermal oxidation of copper during 155 annealing. Cuprous oxide (Cu₂O) is known to be the first product of Cu oxidation, while CuO is formed in a 156 second step. Many mechanisms have been proposed in order to explain this phenomenon, such as the catalytic 157 action of Cu₂O on CuO formation through a vapor-solid mechanism [16], or the growth stresses in the oxide 158 159 layers strong enough to extrude CuO wires from the surface [17].

- 160 The evolution of the microstructure, for material with a debinded in air, is correlated to the formation of Cu 161 oxide. In contrary, the microstructures of the Cu parts with debinding in Ar, are quite similar at any debinding
- temperatures due to the absence of the Cu oxidation in Ar atmosphere.

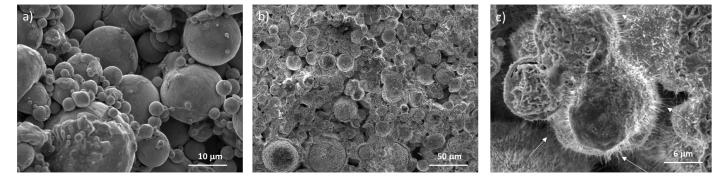
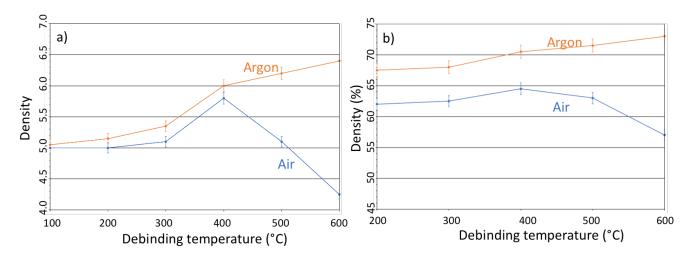



Figure 3: SEM microstructure of the Cu materials debinded at 400 °C under a) Ar, and b, c) air (white arrows
shows CuO nanowires)

167

Fig. 4a shows that debinding conditions have a significant impact on the final sample density. For samples 168 debinded in air, as the debinding temperature increases, the density of the parts increases from 200 to 400 °C, 169 then decreases from 400 to 600 ° C. This behavior results from a competition between the densification caused 170 by the sintering (decrease of the porosity inside the material) and the formation of Cu oxide (Cu₂O and CuO), 171 172 which have a density lower than pure Cu. When the samples are debinded in Ar, there is no Cu oxide formation; the density of the parts therefore increases linearly with the sintering temperature. Above 400 °C, 173 the decrease of the measured density for Cu material debinded in air has to be correlated with the increase of 174 175 the CuO and Cu₂O percentage.

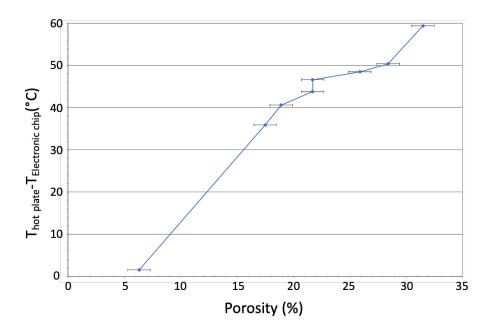
176

Fig. 4: Evolution of the porosity level, inside the Cu material, after a) 60 min debinding in air and Ar
atmosphere and b) debinding and sintering at 700 °C for 60 min in an Ar/H₂(5%) atmosphere.

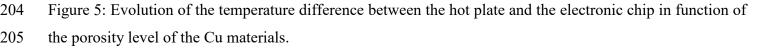
179

180 *3.2 Sintering of the Cu materials printed*

After debinding at different temperatures and atmospheres, Fig. 4b shows the evolution of the density of the sintered at 700 °C for 60 min in an Ar/H₂(5%) atmosphere. First, the sintered densities are higher for materials debinded in air than those debinded under Ar at any temperature. Second, the variation of the density of the sintered materials shows the same trend that the variation of just debinded material. For samples debinded in air, an increase in the density is observed first for temperatures up to 400 °C, followed by a decrease at higher temperatures. For samples debinded in Ar, a continuous increase can be observed.


187

188 *3.3 Heat dissipation of the materials 3D printed*


Fig. 5 shows the evolution of the temperature difference between the hot plate and the electronic chip as a function of the porosity level of the sintered Cu parts. It has to be mentioned that, for this paper, just selective

materials with micrometric porosity, induced by different debinding temperature and sintering conditions, 191 ranging from 5 to 30% have been analyzed. All of these materials have been debinded under air. In a future 192 paper, macro porosities, induced by EAM process, will be associate with micro porosities in order to increase 193 the porosity range and to see the effect of the porosity size and shape with the thermal dissipation behavior. 194 The heat dissipation in the porous Cu part significantly depends on the porosity level inside the Cu part 195 sintered. Ended, when the volume fraction of pores increases, the temperature difference between the hot plate 196 197 and the electronic chip increases and so does the ability of the porous Cu to dissipate heat. Therefore, it is possible to improve the heat dissipation of a material by increasing its specific surface areas through a higher 198 porosity. It has to be mentioned that, due to the fact that the porosity level inside the sinter Cu materials is 199 much higher than 5%, the structure porosity must be consider has open. This open porosity allows a better 200201 dissipation of the heat on the surface and inside the Cu parts.

202

203

206

207 4. Conclusion

Cu pastes with optimal properties for micro-extrusion have been formulated and porous Cu materials have been fabricated by 3D printing, using the EAM method. The influence of the debinding and sintering conditions (atmosphere, temperature, and time) on the porosity level and the heat dissipation behavior have been investigated. The results could be summarized as follows.

Debinding conditions have a significant impact on sample density. For samples debinded in air the
 density of the parts increases from 200 to 400 °C, then decreases from 400 to 600 °C. This behavior

214	results from a competition between the densification induced by the sintering and the Cu oxidation.
215	When the samples are debinded in Ar, there is no oxide formation. Cu parts debinded in air are more
216	porous than those in argon.

2) The variation of the density of the sintered materials show the same trend that the variation of just
debinded material. For the samples debinded in air, an increase in the density is observed up to 400
°C, followed by a decrease at higher temperatures.

3) For Cu materials, the porosity level inside the materials 3D fabricated can be controlled by changing the debinding and sintering conditions.

- 4) Heat dissipation of the porous Cu part strongly depends on the porosity level inside the sintered Cu parts. For such open porosity structure, the increase of the volume fraction of pores is strictly correlated with the ability of the porous Cu to dissipate heat.
- 5) Finally, this innovative work shows clearly that the EAM method, using eco-friendly paste, can be a promising method to product the heat sink with a very heat dissipation ability thank to a specific internal porosity of material sintered and also the specific 3D shape of Cu heat sink.
- 228

229 Acknowledgments

The authors would like to thanks Eric Lebraud of the Institut de Chimie de la Matière Condensée de Bordeaux
for performing the XRD analyses.

232

233 **Declarations of interest**

234 None

235

236 Data availability

All data generated or analyzed during this study are included in this published article

238

239 Funding

240 This research did not receive any specific grant from funding from funding agencies in the public, commercial,

- or not-for-profit sectors.
- 242

243 *References*

- 244 [1] Y. Cui, Z. Qin, H. Wu, M. Li, Y. Hu, Nature Communications 12(1), 4457 (2021)
- [2] Y. Li, L. Gong, M. Xu, Y. Joshi, Journal of Electronic Packaging, Transactions of the ASME 143(3), (2021)

- [3] M. Baldry, V. Timchenko, C. Menictas, Journal of Thermal Science and Engineering Applications 13(4),
 41001 (2021)
- 248 [4] L. Constantin, L. Fan, Z. Wu, B. Mortaigne, J.-F. Silvain, YF Lu, Laser 3D printing of complex Copper
- structures, Additive Manufacturing 35, 101268 (2020)
- [5] F. Singer, D.C. Deisenroth, D.M. Hymas, M.M. Ohadi, 16th IEEE Intersociety Conference on Thermal and
- 251 Thermomechanical Phenomena in Electronic Systems (ITherm), 174 (2017)
- [6] C. Körner, International Materials Reviews 61, 361 (2016)
- [7] J.-F. Silvain, J.-M. Heintz, A. Veillere, L. Constantin, YF Lu, Int. J. Extrem. Manuf. 2, 012002 (2019)
- [8] H. Zhang, L. Chen, Y. Liu, Y. Li, International Journal of Heat and Mass Transfer 56, 172 (2013)
- [9] W.E. Frazier, J. of Material Engineering and Perform 23, 1917 (2014)
- [10] D.K. Mishra, P.M. Pandey, Materials Science & Engineering A 804, 1407592021 (2021)
- [11] J. Bourret, I. EL. Younsi, M. Bienia, A. Smith, P.-M. Geffroy, J. Marie, Y. Ono, T. Chartier, V. Pateloup,
- Journal of the European Ceramic Society 38, 2802 (2018)
- [12] N. Thombare, U. Jha, S. Mishra, M.Z. Siddiqui, Int. J. Biol. Macromol. 88, 361 (2016)
- 260 [13] R. Lapasin, S. Pricl, Rheology of Industrial Polysaccharides: Theory and Applications, First Edition,
- 261 Springer US, https://doi.org/10.1007/978-1-4615-2185-3 (accessed March 25, 2020) (1995).
- 262 [14] L. Constantin, PhD thesis, University of Bordeaux (2020)
- [15] J.-F. Silvain, C. Vincent, T. Guillemet, A. Veillere, J.-M. Heintz, Material Research Bulletin 47, 500
 (2012)
- 265 [16] X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2 (12), 1333 (2002)
- 266 [17] T. Homma, S. Issiki, Acta Metall. 12, 1092 (1964)