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Gif-sur-Yvette, France.

bLEME, Paris-Nanterre University, 50 rue de Sèvres, 92410 Ville d’Avray, France
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Abstract

This paper tackles the problem of robust covariance matrix estimation when the data

is incomplete. Classical statistical estimation methodologies are usually built upon the

Gaussian assumption, whereas existing robust estimation ones assume unstructured sig-

nal models. The former can be inaccurate in real-world data sets in which heterogeneity

causes heavy-tail distributions, while the latter does not profit from the usual low-rank

structure of the signal. Taking advantage of both worlds, a covariance matrix estima-

tion procedure is designed on a robust (mixture of scaled Gaussian) low-rank model by

leveraging the observed-data likelihood function within an expectation-maximization al-

gorithm. It is also designed to handle general pattern of missing values. The proposed

procedure is first validated on simulated data sets. Then, its interest for classification

and clustering applications is assessed on two real data sets with missing values, which

include multispectral and hyperspectral time series.

Keywords: Missing data, covariance matrix, mixture of scaled Gaussian, low-rank,

expectation-maximization algorithm, classification.

1. Introduction

Missing data appear when no value of the data is available for a given variable and a

given observation. This classical problem [1, 2] is a pitfall in statistical signal processing

and its related fields, as statistical inference [3, 4] and data analysis [5, 6]. To name a few

applications where missing data has drawn significant attention, we can cite biomedical
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studies, chemometrics [7] or remote sensing where missing values created by poor atmo-

spheric conditions or sensor failure can dramatically hamper the understanding of the

physical phenomenon under observation [8]. Covariance matrix (CM) estimation theory,

which is a fundamental issue in signal processing and machine learning problems, has

witnessed particular efforts focusing in the case of incomplete data.

In this scope, it is known that any efficient estimation algorithm should be able

to exploit the source of information offered by missing values, which is formerly called

informative missingness [9]. One approach to estimate the CM with missing values is to

rely on maximum likehood (ML) estimation with a prior assumption on the probability

distribution of the data. Within this framework, the Expectation-Maximization (EM)

algorithm [10] is a handy iterative procedure to obtain ML estimates as it is based on

the expectation of the conditional probability p(z|x,θ) of the latent (missing) variables

z given the observed variables x and the parameters θ under estimation. Extensive

work has been put into CM estimation with missing values using the EM algorithm by

assuming independent and identically distributed (iid) samples drawn from the Gaussian

distribution when the sample size n exceeds the dimension p (n > p) [11, 12] or in high-

dimensional regime [13, 14, 15] (p > n). Other models have been considered in which

the covariance is assumed to have a low-rank plus identity structure [14], which will be

referred in the following to as LR structure1. This structure is closely related to signal

subspace inference or principal component analysis (PCA) with missing values [16, 17].

To overcome robutsness issues associated with the classical Gaussian assumption,

more general distributions have been considered, such as the multivariate t-distribution

[18, 19] and its regularized version for small sample size using an improved EM algorithm

[20]. These distributions are encompassed by elliptical symmetric (ES) distributions,

which are directly linked via ML estimation to the so-called M-estimators in the com-

plete data case [21, 22, 23]. The robustness of these tools to non-Gaussianity [24] has

been illustrated in a wide range of applications including radar processing, hyperspectral

imagery and classification [25, 26, 27, 28, 29, 30]. Interestingly, this family can be ac-

counted for in a robust (distribution-free) manner by considering the so-called mixture

of scaled Gaussian (MSG) [31] , which models the data as Gaussian conditionally to an

1It is sometimes named spiked or factor model.
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monotone general random

1

Figure 1: Illustration of three rectangular data sets with different missing data patterns (black=observed,

white=missing): monotone, general and random. Note that the random pattern is a special case of the

general pattern, where missing values appear on individual observations rather than blocks. See [35] (p.

5) for a precise description of missing data patterns.

unknown deterministic scale for each sample.

This paper proposes to take advantage of both robust estimation and LR structure

models by proposing a EM-based procedure to estimate the CM in the case of incom-

plete data drawn from a MSG distribution. As cited above, existing robust covariance

estimation algorithms based on MSG distributions are not designed to deal with missing

values, and, to the best of our knowledge, existing works which use the LR structure are

only based on Gaussian assumptions. In the full rank case, the work of [32] has extended

generalized elliptical distributions (GES), from which MSG distributions are a sub-class,

to incomplete data by proposing an adapted form of the Tyler’s M-estimator.

Furthermore, existing estimation algorithms that handle missing data assume that

the missingness pattern, i.e., the pattern describing which values are missing with respect

to the observed data, is a monotone pattern [18, 12, 20, 32] (see the illustration of missing

data patterns in Fig. 1). This pattern can be of interest, e.g., in longitudinal studies [33]

or sensor failure [34]. However, in other applications such as remote sensing, missing

values can take very diverse patterns because of unpredictable events (clouds, snowfall,

etc.) [8], which leads to the so-called general pattern [3].

With the previous points in mind concerning i) robustness to non-Gaussianity, ii)

low-rank structured models and iii) missingness patterns, the contributions of this paper

are summarized below:

1) A generic algorithm for CM estimation is developed for structured signals with

a non-Gaussian distribution. A procedure for non-structured / Gaussian is also

obtained as a special case. In the structured configuration, the covariance matrix

is supposed to have a LR structure as in [36], which will be detailed in the next

section;
3



2) The analysis of missingness patterns is extended to the general pattern, which fills

a gap in robust estimation;

3) The proposed estimators are tested on both simulated and real data sets with two

applications in machine learning, namely supervised classification and unsupervised

clustering with missing values, which has rarely been unfolded (outside of simulated

data) in the literature of CM estimation with missing values.

The rest of the paper is organized as follows: Section 2 formulates the problem

by framing the MSG distribution, the LR CM structure and the missing data model.

Section 3 describes the proposed robust CM estimation procedures for unstructured and

structured models. Section 4 illustrates the performance of the proposed method on

simulated data sets in terms of CM estimation and data imputation. Finally, Section 5

shows the interest of the proposed procedure in real data applications using covariance-

based machine learning methods.

Notations. a indicates a scalar quantity, a represents a vector quantity and A a matrix.

{ai}ni=1 denotes the set of elements ai with i ∈ [1, n]. The transpose operator is >,

whereas tr{·} and | · | are respectively the trace and the determinant operators. The

eigenvalue decomposition of A into matrices U and Λ is denoted by A
EVD
= UΛU>.

The symbol � indicates positive definitiveness, Sp++ is the set of p×p symmetric positive

definite (SPD) matrices2 and Stp,r is the real Stiefel manifold of p× r orthogonal matri-

ces3. ∝ stands for “proportional to”. Q(·) is the score function. Finally, E[·] denotes the

expectation operator.

2. Problem formulation

2.1. Mixture of scaled Gaussian distributions

Most of covariance matrix estimation procedures with incomplete data use the Gaus-

sian assumption. However, this assumption can be inaccurate in remote sensing applica-

tions, where images often include heterogeneous areas. The mixture of scaled Gaussian

2Sp++ = {Σ ∈ Sp : ∀x ∈ Rp\{0},x>Σx > 0}.
3Stp,r = {U ∈ Rp×r : U>U = Ir}.

4



(MSG) distributions can tackle this issue by managing heavier tails, which offers a better

fit to empirical data [31]. A real p-vector y ∈ Rp follows a zero-mean multivariate MSG

distribution4 if it admits the stochastic representation

y =
√
τn (1)

with n ∼ N (0,Σ) and for some scalar τ ∈ R>0, called the texture, which is strictly

positive, deterministic and unknown for each sample.

Let us now define a rectangular data set Y ∈ Rp×n represented by Y = {yi =

(y1,i, y2,i, . . . , yp,i)
>} where {yi}ni=1 are modeled as n iid vectors of dimension p drawn

from a MSG distribution. This leads to the following model:

yi|τi ∼ N (0, τiΣ), Σ ⊆ Sp++, τi > 0 (2)

The loglikelihood function of model (2) is given by

log `({yi}|Σ, {τi}) ∝ −n log |Σ| − p
n∑

i=1

log τi −
n∑

i=1

y>i (τiΣ)−1yi (3)

In this model, the texture can be seen as a scale setting of the Gaussian model [37].

Such model is also intertwined with the class of compound Gaussian (CG) distributions

(which is a subclass of ES distributions), which assumes the texture independent from

n in (1) and with a given PDF fτ (.). Note that the type of distribution within the class

of CG distributions is mainly guided by the assumption on the PDF function [31].

Considering deterministic {τi} instead of assuming a PDF fτ has proven its conve-

nience in terms of robustness5 [21, 23, 31]. This distribution is also more robust than the

purely Gaussian one because the scales allow flexibility in the presence of heterogeneous

data, e.g., noisy data, possible outliers or inconsistencies in the data (see, e.g., [40] for

Synthetic Aperture Radar data).

4Note that this distribution can be easily transposed to complex-valued vectors [31].
5This model follows a parametrization of the covariance matrix of the real elliptical model E(0, τξ),

where ξ is the shape matrix and where τ has only one value. In our case, the scale parameter varies at

each observation i = 1, . . . , n. More details can be found in [38, 24, 39].

5



Remark 1. As it is clear that τi = 1, ∀i in the deterministic MSG distribution (2)

gives the Gaussian distribution, results regarding CM estimation will be given by con-

sidering the Gaussian distribution as a special case of the MSG distribution.

Here we assume that Σ is characterized by a LR structure which can be modeled by

the well-known factor model [41] (also known as spiked model [42]):





Σ = σ2Ip +H

H � 0

rank(H) = r

(4)

where Ip denotes the p-dimensional identity matrix and H is a p × p low-rank signal

covariance matrix of rank r. As in many works, the latter is considered to be known from

prior physical assumptions [36] or pre-estimated as in model order selection techniques

[43]. Model (4) is directly related to principal component analysis (PCA) and subspace

recovery [44].

2.2. Data model

As each vector yi might have missing elements, it is necessary to design a model that

takes into account incompleteness. Thereby, each of its observed and missing elements

can be grouped in vectors denoted by yoi and ymi respectively, which are stacked in

vectors ỹi such that

ỹi = Piyi =


y

o
i

ymi


 , i = 1, . . . , n (5)

where Pi ∈ Rp×p denotes a permutation matrix6. As illustrated by Fig. 2, this set of

operations consists in permuting the missing elements at the bottom of each vector yi.

Then, the covariance matrix of ỹi becomes

Σ̃i =


 Σ̃i,oo Σ̃i,mo

Σ̃i,om Σ̃i,mm


 = PiΣP

>
i (6)

where Σ̃i,mm, Σ̃i,mo, Σ̃i,oo are the block CM of ymi , of ymi and yoi , and of yoi .

6Note that Pi is invertible and P−1
i = P>i .

6
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Figure 2: Missing elements (colored) of each yi are permuted to fall at the bottom of each ỹi. Notice

that a completely observed yi implies Pi = Ip.

In a similar manner, the recent work of [45] models (5) by ỹi = Aiyi, where Ai

is a ni × p selection matrix constructed from the extraction of the ni ≤ n rows of

Ip corresponding to the available observations at the i-th snapshot. This is only an

alternative view of the problem. However, the derived results of [45] hold for the Gaussian

distribution. In our case, it is worth mentioning that since each yi follows a MSG

distribution, their permuted version ỹi also follow a MSG distribution because only

elements within each p-vector are permuted.

2.3. The EM algorithm: a brief reminder

The EM algorithm is a widely employed iterative scheme for ML estimation in incom-

plete data problems [10]. This algorithm offers a rigorous and formal approach to the

intuitive ad hoc idea of filling in missing values7: at the E-step, the following conditional

expectation of the complete data loglikelihood is found given the observed data and the

current deterministic estimated parameters θ:

Lc(Ỹ |θ) = log `({yi}|Σ, {τi}) (7)

where θ is the vector of unknown parameters (which are τi and Σ in our case) and

Ỹ = [ỹ1, . . . , ỹn]. Note that Lc(Ỹ |θ) is equivalent to Lc(Y |θ) since both Ỹ and Y

contain the same missing values, ordered and unordered, respectively. Ỹ (or Y ) are

7Indeed, it is not the missing values themselves that are filled, but the function of the missing values

(the sufficient statistics) that are computed [35].

7



the so-called complete data which are the combination of observed and missing data.

At the M-step, the parameters are updated by maximizing the expected complete data

loglikelihood. To summarize, if θ(t) is the current estimate of the parameter θ and f(·)
the density function, the E-step computes

Q(θ|θ(t)) =

∫
Lc(Ỹ |θ)f(ym|yo,θ = θ(t))dym (8)

and the M-step find θ(t+1) by maximizing (8):

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) (9)

The goal is then to repeat E and M-steps until a stopping criteria, such as the distance

||θ(m+1) − θ(m)||, converges to a pre-defined threshold.

3. Covariance estimation under non-Gaussian environment

In this section, covariance matrix estimation procedures are developed in the presence

of missing data under the MSG distribution. The rank constraint given by (4) is also

resolved. For both configurations, the EM algorithm is adopted. In the following, we

consider the determinant-based normalization [46] which leads to the estimation of the

normalized CM Σ/|Σ| 1p , called the shape matrix [47].

3.1. Robust full-rank estimation

In this case, the unknown parameters to estimate are θ = [ζ>, {τi}ni=1]>, where ζ

contains the elements of the lower triangular matrix of Σ including its diagonal and where

{τi} are the texture parameters. As we shall see hereafter, the differences with the purely

Gaussian case (τi = 1) are that 1) the unknown scales τi must be taken into account in

the formulation and computation of the expectation at the E-step and 2) a closed-form

expression τ̂i must be derived to update Σ̂ at the M-step. These estimators can be found

by maximization the loglikelihood of the incomplete data, which is formulated onward.

Replacing yi by its permuted version ỹi in (3), the complete data loglikelihood of the

MSG distribution is alternatively given by:

8



Lc(Ỹ |θ) ∝ −n log |Σ| − p
n∑

i=1

log τi −
n∑

i=1

ỹ>i
(
τiΣ̃i

)−1
ỹi (10)

At the E-step of the algorithm, the expectation of the complete loglikelihood (10) is

computed by using the so-called Q-function. This function is the expectation of the

missing data conditioned by the estimation of the parameters at the t-th iteration of the

algorithm, that is:

Qi(θ|θ(t)) = Eym
i |yo

i ,θ
(t)

[
Lc(yoi ,y

m
i |θ)

]
(11)

Due to the iid of the observations, one obtains:

Q(θ|θ(t)) =

n∑

i=1

Qi(θ|θ(t)) (12)

where

Qi(θ|θ(t)) = Eym
i |yo

i ,θ
(t)

[
− n log |Σ| − p log τi − ỹ>i

(
τiΣ̃i

)−1
ỹi

]

= Eym
i |yo

i ,θ
(t)

[
− n log |Σ| − p log τi −


y

o
i

ymi



>
(
τiΣ̃i

)−1


y

o
i

ymi



]

(13)

The computation of (13) is hastened as both first and second terms in the expectation

are deterministic, which means that only the expectation of the last term has to be

computed. To calculate this expectation, the trace tr{·} is used:

Eym
i |yo

i ,θ
(t)

[
y

o
i

ymi



>
(
τiΣ̃i

)−1


y

o
i

ymi



]

= Eym
i |yo

i ,θ
(t)

[
tr

{
y

o
i

ymi



(
yo>i ym>i

) (
τiΣ̃i

)−1
}]

= τ−1
i tr

{
Eym

i |yo
i ,θ

(t)

[
y

o
i y

o>
i yoi y

m>
i

ymi y
o>
i ymi y

m>
i



]
Σ̃−1
i

}

= τ−1
i tr

{
B

(t)
i Σ̃−1

i

}
(14)

9



where B
(t)
i =


D

(t)
i E

(t)
i

F
(t)
i G

(t)
i


 is a p× p matrix at iteration t of the EM algorithm, with

blocks given by

D
(t)
i = Eym

i |yo
i ,θ

(t)

[
yo
i y

o>
i

]
= yoi y

o>
i (15)

E
(t)
i = Eym

i |yo
i ,θ

(t)

[
yoi y

m>
i

]
= yoiEym

i |yo
i ,θ

(t)

[
ym>i

]
(16)

F
(t)
i = E

(t)>
i (17)

G
(t)
i = Eym

i |yo
i ,θ

(t)

[
ymi y

m>
i

]
(18)

Thus, the expectation to compute are Eym
i |yo

i ,θ
(t) [ymi ] and Eym

i |yo
i ,θ

(t) [ymi y
m>

i ], which are

the expectations of the missing data conditioned by the observed data. Note that ymi and

ymi y
m>

i are the sufficient statistics for the complete data Ỹ , which have a distribution

from the regular exponential family [35]. Here, using a classical result on conditional

distributions (see Theorem 2.5.1 in [48], p. 35), the conditional distribution of ymi given

yoi is

ymi |yoi ∼ N (µ̃i,m|o, Σ̃i,mm|o) (19)

where µ̃i,m|o = Σ̃i,moΣ̃
−1
i,ooỹ

o
i and Σ̃i,mm|o = τi(Σ̃i,mm − Σ̃i,moΣ̃

−1
i,ooΣ̃i,om) are the con-

ditional mean and covariance matrix, respectively. Note that τi is absent from µ̃
(t)
i,m|o as

it is annihilated by its inverse. Following [35], at the t-th iteration, the E-step of the EM

algorithm consists in calculating

Eym
i |yo

i ,θ
(t)

[
ymi
]
= µ̃

(t)
i,m|o (20)

Eym
i |yo

i ,θ
(t)

[
ymi y

m>

i

]
= Σ̃

(t)
i,mm|o + µ̃

(t)
i,m|oµ̃

>(t)
i,m|o (21)

Finally, θ(t+1) is obtained at the M-step of the algorithm as the solution of the following

maximization problem:

max
θ

Qi(θ|θ(t))

subject to
Σ � 0

τi > 0, ∀i

(22)
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Proposition 3.1. The ML estimates Σ̂ and τ̂i of problem (22) are given by the following

closed-form expressions:

τ̂i =
tr
{
B

(t)
i Σ̄−1

i

}

p
for i ∈ [1, n] (23)

Σ̂ =
p

n

n∑

i=1

C
(t)>

i

tr
{
C

(t)
i Σ̂−1

} ∆
= H(Σ̂) (24)

with Σ̄i = PiΣ̂P
>
i , C

(t)
i = P>i B

(t)
i Pi and where H(·) is the fixed point equation.

Proof. Let us start by writing the expectation of the loglikelihood Lc(Ỹ |θ) given by (10):

Eym
i |yo

i ,θ
(t)

[
Lc(Ỹ |θ)

]
∝ Eym

i |yo
i ,θ

(t)

[
− n log |Σ| − p

n∑

i=1

log τi −
n∑

i=1

ỹ>i
(
τiΣ̃i

)−1
ỹi

]

(25)

Notwithstanding equation (25) is similar to (13), it differs as it is the expectation condi-

tioned on all observations contained in Ỹ , whereas the latter stands for only one obser-

vation. By using the result (14) obtained from (13), it follows that:

Eym
i |yo

i ,θ
(t)

[
Lc(Ỹ |θ)

]
∝ −n log |Σ| − p

n∑

i=1

log τi −
n∑

i=1

τ−1
i tr

{
B

(t)
i Σ̃−1

i

}
(26)

Again, the block matrix B
(t)
i contains the expectation of the sufficient statistics ymi y

m>
i

to be computed at the E-step using (15). Now, let differentiate (26) with respect to τi

and resolve the equality:

∂Eym
i |yo

i ,θ
(t)

[
Lc(Ỹ |θ)

]

∂τi
= 0

This calculus is trivial and finally gives

τ̂i =
tr
{
B

(t)
i Σ̄−1

i

}

p

with Σ̄i = PiΣ̂P
>
i , which is the desired expression for τ̂i. To find Σ̂, we first replace τi

by τ̂i in (26) and obtain the following loglikelihood:

Eym
i |yo

i ,θ
(t)

[
Lc(Ỹ |θ)

]
∝ −n log |Σ| − p

n∑

i=1

log
tr
{
B

(t)
i Σ̃−1

i

}

p
− np (27)

11



Then, we derive (27) w.r.t. Σ, which leads to the resolution of the following equation:

∂Eym
i |yo

i ,θ
(t)

[
Lc(Ỹ |θ)

]

∂Σ
= 0

By using the definition Σ̃i = PiΣP
>
i , one obtains first:

−nΣ−1 − p
n∑

i=1

Σ−1C
(t)>

i Σ−1

tr
{
C

(t)
i Σ−1

} = 0

where C
(t)
i = P>i B

(t)
i Pi. Arranging terms, then multiplying right and left terms by Σ

gives the desired closed-form expression of Σ̂ and concludes the proof.

Remark 2. For n > p, which is our case, this estimator can be computed using the

fixed point algorithm Σm+1 = H(Σm) where m refers to the iteration index of the fixed

point.

Remark 3. In the Gaussian case, finding Σ that maximizes this expression requires

to derive Q with respect to Σ and then to solve ∂Q
∂Σ =

∂E
ym
i

|yo
i
,Σ(t)

[
Lc(Ỹ |Σ)

]

∂Σ = 0 where

Eym
i |yo

i ,Σ
(t)

[
Lc(Ỹ |Σ)

]
∝ −n log |Σ| −∑n

i=1 tr
{
B

(t)
i Σ̃−1

i

}
. Based on the above and after

some basic derivation calculus, the solution to be computed at each iteration of the EM

algorithm is given by:

Σ̂ =
1

n
C(t)> (28)

with C(t) =
∑n
i=1P

>
i B

(t)
i Pi. One can notice that in the case of no missing values,

this result leads to the classical Sample Covariance Matrix (SCM) with Pi = Ip and

B
(t)
i = E[yiy

>
i ].

The complete estimation procedure of θ is given in Algorithm 1. The stopping con-

dition of the EM algorithm is ensured by the evaluation of the quantity ||θ(t+1)− θ(t)||2F
at each iteration, while the convergence of the fixed point algorithm relies on ||Σ(t)

m+1 −
Σ

(t)
m ||2F .

At the step t = 0, the estimate Σ(0) is initialized with Tyler’s estimator from available

observations in their full dimension p, denoted Σ̂Tyl-obs. Unlike Σ, incomplete observa-

tions make the direct estimation of τ with the fixed point impracticable: thus, as an

initialization, all τ
(0)
i are set to one.

12



Algorithm 1 EM-Tyl: Estimation of θ under MSG distribution with missing values.

Require: {ỹi}ni=1 ∼ N (0, τiΣ), {Pi}ni=1

Ensure: Σ̂, {τ̂i}ni=1

1: Initialization:

Σ(0) = Σ̂Tyl-obs

τ (0) = 1>N

2: repeat . EM loop, t varies

3: Compute

E
(t)
i = ỹoi Σ̃

(t)
i,moΣ̃

−1(t)
i,oo ỹoi

G
(t)
i = τ

(t)
i

(
Σ̃

(t)
i,mm − Σ̃

(t)
i,moΣ̃

−1(t)
i,oo Σ̃

(t)
i,om

)
+ Σ̃

(t)
i,moΣ̃

−1(t)
i,oo ỹoi

(
Σ̃

(t)
i,moΣ̃

−1(t)
i,oo ỹoi

)>

4: Compute B
(t)
i =


y

o
i y

o>
i E

(t)
i

E
(t)>
i G

(t)
i




5: Compute C
(t)
i = P>i B

(t)
i Pi

6: repeat . fixed point, m varies (optional loop)

7: Σ̂
(t)
m+1 = H(Σ̂

(t)
m )

8: until ||Σ(t)
m+1 −Σ

(t)
m ||2F converges

9: Compute τ̂
(t)
i , i = 1, . . . , n

10: t← t+ 1

11: until ||θ(t+1) − θ(t)||2F converges

13



3.2. Robust low-rank estimation

Let us now consider the case of data whose covariance matrix lives in a subspace of

dimension r < p. As we recall, this configuration is useful in many real signal applica-

tions and is closely related to principal component analysis (PCA) and signal subspace

estimation [44].

Following model (4), the parameters to estimate are now given by θ = [ζ>, σ2, {τi}ni=1]>,

where ζ contains the elements of the lower triangular matrix of H. The maximization

problem (22) to find θ(t+1) at the M-step of the EM algorithm becomes the following

low-rank estimation problem:

max
θ

Qi(θ|θ(t))

subject to

Σ = σ2Ip +H

rank(Σ) = r

σ > 0, τi > 0, ∀i

(29)

A general solution to this problem was found in the seminal work of [44], which is

recalled subsequently using the formulations of [49] and [50]. Firstly, let Σ(t) EVD
=

∑p
i=1 λ

(t)
i u

(t)
i u

>(t)
i be the eigenvalue decomposition of Σ(t) at the t-th iteration of the

EM algorithm, where λ
(t)
1 < · · · < λ

(t)
p are the eigenvalues of Σ(t) and u

(t)
1 , . . . ,u

(t)
p the

corresponding eigenvectors. Then, the solution of (29) is given by:

Σ̂ = σ̂2Ip +

r∑

i=1

λ̂iu
(t)
i u

>(t)
i (30)

where

σ̂2 =
1

p− r

p∑

i=r+1

λ
(t)
i (31)

λ̂i = λ
(t)
i − σ̂2, i = 1, . . . , r (32)

The procedure to estimate θ under the LR assumption is given in Algorithm 2. It uses

the same form than Algorithm 1 where equations (30)–(32) are applied just after the fixed

point algorithm to each newly estimated Σ. As stated in [50], the proof of monotonicity

of the low-rank estimation algorithm is ensured by standards convergence results of the
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majorization-minimization (MM) algorithm [51]. Finally, the estimation of the scales τ

does not change from the former full-rank algorithm.

Algorithm 2 EM-Tyl-r: low-rank estimation of θ under MSG distribution with missing

values.

Require: {ỹi}ni=1 ∼ N (0, τiΣ), {Pi}ni=1, rank r < p

Ensure: Σ̂, {τ̂i}ni=1

1: Initialize Σ(0), τ (0) as in Algorithm 1.

2: repeat . EM loop, t varies

3: Compute E
(t)
i , G

(t)
i , B

(t)
i and C

(t)
i as in Algorithm 1.

4: repeat . fixed point, m varies (optional loop)

5: Σ̂
(t)
m+1 = H(Σ̂

(t)
m )

6: Σ̂
(t)
m+1

EVD
=
∑p
i=1 λ

(t)
i u

(t)
i u

>(t)
i

7: Update Σ̂
(t)
m+1 by computing (30), (31), (32)

8: Σ̂
(t)
m+1 = Σ̂

(t)
m+1/tr

(
Σ̂

(t)
m+1

)

9: until ||Σ(t)
m+1 −Σ

(t)
m ||2F converges

10: Compute τ̂
(t)
i , i = 1, . . . , n

11: t← t+ 1

12: until ||θ(t+1) − θ(t)||2F converges

3.3. Implementation details

In both Algorithm 1 and Algorithm 2, the set of permutations matrices {Pi}ni=1

is needed as an input to compute the transformed covariance matrices Σ̃i = PiΣP
>
i .

Indeed, if a vector yi is fully observed, one finds that Pi = Ip, which makes the com-

putation of Σ̃ pointless. To avoid these extra computations, one can decompose the

loglikelihood (10) in the following way:

Lc(Ỹ |θ) ∝ −n log |Σ| − p
n∑

i=1

log τi −
∑

i∈No

y>i
(
τiΣi

)−1
yi −

∑

i∈Nm

ỹ>i
(
τiΣ̃i

)−1
ỹi (33)

where No = {il}no

l=1 and Nm = {il}nm

l=1 are the sets of indices corresponding to fully

observed {yi} and partially observed {ỹi}, respectively, with n = no +nm. Thenceforth,
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only the set of permutations matrices {Pil}nm

l=1 need to be computed. An important

consequence is that if yi is fully observed, B
(t)
i = yoi y

o>
i = yiy

>
i . C

(t)
i becomes:

C
(t)
i =




I>p B

(t)
i Ip = yiy

>
i , i ∈ No

P>i B
(t)
i Pi , i ∈ Nm

(34)

Empirical experiments have shown that such care in the computation of C
(t)
i depending

on i ∈ No or i ∈ Nm accelerates the running time of the EM algorithm.

Furthermore, the fixed point loop is optional as it can be seen as an inner EM where

{τi} is the set of latent variables (hence a single update still increases the likelihood).

Our empirical experiments evidenced that both versions of the algorithm achieve similar

performance, while performing only a single fixed point iteration tends to achieve a faster

convergence.

4. Numerical simulations

This section illustrates the validation of the proposed algorithms with numerical ex-

periments on simulated data drawn from the multivariate Gaussian and mixture of scaled

Gaussian distributions. The performances of the proposed covariance estimation proce-

dure are evaluated in regard to three aspects corresponding to different experiments:

1) The missing data ratio and patterns in subsection 4.1;

2) The quantity of outliers corrupting the data in subsection 4.2;

3) The possibility to perform CM-based data imputation in the presence of outliers

and missing data in subsection 4.3.

For the sake of the experiment, the CM and scales parameters are known. The CM

R is chosen to be Toeplitz8, which has the form:

(R)ij = ρ|i−j| (35)

8Note that this information on the structure is not used in the estimation procedure.
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Parameter ρ, which controls the correlation structure of the CM, is set to 0.7. Scales

{τi}ni=1 are drawn from a Gamma distribution with shape parameter α and scale param-

eter β = 1
α . In all experiments, we fix α = 1. To generate a covariance matrix admitting

the structure (4), we compute:

Σ = Ip + σ2UU> (36)

where U ∈ Stp,r is the underlying signal subspace basis obtained from the eigenvalue

decomposition of R and σ is a free parameter corresponding to the signal to noise ratio.

In our experiments, the data dimension is p = 15 and n = {63, 109, 190, 331, 575, 1000}.
Sets {yi}ni=1 are drawn from the MSG distribution with covariance Σ. As the aim is

to estimate the structured covariance matrix Σ, the estimation is performed on 500 sets

{yi}ni=1 simulated for each value of n. Indeed, for the sake of the experiment, missing data

are also simulated, which allows a full control on their ratio and pattern. Importantly,

as n increases from 63 to 1000, the missing data ratio decreases as {44, 22, 11, 5, 2, 1}%.

The following covariance estimators, which are reported in Table ??, are considered

for comparison:

i) The covariance matrix for MSG distributions obtained from Algorithm 1 (full-rank)

and from Algorithm 2 (low-rank), named Σ̂EM-Tyl and Σ̂EM-Tyl-r, respectively.

ii) The covariance matrix for the Gaussian distribution obtained from Algorithm 1

(full-rank) and from Algorithm 2 (low-rank) with the solution given by (28), named

Σ̂EM-SCM and Σ̂EM-SCM-r, respectively.

iii) The sample covariance matrix (SCM) from the clairvoyant data (without missing

data):

Σ̂SCM-clair =
1

n

n∑

i=1

yiy
>
i (37)

and its low-rank version, named Σ̂SCM-clair-r.

iv) The SCM Σ̂SCM-obs estimated from the set of fully observed vectors {yil}no

l=1 ∈ No
where No = {il}no

l=1.
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v) The fixed point estimator or Tyler’s estimator from the clairvoyant data:

Σ̂Tyl-clair =
p

n

n∑

i=1

yiy
>
i

yiΣ−1y>i
(38)

and its low-rank version, named Σ̂Tyl-clair-r.

vi) Tyler’s estimator Σ̂Tyl-obs from the set of fully observed vectors {yil}no

l=1 ∈ No with

No = {il}no

l=1.

vii) Multiple imputation (MI) [52, 6] from which a robust version is proposed (RMI): for

each yi with missing values ymi , q vectors with imputed missing entries (referred to

as imputed vectors hereafter) (ŷi1, ŷi2, . . . , ŷiq) are generated with missing values

drawn from a MSG distribution:

ŷmij ∼ N (µoij ,
√
τijσ

o
ij), j = 1, . . . , q (39)

where µoij and σoij are the mean and variance of the observed components of yij ,

and τij are the scales parameters drawn from the Gamma distribution with shape

parameter α = 1. The estimated covariance is the mean of the q Tyler’s estimators

from the q imputed vectors:

Σ̂RMI =
1

q

q∑

j=1

Σ̂Tyl,j =
p

nq

q∑

j=1

n∑

i=1

ŷij ŷ
>
ij

ŷijΣ̂
−1
Tyl,j ŷ

>
ij

(40)

The low-rank version is also estimated, named Σ̂RMI-r.

viii) Robust stochastic imputation (RSI): this procedure is tantamount to MI, but with

q = 1.

viiii) Mean imputation [6]: missing components of each vector yi are imputed by the

mean of the observed components:

ŷmi = µoi (41)

Then, the covariance Σ̂Mean-Tyl is estimated using Tyler’s estimator. The low-rank

version is also estimated, named Σ̂Mean-Tyl-r.
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Type Estimator Description Low-rank

e
m

EM-Tyl Robust covariance estimation (this study) yes

EM-SCM Covariance estimation (this study) yes

n
o

m
is
si
n
g

d
a
t
a

Tyl-clair Tyler’s estimator on full data [21] yes

Tyl-obs Tyler’s estimator on fully observed data [21] no

SCM-clair Sample covariance matrix on full data yes

SCM-obs Sample covariance matrix on fully observed data no

im
p
u
t
a
t
io
n RMI Tyler’s estimator on multiple imputed data [52, 6] yes

RSI Tyler’s estimator on stochastic imputed data yes

Mean-Tyl Tyler’s estimator on data with mean imputation [6] yes

Table 1: List of estimators used in numerical experiments. In the experiments, low-rank estimators keep

their names with an additional “-r”, e.g., EM-SCM-r.

4.1. Covariance estimation with missing data

This experiment shows the performances of covariance estimation as functions of the

missing data ratio and missing data patterns. To compare the estimated covariance

matrix to the true data covariance, the following geodesic distance is used [53]:

δ2
Sp
++

(Σ, Σ̂) = || log(Σ−
1
2 Σ̂Σ−

1
2 )||22 (42)

This distance, which is sufficient to measure estimation errors, emanates from the

Fisher metric for the Gaussian distribution on Sp++ [54].

Three missing data patterns are examinated, which correspond to the following con-

figurations (see Fig. 1):

• One block of missing data of size (7× 20). This is a special case of the monotone

missing data pattern as studied in [12, 20]. This configuration corresponds to the

case where one group of variables is missing at the same observations, e.g., a group

of sensors that are equally interrupted in time. This case is referred to as monotone

pattern in the experiments.
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Figure 3: Mean of error measures 42 for r = p (left) and r = 5 (right) of methods EM-Tyl, EM-Tyl-r,

EM-SCM, EM-SCM-r, Tyl-clair, Tyl-obs, SCM-clair, SCM-obs, RMI and mean imputation as functions

of the number of samples n. The mean are computed over 500 simulated sets {yi}ni=1 for monotone

(top), general (middle) and random (bottom) missing data pattern with p = 15.

• Multiple blocks of missing data with various size and randomly scattered into the

data set. This configuration corresponds to the general missing data pattern. It

is most likely to happen in real-life applications (see, e.g., [55, 8]). This case is

referred to as general pattern.

• Randomly distributed missing data. This configuration is also a general missing

data pattern except that multiple values for one variable at one observation are

missing across the dataset. This case is referred to as random pattern.

Fig. 3 and 4 show the results in terms of mean distance for two rank settings (the full

rank case r = p and the low-rank case with r = 5) and the three aforementioned pattern
20



Tyler

Tyler obs EM
mean

mult
stoch

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

||l
og

(Σ
−

1
/
2
Σ̂

Σ
−

1
/
2
)||

2 2

Figure 4: Boxplots showing geodesic distances of Tyler, Tyler observed, EM (ours), mean imputation,

multiple imputation and stochastic imputation methods for r = p and n = 200. Small dots show the

computed distances over 500 simulated sets {yi}ni=1 corrupted by 20% of missing data with general

pattern, which corresponds to the middle-left plot of Fig. 3.
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configurations. In the full rank case, EM-Tyl shows better performances than all other

estimators, but fails when the number of available observations is small, especially when

it gets close to p.

For the random pattern configuration, this result is even more notable and when n

increases, EM-Tyl exhibits similar errors than mean imputation. Good performances of

the latter can be explained by the increasing availability of observations as n increases,

which gives a better estimate of µoi . Unsurprisingly, all estimators (except the ones

based on the SCM) reach Tyler’s estimator on clairvoyant data as the missing data

ratio decreases in large sample size. In the case of Gaussian estimators, the EM-SCM

estimator shows very close performances than the clairvoyant SCM. As expected, Tyl-obs

and SCM-obs display poor performances when the missing data ratio increases.

Results for the low-rank model are illustrated for r = 5. In all cases, we observe

that EM-Tyl-r is a better estimator than EM-SCM-r in terms of distance. For small

n, the gap between the EM-Tyl-r estimator and the imputation strategies (RMI-r and

Mean-Tyl-r) diminishes compared to the full-rank case, and EM-Tyl-r significantly gives

better estimates when the number of samples increases.

In conclusion, depending on the available sample size and the missing data pattern

at hand, different estimators are preferable: imputation strategies are more advanta-

geous for small amount of observed samples whereas our estimator performs better as

the number of observed samples grows and when the covariance matrix has a low-rank

structure.

4.2. Should outliers be discarded?

Data corrupted by outliers is one of the main motivation of robust estimation [56]. In

this case, one can be interested to know whether Tyler’s estimator or EM-Tyl estimator

gives higher performances. In the complete data case, the former can be directly esti-

mated with outliers. To estimate the latter, outliers can be discarded or masked (i.e., set

as missing data) if their position are known, which is a common approach in various ap-

plications. In the following, a data set {yi}ni=1 is drawn from the MSG distribution with

a fixed number of samples n = 200 and with p = 15. Outliers are generated by adding

white Gaussian noise (WGN) zi ∼ N (0, σwgnIp) with an increasing variance σwgn on

randomly selected observations yi.
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Three data sets are considered to compare the CM estimation errors:

1) Corrupted data yi + zi;

2) Masked data where the outliers are set as missing data.

3) Data without outliers yi;

Tyler’s estimator is computed on data set 1), whereas the EM-Tyl algorithm is applied

to data set 2). Finally, the clairvoyant SCM and Tyler’s estimators are computed from

data set 3).

Fig. 5 gives an overlook on what choice of the CM estimation procedure would be

preferable. It shows that it mainly depends on the outlier variance: for a small σwgn,

Tyler’s estimator should be preferred, whereas EM-Tyl is more suitable when the outlier

variance reaches the variance of the signal σ. Note also that EM-Tyl provides better

performances than the clairvoyant SCM until the missing data ratio reaches ∼45% of the

data.

4.3. Robust imputation of missing values with outliers

In this experiment, we propose to apply our estimators to missing data imputation

with possible outliers corrupting the data. Missing data imputation [6] concerns a wide

range of applications, including remote sensing [8]. A recent procedure to deal with

missing values was developed, namely the EM-EOF method [57], which uses the EM

algorithm and empirical orthogonal functions (EOFs) to iteratively decompose the CM

and reconstruct the incomplete data with a few number of selected EOFs k � p. The

final number of components is the one giving the minimal error between the initial data

and the imputed data. As shown in Fig. 6, instead of the SCM (which is used in the

aforementioned study), the EM-Tyl-r estimator is used with r = k at the last iteration

of the EM-EOF algorithm. This is justified by the fact that this algorithm iteratively

updates the SCM with the predicted missing values at each step, whereas the EM-Tyl-r

estimator only needs the missing data pattern, which remains the same at each iteration.

The RMI estimator (40) is also considered for comparison.
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Figure 5: Mean geodesic distances over 200 simulated sets {yi}ni=1 as function of the missing data or
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displayed on corrupted data with different outlier variance σwgn w.r.t. the data variance σ. EM-Tyl

and Tyl-obs errors are shown when outliers are masked as missing values.
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Figure 6: Diagram of the EM-EOF method [57] for missing data imputation. After initializing the

missing values, the CM matrix is estimated from the data matrix Y , which is then reconstructed with a

number of components k � p. Instead of using the SCM, the EM-Tyl-r estimator with r = k is plugged

in at the last iteration of the algorithm (in red).

The data is generated using a Haystack-type model [58] which draws samples {yi}ni=1

as inliers yin
i and outliers yout

i :

{yi}ni=1 = {{yin
i }i∈{1,...,nin}, {yout

i }i∈{1,...,nout}} (43)

yin
i ∼ N (0, Ip + σ2

sUU
>) (44)

yout
i ∼ N (0, Ip + σ2

oU⊥U
>
⊥ ) (45)

where U ⊂ Stp,k is the signal subspace basis, σ2
s and σ2

o are respectively the signal to

noise ratio (SNR) and the outlier to noise ratio (ONR), and 100× (n−nin)
n is the outlier

ratio in the data set in percentage.

In the experiments, we choose σ2
s = 10, σ2

o ∈ {0, 1.5, 3, . . . , 30} and the outlier ratio

varies from 0 to 50% of the data. Note that inliers and outliers are whole vectors (not

just entries) which are randomly chosen in the data set. 30% of the data is discarded as

missing values under a general pattern.

To measure the performance of imputation, a set Y = {yl}sl=1 consisting of s random

points over {yij}1≤i≤n,1≤j≤p is selected. Y is called the cross-validation (CV) data set.

Then, we compute the root-mean-square error (RMSE) between Y and its reconstruction

Ŷ = {ŷl}sl=1 after imputation:

δimputation =

[
1

s

s∑

l=1

(ŷl − yl)2

]1/2

(46)

In total, 1% of the data is chosen for the cross-validation data set. These values are

artificially removed and copied before the process, and compared to the new values
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Figure 7: Mean of cross-validation error (46) over 200 simulated sets {yi}ni=1 as function of the outlier

ratio (%) and signal to outlier ratio σ2
o for the EM-EOF using EM-Tyl-r estimator, EM-EOF using the

SCM and RMI procedures. 30 % of missing data under the general pattern are generated. Chosen

parameters are n = 200 and p = 15.

after the imputation procedure. For model (43), CV errors illustrated by Fig. 7 show a

substantial gain by replacing the SCM by the EM-Tyl-r estimator at the last step of the

EM-EOF method, whereas RMI performs poorly. The gain is larger for important signal

to outlier ratio σ2
o , which confirms the robustness of the proposed estimator for robust

low-rank imputation under model (43).

5. Application to classification and clustering problems

5.1. Classification with missing values

In remote sensing, and more particularly in multispectral and hyperspectral imaging,

missing data can arise for various reasons including:

1) Clouds when the sensor operates in the visible part of the spectrum [8];

2) Sensor failure, as the known problem on the scan-line corrector images of the Land-

sat ETM+ sensor [59] or Aqua MODIS band 6 [60];

In these cases, the data (or the entire band itself) is masked, downsampled to avoid

temporal gaps or restored using specific gap-filling methods [59, 60]. When it comes to

classification tasks, incomplete data is a challenge. In this scope, existing approaches
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classify, mask, and interpolate values from cloudy observations in a pre-processing step

[61].

To tackle this challenge, the proposed estimators are used as a set of descriptors9

{θi} to a classification problem on the BreizhCrops data set [61]. The data consists of

Sentinel-2 multivariate time series of field crop reflectances on the Brittany region over

23 spectral bands. It is divided into four sub-regions called FRH01, FRH02, FRH03 and

FRH04 corresponding to the four departments of Brittany. These sub-regions contain

field labels which are gathered in 9 selected classes representing crop categories, e.g.,

barley, nuts, wheat, etc. Following [61], each band is mean-aggregated over one field parcel

to a feature vector yt ∈ Rp, where p is the number of features (here the spectral bands)

and t a timestamp. Thus, the whole data set is denoted {{ytk}Kk=1}Tt=1, which corresponds

to the aggregation of all reflectances at field parcels k ∈ [1,K] and timestamps t ∈ [1, T ].

The experiment is done on the L1C top-of-atmosphere product and on 13 bands selected

by the BreizhCrops processing chain [61]. For the L1C product, the total number of

parcels is K = 608263 and the number of observations per parcel is T = 51.

A supervised covariance-based classification is performed using a Minimum distance

to Riemannian mean (MDRM) classifier [62], which works in a test-training form. The

training step provides a set of p× p SPD matrices encoding field parcels for the available

classes. Assuming that the data is complete, the set of SCMs would be computed as:

Σk =
1

T

T∑

t=1

ytk(ytk)>, k = 1, . . . ,K (47)

For each class, a center of mass of the available parcels is estimated. In the test step, a

field parcel is also encoded as an SPD matrix and then assigned to the class whose center

of mass is the closest according to the distance (42) acting on the manifold Sp++ [63].

Before the experiment, missing data are artificially created in the data set. For this,

successive bands are set as missing and the performances are evaluated as function of the

missing data ratio. The classifier is trained first on the FRH01 region and tested on the

FRH03 region. A second experiment is conducted, where the train data set is changed

to the FRH04 region while the test set remains unchanged.

9In machine learning problems, statistical descriptors are classically used as they are often more

discriminative than raw data.
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Results in terms of overall accuracy (OA) for the FRH03 region with two different

training sets versus the number of missing bands are displayed in Fig. 8. Three covariance

estimation strategies are shown: covariance estimation for Gaussian data (EM-SCM),

robust stochastic imputation (RSI) and robust covariance estimator (EM-Tyl) multiplied

by the geometric mean of the estimated scales τ̂i:

EM-Tyl-Πτi = EM-Tyl×
( T∏

i=1

τ̂i

) 1
T

(48)

Here, the geometric mean acts as an additional power information to the EM-Tyl esti-

mator and better fits the average of textures that might vary on different scales. Unfor-

tunately, experiments have shown that the low-rank structure does not improve the OA,

which might be due to the mean-aggregation over each parcel, which essentially acts as

a filter.

Results show that, for this data set, the MDRM classifier based on robust covariance

matrix estimation (EM-Tyl-Πτi-based) is generally more robust to missing bands than

the EM-SCM one, whereas the RSI-based classifier gives a rapidly decreasing OA when

the gaps ratio increases. Furthermore, we observe that the EM-SCM-based classifier is

more suited for large missing data ratio when the training phase is performed on the

FRH04 region. Interestingly, the classifier based on the EM-Tyl-Πτi estimator provides

an almost stable OA until the gap ratio reaches 28% of the data (4 missing bands) when

when FRH01 is the training set and 14% of the data (2 missing bands) when the classifier

is trained on FRH04.

5.2. Image clustering with missing values

We apply the proposed CM estimators to a hyperspectral image clustering problem

using the K-means++ algorithm [64] on the Indian Pines data set [65], consisting of

a 145 × 145 pixels image with p = 200 bands. As in the classification problem, the

proposed estimators EM-SCM and EM-Tyl are used as descriptors {θi}, as well as EM-

SCM-r and EM-Tyl-r. The aim is to partition the descriptors in a number of clusters

which correspond to the 16 classes dividing the Indian Pines image.

The image is first centered by subtracting the global mean. Then, a sliding window

of size w×w is applied to the image. One descriptor {θi} is estimated using the n = w2
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Figure 8: Classification mean overall accuracy (%) versus the number of randomly missing bands (1

band ∼ 7% of the data) over 50 run of the MDRM [62] classifier based on EM-SCM, EM-Tyl-
∏
τi and

RSI estimators.

observations in each window denoted Xi ∈ Rp×n. Thus, we obtain a set of descriptors

{θi} to cluster using a K-means++ [64]. For the descriptors using the low-rank model (4),

the first r = 5 components are kept which concur with the five principal eigenvectors of

the SCM of Indian Pines containing more than 95% of the total cumulative variance10.

Due to the high dimensionality and a possible runtime overflow due to the creation

of missing data, the image is subsampled regularly to reduce the dimension to 20 bands

and cropped to get a final 85 × 70 image composed by 5 or the 16 original classes (see

Fig. 9a). As shown by Fig. 9b, sensor failure is simulated by adding missing values on

random columns of selected bands.

The averaged Overall Accuracy (OA) are reported in Fig. 10. We observe that in

general, the descriptors based on RSI and RSI-r estimators give lower accuracies com-

pared to the descriptors using the SCM, SCM-r, EM-Tyl and EM-Tyl-r estimators. As

the missing data ratio increases, the performances of the EM-SCM estimator are un-

dermined whereas EM-Tyl estimator accuracies remain stable around 50%. For large

missing data ratio, EM-SCM-r performs surprisingly well compared to EM-Tyl and EM-

Tyl-r. For lower missing data ratios, clustering achieves its best performances using the

EM-Tyl-r estimator.

10This measure can be easily computed by the formula
∑r

i=1 λi/
∑p

i=1 λi.
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6. Conclusion

This article proposes a novel procedure based on the EM algorithm to perform ro-

bust low-rank estimation of the covariance matrix with missing data following a general

pattern. The developed tools take advantage of the MSG distribution and of the LR

structure of the covariance matrix. Closed-form expressions of the unknown CM and

associated scales are derived and integrated to the M-step of the algorithm, which gen-

eralizes the Gaussian case. The performance of the proposed estimators are validated

on simulated data sets with missing values and corrupted by outliers, as well as real-

world incomplete data sets. Compared to the classical Gaussian assumption and to the

unstructured model, experiments show the possibility to improve the results in terms of

CM estimation and robust imputation, as well as supervised (classification) and unsu-

pervised (image clustering) problems. Some potential extensions of this work include the

extension to other classes of compound Gaussian distributions and experimenting clas-

sification tasks with temporal gaps rather than spectral gaps, as well as more spectral

information by reducing the downsampling rate.
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