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Time Consistency
for Multistage Stochastic Optimization Problems

under Constraints in Expectation

Pierre Carpentier∗, Jean-Philippe Chancelier†, Michel De Lara†

August 26, 2022

Abstract

We consider sequences — indexed by time (discrete stages) — of families of mul-
tistage stochastic optimization problems. At each time, the optimization problems in
a family are parameterized by some quantities (initial states, constraint levels. . . ). In
this framework, we introduce an adapted notion of time consistent optimal solutions,
that is, solutions that remain optimal after truncation of the past and that are optimal
for any values of the parameters. We link this time consistency notion with the concept
of state variable in Markov Decision Processes for a class of multistage stochastic opti-
mization problems incorporating state constraints at the final time, either formulated
in expectation or in probability. For such problems, when the primitive noise random
process is stagewise independent and takes a finite number of values, we show that time
consistent solutions can be obtained by considering a finite dimensional state variable.
We illustrate our results on a simple dam management problem.

Keywords: Multistage Stochastic Optimization; Time Consistency; Constraints in Expec-
tation; Dynamic Programming

1 Introduction and motivation

The notion of time consistency has been introduced in the field of Economics [11], and
developed in the context of risk measures [1, 14, 7, 6]. It has been studied in stochastic
optimization, both from the stochastic programming [16, 13] and from the Markov Deci-
sion Process [15] points of view. Loosely speaking, time consistency means that strategies
obtained by solving the problem at the very first stage do not have to be questioned later
on. This definition has been used in [5] to establish links between the concept of state

∗UMA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
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variable and the notion of time consistency. The aim in [5] was to highlight the role of
information in time consistency. For example, considering a standard multistage stochastic
optimization problem solvable by dynamic programming, it was shown that adding a prob-
abilistic constraint involving the state at the final instant of the time span invalidates the
time inconsistency property, in the sense that optimal strategies based on the usual state
variable have to be reconsidered at each time stage. It was also shown that it was possible
to devise an appropriate state variable, namely the probabilistic distribution of the state
variable rather than the state variable itself, to formulate an equivalent problem enjoying
the time consistency property. But this state is an infinite dimensional one, so that dynamic
programming is usually not implementable. The aim of this article is to give deeper insights
into the results established in [5] and to show that it is possible to regain time consistency
on such problems by using an extended finite dimensional state variable.

The paper is organized as follows. In Sect. 2, we introduce the notion of universal solution
for a family of optimization problems, and we define the notion of time consistency for a
sequence of families of optimization problems. Then, we revisit the setting of a discrete time
multistage stochastic optimization problem in the standard formulation, and we show that
our definition of time consistency applies in this case. In Sect. 3, we add an expectation
constraint on the final state to the standard multistage stochastic optimization problem,
and we define families of optimization problems parameterized by both the initial state
and the level of constraint. We prove that the feedback strategies — obtained by dynamic
programming on an extended problem formulation with additional state and control variables
— are time consistent. In Sect. 4, we present a toy problem for managing a dam subject to a
final constraint in probability, and we give results obtained using the extended formulation.
Finally, we draw some conclusions in Sect. 5.

2 Time consistency and multistage stochastic optimiza-

tion

In §2.1, we introduce the notion of universal solution of a family of optimization problems
and the notion of time consistency of a sequence of controls for an optimization data set. In
§2.2, we show how these two notions apply in multistage stochastic optimization.

2.1 Universal solutions and time consistency

We start with general considerations on universal solutions and time consistency, before
moving to more formal statements.

In optimization, the most natural notion of universal solution is the following. Let A
be a set of parameters and U be a set of (decision) variables. Let {Ja}a∈A be a family
of functions1 Ja : U → R ∪ {+∞} indexed by the parameter a. An element u] ∈ U is a

1Adopting usage in mathematics, we follow Serge Lang and use “function” only to refer to mappings in
which the codomain is numerical — that is, a set of numbers (i.e. a subset of R or C, or their possible
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universal solution for the family of functions {Ja}a∈A when u] ∈
⋂
a∈A arg minu∈U J

a(u). In a
different way, the most natural notion of time consistency in (mutistage) optimization is the
following. Let ti < tf be two integers, Jti, tfK = {ti, ti+1, . . . , tf−1, tf} be the corresponding
finite time span, and {Ut}t∈Jti,tf K be a sequence of control sets. We introduce the truncation

mapping (projection) at time t ∈ Jti, tfK, that is, Tt : Uti × · · · × Utf → Ut × · · · × Utf and
Tt(uti , . . . , utf ) = (ut, . . . , utf ). Then, considering a sequence of functions {Jt}t∈Jti,tf K, with

Jt : Ut×· · ·×Utf → R∪{+∞}, we say that time consistency holds when, for all t ∈ Jti, tfK,

Tt
(

arg min
(uti ,...,utf )∈Uti×···×Utf

Jti(uti , . . . , utf )
)
⊂ arg min

(ut,...,utf )∈Ut×···×Utf
Jt(ut, . . . , utf ) .

We now extend and mix these two notions in the case where the (cost) functions depend on
both parameters and time.

Definition 1 We call optimization data set a family D =
(
T , {At}t∈T , {Ut}t∈T , {Jt}t∈T

)
,

where T = Jti, tfK (with ti < tf two integers), a sequence {At}t∈T of parameter sets, a
sequence {Ut}t∈T of control sets, a sequence {Jt}t∈T of cost functions, with Jt : At × Ut ×
· · · × Utf → R ∪ {+∞}.

For any t ∈ T , we call truncated optimization data set at time t the optimization data
set Dt =

(
Jt, tfK, {As}s∈Jt,tf K, {Us}s∈Jt,tf K, {Js}s∈Jt,tf K

)
.

The notion of universal solution for an optimization data set at time t ∈ T is the following.

Definition 2 Let D be an optimization data set and let t ∈ T be given. We say that
(u]t, . . . , u

]
tf

) ∈ Ut×· · ·×Utf is a universal solution for the data set D at time t if it satisfies

(u]t, . . . , u
]
tf

) ∈
⋂
at∈At

arg min
{
PD
t (at)

}
, (1)

where, for any at ∈ At, the optimization problem PD
t (at) is defined by

min
(ut,...,utf )∈Ut×···×Utf

Jt(at, ut, . . . , utf ) . (2)

The property of time consistency of a sequence (u]ti , . . . , u
]
tf

) of controls for an optimiza-
tion data set D is defined as follows.

Definition 3 Let D be an optimization data set and let (u]ti , . . . , u
]
tf

) be a sequence of controls

in Uti × · · · × Utf . We say that the sequence (u]ti , . . . , u
]
tf

) of controls is time consistent for

the optimization data set D if, for any t ∈ T , the truncated subsequence (u]t, . . . , u
]
tf

) =

Tt(u
]
ti , . . . , u

]
tf

) of controls is a universal solution for the optimization data set D at time t.

Otherwise stated, given a universal solution (u]ti , . . . , u
]
tf

) for the data set D at initial time ti,

time consistency means that the subsequence (u]t, . . . , u
]
tf

) is a universal solution for the data
set D at time t, for any time t > ti.

extensions with ±∞) — and reserve the term “mapping” for more general codomains.
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2.2 Multistage stochastic optimization in the classical case

We study the standard case of a controlled dynamical system influenced by exogenous dis-
turbances. The decision maker has to find strategies to drive the system so as to minimize
some objective function over a certain time span.

Let be given a probability space (Ω,F ,P). All random variables and all random processes
are defined on (Ω,F ,P), and we denote them using bold letters. We denote by σ(Z) ⊂ F
the σ-field generated by a random variable Z .

We consider a positive integer T > 0 and the finite time span J0, T K = {0, 1, . . . ,T−1,
T}. We denote by W = {Wt}t=1,...,T the primitive (or exogenous) noise random process,
where each random variable Wt takes values in a measurable space Wt. We denote by U =
{Ut}t=0,...,T−1 the control random process, where each random variable Ut takes values in a
measurable space Ut, and by X = {Xt}t=0,...,T the state random process, where each random
variable Xt takes values in a measurable space Xt. We consider a sequence {ft}t=0,...,T−1

of measurable mappings ft : Xt × Ut ×Wt+1 → Xt+1 (dynamics), a sequence {Lt}t=0,...,T−1

of measurable functions Lt : Xt × Ut ×Wt+1 → R+ ∪ {+∞} (instantaneous cost), and a
measurable function K : XT+1 → R+ ∪ {+∞} (final cost).

The optimization problem we consider below consists in minimizing the expectation of a
sum of costs depending on the state, the control and the noise variables over the finite time
span J0, T K. The state variable evolves with respect to the dynamics ft that depends on the
current state, noise and control values. The problem starting at time t = 0 is

min
U ,X

E
[T−1∑
t=0

Lt(Xt,Ut,Wt+1) +K(XT )

]
, (3a)

s.t. X0 = x0 , (3b)

Xt+1 = ft(Xt,Ut,Wt+1) , ∀t = 0, . . . , T−1 , (3c)

σ(Ut) ⊂ σ(W1, . . . ,Wt) , ∀t = 0, . . . , T−1 . (3d)

By convention, for t = 0, the σ-field σ(W1, . . . ,Wt) is the trivial σ-field {∅,Ω}. Under the
measurability assumptions made, Problem (3) is well-defined as all functions take extended
nonnegative values.

We make the following assumption.

Assumption 1 (Markovian setting) The noise random variables W1, . . . ,WT are inde-
pendent.

Using Assumption 1, it is well known [2] that there is no loss of optimality in looking for the
optimal control Ut at time t of Problem (3) as a feedback strategy depending on the state
variable Xt, that is, as a measurable mapping φt : Xt → Ut (state feedback).

Let us embed Problem (3) in the framework developed in §2.1. For that purpose, we
build an optimization data set

S =
(
T , {Xt}t∈T , {Ut}t∈T , {Jt}t∈T

)
. (4)
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The discrete time span T is J0, T−1K, the sequence of parameter sets is {Xt}t∈T , and the
sequence of control spaces is {Ut}t∈T , Ut being the space of measurable mappings φt : Xt → Ut

(state feedbacks). The sequence {Jt}t∈T of cost functions

Jt : Xt × Ut × · · · × UT−1 −→ R ∪ {+∞}
(xt, φt, . . . , φT−1) 7−→ Jt(xt, φt, . . . , φT−1) ,

is defined by

Jt(xt, φt, . . . , φT−1) = E
[T−1∑
τ=t

Lτ
(
Xτ , φτ (Xτ ),Wτ+1

)
+K(XT )

]
,

with Xt = xt ,

Xτ+1 = fτ
(
Xτ , φτ (Xτ ),Wτ+1

)
, ∀τ ∈ Jt, T−1K .

Thanks to dynamic programming, we obtain the following result. The sequence (φ]0, . . . , φ
]
T−1)

of optimal strategies of Problem (3), obtained by solving the dynamic programming equation
backward in time

VT (x) = K(x) , (5a)

Vt(x) = min
u∈Ut

E
[
Lt(x, u,Wt+1) + Vt+1

(
ft(x, u,Wt+1)

)]
, (5b)

with

φ]t(x) ∈ arg min
u∈Ut

E
[
Lt(x, u,Wt+1) + Vt+1

(
ft(x, u,Wt+1)

)]
, (5c)

is time consistent, in the sense of Definition 3, for the optimization data set S defined in
Equation (4). Indeed, letting time t ∈ T be given, we build from the data set S the family
PS
t =

{
PS
t (xt)

}
xt∈Xt

of optimization problems as in Equation (2), with Problem PS
t (xt) being

min
(φt,...,φT−1)∈Ut×···×UT−1

Jt(xt, φt, . . . , φT−1) . (6)

It is clear that Problem PS
0(x0) coincides with Problem (3). From the Bellman theory,

we know that the sequence (φ]0, . . . , φ
]
T−1) of strategies obtained by solving the dynamic

programming equation (5) is such that, for any t ∈ T , the truncated sequence (φ]t, . . . , φ
]
T−1)

is an optimal solution of Problem (6) for any initial state xt. Thus, according to Definition 3,
the sequence (φ]0, . . . , φ

]
T−1) of controls is time consistent for the optimization data set S.

Remark 4 The notion of time consistency crucially depends on the nature of the solutions
of the family of optimization problem under consideration. As a matter of fact, consider
Problem (3) and its solution (φ]0, . . . , φ

]
T−1) in terms of feedback strategies: as already ex-

plained, there is no difficulty to apply the truncated sequence (φ]t, . . . , φ
]
T−1) to Problem (6)
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since this truncated sequence is admissible for the problem starting at time t. But consider
again Problem (3) and its solution U ] = (U ]

0
, . . . ,U ]

T−1
) in terms of random variables.

Problem (6) is equivalent to

min
U ,X

E
[T−1∑
τ=t

Lτ (Xτ ,Uτ ,Wτ+1) +K(XT )

]
, (7a)

s.t. Xt = xt , (7b)

Xτ+1 = fτ (Xτ ,Uτ ,Wτ+1) , ∀τ ∈ Jt, T−1K , (7c)

σ(Uτ ) ⊂ σ(Wt+1, . . . ,Wτ ) , ∀τ ∈ Jt, T−1K . (7d)

We note that the truncated subsequence (U ]
t
, . . . ,U ]

T−1
) of U ] is not even admissible for

Problem 7 as it does not satisfy (7d). Indeed, each U ]
τ

for τ ∈ Jt, T−1K is by construction
(see Constraint (3d)) measurable with respect to the σ-field σ(W1, . . ., Wτ ) and thus does
not satisfy Constraint (7d).

3 Multistage stochastic optimization with a final con-

straint in expectation

In §3.1, we modify the framework studied in §2.2 by adding to Problem (3) a constraint in
expectation involving the final state XT , which leads to the optimization problem (8) below.
In §3.2, we propose a reformulation of Problem (8) involving a finite dimensional state,
and an optimization data set (including the initial state and the level of the expectation
constraint) for which time consistency holds. In §3.3, we propose a dual problem formulation
of Problem (8), and we illustrate the fact that such a reformulation is not time consistent.

3.1 Standard formulation

We use the notations defined in §2.2. We consider a measurable function g : XT → Rm
+ ,

For convenience, we denote ZT = Rm. The stochastic optimization problem starting at
time t0 ∈ J0, T−1K with a final constraint in expectation at time T is

min
U ,X

E
[T−1∑
t=t0

Lt
(
Xt,Ut,Wt+1

)
+K(XT )

]
, (8a)

s.t. Xt0
= xt0 , (8b)

Xt+1 = ft
(
Xt,Ut,Wt+1

)
, ∀t ∈ Jt0, T−1K , (8c)

σ
(
Ut

)
⊂ σ

(
Wt0+1, . . . ,Wt

)
, ∀t ∈ Jt0, T−1K , (8d)

E
[
g(XT )

]
− bt0 ≤ 0 , (8e)

with bt0 ∈ Rm. Again, Problem (8) is assumed to be well-defined.
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Even under the Markovian Assumption 1, the presence of Constraint (8e) makes it diffi-
cult to write a dynamic programming equation for solving Problem (8) starting at time t0 = 0.
Indeed Constraint (8e) is not a pointwise constraint at the final stage T , so that we do not
know how to incorporate it easily in the dynamic programming equation. In §3.3, using
an indirect way of proceeding, we show that it is possible to obtain an optimal solution
of Problem (8) starting at time t0 = 0 in terms of feedback strategies depending on the
state Xt. But these feedbacks are implicitly parameterized by both the initial state x0 and
the constraint level b0, so that they do not satisfy the time consistency property for a data
set in which the parameter at time t is the initial state xt (see §3.3 for further details).

A partial answer to the question of time consistency of the solution of Problem (8) starting
at time t0 = 0 has been given in [5]. Indeed, as detailed in [5], Problem (8) can be written
in an equivalent way as a deterministic distributed optimal control problem in which the
state variable is the probability distribution of Xt, the dynamics of which is given by the
Fokker-Planck equation. This deterministic problem can be solved by dynamic programming,
which thus produces a sequence (Ψ]

0, . . . ,Ψ
]
T−1) of strategies (with the mapping Ψt defined

over probability distributions on Xt and taking values in Ut [3]), which is time consistent
for a data set in which the parameter at time t is the initial state probability distribution.
But these optimal strategies depend on the specific value b0 in the right-hand side of the
expectation constraint, and thus have to be recomputed if this value changes. Moreover,
the computation of the Bellman functions involves an infinite dimensional state, so that it
is generally not tractable.

Our goal is to obtain a solution for Problem (8) starting at time t0 = 0 which, on the
one hand is computable in practice (that is, involves a finite dimensional state), and on
the other hand is time consistent for a data set (to be specified) in which the parameter
at time t consists of both the initial state xt and the constraint level bt. More precisely,
we want to compute a solution for Problem (8) starting at time t0 = 0 which is optimal
for any value of both the initial state x0 in (8b) and the final constraint level b0 in (8e).
Moreover, for any t ∈ J0, T−1K, this solution after truncation has to be a universal solution
(Definition 2) for the parameters (xt, bt) for Problem (8) starting at t0 = t. As already
explained in Remark 4, time consistency is not available for a solution in terms of random
variables. We now present a reformulation of Problem (8) involving a finite dimensional
state, whose solution in terms of state feedback strategies meets the goal described in this
paragraph.

3.2 Formulation with martingale-type constraints

Following the same path as in [4], but in a discrete time context, we show that Problem (8)
is equivalent to a multistage stochastic optimization problem subject to an almost sure
contraint on the final state (see also [9, 10, 12]). For that purpose, we introduce a new state
process Z = (Z0, . . . ,ZT ) and a new control process V = (V0, . . . ,VT−1). The random
variables Zt and Vt take their values respectively in spaces Vt and Zt, all identical to the
space ZT = Rm where Rm is the codomain of the function g introduced at the beginning
of §3.1: Vt = Zt = ZT = Rm for all t ∈ J0, T−1K. Now, we consider the optimization problem
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starting at time t0

min
(U ,V ,X ,Z )

E
[T−1∑
t=t0

Lt(Xt,Ut,Wt+1) +K(XT )

]
, (9a)

subject, for all t = t0, . . . , T−1, to dynamic constraints

Xt0
= xt0 , Xt+1 = ft(Xt,Ut,Wt+1) , (9b)

Zt0
= zt0 , Zt+1 = Zt + Vt , (9c)

to measurability constraints

σ
(
Ut

)
⊂ σ

(
Wt0+1, . . . ,Wt

)
, (9d)

σ
(
Vt
)
⊂ σ

(
Wt0+1, . . . ,Wt+1

)
, (9e)

to martingale-type constraints

Vt is integrable and E
[
Vt
∣∣σ(Wt0+1, . . . ,Wt)

]
= 0 , (9f)

and to almost sure final constraint

g(XT )−ZT ≤ 0 . (9g)

Note that, in this formulation, the control variable Ut taken at time t does not depend on
the noise Wt+1 (Decision–Hazard framework), whereas the control variable Vt, also taken
at time t, does depend on the noise Wt+1 (Hazard–Decision framework). At time t, the
martingale-type constraint (9f) introduces a coupling between all the realizations of the
decision random variable Vt. In the sequel, for all t ∈ Jt0+1, T K, we denote by Ft0:t the σ-
field generated by the sequence (Wt0+1, . . . ,Wt) of random variables:

Ft0:t = σ
(
Wt0+1, . . . ,Wt

)
. (10)

By convention, Ft0:t0 = {∅,Ω}.

3.2.1 Equivalence with the standard formulation

The link between the multistage stochastic optimization control problem (9) incorporating a
martingale-type constraint and the initial problem (8) is given by the following proposition.

Proposition 5 We suppose that the data of the Problems (8) and (9) are linked by

bt0 = zt0 . (11)

Then, Problem (8) and Problem (9) are equivalent, in the sense that
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• a solution (U [,V [,X[,Z[) of Problem (9) can be deduced from a solution (U ],X ]) of
Problem (8),

• the two first components (U [,X[) of a solution (U [,V [,X[,Z[) of Problem (9) is a
solution of Problem (8).

Proof. Let (U ],X ]) be a solution of Problem (8). We define the random processes V ] and Z ]

by

V ]
t = E

[
g(X ]

T )
∣∣Ft0:t+1

]
− E

[
g(X ]

T )
∣∣Ft0:t

]
, ∀t ∈ Jt0, T−1K , (12a)

Z ]
t0

= zt0 , Z ]
t+1 = Z ]

t + V ]
t , ∀t ∈ Jt0, T−1K . (12b)

The random vector V ]
t is well defined (hence so is Z ]

t) and is integrable. Indeed, as the function

g : XT → Rm+ is assumed nonnegative in §3.1 and using Inequality (8e), we get 0 ≤ E[g(X ]
T )] ≤ bt0 .

As bt0 ∈ Rm, the random vector g(X ]
T ) is integrable, hence V ]

t in (12a) is the difference between
two random vectors in Rm, hence is well defined, and is integrable.

By construction, the two processes V ] and Z ] satisfy the constraints (9c)–(9e)–(9f). Moreover,
we have that

Z ]
T = zt0 +

T−1∑
t=t0

V ]
t (by (12b))

= zt0 + g(X ]
T )− E[g(X ]

T )] , (by telescoping sum using (12a))

and hence, by (8e) and (11), we get that

g(X ]
T )−Z ]

T = E
[
g(X ]

T )
]
− zt0 ≤ bt0 − zt0 = 0 ,

so that Constraint (9g) is also fulfilled. We deduce that (U ],V ],X ],Z ]) is admissible for Prob-
lem (9). Suppose that there would exist a solution (U [,V [,X[,Z[) of Problem (9) with a strictly
lower cost value than (U ],V ],X ],Z ]). From the dynamics (9c), we would have

Z[
T = zt0 +

T−1∑
t=t0

V [
t ,

so that E[Z[
T ] = zt0 by repeated uses of (9f). Taking the expectation in (9g) would lead thus to

E
[
g(X[

T )
]
≤ E[Z[

T ] = zt0 = bt0 .

Then, (U [,X[) would be admissible for Problem (8) with a strictly lower cost value than the
optimal solution (U ],X ]), which contradicts the assumed optimality of (U ],X ]). We conclude
that (U ],V ],X ],Z ]) is an optimal solution of Problem (9).

Conversely, let (U [,V [,X[,Z[) be an optimal solution of Problem (9). As shown in the first

part of the proof, we have E
[
g(X[

T )
]
≤ bt0 , so that (U [,X[) is admissible for Problem (8). Suppose

that there would exist a solution (U ],X ]) of Problem (8) with a strictly lower cost value than

(U [,X[). Then, the quadruplet (U ],V ],X ],Z ]) obtained by constructing V ] and Z ] by (12)
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would give a strictly lower cost value for Problem (9) than (U [,V [,X[,Z[), which would be

absurd. We conclude that (U [,X[) is an optimal solution of Problem (8). 2

Let us make a few comments about Problem (9).

• The nice features of the equivalent formulation (9) of Problem (8) are double. On
the one hand, the initial constraint (8e) in expectation is replaced by an almost sure
constraint (9g) on the final state, hence paving the way to use dynamic programming
to solve Problem (9). On the other hand, the parameter defining the right-hand side
of the constraint (8e) in expectation in formulation (8) becomes a component (9c) of
the initial state in Problem (9), thus leading to time consistency as a consequence of
dynamic programming.

• The conditional expectation E
[
g(XT )

∣∣Ft0:t

]
can be interpreted as the “perception of

the risk constraint (8e)” at time t. From the very definition of Vt, we have that

Vt = E
[
g(XT )

∣∣Ft0:t+1

]
− E

[
g(XT )

∣∣Ft0:t

]
,

from which we deduce that the control Vt corresponds to the variation of this perception
between time t and time t+1. The additional state Zt+1 in (9c) is thus the cumulative
variation of the risk contraint perception up to time t + 1. Therefore, this new added
state seems to be the minimal information which has to be added to the standard state
in order to recover a dynamic programming principle.

• Nevertheless, Problem (9) is rather more intricate that Problem (8):

1. there are additional state and control processes Z and V ,

2. the new control variables Vt has to be searched in the Hazard–Decision framework
as in (9e),

3. a new expectation constraint (9f) on the controls Vt appears at each time step.

3.2.2 Extended dynamic programming equation and time consistency

The interest of Problem (9) is highlighted by the following theorem.

Theorem 6 Suppose that the primitive noise random process W = (W1, . . ., WT ) takes a
finite number of values, and that the following induction (Bellman equation)

VT (x, z) = K(x) + χ{g(x)−z≤0}(x, z) , (13a)

Vt(x, z) = min
u

min
σ(V )⊂σ(Wt+1)

E[V ]=0

E
[
Lt(x, u,Wt+1) + Vt+1

(
ft(x, u,Wt+1), z + V

)]
(13b)

is well-defined in the sense that all the functions Vt : Xt×Zt → R+∪{+∞} are measurable,
for t ∈ J0, T K.

Then, under Assumption 1, Problem (9) starting at time t0 = 0 can be solved by dynamic
programming with associated Bellman equation (13), and its optimal value is V0(x0, z0).

10



Proof. The proof of Theorem 6 in given in Appendix B. 2

We deduce from Equation (13) that there is no loss of optimality in looking for the
optimal control Ut at time t of Problem (9) as induced by a measurable mapping φt :
Xt × Zt → Ut, and for the optimal control Vt+1 at time t as induced by a measurable
mapping ϕt : Xt × Zt ×Wt+1 → Vt.

Let us embed Problem (9) starting at time t0 = 0 in the framework developed in §2.1.
The finite time span is T = J0, T−1K, the sequence of parameter sets is {Xt × Zt}t∈T ,
the sequences of control spaces are made of two sequences, {Ut}t∈T with Ut the space of
measurable mappings defined on Xt × Zt and taking values in Ut, and {Vt}t∈T with Vt
the space of measurable mappings defined on Xt × Zt × Wt+1 and taking values in Vt.
Notice that there exists an additional set XT ×ZT , where the final state of the system takes
values, but that this set is not part of the sequence of parameter sets. The sequence of cost
functions {Jt}t∈T , with

Jt : Xt × Zt × Ut × Vt × · · · × UT−1 × VT−1 −→ R ,

is defined by

Jt(xt, zt, φt, ϕt, . . . , φT−1, ϕT−1) = E
( T−1∑

τ=t

Lτ
(
Xτ , φτ (Xτ ,Zτ ),Wτ+1

)
+K(XT ) + χ{g(x)−z≤0}(XT ,ZT )

)
,

with Xt = xt , Xτ+1 = fτ
(
Xτ , φτ (Xτ ,Zτ ),Wτ+1

)
, for τ ∈ Jt, T−1K ,

Zt = zt , Zτ+1 = Zτ + ϕτ (Xτ ,Zτ ,Wτ+1) , for τ ∈ Jt, T−1K ,

if E
[
ϕτ (Xτ ,Zτ ,Wτ+1)

∣∣∣Xτ ,Zτ

]
= 0 , ∀τ ∈ Jt, T−1K, and by

Jt(xt,zt, φt, ϕt, . . . , φT−1, ϕT−1) = +∞ otherwise.

From the optimization data set E =
(
T , {Xt × Zt}t∈T , {Ut × Vt}t∈T , {Jt}t∈T

)
and for

a given t ∈ T , we build, as in Definition 2, the family of optimization problems PE
t ={

PE
t (xt, zt)

}
(xt,zt)∈Xt×Zt

, with Problem PE
t (xt, zt) being

min
(φt,...,φT−1)∈Ut×···×UT−1

(ϕt,...,ϕT−1)∈Vt×···×VT−1

Jt(xt, zt, φt, ϕt, . . . , φT−1, ϕT−1) . (14)

Optimal strategies (φ]0, . . . , φ
]
T−1) and (ϕ]0, . . . , ϕ

]
T−1) obtained by solving for t = 0 Prob-

lem (14) using the dynamic programming equation (13) are such that, for any t ∈ T ,
(φ]t, . . . , φ

]
T−1) and (ϕ]t, . . . , ϕ

]
T−1) is an optimal solution of Problem (14) for any initial

state (xt, zt).
We deduce that solving Problem (9) dy dynamic programming fully answers the goal

of time consistency enounced at the end of §3.1. Indeed, for all t ∈ T , the subsequence of

11



optimal strategies (φ]t, . . . , φ
]
T−1) is a universal solution for the family

{
PE
t (xt, zt)

}
(xt,zt)∈Xt×Zt

of optimization problems (14). By Proposition 5, a solution of Problem PE
t (xt, zt) induces

a solution of Problem (8) starting at time t0 = t with initial state xt and final constraint
level bt = zt.

Problem (8)
at t0 = 0

Proposition 5−−−−−−−→ Problem (9)
at t0 = 0

Theorem 6−−−−−−→
{

(φ]t, ϕ
]
t)
}
t∈J0,T−1Kx DP recursion

y Tt

Problem (8)
at t0 = t

Proposition 5←−−−−−−− Problem (9)
at t0 = t

Theorem 6←−−−−−−
{

(φ]τ , ϕ
]
τ )
}
τ∈Jt,T−1K

Figure 1: Links between the original problem (8) and the extended problem (9)

Moreover, the Bellman functions defined by (13) involve a finite dimensional state, so
that their computation becomes tractable. We will provide a numerical illustration of this
last point in Sect. 4.

3.3 Formulation with dualized constraint

We finish this section by presenting a way to solve Problem (8) using Lagrangian duality,
and we show that the dualized problem does not display time consistency.

3.3.1 Dualized formulation

By dualizing the expectation constraint (8e) in Problem (8) with a given (fixed) multi-
plier λ ∈ Rm, we obtain the following problem2

min
U ,X

E
[T−1∑
t=0

Lt
(
Xt,Ut,Wt+1

)
+K(XT ) + λ · g(XT )

]
, (15a)

s.t. X0 = x0 , (15b)

Xt+1 = ft
(
Xt,Ut,Wt+1

)
, ∀t = 0, . . . , T−1 , (15c)

σ
(
Ut

)
⊂ σ

(
W1, . . . ,Wt

)
, ∀t = 0, . . . , T−1 . (15d)

By weak duality, we have that the optimal value of this problem is a lower bound of the
optimal value of Problem (8) for any value λ. In some cases, Problems (15) and (8) are
equivalent as specified by the following theorem.

2For the sake of simplicity, we suppose that the function g : XT → Rm
+ , introduced at the beginning

of §3.1, is bounded to ensure integrability in (15a)
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Theorem 7 Assume that there exists λ]0 ∈ Rm such that Problem (15) with λ = λ]0 admits a

solution (U ],X ]). We denote by b
λ]0
0 the expectation of g(X ]

T
) (which exists by Footnote 2)

b
λ]0
0 = E[g(X ]

T
)] ,

and we assume that the constraint level b0 in Problem (8) is such that b0 ∈ B
λ]0
0 , with

B
λ]0
0 =

{
b ∈ Rm s.t. bi = (b

λ]0
0 )i if (λ]0)i > 0

and bi ≥ (b
λ]0
0 )i if (λ]0)i = 0 , ∀i = 1, . . . ,m

}
.

Then, the solution (U ],X ]) of Problem (15) is also a solution of Problem (8).

Proof. The result is a direct consequence of the extension of Everett’s Theorem given in Ap-

pendix A. 2

Remark 8 The Everett argument that has been used here can be replaced by a more binding
duality argument, namely, Problem (8) admits a saddle point (U ], X ], λ]0) when dualizing
Constraint (8e).

3.3.2 Discussion about time consistency

Since Problem (15) falls within the standard dynamic programming framework, there is
no loss of optimality to look for the optimal controls U ]

t
of Problem (15), and hence of

Problem (8), as feedback strategies φ]t : Xt → Ut depending on the state variable Xt.

However, we do not claim that the optimal feedbacks φ]t obtained by this argument have
any specific properties in terms of time consistency. Indeed, assume as in Theorem 7 that

there exists a λ]0 such that b0 ∈ B
λ]0
0 . The parameter λ]0 implicitly depends on both the initial

condition x0 and the constraint level b0, so that the optimal feedbacks φ]t of Problem (15),
which are parameterized by λ]0, are accordingly implicitly parameterized by the pair (x0, b0)
and therefore do not satisfy the property of time consistency. Moreover, if we write an
optimization problem similar to Problem (15) starting at an initial time t > 0 with this
value λ]0

min
U ,X

E
[T−1∑
τ=t

Lτ
(
Xτ ,Uτ ,Wτ+1

)
+K(XT ) + λ]0 · g(XT )

]
, (16a)

s.t. Xt = xt , (16b)

Xτ+1 = fτ
(
Xτ ,Uτ ,Wτ+1

)
, ∀τ ∈ Jt, T−1K , (16c)

σ
(
Uτ

)
⊂ σ

(
Wt+1, . . . ,Wτ

)
, ∀τ = t, . . . , T−1 , (16d)

13



there is no reason that the optimal solution (X ]
t
, . . . ,X ]

T
) of Problem (16) satisfies the

constraint E[g(X ]
T

)] ≤ b0, that is, there is no reason to satisfy the relation b0 ∈ B
λ]0
t . Of

course, it may exists some λ]t such that b0 ∈ B
λ]t
t , but usually λ]t 6= λ]0.

Thus, the sequence (φ]0, . . . , φ
]
T−1) of controls obtained by the dual approach, that is, by

solving Problem (15), is not time consistent (in the sense of Definition 3).

4 Numerical experiments

We illustrate numerically whether time consistency holds true or not on a simple dam man-
agement problem developed in §4.1. In §4.2, we provide a numerical resolution of the problem
with dualized expectation constraint (as seen in §3.3). In §4.3, we provide a numerical reso-
lution by extended dynamic programming (as seen in §3.2).

4.1 A dam management problem

We consider here a basic dam model for a management problem. Let T > 0 denote a positive
integer (horizon) and J0, T K be the optimization time span, and let

(
Ω,F ,P

)
be a probability

space. For any time t in J0, T−1K, we consider the following real valued random variables:

• Xt, the water storage volume in the dam at the beginning of time interval [t, t+ 1),

• Ut, the decided amount of water to be turbinated during time interval [t, t+ 1), set at
the beginning of the time interval [t, t + 1), and constrained to belong to an interval
[u, u],

• Wt+1, the amount of water inflow in the dam during time interval [t, t+ 1).

Let x (resp. x) denotes the minimum (resp. maximum) water volume of the dam, and
let x0 be the dam volume at time 0. The decision Ut can be implemented only if there is
enough water in the dam, that is, the turbinated water during a time interval cannot exceed
the quantity of water present in the dam. Then, the real amount of turbinated water during
the time interval [t, t+ 1) is

Ũ
t+1

= min
{
Ut,Xt + Wt+1 − x

}
.

The maximal dam volume x is taken into account by accepting reservoir overflow: if the
forthcoming water volume Xt + Wt+1 − Ũ

t
is greater than x, then the dam water surplus

Xt + Wt+1 − Ũ
t
− x spills out. The dam dynamics is written accordingly:

X0 = x0 ,

Xt+1 = min
{
x,Xt − Ũ

t+1
+ Wt+1

}
= min

{
x,max{x,Xt −Ut + Wt+1}

}
.

14



The turbinated water during the time interval [t, t+ 1) produces electricity which is sold at
a given price pt. We assume that the sequence (p0, . . . , pT−1) of prices is deterministic. The
dam revenue to be maximized is thus

E
[T−1∑
t=0

ptŨ t

]
.

Compared to classical dam management model, we do not add an explicit final cost, but we
rather constrain the final level of water in the dam at the end of the time span by a risk
contraint. Indeed, we consider a probability constraint on the dam water volume at final
time T , namely

P
[
XT ≥ `

]
≥ π ,

where the water level ` and the probability level π are given real numbers. Ultimately, the
problem we have to solve is

min
U ,X

E
[T−1∑
t=0

−pt ·min
{
Ut,Xt + Wt+1 − x

}]
, (17a)

s.t. X0 = x0 , (17b)

Xt+1 = min
{
x,max{x,Xt −Ut + Wt+1}

}
, (17c)

u ≤ Ut ≤ u , (17d)

σ
(
Ut

)
⊂ σ

(
W1, . . . ,Wt

)
, (17e)

P
[
XT ≥ `

]
≥ π . (17f)

We recall that the probability constraint (17f) can be rewritten as an expectation constraint

π − E
[
1R+(XT − `)

]
≤ 0 , (18)

where 1R+ : R→ R is the Heaviside step function:

1R+(y) =

{
0 if y < 0

1 if y ≥ 0
.

We assume that the water inflows W1, . . . ,WT are independent random variables with a
known probability distribution on the interval [w,w].

To numerically solve Problem (17), we use the following parameter values: final time
T = 12; initial state x0 = 10; state bounds [x, x] = [0, 20]; control bounds [u, u] = [0, 3];
noise bounds [w,w] = [0, 4]; price sequence p = (10, 10, 10, 8, 6, 4, 4, 4, 4, 6, 8, 10); final dam
water level ` = 10; required probability level π = 0.9. Moreover, we assume that the
variables Xt, Ut and Wt take discrete values within their respective bounds, with respective
discretization steps equal to 0.1, 0.3 and 0.2. The optimization problem thus corresponds to
the control of a discrete state space Markov chain. The discrete probability distribution of
each random variable Wt is uniform. We represent on Figure 2 some selected trajectories of
the noise process (W1, . . . ,WT ) and the sequence of the deterministic prices p. These noise
trajectories are used in the sequel to illustrate the behavior of the different optimization
algorithms.
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Figure 2: Samples of the noise process W (left) and price scenario p (right)

4.2 Resolution of the problem with dualized expectation constraint

The method used here to solve Problem (17) is based on the duality argument described
in §3.3. The probability constraint (17f) is dualized with associated multiplier λ, which
leads, in the cost function (17a), to an added term of the form:

λ E
[
π − 1R+(XT − `)

]
.

Instead of guessing the parameter value λ leading to the constraint level `, we solve the dual
problem

max
λ≥0

ϕ(λ) , (19)

with

ϕ(λ) = min
U ,X

E
[T−1∑
t=0

−pt · Ũ t
− λ · 1R+(XT − `)

]
, (20a)

under constraints (17b)–(17c)–(17d)–(17e). (20b)

The Uzawa algorithm consists in maximizing the dual function ϕ using a projected gra-
dient algorithm. At iteration k of the algorithm, knowing the value λ(k) of the multiplier,
we perform the three following steps.

• Compute ϕ(λ(k)), that is, solve the minimization problem (20) with λ = λ(k); this
minimization is performed using dynamic programming (1-dimensional state variable),

hence furnishing optimal feedbacks φ
(k+1)
t and optimal state variables X

(k+1)
t .

• Compute the probability distribution of the random variable X
(k+1)
T by integrating the

dynamics (17b)-(17c) using the optimal feedbacks φ
(k+1)
t , and then compute the value

of the constraint P[X
(k+1)
T ≥ `] .
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• Update the multiplier λ by a projected gradient step:

λ(k+1) = projR+

(
λ(k) + ρ

(
π − P[X

(k+1)
T ≥ `]

))
.

For the problem under consideration, and despite the potential nonconvexity induced by
the final probability constraint (17f), the Uzawa algorithm converges in about 10 iterations,
leading to an optimal multiplier value λ] = 62.405. Once the algorithm has converged, we
obtain the optimal feedback sequence {φ]t}t=0,...,T−1 by solving Problem (20) by dynamic
programming with λ = λ]. Then, we simulate the dynamics of the dam along some noise
trajectories using these optimal feedbacks φ]t. The results given in Table 1 are obtained by
simulating 10,000 noise trajectories, and illustrates the adequacy between optimization and
simulation.

Uzawa optimization Monte Carlo simulation

Bellman value at t = 0: −188.90 Monte Carlo cost: −188.94
Required probability: 0.900 Estimated probability: 0.903

Table 1: Optimization and simulation for the duality method

On Figure 3, we represent the dam water level and control trajectories over [0, T ] obtained
by simulating with the optimal feedbacks φ]t along the noise trajectories depicted on Figure 2.
We observe that the optimization “gives up” for certain trajectories (the lowest one to the
left of Figure 3) to reach the final level ` appearing in the constraint in probability: we
turbine as much water as possible, leaving the state evolve towards the minimum level x.
This observation is conform to the expected behavior of an optimization problem with a
probability constraint.

Finally, we can use the optimal feedbacks φ]t to simulate the dam starting at any initial
time ti > 0 from any given initial state xti . For example starting at time ti = 3 from the
initial state xti = 5 and simulating the optimal feedbacks φ]t along 10,000 scenarios leads
to the results given in Table 2. As expected, the final constraint level reached in this last
simulation is not equal to the required level π = 0.9, which illustrates that time consistency
does not hold true for the problem formulation with dualized constraint.

Monte Carlo simulation

Monte Carlo cost: −92.04
Estimated probability: 0.833

Table 2: Simulation for the duality method starting from ti = 3 and xti = 5
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Figure 3: Optimal state X and control U trajectories over [0, T ] obtained by the duality
method

4.3 Resolution by extended dynamic programming

We now use the equivalent formulation of Problem (17) incorporating an additional state
process Z = (Z0, . . . ,ZT ), an additional control process V = (V0, . . . ,VT−1) and an almost
sure contraint on the final state. As it has been explained in §3.2, the expression of the new
dynamics, here 1-dimensional, is

Z0 = z0 , Zt+1 = Zt + Vt ,

and the form of the final constraint is

−1R+(XT − `)−ZT ≤ 0 .

The equivalent problem for the case study under consideration is

min
U ,V ,X ,Z

E
[T−1∑
t=0

−pt ·min
{
Ut,Xt + Wt+1 − x

}]
, (21a)

s.t. X0 = x0 , Xt+1 = min
{
x,max{x,Xt −Ut + Wt+1}

}
, (21b)

Z0 = z0 , Zt+1 = Zt + Vt , (21c)

u ≤ Ut ≤ u , (21d)

σ
(
Ut

)
⊂ σ

(
W1, . . . ,Wt

)
, (21e)

σ
(
Vt
)
⊂ σ

(
W1, . . . ,Wt+1

)
, (21f)

E
[
Vt

∣∣∣σ(W1, . . . ,Wt

)]
= 0 , (21g)

1R+(XT − `) + ZT ≥ 0 . (21h)
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From Proposition 5, we have that Problems (17) and (21) are equivalent under the condition

z0 = −π .

Moreover, the special form (21h) of the final constraint makes it possible to bound the
variables Vt and Zt. Indeed, from the proof of Proposition 5, we deduce from the expres-
sion (12a) of the optimal control Vt

] with g = 1R+ that it is sufficient to search for the
control Vt in [−1, 1]. Moreover, the optimal state Zt

] being obtained by a telescoping sum,
it is sufficient to search for the state Zt in [z0 − 1, z0 + 1]. Problem (21) can be solved by
dynamic programming with the extended state variable (Xt,Zt), which corresponds to a
dynamic programming equation with a 2-dimensional state variable. Then, we simulate the
dynamics of the dam — using the same 10,000 noise trajectories as those previously used
to obtain Table 1 — with the optimal feedbacks given by dynamic programming with the
extended state variable (Xt,Zt). The associated results are given in Table 3. We observe
a good adequacy between optimization and simulation, and we observe that the costs are
pretty much identical between Table 1 and Table 3.

Extended Dynamic Programming Monte Carlo Simulation

Bellman value at t = 0: −188.67 Monte Carlo cost: −187.47
Initial state z0: −0.900 Estimated probability: 0.896

Table 3: Optimization and simulation for the extended dynamic programming method

Some simulation trajectories are represented on Figure 4 and Figure 5. Figure 4 gives the
same information (dam water level and control trajectories over [0, T ]) as the one presented
for the duality based algorithm in §4.2, whereas Figure 5 depicts trajectories of the optimal
state process Z and the optimal control process V . We observe that the results depicted
on Figure 3 (duality method) and on Figure 4 (extended dynamic programming method)
are very close (with tiny differences induced by numerical resolution), which illustrates the
equivalence between Problem (17) and Problem (21).

Finally, we can use the optimal feedbacks obtained when solving Problem (21) by dynamic
programming to simulate the dam starting at any initial time ti > 0 from any given initial
state (xti , zti). For example starting at time ti = 3 from the initial state (xti , zti) = (5,−0.9)
— using the same values than those used in §4.2 — and simulating the optimal feedbacks
along 10,000 scenarios leads to the results given in Table 4: the final probability level to be
reached is by construction equal to π = 0.9, and the Monte Carlo simulation induces a very
similar level of probability, which numerically illustrates that the time consistency property
is fulfilled. The associated simulation trajectories are represented on Figure 6, using the
same noises trajectories as those that had been used to obtain Figure 3.
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Figure 4: Optimal state X and control U trajectories over [0, T ] obtained by the extended
dynamic programming method

Figure 5: Optimal state Z and control V trajectories over [0, T ] obtained by the extended
dynamic programming method

Extended Dynamic Programming Monte Carlo Simulation

Bellman value at t = 3: −87.78 Monte Carlo cost: −87.71
Initial state (x3, z3): (5,−0.900) Estimated probability: 0.902

Table 4: Optimization and simulation for the extended dynamic programming method
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Figure 6: Optimal state X and control U trajectories over [3, T ] obtained by the extended
dynamic programming method

5 Conclusion

In this paper, we have proposed a formal definition of time consistency for families of op-
timization problems, by introducing the notion of universal solution. With this, we have
shown that — for the class of problems where risk is modeled in the form of constraints
in probability or in expectation — the property of time consistency depends on the notion
of state that one chooses, which must be suited to the problem studied. In particular, we
have shown that, even if the “right” notion of state for the class of multistage stochastic
optimization problems with a final expectation state constraint was of infinite dimension
(the conditional probability distribution of the state), it is possible to display a state of
finite dimension, so that solving the problem by dynamic programming becomes conceivable
again.

Acknowledgements: This paper builds upon results obtained by Pierre Girardeau during
his PhD thesis [9], supervised by the three authors.

A An extension of Everett’s theorem

A result due to Everett (see [8]) links the solution of an optimization problem under con-
straint and the one of the related dualized optimization problem. We give here a slight
extension, which relaxes an assumption of Everett’s theorem.

Let U be a set and let Uad be a subset of U. Let Θ : U→ Rm be a (mulivalued) function.
We deal with the following optimization problem

J ] = min
u∈Uad

J(u) s.t. Θ(u)− b ≤ 0 ∈ Rm , (22)
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hence subject to a finite number m of inequality constraints.

Theorem 9 Let λ ∈ Rm
+ be given. We consider uλ, solution of the optimization problem

min
u∈Uad

J(u) +
〈
λ, Θ(u)

〉
, (23)

and we set b
λ

= Θ(uλ). We introduce the set Bλ ⊂ Rm defined by

Bλ =
{
b ∈ Rm

∣∣ bi = b
λ

i if λi > 0 and bi ≥ b
λ

i if λi = 0 , ∀i = 1, . . . ,m
}
. (24)

Then, a solution uλ of Problem (23) is a solution of Problem (22) for any b ∈ Bλ.

Proof. Let uλ be a solution of Problem (23) and let b ∈ Bλ. We have

J(uλ) = min
u∈Uad

J(u) +
〈
λ, Θ(u)−Θ(uλ)

〉
, (by definition of uλ)

= min
u∈Uad

J(u) +
〈
λ, Θ(u)− bλ

〉
, (by definition of b

λ
= Θ(uλ))

= min
u∈Uad

J(u) +
〈
λ, Θ(u)− b

〉
, (by definition of Bλ in (24))

≤ sup
µ≥0

min
u∈Uad

J(u) +
〈
µ, Θ(u)− b

〉
, (as λ ≥ 0)

≤ inf
u∈Uad

sup
µ≥0

J(u) +
〈
µ, Θ(u)− b

〉
, (by weak duality)

= J ] . (by (22))

Since uλ is such that Θ(uλ) = b
λ ≤ b by definition of the set Bλ in (24), we deduce that uλ is

admissible for Problem (22), and hence is an optimal solution of this problem. 2

B Dynamic programming for the optimization prob-

lem involving martingale-type constraints

We prove in §B.2 that Problem (9) can be solved by dynamic programming under the
additional assumption that, for any time t in J0, T K, the random variable Wt can take only a
finite number of values. The proof is based on a so-called interchange (between minimization
and integration) lemma given in §B.1.

B.1 An interchange Lemma

Lemma 10 Let Y, U, V, W′ and W′′ be measurable spaces, and let ϕ : Y×U×V×W′′ →
R+ ∪ {+∞} be a measurable extended real function. Let (Ω,F ,P) be a probability space3.

3All random variables are defined on (Ω,F ,P), and we denote them using bold letters.
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Given three random variables Y , W ′ and W ′′ taking values in Y, W′ and W′′ respectively,
we consider the optimization problem P defined by

VP [Y ] = inf
(U ,V )

E
[
ϕ(Y ,U ,V ,W ′′)

]
(25a)

s.t. σ(U ) ⊂ σ(W ′) , σ(V ) ⊂ σ(W ′,W ′′) , (25b)

V is integrable and E
[
V
∣∣σ(W ′)

]
= 0 , (25c)

where the minimization is done over couples of random variables U : Ω→ U and V : Ω→ V.
We define the function ψ : Y→ R+ ∪ {+∞} by

ψ : Y 3 y 7→ inf
(u,V )

E
[
ϕ(y, u,V ,W ′′)

]
(26)

s.t. σ(V ) ⊂ σ(W ′′) ,

V is integrable and E
[
V
]

= 0 .

where the minimization is done over variables u ∈ U and random variables V : Ω→ V.
We suppose that the two random variables W ′ and W ′′ are independent, that they each

take a finite number of values, and that the random variable Y is σ(W ′)-measurable, that
is, σ(Y ) ⊂ σ(W ′). Then, the optimal value VP [Y ] of Problem P satisfies the following
interchange formula

VP [Y ] = E
[
ψ(Y )

]
. (27)

Proof. Letting {w′i}i∈J0,N ′K and {w′′i }i∈J0,N ′′K be the sets of values taken by, respectively, the
random variables W ′ and W ′′, we denote

W ′ : Ω→ {w′i}i∈J0,N ′K with P
[
{W = w′i}

]
= π′i , ∀i ∈ J0, N ′K , (28)

W ′′ : Ω→ {w′′i }i∈J0,N ′′K with P
[
{W = w′′i }

]
= π′′i , ∀i ∈ J0, N ′′K . (29)

Now, since Y is a σ(W ′)-measurable random variable and from the measurability constraints on
the random variables U and V in Equation (25b), we can represent these random variables as
follows:

Y =
N ′∑
i=0

yi1w′i(W
′) , U =

N ′∑
i=0

ui1w′i(W
′) , V =

N ′∑
i=0

N ′′∑
j=0

vi,j1w′i(W
′)1w′′j (W ′′) . (30)

We have just expressed the fact that the set of σ(W )-measurable random variables taking values
in a set F is in bijection with the product space FN if the random variable W takes N different
values.

We start the proof by using Equation (30) to establish the following equalities

E
[
ϕ(Y ,U ,V ,W ′′)

∣∣W ′] =

N ′∑
i=0

(N ′′∑
j=0

π′′jϕ
(
yi, ui, vi,j , w

′′
j

))
1w′i(W

′) , (31a)

E
[
ϕ(Y ,U ,V ,W ′′)

]
=

N ′∑
i=0

π′i

(N ′′∑
j=0

π′′jϕ
(
yi, ui, vi,j , w

′′
j

))
, (31b)

E
[
V
∣∣W ′] =

N ′∑
i=0

(N ′′∑
j=0

π′′j vi,j

)
1w′i(W

′) . (31c)
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All the manipulations below are easy to check, and are justified because all quantities take extended
nonnegative values.
• For Equation (31a):

E
(
ϕ(Y ,U ,V ,W ′′)

∣∣W ′)
= E

[
ϕ
( N ′∑
i=0

yi1w′i(W
′),

N ′∑
i=0

ui1w′i(W
′),

N ′∑
i=0

N ′′∑
j=0

vi,j1w′i(W
′)1w′′j (W ′′),W ′′

) ∣∣∣∣W ′
]

(by (30))

= E
[ N ′∑
i=0

ϕ
(
yi, ui,

N ′′∑
j=0

vi,j1w′′j (W ′′),W ′′
)
1w′i(W

′)

∣∣∣∣W ′
]

=

N ′∑
i=0

E
[
ϕ
(
yi, ui,

N ′′∑
j=0

vi,j1w′′j (W ′′),W ′′
) ∣∣∣∣W ′

]
1w′i(W

′)

=

N ′∑
i=0

E
[
ϕ
(
yi, ui,

N ′′∑
j=0

vi,j1w′′j (W ′′),W ′′
)]

1w′i(W
′) (as W ′ and W ′′ are independent)

=

N ′∑
i=0

E
[N ′′∑
j=0

ϕ
(
yi, ui, vi,j , w

′′
j

)
1w′′j (W ′′)

]
1w′i(W

′)

=

N ′∑
i=0

(N ′′∑
j=0

π′′jϕ
(
yi, ui, vi,j , w

′′
j

))
1w′i(W

′) . (by (29))

• For Equation (31b):

E
[
ϕ(Y ,U ,V ,W ′′)

]
= E

[
E
[
ϕ(Y ,U ,V ,W ′′)

∣∣W ′]]
= E

[ N ′∑
i=0

(N ′′∑
j=0

π′′jϕ
(
yi, ui, vi,j , w

′′
j

))
1w′i(W

′)
]

(by (31a))

=

N ′∑
i=0

π′i

(N ′′∑
j=0

π′′jϕ
(
yi, ui, vi,j , w

′′
j

))
. (by (28))

• For Equation (31c):

E
[
V
∣∣W ′] = E

[ N ′∑
i=0

N ′′∑
j=0

vi,j1w′i(W
′)1w′′j (W ′′)

∣∣∣∣W ′
]

(by (30))

=

N ′∑
i=0

E
[N ′′∑
j=0

vi,j1w′′j (W ′′)

∣∣∣∣W ′
]
1w′i(W

′)

=
N ′∑
i=0

E
[N ′′∑
j=0

vi,j1w′′j (W ′′)

]
1w′i(W

′) (as W ′ and W ′′ are independent)

=
N ′∑
i=0

(N ′′∑
j=0

π′′j vi,j

)
1w′i(W

′) . (by (29))
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Using Equations (30) and (31c), for any σ(W ′′)-measurable random variable V , we have the
equivalence

E
[
V
∣∣W ′] = 0 ⇐⇒

N ′′∑
j=0

π′′j vi,j = 0 , ∀i ∈ J0, N ′K . (35)

Using again Equations (30) and (31), we obtain that the optimization Problem (25) is equivalent
to the following optimization problem

inf
{ui}i∈J0,N′K

{vi,j}i∈J0,N′K,j∈J0,N′′K

N ′∑
i=0

π′i

(N ′′∑
j=0

π′′jϕ(yi, ui, vi,j , w
′′
i )
)

(36a)

s.t.

N ′′∑
j=0

π′′j vi,j = 0 , ∀i ∈ J0, N ′K . (36b)

The optimization problem (36) trivially splits into a family {Pi}i∈J0,N ′K of N ′ independent opti-
mization problems, Problem Pi being defined by

VPi [yi] = inf
(ui,{vi,j}j∈J0,N′′K)

N ′′∑
j=0

π′′jϕ(yi, ui, vi,j , w
′′
i ) (37a)

s.t.

N ′′∑
j=0

π′′j vi,j = 0 , (37b)

and the value of Problem (36) is the weighted sum of the values of the family of problems
{Pi}i∈J0,N ′K:

VP [Y ] =
N ′∑
i=0

π′iVPi [yi] .

We notice that VPi [yi] in (37) is exactly ψ(yi) in (26), so that the above equation gives (27). 2

B.2 Proof of Theorem 6

Proof. For any τ ∈ J0, T K we consider the minimization Problem Pτ defined by4

min
(U ,V ,X ,Z )

E
[τ−1∑
t=0

Lt(Xt,Ut,Wt+1) + Vτ (Xτ ,Zτ )

]
, (38a)

s.t. X0 = x0 , Z0 = z0 , (38b)

and, for all t ∈ J0, τ − 1K,
Xt+1 = ft(Xt,Ut,Wt+1) , Zt+1 = Zt + Vt , (38c)

σ
(
Ut

)
⊂ σ

(
W1, . . . ,Wt

)
, σ
(
Vt
)
⊂ σ

(
W1, . . . ,Wt+1

)
, (38d)

Vt is integrable and E
[
Vt
∣∣W1, . . . ,Wt

]
= 0 , (38e)

4For τ = 0, the value of Problem P0 is simply V0(x0, z0).
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where the sequence
{
Vτ
}
τ∈J0,T K of value functions, with Vτ : Xτ ×Zτ → R+ ∪ {+∞}, appearing in

the cost function (38a) is given by the Bellman recursion (13). To simplify the notation, we denote
by Λτ the set of random variables (Ut,Vt)t∈J0,τK and (Xt,Zt)t∈J0,τ+1K satisfying the constraints
(38b) – (38c) – (38d) – (38e). We recall that, by Equation (10), Fτ represents the σ-field generated
by (W1, . . . ,Wτ ) for all τ ∈ J1, T K.

We are now going to prove, by backward induction, that the value of Problem (9) with t0 = 0
is equal to the value of Problem Pτ in (38) for any τ ∈ J0, T K.

First, the value of Problem (9), with t0 = 0, is equal to the value of Problem Pτ in (38) for
τ = T . Indeed, the criterion (38a) in Problem (38), satisfies, for τ = T ,

E
[T−1∑
t=0

Lt(Xt,Ut,Wt+1) + VT (XT ,ZT )

]

= E
[T−1∑
t=0

Lt(Xt,Ut,Wt+1) +
(
K(x) + χ{g(x)−z≤0}

)
(XT ,ZT )

]
(as VT is defined by (13a))

= E
[T−1∑
t=0

Lt(Xt,Ut,Wt+1) +K(XT )

]
under the almost sure final constraint

g(XT )−ZT ≤ 0 .

Thus, we obtain that Problem (38) for τ = T is the same as Problem (9) with t0 = 0, the only
difference being that the almost sure final constraint (9g) has been moved in the final cost in (38a).

Second, we prove by backward induction that the value of Problem (9) is equal to the value
of Problem Pτ for any τ ∈ J0, T K. For this purpose, assuming that the value of Problem (9) is
equal to the value of Problem Pτ+1, we prove that it is also equal to the value of Problem Pτ . We
immediately get that

min(
(Ut,Vt)t∈J0,τK,(Xt,Zt)t∈J0,τ+1K

)
∈Λτ

E
[ τ∑
t=0

Lt(Xt,Ut,Wt+1) + Vτ+1(Xτ+1,Zτ+1)

]

= min(
(Ut,Vt)t∈J0,τ−1K,(Xt,Zt)t∈J0,τK

)
∈Λτ−1

(
E
[τ−1∑
t=0

Lt(Xt,Ut,Wt+1)

]
(39)

+ min
(Uτ ,Vτ )
σ(Uτ )⊂Fτ
σ(Vτ )⊂Fτ+1

E[Vτ |Fτ ]=0

E
[
Lτ (Xτ ,Uτ ,Wτ+1) + Vτ+1

(
fτ (Xτ ,Uτ ,Wτ+1),Zτ + Vτ

)])
,

because all quantities take extended nonnegative values.
Now, we apply Lemma 10 to the inner minimization, with Y = (Xτ ,Zτ ), W ′ = (W1, . . . ,Wτ ),

W ′′ = Wτ+1 and with the function ϕ
(
(x, z), u, v, w′′

)
= Lτ (x, u, w′′) +Vτ+1

(
fτ (x, u, w′′), z + v

)
and deduce that

min
(Uτ ,Vτ )
σ(Uτ )⊂Fτ
σ(Vτ )⊂Fτ+1

E[Vτ |Fτ ]=0

E
[
Lτ (Xτ ,Uτ ,Wτ+1) + Vτ+1

(
fτ (Xτ ,Uτ ,Wτ+1),Zτ + Vτ

)]
= E

[
Vτ (Xτ ,Zτ )

]
,
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because ψ(y) in (26) is exactly Vτ (x, z) in (13b). Combined with Equation (39), this leads to

min(
(Ut,Vt)t∈J0,τK,(Xt,Zt)t∈J0,τ+1K

)
∈Λτ

E
[ τ∑
t=0

Lt(Xt,Ut,Wt+1) + Vτ+1(Xτ+1,Zτ+1)

]

= min(
(Ut,Vt)t∈J0,τ−1K,(Xt,Zt)t∈J0,τK

)
∈Λτ−1

E
[τ−1∑
t=0

Lt(Xt,Ut,Wt+1) + Vτ
(
Xτ ,Zτ

)]
.

We conclude that the value of Problem (9) is equal to the value of Problem Pτ , so that we have
by induction that the value of Problem (9) is equal to the value of Problem Pτ in (38) for any
τ ∈ J0, T K.

The value of Problem (9) is thus equal to the value of problem P0, namely V0(x0, z0), and can

therefore be computed by using the dynamic programming equation (13). 2
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