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Modeling magnetic properties of actinide
complexes

Hélène Bolvin

Abstract This chapter presents different aspects of the modeling of magnetic proper-
ties inmonomeric open-shell actinide complexes. Those properties are closely related
to their electronic structure, which is difficult to achieve since none of crystal-field
effects, electron-electron repulsion nor spin-orbit interaction is predominant. The
electronic structure should be analyzed within the intermediate coupling scheme, be-
tween on one hand the Russell-Saunders coupling scheme where the inter-eletronic
repulsion is considered before spin-orbit, and, on the other hand, the j-j coupling
scheme where one-electron wave-functions including spin-orbit are used to build the
many-electron wave-function. Ab initio calculations on these complexes are chal-
lenging, and SO-CAS based methods are still the quantum chemistry tool of choice
since they include a balanced description of the three effects. It is only by a close
interplay between experimental data which are sparse for transuranide complexes
due to radioactivity, numerical methods, and model Hamiltonians that one succeeds
to unravel the electronic structure and magnetic properties of these complexes.

1 Electronic structure of actinide complexes

Most of the actinide compounds are man-made since the 20th century. Thorium and
uranium are both long-lived and can be found in the earth in notable amounts. Ac-
tinium and protactinium exist in nature in extremely small amounts whereas transura-
nium elements are man-made. All the actinides are radioactive, quite strongly for
some of them. This requires facilities specially equipped and approved for radioac-
tive work. The radioactivity often plays a part in their chemistry and may impact
their magnetic properties. The majority of the studies concern thorium and uranium
compounds, particularly the latter, due to accessibility of raw materials, ease of han-
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dling, and the long lifetimes of the relatively weakly α-emitting elements Th and U
[1]. The 4f orbitals for lanthanides are core-like due to the shielding by the occupied
5s and 5p orbitals. The 5f orbitals, are less shielded by the 6s and 6p, due to a larger
spatial extension, are less core-like and thus, more involved in the bonding, leading
to a greater tendency towards covalent bond formation. Early in the actinide series,
the near-degeneracy of the 5f, 6d, and 7s orbitals means that more valence electrons
can be involved in the formation of compounds and a wider range of oxidation states
is observed. For the early actinides, Ac–Pu, the oxidation state ranges from +3 to +7
while the late actinides, from Bk, the +3 oxidation state is the most common one,
like in the lanthanides. The electronic structures of the later actinides become more
and more like those of the lanthanides, with similar chemistry.

Relativistic effects are more pronounced for actinides than for lanthanides, since
their atomic number is larger. Scalar relativistic effects lead to an expansion and a
destabilization of d and f orbitals. 5f orbitals in actinides are more destabilized than
are the 4f orbitals of the lanthanides, to be nearly degenerate with the empty 6d and 7s
orbitals for early actinides [2]. As a result, those valence orbitals are more chemically
active, more valence electrons can be involved in the formation of compounds and a
wider range of oxidation states is observed. Spin-orbit coupling leads to the splitting
of the f orbitals; due to their small density close to the nucleus, this effect is not
as important as for p orbitals, and actinide free ions are still well described within
the Russell-Saunders coupling scheme, where the many-electron states are built at
the spin-free level, and spin-orbit coupling calculated between many-electron states:
the states of the free ion are accordingly labeled as 2S+1LJ , where L, S and J
are the orbital, spin and total angular moments, respectively. This scheme is used
when the electronic repulsion is greater than the spin–orbit splitting in contrast to j-j
coupling where the spin-orbit coupling is introduced at the one-electron level. Since
spin-orbit coupling is larger in actinides than in lanthanides, one needs to go beyond
the Russell-Saunders coupling scheme, by mixing states with the same value of the
total angular moment J .

The modeling of metal complexes is related to the relative strength of three
physical interactions: i) the crystal-field splitting which gauges the strength of the
interaction between the open-shell metal orbitals with those of the ligands. ii) the
electron repulsion in the open-shell metal orbitals; iii) the spin-orbit coupling. In
actinides, as compared to lanthanides, the former is larger as already discussed, the
second smaller as a consequence of the larger expansion of the 5f orbitals, and the
latter larger. All this makes that the actinide free ions are not as well modeled by
the Russell-Saunders coupling as lanthanide ones are, and in general, since none of
those interactions are predominant, it is more difficult to interpret the spectra and
magnetic behavior of actinide compounds as in lanthanide.

In this chapter, we will address the magnetic properties of molecular actinide sys-
tems, containing only one actinide center, with an open 5f shell. Magnetic properties
probe the low lying states, up to thermal energy. The various multiplets of actinide
complexes can not be described within a single-configuration framework. Scalar
relativistic DFT (Density Functional Theory) methods are generally adequate for
the calculation of the ground state properties of actinide systems, including molec-
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ular geometries and vibrational frequencies [3, 4] but not suitable to describe the
many excited states. Since there is not a clear predominance between the covalent
effects, the electron repulsion nor the spin-orbit coupling in the 5f orbitals, all those
interactions need to be adequately described, not only to achieve a quantitative but
even a qualitative description. Scalar relativistic effects are easily incorporated using
the non-relativistic machinery [5, 6]. SO-CAS (Spin-Orbit Complete Active Space)
based methods [7] have been successfully applied to actinide complexes since one
decade. In the first step, the CASSCF (Complete Active Space Self-Consistent Field)
[8] method describes the multi-configurational many-electron states, which are cor-
rected for dynamical correlation by a perturbative method, CASPT2 (Complete
Active Space Perturbation Theory 2nd order) [9] or NEVPT2 (N-Electron Valence
state Pertubation Theory 2nd order) [10] in a second step. The spin-orbit coupling
is calculated as state interaction between those many-electron correlated wave func-
tions in the last step [11]. This scheme is in line with the Russell-Saunders coupling
scheme. To obtain a full treatment of the spin-orbit interaction, four-componentmeth-
ods should be used; but four-component multi-configurational correlated methods
allow only the description of molecules with few atoms [12, 13]. The first-principle
calculations are still challenging for actinide complexes, because they gather many
of the difficulties of quantum chemistry: they are open-shell and should be described
using multi-configurational methods as soon as there is more than one unpaired
electron, relativistic effects are important, both scalar and spin-orbit, and correlation
effects play an important role.

Magnetic properties of actinide complexes are mostly characterized by their mag-
netic susceptibility, either in solid state using a SQUID (Superconducting Quantum
Interference Device) spectrometer which provides the average susceptibility and in
a large temperature range, or in solution, using the Evans method, which probes
by paramagnetic NMR (Nuclear Magnetic Resonance) a control molecule, usually
around room temperature. On the other hand, paramagneticNMRon nuclei of the lig-
and provides essential information about the susceptibility tensor, when the so-called
dipolar contribution is dominant. We consequently devote the second Section to the
modeling of the magnetic susceptibility. Magnetic properties are usually described
using model Hamiltonians, using phenomenological parameters. For monomeric
actinide complexes, the most used model Hamiltonians are the crystal-field Hamil-
tonian and spin Hamiltonians in degenerate or nearly-degenerate manifolds. This
will be presented in the third Section of this chapter. Finally, we review shortly in the
last Section recent works where magnetic properties of actinide complexes where
modeled either based on ab initio calculations or on crystal-field theory.
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2 Magnetic susceptibility

2.1 Magnetic susceptibility tensor from ab initio calculations

The Hamiltonian describing a molecular system in an external magnetic field B
takes the form

Ĥ = Ĥ0 + ĤZ (1)

where Ĥ0 is the Hamiltonian in the absence of any external field and ĤZ the Zeeman
termwhich accounts for the interaction between the magnetic field and the electronic
magnetic moment

ĤZ = −m̂ ·B
= µB

(
L̂ + geŜ

)
·B (2)

where µB is the Bohr magneton, ge the g factor of the free electron, m̂ the magnetic
dipole moment. m̂ results from both orbital and spin angular moments by m̂ =
−µBM̂(a) and M̂ = L̂+geŜ, where M̂, L̂ and Ŝ are the total, orbital and spin angular
moments, respectively. In the following, we will consider ge = 2. For an external
magnetic field in direction u, B = Bu, the eigenfunctions of Ĥ are |ΨI (B)〉 with
corresponding energies EI (B). The component of the magnetic angular moment in
direction v M̂v of state I isMI,uv (B) =

〈
ΨI (Bu)

∣∣∣M̂v

∣∣∣ΨI (Bu)
〉
.

The magnetic susceptibility tensor χ is deduced from the thermal average at
temperature T of the magnetization 〈mv (Bu)〉T

χuv = NAµ0
〈mv (Bu)〉T

Bu
(3)

where NA is Avogadro constant and µ0 the vacuum permeability. It is expressed
as the thermal Boltzmann average according to the eigenfunctions of Ĥ and the
corresponding magnetic moments as

χuv = −NAµ0µB

∑
IMI,uv (Bu) e−

EI (Bu)

kT

Bu
∑
I e−

EI (Bu)

kT

(4)

where k is the Boltzmann constant. SO-CAS based methods provide the many-
electron solutions |I〉 of the zero-field Hamiltonian Ĥ0, including spin-orbit interac-
tion andmore or less correlation. The Zeeman term ĤZ is then calculated in the basis
of the zero-field wave-functions. For a given direction and strength of the magnetic
fieldB = Bu, the eigenstates of the total Hamiltonian Ĥ of Eq. 1 provideEI (Bu),
|ΨI (Bu)〉 andMI,uv (B) needed to calculate χuv in Eq. 4. The components of the
tensor χ for three orthogonal directions of the magnetic field, and the principal axes

(a) Note the difference between m̂ the magnetic moment operator, in units of µB (in SI J.T−1) and
M̂ the total angular momentum, in units of h̄ (in SI J.Hz−1).
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frame and values are deduced [14]. In general, the principal axes frame depends on
temperature.

Most susceptibility measurements are performed on polycrystalline samples that
give only the average susceptibility. Magnetic susceptibility values can also be per-
formed on liquid solutions of pure compounds by use of the Evans nuclear magnetic
resonance (NMR) method [15]. The average susceptibility is obtained by summing
up on many directions equivalently distributed on the unity sphere

χ =
1

4π

∫
χuudu (5)

where u is a unit vector. This is close to

χM =
1

3
(χxx + χyy + χzz) (6)

The average magnetization as a function of the strength of the field is calculated
along the same lines

〈m(B)〉T =
1

4π

∫
〈mu (Bu)〉 du (7)

Contrarily to the magnetic susceptibility, which is calculated for small mag-
netic fields, 〈m(B)〉T might be very different from 1

3

(
〈mx (Bx)〉+ 〈my (By)〉T

+ 〈mz (Bz)〉T ), in particular, at high field in the case of strong anisotropic response.
As an example, in the case of an axial magnetic system with χx = χy = 0, at satu-
ration, Eq. 7 leads to 〈m(B)〉T = 〈mz (Bz)〉T /2, instead of 〈mz (Bz)〉T /3 for the
previous equation.

In one word, the susceptibility and magnetization deduced from SO-CAS based
calculations take into account the Zeeman interaction between the zero-field states
to all orders, since the eigenstates of Ĥ are calculated by diagonalizing the repre-
sentation matrix of Ĥ in the presence of the magnetic field. The limitation of the
calculation is due to the approximate resolution for the eigenstates of Ĥ0.

2.2 Generalized Van Vleck equation

The Van Vleck formula is commonly used to describe the susceptibility. But this
implies to know a priori the principal axes frame of theχ tensor, which is not obvious
for molecules lacking symmetry. A generalized formula has been derived for those
cases [16, 17]. Due to Kramers’ theorem, the energy levels of a system with an odd
number of electrons are even-fold degenerate in the absence of magnetic field. In
general, this degeneracy is two-fold, except for the cubic and icosahedral point groups
where it might be four-fold and six-fold, respectively. In non-Kramers complexes,
with an even number of electrons, the degeneracy arises from spatial symmetry. A
non-degenerate state has no first-order magnetic contribution, according to Eq. A2
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of the Appendix. It follows that in a non-symmetric molecule with an even number
of electrons, magnetization only arises from second-order Zeeman interaction, the
coupling by ĤZ between different energy levels.

As derived in Section A of the Appendix, with the Zeeman term considered as a
perturbation, Eq. 4 leads to the generalized Van Vleck equation

χuv = NAµ0µ
2
B

1

Q0

∑
I

e−
E0
I

kT

 1

kT

∑
ι,ι′

〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι′〉〈I, ι′ ∣∣∣M̂v

∣∣∣ I, ι〉

+2
∑
K 6=I

∑
ι,κ

Re
(〈
I, ι
∣∣∣M̂u

∣∣∣K,κ〉〈K,κ ∣∣∣M̂v

∣∣∣ I, ι〉)
E0
K − E0

I

 (8)

where |I, ι〉 are eigenstates of Ĥ0 with energy E0
I . I and ι run over the degenerate

manifolds and their components, respectively. Q0 is the partition function in the
absence of magnetic field. The average susceptibility is obtained from Eq. 6, and 8
with u = v where one sums up on the three directions of the principal axes frame of
the χ tensor. Considering a Taylor expansion of the energies

EI = E0
I − µBM0

I,uBu + µ2
BX

0
I,uB

2
u + · · · (9)

one gets the usual Van Vleck equation

χ =
NAµ0µ

2
B

3

∑
u=x,y,z

∑
I

(
(M0

I,u)
2

2kT − 2X0
I,u

)
e−

E0
I

kT

∑
I e−

E0
I

kT

(10)

The first term of Eqs. 8 or 10 accounts for contributions of degenerate states, and the
second for second-order Zeeman interaction between different manifolds, they are
respectively denominated the Curie and Van Vleck terms.

Eq. 8 can be rewritten in a more compact form introducing the matrix represen-
tationMu of M̂u in the basis of the zero-field states |I, ι〉. One gets

χuu = NAµ0µ
2
B

1

Q0

∑
I

e−
E0
I

kT

‖Mu,I‖2

kT
+ 2

∑
K 6=I

‖Mu,IK‖2

E0
K − E0

I

 (11)

where
∑
ι,κ

〈
I, ι
∣∣∣M̂u

∣∣∣K,κ〉2

= ‖Mu,IK‖2 denotes the norm of the matrix. The
sum runs now over the degenerate manifolds of the zero-field Hamiltonian.

Two-manifold case

It is instructive to consider only two manifolds of respective degeneracies d1 and d2,
separated by a zero-field energy gap ∆E. In this case, Eq. 11 becomes
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χuu = NAµ0µ
2
B

1

d1 + d2e−
∆E
kT

[
‖Mu,1‖2

kT
+

e−
∆E
kT ‖Mu,2‖2

kT

+
2
(

1− e−
∆E
kT

)
‖Mu,12‖2

∆E

 (12)

Let us now consider the two limit cases:

• the second manifold is not populated ∆E � kT , e−
∆E
kT ≈ 0

χuu =
NAµ0µ

2
B

d1

(
‖Mu,1‖2

kT
+

2 ‖Mu,12‖2

∆E

)
(13)

the first term is the 1/T Curie term arising from the ground manifold, and the
second term is the temperature independent paramagnetic (TIP) term, arising
from the coupling with the non-populated manifold.

• the case where the energy gap is much smaller than the thermal energy, the two
states are equally populated∆E � kT , e−

∆E
kT ≈ 1− ∆E

kT

χuu = NAµ0µ
2
B

[
‖Mu,1‖2 + ‖Mu,2‖2 + 2 ‖Mu,12‖2

(d1 + d2) kT

+

(
d2 ‖Mu,1‖2 − d1 ‖Mu,2‖2 + (d2 − d1) ‖Mu,12‖2

)
∆E

4 (d1 + d2)
2

(kT )
2

 (14)

The first term corresponds to the limit ∆E = 0; the two manifolds merge together.
One gets a 1/T Curie term for the 1+2 manifold, ‖Mu,1‖2 +‖Mu,2‖2 +2 ‖Mu,12‖2

is nothing more than ‖Mu,1+2‖2. It is interesting to note that despite the fact that Eq.
11 arises from a pertubative treatment of the Zeeman interaction, and the difference
of energy appears in the denominator of the Van Vleck term, when this energy

gap vanishes, the equations are still valid, because
(

e−
E0
K
kT − e−

E0
I

kT

)
/
(
E0
K − E0

I

)
tends to 1/kT when E0

K − E0
I vanishes. When the gap ∆E is of the order of

magnitude of the thermal energy, the further 1/T 2 term describes the change of
population of the second manifold.
χT as a function of T is represented in Fig. 1 in the case of two Kramers

doublets for different values of ‖M1‖2, ‖M12‖2, ‖M2‖2 and ∆E. It reveals very
different behaviors. For ∆E = 40 cm-1, the plateau is reached at room temperature,
and its height depends on the sum of ‖M1‖2, ‖M12‖2, ‖M2‖2 (see Eq. 14). When
‖M1‖2 > ‖M2‖2, there is small decrease inχT due the population of a less magnetic
state. For ∆E = 1000 cm-1, there is a TIP behavior when ‖M12‖2 6= 0. For ∆E =
200 cm-1, the saturation is not reached at room temperature, and χT is in a regime
between Curie-type and TIP.
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Fig. 1 χT as a function of
T for two Kramers doublets
from Eq. 12. d1 = d2 = 2.
∆E = 40 (black), 200 (blue),
1000 (red) cm-1 and different
values for ‖M1‖2, ‖M12‖2
and ‖M2‖2(µ2

B).

‖M1‖2 = 2 ; ‖M2‖2 = 4 ‖M1‖2 = 4 ; ‖M2‖2 = 2
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From lanthanide to actinide complexes

In lanthanide complexes, within the Russell-Saunders (or LS) coupling scheme, the
ground term is of the form 2S+1LJ , with degeneracy 2J+1. This ground J-multiplet
splits due to the presence of the ligands, usually by some 100 of cm-1 which is the
order of magnitude of thermal energy at room temperature. The high-temperature
limit of Eq. 10, withEI � kT with the sum over I limited to the ground J-multiplet
leads to [18]

χ =
NAµ0µ

2
Bg

2
J

3kT
J (J + 1) (15)

where gJ is the Landé g-factor. This is directly derived from Eq. 11 considering
the ground J-manifold as degenerate and ‖Mu,1‖2 / (2J + 1) = g2

JJ (J + 1) /3

in all directions. The effective magnetic moment µeff =
(
3kTχ/NAµ0µ

2
B

)1/2
=

gJ
√
J (J + 1) = µJ is constant. The χT = f(T ) curve shows a plateau at room

temperature as a signature of the Ln(III) ion.
In actinide complexes, the splitting of the ground J-manifold may cover more

than 1000 cm-1 and the states are not equally populated at room temperature. As
shown for a two-manifold case in Eq. 12, the non-populated states lead to a TIP term
and those around the thermal energy add some 1/Tn terms. Eq. 15 is usually not
valid, and the temperature behavior of the magnetic susceptibility is more complex
for actinide than for lanthanide complexes.

In their review [19], Kindra and Evans show that the magnetic susceptibility for a
given oxidation state of uranium complexes covers a certain range. Since there is an
overlap between different oxidation states, the value of χ at room temperature might
not be a signature of the actinide cation. The µeff at room temperature ranges from
1.75 to 3.8 µB for the 5f3 U(III) complexes, from 1.36 to 3.79 µB for the 5f2 U(IV)
complexes and from 1.24 to 3.77 µB for the 5f1 U(V) complexes. The µJ values are
3.62, 3.58 and 2.54 µB , respectively. It clearly shows that the effective moment at
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room temperature is not a good indicator of the oxidation state and presents a large
window around the µJ values.

Fig. 2 Effective moments
µeff (µB) of aqueous ac-
tinide cations at 298 K.
Filled symbols: in perchlo-
rate acid solution, with the
Evans method, from ref.
[20]. empty symbols: in
[An(H2O)9](CF3SO3)3 crys-
tals, with SQUID, from ref.
[21]. Dashed line: Russell-
Saunders coupling scheme
from Eq. 15. 0 1 2 3 4 5 6 7 8 9 10

nb of 5f electrons

0

5

10

µ
ef

f 
 (µ

B
)

Np(III)

Np(VI)

Pu(VI)

RS coupling

Np(IV)

U(IV)
Np(V)

Pu(IV) Pu(III)
Am(III)

Cm(III)

Cf(III)

U(III)

Table 1 Molar magnetic susceptibilityχ (10−8m3mol−1) for aquo actinide complexes, according
to Russell-Saunders coupling scheme (RSC), measured by Evans method in solution in perchloric
media (exp), and deduced from SO-CASPT2 calculations (calc), from refs. [22, 23].

An fn 2S+1LJ RSC exp a calc b

U(IV) 2 3H4 6.75 5.07 (±0.18) 5.63
Np(IV) 3 4I9/2 6.90 4.86 (±0.08) 4.89
Pu(IV) 4 5I4 3.80 2.84 (±0.07) 2.91
Pu(III) 5 6H5/2 0.38 0.79 (±0.02) 0.75
Am(III) 6 7F0 0 1.41 (±0.04) 0.86
Cm(III) 7 8S7/2 33.3 31.3 (±0.8) 31.6

a corrected from radioactivity. bSO-CASPT2 on the [An(H2O)9]n+ complex, with a geometry optimized by DFT, the
An-O distance fixed at the experimental EXAFS one.

Pu(IV) 
Free Ion

Pu(IV) 
Aquo

Pu(III) 
Free Ion

Pu(III) 
Aquo

0.00

2.00

4.00
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total
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Free Ion

Pu(III) 
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2
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orbital

Pu(IV) 
Free Ion

Pu(IV) 
Aquo

Pu(III) 
Free Ion

Pu(III) 
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-10.00

-8.00

-6.00

-4.00

-2.00

0.00

spin

Fig. 3 Magnetic susceptibility and orbital and spin contributions (10−8m3mol−1) for Pu(IV) and
Pu(III) free ions and aquo [An(H2O)9]n+ complexes. From CASPT2. Blue: LS; orange: ground
J-manifold; yellow: all states. The spin contibution is negative.

The magnetic susceptibility of aquo actinide complexes deduced from NMR
measurement with the Evans method [15] in perchlorate media [20] and measured
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with a SQUID magnetometer in solid state in triflate solids [21] are compared to
Eq. 15 in Fig. 2. The trends are the same, but there are differences in the values.
SO-CASPT2 calculations performed on [An(H2O)9]n+ complexes provide magnetic
susceptibility in correct agreement with the experimental values as shown in Table
1. In the case of the Pu(III) and Pu(IV) complexes, the different contributions were
analyzed as shown in Fig. 3. The LS value (in blue) is much smaller in the free
ion of Pu(III) than in Pu(IV), due the compensation between the orbital and spin
contributions, which are opposite, in accordance with the third Hund’s rule. In free
ions, J is a good quantum number, but not L and S. States with the same value of
J arising from different LS manifolds can mix. For Pu(III), the largest coupling is
between the ground LS 6H5/2 term and excited 4G5/2 and for the Pu(IV) free ion,
between the 5I4 and excited 3H4 terms. In the two cases, the J-coupling (in orange)
increases the value of χ in the free ion. The Zeeman effect with states arising from
other J-manifolds (in yellow) increases χ as well. Since χ is small for Pu(III), this
effect in not negligible. With the ligands, χ decreases slightly at the LS level, but
the main effect is the drastic decrease due to J-mixing. The largest effect of the
ligands is to drastically decrease χ by J-mixing in the Pu(IV) complex, especially
the orbital contribution. For the Pu(III) complex, the TIP plays an important role in
the final value. This detailed analysis of the different contributions reveals that there
are many impacting factors and in order to approach the experimental values, one
needs to describe properly the spin-orbit coupling with the excited LS manifolds at
the zero-field level (Ĥ0) and second-order Zeeman with excited states in Eq. 10.

3 Model Hamiltonians

Magnetic properties probe the low-energy states of a molecule, and one can restrict
the study to those states, spanning a model space. The choice of the model space
depends on spectroscopy and on temperature. By EPR at 2 K, one probes only the
very lowest states, while with a SQUID at room temperature the whole ground J-
manifold must be considered. The interactions in this model space are described by
model Hamiltonians, using operators acting in this space. When expressed by spin
operators, the model Hamiltonian is called a Spin Hamiltonian. The parameters are
phenomenological and, usually and preferentially, have a simple physical interpre-
tation. The restricted number of parameters allows them to be fitted to experimental
data (using for example CONDON and PHI softwares [24, 25]). Spin Hamiltonians
are very convenient for the description of the coupling between two actinide centers
[26, 27, 28] but this subject will not be addressed in this chapter. The discussion is
restricted to monomeric species, which is the first step for the description of model
Hamiltonians for dimeric species.

Within crystal-field theory, the Hamiltonian describing the f electrons may be
written as
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ĤCF =

N∑
i=1

[
T̂i −

Z∗e2

4πε0ri

]
+
∑
i<j

e2

4πε0rij
+

N∑
i=1

ζ l̂i · ŝi +

N∑
i=1

v̂CF (ri) (16)

with the scalar relativistic kinetic term, the attraction of the electrons by the screened
charge of the metal nucleus Z∗, the electron-electron repulsion, the spin-orbit oper-
ator, and the crystal-field operator, respectively. ri is the nucleus-electron position
vector and rij the electron-electron distance. The sum runs over theN f electrons of
the valence shell. This Hamiltonian acts in the whole 5fN configuration space. The
parameters are the three Slater-Condon parameters for electron-electron repulsion
F 2, F 4 and F 6 [29], the effective one-electron spin-orbit coupling parameter ζ and
the crystal-field parameters defined at the orbital level (see Section 3.1). They can
be fitted to experimental data (as for example using the code CONDON, [30]) or
deduced from ab initio calculations, (AILFT, [31]). This full crystal-field Hamilto-
nian can be used to build model Hamiltonians built in a smaller active space, with
effective parameters [30, 32, 33].

Model parameters can be evaluated from ab initio calculations [34], and model
Hamiltonians enable experiment and theory to meet easily, by comparing the pa-
rameters fitted to experimental data and evaluated from computational quantum
chemistry. Quantum chemistry provides the eigenstates of the zero-field Hamilto-
nian Ĥ0; a subspace spans the model space. In the case of very few parameters, it
might be sufficient to fit them to reproduce the ab initio energies. Otherwise, the
information born by the wave-functions is necessary; for that, one needs to make a
one-to-one connection between the ab initio andmodel states. If quite straightforward
for spin-only manifolds of transition metal complexes modeled by Spin Hamiltoni-
ans, in the case of actinide complexes where the orbital component is dominant,
this connection is not as simple. It is performed by diagonalizing the representation
matrix of M̂Z in the model space, which provides the |S,MS〉 or |J,MJ〉 kets. The
phase factors between the states is further determined such that the superdiagonal
of the representation matrix of M̂X which is real [35, 36]. Once the connection is
performed, the representation matrix of the zero-field Hamiltonian is written in this
basis set and compared to the representation of the model Hamiltonian in the model
space.

3.1 Crystal-field Hamiltonian

In lanthanide complexes, the Russell-Saunders coupling scheme applies well, the
J-mixing of the ground term of the free ion 2S+1LJ with excited states is negligible.
In a complex, the splitting of the ground J manifold is of some hundreds of cm-1,
due to the small interaction of the 4f orbitals with the ligands. The splitting of the
many-electron term results from the splitting of the 4f orbitals, namely a one-electron
interaction. In the free ion, the components of the J-manifold are built according to
the Clebsch-Gordan coupling scheme
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|J,MJ〉 =
∑

MJ=ML+MS

〈LMLSMS |J,MJ 〉 |L,ML;S,MS〉 (17)

Since the splitting between the 4f orbitals is much smaller than the electron-electron
repulsion, the composition of the states is kept the same in the presence of the ligands,
as revealed by the analysis of the SO-CASSCF wave-functions [37].

The splitting of the 4f orbitals can be described by crystal-field theory. It has been
developed as a pure electrostatic interaction, but the parameters are phenomenolog-
ical, and includes any other interaction. Assuming that all the 4f orbitals have the
same spatial expansion, the crystal-field operator is expressed by the tensor operators
Ôqk acting in either the l (one-electron), L (spin-free) or J (spin-orbit) manifolds.

V̂ CF (X) =
∑

k=2,4,6

αkX

k∑
q=−k

Bkq Ô
k
q (X) (18)

where X = l, L, J according to the considered manifold [38, 39]. The αkX =〈
X
∥∥αk∥∥X〉 are the reducedmatrix elements of 2nd, 4th and 6th orders respectively.

The αkl are determined byN , the αkL byN and L, and the αkJ byN , L and J . These
reduced matrix elements are tabulated for the ground state of each lanthanide ion
[40]. The convention of Wybourne is used throughout this work [41, 42]. The
crystal-field parameters Bkq can be calculated from CAS based wave-functions,
either at the orbital level (X = l) using the ab initio ligand-field theory (AILFT)
[43], or from many-electron states, without or with spin-orbit coupling (X = L
or J) [36]. The crystal-field parameters calculated at those different levels are very
similar, confirming that the splitting of the ground J-manifold can be analyzed at
the orbital level [44]. In f elements, there are in general 27 parameters; this number
is reduced by symmetry. The crystal-field parameters depend on the orientation of
the molecule in the Cartesian frame and it is convenient for the sake of comparison
between different complexes and for complexes without symmetry to introduce the
crystal-field strength parameter [45]

S =

1

3

∑
k=2,4,6

1

2k + 1

k∑
q=−k

∣∣Bkq ∣∣ 2

1/2

(19)

which is rotational invariant. The parameter S allows to evaluate the strength of the
ligand field with only one parameter and gives an idea of the overall splitting of the
ground J-multiplet.

In actinide complexes, by comparing to lanthanide complexes, i) the interaction of
the 5f orbitals with the ligands is more important because of a larger radial expansion
and a less effective screening by the occupied 6s6p shell ii) the electron-electron
interaction in the 5f shell is smaller due to the radial node of the 5f orbitals and larger
spatial extension iii) the J-mixing is more important due to large spin-orbit coupling,
and the states should be analyzed within the intermediate coupling scheme. Anyhow,
the 2J + 1 lowest states are well separated from the others and can be assigned to
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arise from the ground J-manifold. The analysis of the wave-functions with spin-orbit
reveals that all LS components contribute, but the weights do not follow those of
the Clebsch-Gordan scheme of Eq. 17: the lowest 5f orbitals participate more to
the ground state than the highest. In this case, the crystal-field parameters can be
defined as in Eq. 18 using the same techniques as for lanthanide complexes. The
results for the [AnIV(DPA)3]2– (b) series are shown in Fig. 4. The U(IV) (5f2) and
Np(IV) (5f3) reveal a small reduction (about 10-15 %) of the crystal-field strength
parameter S from orbital (l = 3) to many-electron including spin-orbit (J) levels.
For the Pu(IV) complex (5f4), S is divided by a factor of 3, pointing out again the
strong J-mixing in Pu complexes, as already noted in aquo complexes (cf Section
2.1). For the two former, the crystal-field parameters deduced from the J-manifold
follow the orbital level. But, for the Pu(IV) complex, little can be anticipated from the
orbital level to rationalize the many-electron levels with spin-orbit. This is confirmed
by studies based on the complete crystal-field Hamiltonian of Eq. 16 in the full 5fN

configuration as compared to a limited one restricted to the ground J-multiplet [46].
Actually, the crystal-field parameters deduced from a J-multiplet provide effective
crystal-field parameters whose physical meaning incorporates many-electron effects
and J-mixing and differ from one J-multiplet to the other. The many-electron crystal-
field parameters, since they effectively account for all interactions, are suitable to
reproduce the magnetic properties which arise only from the ground J-manifold.
On the other hand, the orbital crystal-field parameters are more appropriate for the
modeling of optical spectra, since they are unequivocal. It is then possible to calculate
the whole spectrum using the Slater-Condon and spin-orbit parameters.

Fig. 4 Crystal-field strength
parameter S in the
[AnIV(DPA)3]2– series cal-
culated with different CAS
based methods, for different
manifoldsX = l, L, J . U

IV
Np

IV
Pu

IV
0

400

800

1200

1600

S
(c

m
-1

)

l - CASSCF
l - NEVPT2
L - CASSCF
J - CASSCF
J - CASPT2

S

(b) DPA = pyridine-2,6-dicarboxylic acid
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3.2 Spin Hamiltonians

Magnetic properties are often described by Spin Hamiltonians, where all operators
are expressed using spin operators. For transition metal complexes, they are very
close to the true spin operators, but in actinide complexes, due to the large orbital
contribution, the spin is by far not a good quantum number. In this case, the spin is
called a pseudo-spin S , to avoid any confusion with a real spin. Its value is taken to
fit the size of the model space 2S + 1 and the model states are expressed in terms of
the |S,M〉 [40, 47, 48].

Kramers doublet

The simplest Spin Hamiltonian is for doublet states, described by a pseudo-spin
S = 1/2. For Kramers ions, the doublet is degenerate in zero-field, and only the
Zeeman interaction is modeled by the g-tensor

ĤS = µBB · g · Ŝ (20)

where Ŝ is the pseudo-spin operator. AKramers doublet is described by twoKramers
partners related by time-reversal symmetry

Θ̂Ψ = Ψ̄

Θ̂Ψ̄ = −Ψ (21)

where Θ̂ is the time-inversion operator. There is a multitude of choice for the Ψ, Ψ̄
couple. The g-matrix is calculated as [40, 49]

gux = 2 Re
〈
Ψ̄
∣∣∣M̂u

∣∣∣Ψ〉
guy = 2 Im

〈
Ψ̄
∣∣∣M̂u

∣∣∣Ψ〉 (22)

guz = 2
〈
Ψ
∣∣∣M̂u

∣∣∣Ψ〉
with u = x, y, z. This matrix is in general neither symmetrical, nor a tensor, but its
square G = g† · g is. G provides the principal axes frame of the g-tensor and the
squared g-factors. Their signs are consequently undetermined. In the principal axes
frame (X,Y, Z) of the g-tensor, the magnetic moment operator takes the canonical
form

M̂ = µB

(
gX ŜX + gY ŜY + gZ ŜZ

)
(23)

The orbital and spin contributions to the g-factors are calculated as
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gLX = 2 Re
〈
Ψ̄
∣∣∣L̂X ∣∣∣Ψ〉 ; gSX = 4 Re

〈
Ψ̄
∣∣∣ŜX ∣∣∣Ψ〉 ; gX = gLX + gSX

gLY = 2 Im
〈
Ψ̄
∣∣∣L̂Y ∣∣∣Ψ〉 ; gSY = 4 Im

〈
Ψ̄
∣∣∣ŜY ∣∣∣Ψ〉 ; gY = gLY + gSY (24)

gLZ = 2
〈
Ψ
∣∣∣L̂Z∣∣∣Ψ〉 ; gSZ = 4

〈
Ψ
∣∣∣ŜZ∣∣∣Ψ〉 ; gZ = gLZ + gSZ

In other words, when the magnetic field is applied in one principal direction U of g,
the magnetic moment for this Kramers doublet is

MU = ±1

2
gU (25)

The anisotropy of g is due to orbital contributions [48], and is important in actinide
complexes. g-factors can be negative. If |gX | ≈ |gY | � |gZ |, the magnetization of
the doublet is prolate, if |gZ | � |gX | ≈ |gY |, it is oblate.

Non-Kramers doublet

States of symmetrical non-Kramers ions can be two-fold, due to spatial symmetry.
The two states |1〉 and |2〉 are not related by time-reversal symmetry and might split
by an energy gap∆ [50]. According to Eq. A2 of Appendix, the magnetic moment of
a non-degenerate state vanishes. In other words,

〈
1
∣∣∣M̂u

∣∣∣ 1〉 =
〈

2
∣∣∣M̂u

∣∣∣ 2〉 = 0, but
|1〉 and |2〉 might by coupled by the Zeeman Hamiltonian, for example in direction
X ,
〈

1
∣∣∣M̂X

∣∣∣ 2〉 6= 0. The spin Hamiltonian takes the form in the |1〉, |2〉 basis set

ĤS = ∆ŜZ + µBgBX ŜX (26)

There is only one non-zero g-factor. The magnetic response in directions other than
X is due to second-order Zeeman interaction with other manifolds.

Quartet

As an example, the ground state of the octahedral [NpIVCl6]2– cluster diluted in
Cs2ZrCl6 crystal is a quartet. The ground state is a quartet F3/2u (using Mulliken’s
notation) [35] and is described by a S = 3/2 pseudo-spin. There is no zero-field
term, the Zeeman term is isotropic and needs a cubic term. In the principal axes
frame, the spin Hamiltonian takes the form [51]

ĤS = µBg Ŝ ·B + µBg
′
(
BX Ŝ

3
X +BY Ŝ

3
Y +BZ Ŝ

3
Z

)
(27)

The two scalar g and g′ parameters were deduced from EPR measurements as
g = −0.516 and g′ = 0.882. When an external magnetic field is applied, a pure spin
quartet splits into four uniformly distributed components, with energies µBgeMS .
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Due the large orbital contribution, theM = ±1/2 andM = ±3/2 components have
different magnetic moments, 〈±3/2|M̂u|±3/2〉 = ∓( 3

2g+ 27
8 g
′) and 〈±1/2|M̂u|±

1/2〉 = ∓( 1
2g + 1

8g
′). The cubic term is by far non-negligible, and opposite in sign

to the linear one.
When the complex is distorted, the quartet splits into two Kramers doublets.

Supplementary terms should be added to Eq. 27. It becomes then more intuitive
to model the quartet by two interacting doublets, each with a g-tensor coupled by
second-order Zeeman interaction [52].

4 Linear complexes

4.1 Spinor scheme

An(V) and An(VI) cations form strong bonds with oxo or nitride groups, leading
to linear structures. The [AnO2]n+ cations are named actinyl ions. In a linear point
group, the 5f orbitals are fσ , fπ(2) fδ(2) and fφ(2) - the degeneracy is given in
parenthesis. The two former ones are engaged in σ and π bonding, respectively,
with the orbitals of the O or N atoms: the bonding orbitals are mostly borne by the
ligands while the corresponding anti-bonding ones are on the 5f , which are largely
destabilized (see Fig. 5). The two latter are non-bonding, and host the unpaired
electrons. With spin-orbit coupling, states are characterized by their projection ω
of ĵ = l̂ + ŝ on the Z axis, leading to σ1/2, π1/2, π3/2, δ3/2, δ5/2, φ5/2 and φ7/2

spinors [53]. States with the same ω-values mix by spin-orbit coupling. Usually,
the [AnO2]n+, [AnO]n+, [AnN2]n+ or [AnN]n+ units are coordinated by equatorial
ligands. And it is the interaction with the equatorial ligands which tunes the nature
of the ground state and excited states, and the magnetic properties. The degeneracy
of the two δ and φ orbitals splits by the equatorial ligands, the four-fold symmetrical
δ orbitals by ligands with quaternary symmetry and the three-fold symmetrical φ
orbitals by ligands with ternary symmetry.

In the free linear cations, without spin-orbit coupling, the φ are lower in energy
than the δ because more distant from the oxo/nitride groups, and this reduces the
electrostatic repulsion. In the presence of an equatorial ligand, the δ are often lower
than the φ, because the latter are now closer from the equatorial ligands and this is
unfavorable on a electrostatic point of view, and involved in σ anti-bonding with the
orbitals of the ligands, while the δ have π interactions. The δ and φ orbitals have
ml values of ±2 and ±3, respectively. When the degeneracy is lifted, the angular
moment is quenched, but partially recovered by coupling the two orbitals: the closer
the two orbitals, the larger the angular moment. As shown in Figure 5, the e3/2 and
e5/2 spinors are very close in energy, and one or the other one can be the ground
spinor, according to the nature of the axial and equatorial ligands. The former is a
pure δ3/2 while the composition of the latter is a mixing between the δ5/2 and φ5/2.
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Fig. 5 5f spinors for [AnO2], [AnO], [AnN2] or [AnN] units, linear (left) or with equatorial ligands
(right). The degeneracy of the states in given in parentheses.

The axial ligands determines the δ-φ splitting, and the nature and the symmetry of
the equatorial ligands the splitting of the δ and/or φ orbitals.

4.2 g-factors

Spin-orbitals are given in terms of spherical harmonics in Table A1 in Appendix and
the representation matrix of the spin-orbit operator ĥSO = ζ l̂ · ŝ in the basis of the
spin-orbitals in Table A3 in Appendix. The crystal-field operator ĥCF is diagonal,
and the representation matrix of ĥ = ĥCF + ĥSO in the δ and φ spin-orbitals basis
is

ĥ |δ1〉 |δ2〉
∣∣φ̄1

〉 ∣∣φ̄2

〉
〈δ1| εδ1 iζ −

√
3ζ

2
√

2
−i
√

3ζ

2
√

2

〈δ2| −iζ εδ2 i
√

3ζ

2
√

2
−
√

3ζ

2
√

2〈
φ̄1

∣∣ −√3ζ

2
√

2
−i
√

3ζ

2
√

2
εφ1 −i 3ζ

2〈
φ̄2

∣∣ i√3ζ

2
√

2
−
√

3ζ

2
√

2
i 3ζ

2 εφ2

(28)



18 Hélène Bolvin

|δ1〉 and
∣∣δ̄1〉 denote spin-orbitals with α and β spin, respectively. By Kramers

symmetry, one gets the same matrix in the set of Kramers conjugated spin-orbitals
(see Tables A1 and A3 in Appendix). The ground Kramers partners issued from this
matrix take the form

|ψ〉 = a |δ1〉+ b |δ2〉+ c
∣∣φ̄1

〉
+ d

∣∣φ̄2

〉∣∣ψ̄〉 = Θ̂ |ψ〉 = a∗
∣∣δ̄1〉+ b∗

∣∣δ̄2〉− c∗ |φ1〉 − d∗ |φ2〉 (29)

where a, b, c and d are complex numbers with |a|2 + |b|2 + |c|2 + |d|2 = 1, and ∗
denotes the complex conjugation.

The orbital and spin components of the g-factors are calculated according to Eqs.
24, using Tables A4 in Appendix

gL‖ = 2
〈
ψ
∣∣∣l̂z∣∣∣ψ〉 = 8Im (a∗b) + 12Im (cd∗)

gS‖ = 4
〈
ψ̄ |ŝx|ψ

〉
= 2

(
|a|2 + |b|2 − |c|2 − |d|2

)
gLX = 2Re

〈
ψ̄
∣∣∣l̂x∣∣∣ψ〉 = 2

√
6Im (bd− ac)

gLY = 2Im
〈
ψ̄
∣∣∣l̂y∣∣∣ψ〉 = −2

√
6Re (ad+ bc) (30)

gS⊥ = 4Re
〈
ψ̄ |ŝx|ψ

〉
= 2Re

(
a2 + b2 − c2 − d2

)
(31)

g‖ = gL‖ + gS‖

g⊥ = gL⊥ + gS⊥

In the case of an axial symmetry, gLX = gLY = gL⊥. The axial orbital component gL‖
arises from δ1/δ2 and φ1/φ2 couplings (a∗b and cd∗) while the transverse orbital
component from δ1/φ1 and δ2/φ2 couplings ((bd, ad, bc and ac).

Let us consider the case where the two φ orbitals are strongly destabilized and the
model restricted to the δ orbitals. c = d = 0. The values of a and b are determined
by the splitting εδ2 − εδ1 as compared to ζ, with the two limit cases

• εδ2−εδ1 is very large. |ψ〉 = |δ1〉 is a pure spin state. gS‖ = gS⊥ = 2, gL‖ = gL⊥ = 0,
g is isotropic, as expected.

• εδ2 − εδ1 = 0.

– |ψ〉 = 1√
2

(|δ1〉+ i |δ2〉) corresponds to the δ5/2 spinor. gL‖ = 4, gS‖ = 2,
g‖ = 6, gL⊥ = gS⊥ = g⊥ = 0. g is purely axial, with additive orbital and spin
contributions.

– |ψ〉 = 1√
2

(|δ1〉 − i |δ2〉) corresponds to the δ3/2 spinor. gL‖ = −4, gS‖ = 2,
g‖ = −2. gL⊥ = gS⊥ = g⊥ = 0. g is purely axial, with opposite orbital and
spin contributions, leading to a negative g-factor.

It shows how the energy gap between the two δ orbitals tunes the g-tensor from either
isotropic to axial with positive or negative values, with all intermediate situations.
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The [NpO2]2+ and [UN]2+ units were probed with different equatorial ligands
and described by SO-CAS based methods, as summarized in Table 2. In the
[NpO2(NO3)3]– complex, with a ternary symmetry, the two φ orbitals are largely
split by 5000 cm-1 and the ground state is 75% on the φ orbitals. A combined analy-
sis using EPR and absorption in a magnetic field allowed to determine the energies
and g-factors of the excited states, and the sign of the longitudinal components g‖.
All those values are well reproduced by SO-CASPT2 and by Eqs. 31 [54]. In the
[NpO2Cl4]2– complex, with a four-fold symmetry, the splitting of the δ is about 1000
cm-1. The ground Kramers doublet in this case is 92 % on the δ orbitals in good
accordance with the EPR data. It was needed to introduce the coupling with the π
orbitals to approach the experimental values. In the [NpO2(DPA)2]2– complex, the
symmetry of the equatorial ligands is approximately ternary. The magnetic suscep-
tibility measured using Evans method in solution, and by SQUID in the solid state
are different. This is due to two Li+ cations positioned between two DPA2– ligands
[52]. The calculations revealed that the composition of the ground Kramers doublet
is strongly affected, 62 % δ in solution, 67 % φ in solid state. In this case, a large
active space was necessary to get the correct g-factors. The ground Kramers doublet
of the [UN]2+ unit is similar to [NpO2]2+, namely close to a φ5/2 spinor. The π and
σ orbitals are lower (5000 and 6000 cm-1) than in the [NpO2]2+ unit (20000 and
30000 cm-1) since there is only one triple bond. While coordinated by the equatorial
Tren (c) ligand, the e3/2 and e5/2 are extremely close and one or the other one can be
the ground state, according to the terminal ligands as ethercrowns. The e3/2 doublet
is EPR silent. The energy gap is sufficiently small that the e5/2 is detected, even
when excited. The nature of the ground doublet is provided by magnetometry and
confirmed by SO-CASSCF [55]. The similar complex with the [UO]3+ unit is EPR
silent, denoting a e3/2 ground state.

To conclude, according to the nature of the equatorial ligand, the magnetization
of the ground Kramers doublet can be almost axial g⊥ ≈ 0, spherical g‖ ≈ g⊥ and
even slightly oblate. Those properties are finely tuned by the energies of the four δ
and φ orbitals εδ1, εδ2 , εφ1 and εφ2.

4.3 Natural spin orbitals

The g-factor of a given Kramers doublet represents the magnetic moment in the
corresponding direction as expressed in Eq. 25, with both orbital and spin contribu-
tions. The spin magnetization depends on the direction u of the magnetic field due
to spin-orbit coupling and is related to the spin g-factor according to∫

mS
u(r)dr =

1

4
µBg

S
u (32)

(c) Tren= tris(2-aminoethyl)amine



20 Hélène Bolvin

Table2
g-factorsfrom

experim
entand

SO
-CA

S
m
ethodsfordifferentK

ram
ersdoubletsin

[N
pO

2 ] 2+
and

[U
N
] 2+

derivatives.Thelongitudinal(‖)and
equatorial

(⊥
)com

ponentsw
ith

orbital(L
)and

spin
(S

)contributionsare
given.

δ
/
φ
isthe

com
position

(%
)ofthe

K
ram

ersdoubletin
term

sof
δ
and

φ
orbitals.

[N
pO

2 ] 2+
[N

pO
2 (N

O
3 )3 ] –

[N
pO

2 Cl4 ] 2–
[N

pO
2 (D

PA
)2 ] 2–

[N
pO

2 (D
PA

)2 ]Li2
[U

N
] 2+

[U
N
(Tren)K

2 ]
[U

N
(Tren)][N

a(CE)2 ]
K
D
1

K
D
1

K
D
3

K
D
4

K
D
1

K
D
1

K
D
2

K
D
1

K
D
2

K
D
1

K
D
1

K
D
1

exp
a

g
‖

-3.405/3.36
-3.7

5.9/5.29
1.32/1.38

3.64
3.77

g
⊥

0.205/0.20
2.1

2.5/2.17
1.30

g
2

5.4
10.1

calc
b

g
‖

-4.24
-3.49

-3.60
5.37

1.76
0.9

1.4
3.3

1.6
-4.20

3.84
3.88

g
L‖

-5.76
-4.69

1.72
0.4

2.7
-5.78

g
S‖

1.52
1.20

0.04
0.5

-1.3
1.58

g
⊥

0
-0.23

-2.34
2.55

1.51
1.4

1.4
0.9

1.0
0

0.30
0.05

g
L⊥

0
0.63

2.42
2.7

0.4
0

g
S⊥

0
-0.86

-0.92
-1.3

1.0
0

g
2

12.5
7.7

0
δ
/
φ

10/90
20/80

36/61
81/19

55/44
62/37

58/40
33/67

85/12
11/89

a[N
pO

2 (N
O

3 )3 ] –
and

[N
pO

2 Cl4 ] 2–:
absorption

in
a

m
agnetic

field,
from

[56,
57]

and
EPR

[58,
59].

[N
pO

2 (D
PA

)3 ] 2–:
Evans

m
ethod,

[N
pO

2 (D
PA

)3 ]Li2 :
SQ

U
ID

,
from

[52].
[U

N
(Tren)K

2 ]
and

[U
N
(Tren)][N

a(CE)2 ]
(Tren

=
N
(CH

2 –CH
2 N

SiPr i3 )3 ,
CE=

12-crow
n-4

ether):
EPR

from
[55][55].

b[N
pO

2 ] 2+
and

[N
pO

2 (N
O

3 )3 ] –:
SO

-CA
S(7,10)PT2;

[N
pO

2 Cl4 ] 2–:
SO

-CA
S(7,10)PT2+em

bedding,from
[54];[N

pO
2 (D

PA
)3 ] 2–

and
[N

pO
2 (D

PA
)3 ]Li2 :SO

-RA
S(13,12)PT2,from

[52].[U
N
(Tren)K

2 ]and
[U

N
(Tren)][N

a(CE)2 ]SO
-CA

S(1,7)SCF
from

[55][55].



Modeling magnetic properties of actinide complexes 21

The Natural Spin Orbitals (NSOs) are the natural orbitals issued from the spin
magnetization for a given direction of the external magnetic field [54, 60, 61]. In
direction z, |ψ〉 and

∣∣ψ̄〉 of Eq. 29 are eigenvectors of the ŝz operator, and the spin
magnetization density can be calculated as

mS
z (r) = µBψ

†∗(r)ŝzψ(r)

=
µB
2

(
|a|2 |δ1(r)|2 + |b|2 |δ2(r)|2 − |c|2 |φ1(r)|2 − |d|2 |φ2(r)|2

)
(33)

δ1, δ2, φ1 and φ2 orbitals are the NSOs in z direction, with respective populations
|a|2, |b|2 , − |c|2 and − |d|2. As expected, the two orbitals with α spin in |ψ〉
contribute positively, the two with β spin, negatively. The NSOs in the perpendicular
direction are less intuitive. The eigenvectors of ŝx are |ψx〉 = 1√

2

(
|ψ〉+

∣∣ψ̄〉) and∣∣ψ̄x〉 = θ̂ |ψx〉 = 1√
2

(
− |ψ〉+

∣∣ψ̄〉). Written as spinors,

|ψx〉 =
1√
2

(
aδ1 + bδ2 − c∗φ1 − d∗φ2

a∗δ1 + b∗δ2 + cφ1 + dφ2

)
ŝx |ψx〉 =

1√
2

(
a∗δ1 + b∗δ2 + cφ1 + dφ2

aδ1 + bδ2 − c∗φ1 − d∗φ2

)
(34)

The spin magnetization in direction x is expressed as

mS
x (r) = µBψ

†∗
x (r)ŝxψx(r)

=
µB
2

[
Re
(
a2
)
|δ1(r)|2 + Re

(
b2
)
|δ2(r)|2

−Re
(
c2
)
|φ1(r)|2 − Re

(
d2
)
|φ2(r)|2

]
(35)

In this case, the population of each NSOmay be either positive or negative since a, b,
c and d are complex. We let as an exercise to the reader to demonstrate that the same
spin magnetization is obtained in direction y: my(r) = ψ†∗y (r)ŝyψy(r) = mx(r)

with |ψy〉 = 1√
2

(
|ψ〉+ i

∣∣ψ̄〉).
Let us consider again the cases mentioned above.

• For the pure spin state |ψ〉 = |δ1〉,m(r) = µB
2 |δ1(r)|2 in all directions.

• The two δ5/2 and δ3/2 spinors with a = 1/
√

2, b = ±i/
√

2, c = d = 0 lead to
the same spin densities

mS
z (r) =

1

4

(
|δ1(r)|2 + |δ2(r)|2

)
mS
⊥(r) =

1

4

(
|δ1(r)|2 − |δ2(r)|2

)
(36)

As expected from the spin g-factors, the spin magnetization density is highly
anisotropic: along z, it shows a cylinder symmetry while in the perpendicular
direction, even summing up to zero, the density is locally non vanishing, with
alternation of positive and negative regions.
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4.4 5fN complexes

5fN configurations can be analyzed either in terms of spin-orbitals or of spinors.
The [PuVIO2]2+ cation has a 5f2 configuration and its ground state is a non-Kramers
doublet with MJ = ±4 with a δ3/2φ5/2 configuration [62, 63] and a unique non-
zero g-factor, g‖ = 6. The splitting between the δ and φ orbitals, or the e3/2 and
e5/2 spinors is smaller that the electron-electron repulsion with the two electrons in
the same orbital, leading to an open-shell configuration. The presence of equatorial
ligands keeps the 5f electronic structure unchanged but reduces the g-factor by
quenching partially the orbital moments of the δ and/or φ due to their splitting [63].
The magnetic susceptibility reveals a small TIP due to a non-populated state at 3000
cm-1 [52]. The [UIVO]2+ has the same ground state withMJ = ±4 with a δ3/2φ5/2

configuration [PuO2]2+ [64]. The electronic configuration of further actinyls is better
analyzed in terms of spinors than state interaction between crystal-field states [65].

5 Cubic symmetries

In cubic symmetries, the seven 5f orbitals span the a2u ⊕ t1u ⊕ t2u irreducible
representations of the Oh group, and a1 ⊕ t1 ⊕ t2 of the Td group (see Table A2
in Appendix). Only two crystal-field parameters are needed, or equivalently, the two
energy gaps between the three manifolds, ∆ = εt1(u) − εa2(u) and Θ = εt2(u) −
εa2(u). With spin-orbit, a1(u) → e1/2(u), a2(u) → e5/2(u), t1(u) → e1/2(u)⊕f3/2(u)

and t2(u) → e5/2(u) ⊕ f3/2(u).

5.1 5f1 octahedral complexes

The orbital and spinor diagram of an octahedral [AnX6] complex is shown in Fig.
6a. The a2u is non-bonding, the t2u and t1u are engaged in π and σ bonding with the
orbitals of the ligands, respectively, leading to a a2u < t2u < t1u orbital scheme.
Without spin-orbit, the ground orbital is the non-degenerate δ2 (see Table A1 in
Appendix, the ligands are on the axes), with symmetry a2u. This leads to a spin-only
magnetism. With spin-orbit coupling, the ground spinor is issued from the coupling
of this orbital with the t1u manifold leading to a spinor of symmetry e5/2u [66]

|φ〉 = a |δ2〉 −
b√
3

[
|δ1〉+

√
5

2
√

2
(i |π̄1〉+ |π̄2〉)−

√
3

2
√

2

(
i
∣∣φ̄1

〉
+
∣∣φ̄2

〉)]
∣∣φ̄〉 = a

∣∣δ̄2〉− b√
3

[∣∣δ̄1〉+

√
5

2
√

2
(i |π1〉 − |π2〉)−

√
3

2
√

2
(i |φ1〉 − |φ2〉)

]
(37)
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where a and b are real with a2 + b2 = 1. They depend on∆/ζ, the ratio between one
of the crystal-field parameters and the spin-orbit coupling constant. The g-factors
are calculated with Eqs. 22 [67]: they are isotropic gx = gy = gz = g

g = 2a2 − 8√
3
ab

gL = − 8√
3
ab+

2

3
b2 (38)

gS = 2a2 − 2

3
b2

The orbital contribution arises from the coupling between a2u and t1u manifolds
(ab term) and from the zeroth-order contribution of the t2u manifold. The spin
contribution has some negative contribution from the t2u manifold. As shown in
Fig. 7a, b varies from 2/

√
7 ≈ 0.75 for the free-ion limit (∆ = 0) to 0 for the

spin-only limit (ζ = 0). At the free-ion limit, g is negative, due to the large negative
orbital contribution and ends up to 2 at the spin-only limit, where gL vanishes.

The g-factors calculated with SO-CASPT2 in a series of 5f1 complexes compare
well to experimental data [67, 68] as represented in Fig. 7a. In all cases, x = ∆/ζ
lies between 1 and 2, with respective φa2u/φt2u weights 57/ 43 (x = 1) and 70/30
(x = 2). Since the crystal-field and spin-orbit interactions are of the same order
of magnitude, we are close to the free-ion limit, g is negative as confirmed by
experiment and the spinor with the unpaired electron is better described by the
mj = ±5/2 component of the 2F5/2 term of the free ion than by a spin-only state.
The NSOs were studied in references [68, 61].

5.2 5fN octahedral complexes

The SQUID susceptibility of the 5f2 octahedral [UIVF6]2– complex reveals a TIP
behavior with an inflection in the χT = f(T ) curve. The magnetic moments were
determined by X-ray magnetic circular dichroism (XMCD) spectroscopy [69] which
allows to deconvolute the spin and orbital contributions: ML = 0.47µB , MS = -
0.41µB andM = ML +MS = 0.060µB with a field of 17 T and a temperature of 4
K [70]. NEVPT2 calculations show that without spin-orbit, the 3T1g ground state is a
mixing of a2ut2u and t22u configurations.With spin-orbit, the ground non-degenerate
A1g state is issued by 90% from the spin triplet 3T1g with 10% coupling with an
excited spin singlet 1A1g . Within a j-j coupling perspective, the closed-shell e2

5/2u

configuration leads to aA1g ground state; since the spinor e5/2u of Eq. 37 is a mixing
of α and β spin-orbitals, this leads to spin singlet determinants as for example

∣∣δ2δ̄2∣∣∣∣δ1δ̄1∣∣, as well as spin triplet ones as |δ1,2π1,2| and |δ1,2φ1,2|. The composition of
this ground state is halfway between the j-j and LS coupling schemes, and difficult
to anticipate without numerical treatment. The SO-NEVPT2 calculation finds a pure
TIP type susceptibility due to the coupling of the non-magnetic ground state with a
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triplet state at 1000 cm-1 and the moments calculated areML = –0.05µB andMS

= 0.02 µB . NEVPT2 underestimates the coupling with excited states. The authors
attributed this discrepancy to vibronic coupling.

The ground state of the 5f3 [NpCl6]2– cluster diluted in Cs2ZrCl6 crystal is
a F3/2u state. It is highly multi-configurational. It could be noticed that the j-j
coupling scheme leads to the e2

5/2uf3/2u configuration, of F3/2u symmetry. Within
a LS coupling scheme perspective, the spin-orbit couples the two spin-free 4A and
4T states separated by 2500 cm-1 with important contributions on spin doublet states.

5.3 Cubic and tetrahedral complexes

The ordering of the orbitals in a cubic environment [AnX8] is given in Fig. 6b. The
a2u and t1u orbitals are σ anti-bonding with the orbitals of the ligands, the a2u points
towards the eight ligands, and the 5f are ordered according to the t2u < t1u � a2u

scheme. The splitting by spin-orbit of the t1u manifold is larger than for t2u leading
to a ground spinor of symmetry f3/2u which large weights on the two t states. The
magnetic properties of the 5f2 [UIV(NCS)8]4– complex were probed by SQUID
spectroscopy and analyzed using CASPT2 based calculations, but the theoretical
susceptibility was not compared to the experimental one [71].

ThePuIVO2 solid reveals a susceptibility independent of temperature up to 1000K.
SO-CAS based calculations on a 5f4 [PuIVO8]12– embedded cluster model show
that with spin-orbit the configuration is t2.22u t

1.6
1u a

0.2
2u . The ground spin-orbit state is

a non-magnetic A1g state issued from the coupling between two spin-quintet 5T2g

and 5Eg states, confirming a weak-field scheme. The spinor scheme shows that the
lowest spinor f3/2u is mixed between the t2u and t1u spin-orbitals, which increases
the population of the t1u orbitals. This calculation shows a TIP susceptibility up to
300 K due to the coupling with the first excited T1 states at 1100 cm-1. For higher
temperatures, the susceptibility keeps constant due to an almost perfect cancellation
of temperature-dependent contributions to the susceptibility that arise from thermal
population of the low-energy excited states [72].

The spinor scheme in tetrahedral symmetry is given in Fig. 6c. The a1 or-
bital is σ anti-bonding with the orbitals of the ligands: the orbitals follows a
t1 < t2 � a1 scheme leading to a ground f3/2 spinor, of dominant t1 nature.
The 5f2 UIV(NSiMe3)4]– complex has a pseudo-tetrahedral symmetry. The ground
state is a non-Kramers doublet E compatible with an open-shell f2

3/2 spinor con-
figuration, issued from the t21 orbital configuration. SO-CASSCF reveals a small
splitting by 11 cm-1 of the ground doublet, and reproduces well both the magneti-
zation and susceptibility curves. The complexes UIV(O)(NSiMe3)3]– has a trigonal
bipyramidal symmetry with the [UIVO]2+] unit discussed in Section 4.1, approaching
a trigonal symmetry. The ground non-Kramers doublet splits by 39 cm-1 according
to SO-CASSCF, which is a slight overestimation of the experimental gap of 5 cm-1

[64], leading to different magnetization curves. Those curves are very sensitive to
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the gap of non-Kramers doublet [73]. There is a singlet around 200 cm-1 and then
at 1000 cm-1 which leads to a complex χT behavior: the ab initio curve fits well the
experimental one above 50 K.

6 Sandwich complexes

In sandwich complexes, the actinide ion is between two planar aromatic rings. We
will consider the (η7-C7H7)– and (η8-C8H8)2– = COT2– ligands. The staggered
[An(η7-C7H7)2]n– and eclipsed [Np(COT)2] structures have D7d and D8h symme-
tries, respectively, but can be treated as D∞h [74]. The spinor diagram is given in
Fig. 6d. In the previous sections, the 5f orbitals were anti-bonding with the orbitals
of the ligand. In aromatic ligands, some π molecular ligands’ orbitals are occupied,
other are vacant: the 5f are either bonding or anti-bonding. The two (η7-C7H7)– and
COT2– ligands have a π occupation a2

1e
4
1e

4
2. The highest occupied orbitals are e2

with axial symmetry δ, the lowest unoccupied orbitals are e3 with axial symmetry φ;
as a consequence for the 5f , the strong destabilization of the δ and the stabilization
of the φ [37, 75]. Furthermore, the φ and δ orbitals point in the direction of the
carbon atoms of the ligands, and are electrostatically destabilized as compared to
the σ and π. The lowest orbital is the σ, and the π and φ closely above. The ground
spinor is of symmetry e1/2, a mixing of σ and π spin-orbitals by spin-orbit coupling

|ψ〉 = a |σ〉+
b√
2

(i |π̄1〉+ |π̄2〉)∣∣ψ̄〉 = Θ̂ |ψ〉 = a |σ̄〉+
b√
2

(i |π1〉 − |π2〉) (39)

where a and b are real numbers with a2 + b2 = 1. The different components to the
g-factors are calculated from Eqs. 22 [76, 75]

gL‖ = 2
〈
ψ
∣∣∣l̂z∣∣∣ψ〉 = 2b2

gS‖ = 2
〈
ψ̄ |ŝx|ψ

〉
= 2

(
a2 − b2

)
gL⊥ = 4Re

〈
ψ̄
∣∣∣l̂x∣∣∣ψ〉 = −4

√
3ab

gS⊥ = 4Re
〈
ψ̄ |ŝx|ψ

〉
= 2a2 (40)

g‖ = 2a2

g⊥ = 2a2 − 4
√

3ab

The composition of ψ depends on x = ∆/ζ where ∆ is the σ − π gap and ζ
the spin-orbit constant. The variation of the g-factors is shown in Fig. 7b. Since
the σ orbital is non-degenerate, for ζ = 0, one obtains isotropic spin-only g-factors
g‖ = g⊥ = gS‖ = gS⊥ = 2. The g-tensor ismore andmore anisotropicwith increasing
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Fig. 6 5f spinors built from spin-orbitals in (a) octahedral ([UVBr6]– , (b) cubic [UVO8]3– , (c)
tetrahedral [NpVIF4]3+ and (d) sandwich [U(η7-C7H7)2]– complexes.



Modeling magnetic properties of actinide complexes 27

0 5 10 15
∆ / ζ

-3

-2

-1

0

1

2

b

free ion spin-only

g
S

g

g
L

AnX
6

0 5 10 15
∆ / ζ

-4

-2

0

2

b

free ion

spin-only

g
||

S

AnL
2

g
perp

L

g
perp

g
perp

S
g

||
 =

g
||

L

a b

Fig. 7 Variation of g-factors with orbital and spin components, and composition of the ground
Kramers doublet with∆/ζ. g (black), gL (blue), gS (red) and b (dash-dotted) (a) 5f1 octahedral
complexes, from Eqs. 37 and 38,∆ = εt2u − εa2u. Green circles show the SO-CASPT2 results
for [AnX6]n– complexes [67]. (b) 5f1 sandwich complexes, ‖ (plain), ⊥ (dashed) from Eqs. 39
and 40,∆ = επ − εσ .

mixing, the orbital contribution becomes the largest, g⊥ negative. At the free-ion
limit, x = 0, b > a, gS⊥ is negative as well, and one gets themj = ±1/2 component
of the j = 5/2 multiplet.

The g-factors of the ground Kramers doublet of the 5f1 [UV(η7-C7H7)2]– com-
plex were measured by EPR (g‖ = 1.24 and g⊥ = 2.37) [76] and calculated with
SO-CASPT2 [77]. The g-factors are similar to the [CeIII(COT)2]– complex (see
Table 3). The two complexes are close to the free-ion limit with x = 0.74 and 2, for
the lanthanide and actinide complexes, respectively. In the latter, the crystal-field gap
is larger due to a larger covalency but the spin-orbit constant as well, and this leads
to similar ground Kramers doublet. In the [UV(η7-C7H7)2]– complex, it is necessary
to increase the active space to approach the experimental values, in order to better
describe the covalent effects. The susceptibility, measured by SQUID, shows a TIP
behavior above 50 K, compatible with those g-factors (The curves are not compared)
[78]. The first excited state is the φ5/2 at 3200 cm-1. The K-edge X-ray absorption
spectroscopy reveals the implication of δ bonding in both the ground state and excited
states.

Table 3 g-factors in 4f1 and 5f1 sandwich complexes.

[CeIII(COT)2]–a [UV(η7-C7H7)2]– b
CAS(1,7)PT2 mod c exp CAS(1,7)SCF CAS(9,16)PT2 modd exp

g‖ 1.06 1.07 1.123 1.41 1.38 1.40 1.24
gL‖ 0.93 0.55 0.60 0.60
gS‖ 0.14 0.84 0.78 0.80
g⊥ -2.33 -2.39 2.272 -1.57 2.23 -1.77 2.37
gL⊥ -3.46 -3.00 -3.60 -3.17
gS⊥ 1.07 1.43 1.39 1.40

a from ref. [75]. bfrom ref. [77]. cfrom Eqs. 40 with a2 = 0.534. dfrom Eqs. 40 with a2 = 0.7.
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Different complexes of the [An(COT)2]n– were studied experimentally, and with
SO-CAS based and DFT methods [79, 80, 81, 82, 76, 83, 84, 85, 86]. The ground
state of the 5f2 [UIV(COT)2] complex is a non-Kramers doublet with a g-factor of
4.6 according to SO-CASPT2 calculations, presumably corresponding to a e1/2ue5/2

spinor configuration . The first excited is another non-Kramers doublet at 700 cm-1

[87].
The ground state of the 5f3 [NpIV(COT)2] complex is a E5/2 Kramers doublet

arising from the e2
1/2ue5/2u configuration: in this case, it is not open-shell in terms

of spinors. The first excited state is a E3/2 Kramers doublet at 1500 cm-1, which
is confirmed by a crystal-field analysis of the susceptibility curve [85]. This curve
reveals a large TIP component, which is well reproduced by SO-CASPT2with a large
active space [87]. The isoelectronic [UIII(COT")2]– (d) has the same ground state
E5/2u but the excited states determined by SO-CASSCF show a different ordering:
the first excited is lower in energy at 400 cm-1 and is of symmetryE7/2. The ab initio
susceptibility curve needs a scaling factor of 1.09 to fit the experimental curves [88].

Complexes with configuration 5f4 [NpIII(COT)2]– and [PuIV(COT)2] have a non-
magnetic ground state with first excited states at 800 and 1700 cm-1 respectively,
leading to a pure TIP susceptibility, as calculated with SO-CASPT2. Finally, the 5f5

[PuIII(COT)2]– complex has three low-lying Kramers doublets at 80 and 300 cm-1,
deduced from SO-CASPT2 [87].

7 U(III) complexes

Many studies concern U(III) complexes with configuration 5f3. Indeed, the low
radioactivity of this natural element allows less severe experimental conditions than
transuranide complexes. Furthermore, they are Kramers ions which often reveal a
single molecule magnet (SMM) behavior [89]. Many of those complexes are borate
derivatives. The free-ion has a ground 4I9/2 term, which splits in five Kramers
doublets by the ligands.

The crystal-field parameters have been fitted from experimental data

• from the absorption spectrum:
[UTp3] [90].

• from the susceptibility within the Russell-Saunders coupling scheme:
[U(Ph2BPz2)3], [U(H2BPz2)3], [UTp3], [U(Tp*)2(bipy)]+, [U(Tp*)2I] [91],
[(Tp*2U(I))], [(Tp*2U(bpy))](I), [U(BPz2H2)3)], [(Tp*2U)2(m –DEB)],
[(Tp*2U)2(p –DEB)], [Tp*2UCCPh] , [Tp*2U(THF)](BPh4), [Tp*2U(MeCN)2](BPh4)
[92]. (e)

• from the susceptibility using the full 5fN configuration space:
U(H2BPz2)3, U(Ph2BPz2)3, UTp3 [46].

(d) COT” = bis(trimethylsilyl)cyclooctatetraenyl dianion
(e) Tp = trispyrazolylborate, Tp* = hydrotris-(3,5-dimethylpyrazolyl)borate, BPz = pyrazolborate,
DIB = diimidobenzene, DEB = diethynylbenzene
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Some of the complexes were probed

• by Electronic Paramagnetic Resonance (EPR)
[U(Cptt)3] [93], Cp"3UtBuNC, Cp"3UCyNC [94], [U(SiMe2NPh3 – tacn)],
[U(SiMe2NPh3 – tacn)(OPPh3)] [95].

• using Magnetic Circular Dichroism (MCD)
[Tp*UI2], [Tp*2UI], [Tp*UBn] [96], [U(SiMe2NPh3 – tacn)],
[U(SiMe2NPh3 – tacn)(OPPh3)] [95].

Many of those complexes were described by SO-CAS based methods:
[U(TpMe2)2I], [U(TpMe2)2(bipy)] [97], [98], [U(H2Bpz2)3], [U(BpMe)3], [U(BcMe)3],
[UTp3], [99], Cp"3UtBuNC, Cp"3UCyNC [94], [UTp3] , [L2U(H2O)5][I]3L2 [88],
[U(SiMe2NPh3 – tacn)], [U(SiMe2NPh3 – tacn)(OPPh3)] [95], [U(BcMe)3], [U(BpMe)3]
[100]. (f)

g-factors determined from SO-CASSCF calculation and from crystal-field pa-
rameters fitted on susceptibility curves are compared to the EPR ones in Table 4.
The accordance is in general good, at the least qualitatively. The g-factors of the
ground Kramers doublet probe the composition of the ground state (see Eq. 22) : it
shows that the SO-CASSCF method provides a correct wave-function for the ground
state.

The χT curves probed by a SQUID in the solid state, or using the Evans method,
in solution, probe many states, either populated, or not, as shown in Section 2.1.
They probe at the same time the energy gaps, the magnetic moments (g-factors) of
the Kramers doublets and the magnetic coupling between them. It is specially sensi-
tive to the energy gaps for the states around room temperature, where it impacts the
curvature, and for the non-populated states, which impacts the slope of the TIP. The
ab initio curves are not systematically calculated and compared to the experimental
ones. The accordance between ab initio and experimental is sometimes satisfactory,
sometimes approximate. It is usually improved by including the dynamical correla-
tion with CASPT2 or by including more orbitals in the active space, as for example
the 6d [100].

A single-molecule magnet has super-paramagnetic behavior below a certain
blocking temperature. This occurs in complexes with a strongly anisotropic ground
state, as for example, a Kramers doublet with a pure axial g-tensor (gx = gy = 0).
The magnetic moment is consequently ± 1

2µBgz in one direction, and vanishes in
the two other ones. The energy barrier Ueff for the thermally-induced reversal of this
magnetic moment can be deduced from AC magnetic susceptibility. In lanthanide
complexes, correlations can be found between the barrier Ueff and the energy of the
first excited state, which is the sign of an Orbach relaxation process. But in actinide
complexes, the energy gaps are much larger, as seen in Section 3.1, and there is
little correlation between the measured values of Ueff and the energy gaps of the
first excited state, as shown in Table 5, which suggests that other relaxation pathways
occur in actinide complexes [89].

(f) H2Bpz2 – = dihydrobis(pyrazolyl)borate), BpMe = dihydrobis(methylpyrazolyl)borate), BcMe =
dihydrobis(methylimidazolyl)borate), L = tBuPO(NHiPr)2, tacn = 1,4,7-triazacyclononane, Cp" =
1,3-bis-(trimethylsilyl)cyclopentadienyl, Cptt = (C5H3

tBu2 –1,3)–
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Table 4 g-factors from EPR, crystal-field parameters fitted on the susceptibility (CF) and SO-
CASSCF calculations for the ground Kramers doublet of U(III) complexes.

Cp"3UtBuNC a [U(Cptt)3]b [U(BpMe)3]c [U(BcMe)3]c

CAS(3,7) CF exp CAS(3,7) exp CAS(3,7) exp CAS(3,7) exp

gx 1.97 2.12 2.42 2.27 3.05 2.60 2.62 2.52 2.57
gy 1.97 2.12 1.75 2.02 1.65 2.60 2.62 2.52 2.57
gz 0.61 0.81 <0.7 0.30 < 0.5 2.08 1.76 2.18 1.03

[U(SiMe2NPh3 – tacn)]d [Tp*UI2]e [Tp*2UI]e [Tp*UBn]e

CAS(3,7) CAS(3,19) CF exp CAS(3,7) exp CAS(3,7) exp CAS(3,7) exp

gx 3.546 4.017 2.725 3.54(5) 4.49 4.84 4.59 4.20 4.83 4.55
gy 2.638 2.225 2.725 2.042(4) 1.04 0.81 1.42 1.14 1.45 1.01
gz 0.802 0.795 1.679 1.66(5) 0.49 0.15 0.66 0.90 0.57 0.68

a from [94]. b from [93]. c from [99]d from [95] e from [96].

Table 5 Barrier height for magnetization reversal Ueff (cm-1) and energy gap between the two
lowest Kramers doublets∆E (cm-1) in actinide single-molecule magnets a.

Ueff ∆E

U(Ph2BPz2)3 20 190
U(H2BPz2)3 16 230

[UTp3] 3.8 270
[U(TpMe2)2(bipy)]I 18.2 137

[UTpMe2]I 21.0 187
[U(H2Bpz2)3] 16 108
[U(BcMe)3] 23 109

UTp3 3.8 258
[U(BcMe)3] 33 142
Np(COT)2 28.5 1400
PuTp3 18.2 332

a from [89, 99, 100].

8 U(IV) complexes

The U(IV) complexes with a 5f2 configuration are non-Kramers ions. The ground
free-ion term 3H4 might split into nine non-degenerate levels. In Section 5.2, we
referred to an octahedral complex [UIVF6]2– with a non-degenerate ground state
and TIP behavior [70], and in Section 5.3, to two pseudo-tetrahedral complexes
UIV(O)(NSiMe3)3]– and [UIVO]2+] with a non-Kramers doublet for ground state
[64].

The (C5Me4H)3UIVNO, (C5Me4H)3UIVCl, (C5H5)3UIVCH3, (C5H5)3UIVCl com-
plexes have a three-fold symmetry. SO-CASPT2 calculations reveal a non-degenerate
ground state of symmetry A1. With the NO– ligand, there is a strong π interac-
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tion and the first excited doublet lies at more than 4000 cm-1 leading to a TIP
susceptibility in accordance with the experimental data. With Cl– , the excited dou-
blets are at 200 and 800 cm-1, leading to more entangled contributions, which are
correctly described by SO-CASPT2. Finally, with the CH3

– ligand, all degenera-
cies are lifted and there are states equally distributed [101]. Finally, the suscepti-
bility of the [(Tp*2U

IV)2(p –DIB)], [(Tp*2U
IV)2(m –DIB)], [(Tp*2U

IV)2(N–p –Tol)],
[(Tp*2U

IV)amidinate] complexes are fitted by crystal-field parameters [92].

9 Pu(III) complexes

In 5f5 Pu(III) complexes, the ground term of the free ion 6H5/2 splits in three
Kramers doublets.

The [PuIIITp3] complex shows SMM properties with a barrier of 18.2 cm-1.
The first excited Kramers doublet is found to be at 332 or 400 cm-1 based on
a crystal-field or SO-CASSCF analysis, respectively. SO-CASSCF leads to a TIP
susceptibility, which does not fit the curvature of the experimental curve [102,
103]. The susceptibility of the Pu(III) ion in a matrix of LaPO4 was measured
by SQUID. The SO-CASSCF calculation performed on a [PuLa9(PO4)7]9+ cluster
gives a first excited Kramers doublet at about 300 cm-1. This leads to an almost linear
χT which does not reproduce the experimental curve which reveals a pronounced
curvature. The fitting of the experimental curve leads to a more compact spectrum,
and the crystal-field strength parameter S is reduced from 500 to less than 200 cm-1.
Benchmark calculations on the [PuIIICl6]3– complex show that an extended number
of states should be included in the spin-orbit interaction, namely the spin doublets
states, in order to approach the experimental energy gaps. It shows that the J-mixing
in Pu(III) complexes is essential and completely changes the ordering of the states
issued from the ground J manifold [104], as already mentioned for Pu(IV) complexes
in Section 3.1.

10 Am(III) complexes

The 5f6 Am(III) free ion has a non-degenerate 7F0 ground term. The susceptibility
of the Am(III) ion was measured by SQUID in a matrix of LaPO4 [104]. SO-
CASPT2 retrieves this non-magnetic ground state with an excited state at 1600 cm-1.
The inclusion of the spin triplets in the spin-orbit interaction impacts strongly this
gap. This leads to a pure TIP susceptibility behavior in good accordance with the
magnetic data, except that the latter shows a small curvature.
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11 Conclusion

In actinide complexes, the electron-electron repulsion, spin-orbit interaction and
crystal-field effects are of about the same order ofmagnitude. It makes the description
of their electronic structure and their magnetic properties, difficult, but challenging.

The electronic structure of symmetrical 5f1 complexes are rationalized by the
singly-occupied one-electron wave-function, including crystal-field and spin-orbit,
namely the singly-occupied spinor. The electronic structure of 5fN is more tricky.
In all cases, the crystal-field configuration before spin-orbit reveals a high-spin
configuration, in favor of a weak-field coupling scheme. But the analysis in terms of
spinors reveals configurations with doubly-occupied spinors. Clearly, the electronic
structure should be grasped in an intermediate coupling scheme, between the LS
coupling scheme where the many-electron wave-function is built and spin-orbit
coupling calculated afterwards, and the j-j couplingwhere the spin-orbit is considered
at the one-electron level. With manyN electrons, it is difficult to figure out what the
ground state is, without numerical tools. In those cases, the weight of the closed-shell
spinors is non negligible. An e2 configuration where e is a two-fold spinor has non
magnetic contribution, the spin and orbital contributions from the components e and
ē cancel each other, but arises from spin-singlet and spin-triplet contributions. It
shows that all spin-states should be included in the spin-orbit state interaction, as for
example spin-doublets for Pu(III) complexes.

SO-CAS methods are, at the present time, the most suitable methods to describe
the electronic structure of actinide complexes, and their magnetic properties. Indeed,
those methods include in the calculation the three ingredients, the electron-electron
repulsion, spin-orbit interaction and crystal-field effects, in a balanced way. At first,
the orbitals are built (crystal-field), then the many-electron wave-function (electron-
electron repulsion) and finally, the spin-orbit as a state interaction. This follows
the LS coupling scheme. For 5f1 complexes, DFT methods including spin-orbit
interaction are suitable, but sometimes converge to a wrong state.

The magnetization of doublet states can be characterized by the g-tensors. The
comparison of the ab initio g-factors with the experimental ones, usually determined
by EPR spectroscopy shows a good agreement. It shows that SO-CAS basedmethods
provide the correct ground state, even at SO-CASSCF level.

Crystal-field theory allows to describe the splitting of the seven 5f orbitals by the
ligands. Due to a larger covalency as compared to the lanthanide counterparts, the
effects are much larger in actinide complexes. The crystal-field parameters deduced
from the ground J-multiplet include in an effective way many-electron and spin-
orbit interactions, and are different from the one-electron values. And this, specially
for Pu complexes, where the J-mixing shakes up the components issued from this
J-multiplet.

The magnetic susceptibility probes many states, either populated contributing to
the Curie term, or not, adding a temperature independent term (TIP). In actinide
complexes, the overall splitting of the ground J-multiplet is more than 1000 cm-1.
Some of the states are not populated at room temperature, but have a non-negligible
contribution through the TIP mechanism. If some of the states lie in the 200 - 600
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cm-1 window, the thermal expansion should include further terms in T−n to the
Curie law. The χT as a function of T is sensitive to many parameters: the energy
of the states, the magnetic moments of the degenerate manifolds and the magnetic
coupling between those manifolds. SO-CAS based methods sometimes fit well the
experimental curves. But sometimes, they do not fit so well. The agreement is
usually improved by including the dynamical correlation, with CASPT2 or NEVPT2
methods, or/and to increase the size of the active space by including some bonding
orbitals of the ligands or the 6d orbitals.

To conclude, the interplay of experimental data, model Hamiltonians and first-
principle description allows to approach the electronic structure of actinide com-
plexes and their magnetic properties, with or without symmetry, with one or more
electrons in the 5f shell.
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Appendices

A Generalized Van Vleck equation

The magnetic susceptibility tensor χ at temperature T is expressed as the thermal
Boltzmann average according to the eigenfunctions of Ĥ and the corresponding
magnetic moments as

χuv = −NAµ0µB

∑
I,ιMI,ι,uv (Bu) e−

EI,ι(Bu)

kT

Bu
∑
I,ι e−

EI,ι(Bu)

kT

(A1)

To derive the Van Vleck equation, the Zeeman interaction is considered perturba-
tively and the zeroth-order states |I, ι〉 are eigenstates of Ĥ0 with energy E0

I . ι runs
over the components of degenerate manifolds. The angular moment operator M̂ is a
time-odd operator, leading to specific properties [40, 105]. In a degenerate manifold
I , ∑

ι

〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι〉 = 0 (A2)

In Eq. 4, MI,uv (Bu) is the angular momentum of state I in direction u for a
magnetic field applied in direction v. The perturbative Hamiltonian is given by
ĤZ = µBM̂uBu. To apply perturbation theory in degenerate manifolds, the |I, ι〉
are considered to be eigenfunctions of the perturbative Hamiltonian, depending
consequently on the direction of the field. At second order of perturbation theory,
the eigenstates are



34 Hélène Bolvin

|ΨI,ι(Bu)〉 = |I, ι〉+
∑
K 6=I

∑
κ

µBBu

〈
K,κ

∣∣∣M̂u

∣∣∣ I, ι〉
E0
I − E0

K

|K,κ〉 (A3)

with corresponding energy

EI,ι(Bu) = E0
I + µBBu

〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι〉 (A4)

The angular moment in direction v for this state is

MI,ι,uv (Bu) =
〈
ΨI,ι(Bu)

∣∣∣M̂v

∣∣∣ΨI,ι(Bu)
〉

=
〈
I, ι
∣∣∣M̂v

∣∣∣ I, ι〉
+ 2

∑
K 6=I

∑
κ

µBBu
Re
(〈
I, ι
∣∣∣M̂v

∣∣∣K,κ〉〈K,κ ∣∣∣M̂u

∣∣∣ I, ι〉)
E0
I − E0

K

(A5)

For µBBu
〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι〉� kT ,

e−
EI,ι(Bu)

kT ≈ e−
E0
I

kT

1−
µBBu

〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι〉
kT

 (A6)

Using Eqs. A2 and A5, and the identity∑
ι

〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι〉〈I, ι ∣∣∣M̂v

∣∣∣ I, ι〉 =
∑
ι′,ι”

〈
I, ι′

∣∣∣M̂u

∣∣∣ I, ι”〉〈I, ι” ∣∣∣M̂v

∣∣∣ I, ι′〉
(A7)

(this identity allows to be independent on the basis within the degenerate manifolds),
Eq. A1 leads to the generalized Van Vleck equation

χuv = NAµ0µ
2
B

1

Q0

∑
I

e−
E0
I

kT

 1

kT

∑
ι,ι′

〈
I, ι
∣∣∣M̂u

∣∣∣ I, ι′〉〈I, ι′ ∣∣∣M̂v

∣∣∣ I, ι〉

+2
∑
K 6=I

∑
ι,κ

Re
(〈
I, ι
∣∣∣M̂u

∣∣∣K,κ〉〈K,κ ∣∣∣M̂v

∣∣∣ I, ι〉)
E0
K − E0

I

 (A8)

whereQ0 is the partition function in absence ofmagnetic field. Eq. A8 can be derived
as a response to a bilinear perturbation [106]. Taking as independent parameters the
magnetic field in direction u and v,

Ĥ(Bu, Bv) = Ĥ0 + µBM̂uBu + µBM̂vBv (A9)

χuv = NA
d2E

dBudBv
(A10)
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which leads to Eq. A8 in the case of perturbation theory of degenerate states.
The matrix representation Mu of M̂u in the basis of the zero-field states |I, ι〉

may be decomposed in block matrices within degenerate zero-field manifolds: the
diagonal blocksMu,I withinmanifold I , and the off-diagonal blocksMu,IK coupling
the two manifolds I andK

Mu =

 Mu,1 · · · Mu,1N

...
. . .

...
Mu,N1 · · · Mu,N

 (A11)

Eq. A8 becomes

χuv = NAµ0µ
2
B

1

Q0

∑
I

e−
E0
I

kT

[
1

kT
tr
(
Mu,I ·M†v,I

)

+2
∑
K 6=I

tr
(
Mu,IK ·M†v,IK

)
E0
J − E0

I

 (A12)

where tr denotes the trace of a matrix. For the diagonal components, u = v,

tr
(
Mu,IK ·M†u,IK

)
=
∑
ι,κ

〈
I, ι
∣∣∣M̂u

∣∣∣K,κ〉2

= ‖Mu,IK‖2 where ‖‖ denotes
the norm of the matrix. One gets

χuu = NAµ0µ
2
B

1

Q0

∑
I

e−
E0
I

kT

‖Mu,I‖2

kT
+ 2

∑
K 6=I

‖Mu,IK‖2

E0
K − E0

I

 (A13)

The sum is now over the degenerate manifolds of the zero-field Hamiltonian.
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B Tables

Table A1 f orbitals in linear symmetry.

ω spherical harmonics Cartesian

σ r3Y 0
3

√
7

16π
z(5z2 − 3r2)

π1 r3
Y 1
3 + Y −1

3√
2

∗ i
√

7
16π

√
3
2
y (5z2 − r2)

π2 r3
Y 1
3 − Y

−1
3√

2
∗ (−1)

√
7

16π

√
3
2
x (5z2 − r2)

δ1 r3
Y 2
3 + Y −2

3√
2

√
7

16π

√
15 (zx2 − zy2)

δ2 r3
Y 2
3 − Y

−2
3√

2i

√
7

16π
2
√

15xyz

φ1 r3
Y 3
3 + Y −3

3√
2

∗ i
√

7
16π

√
5
2

(3x2y − y3)

φ2 r3
Y 3
3 − Y

−3
3√

2
∗ (−1)

√
7

16π

√
5
2

(x3 − 3xy2)

Table A2 f orbitals in cubic symmetries.

Oh Td Cartesian

a2u a1 δ2

√
7

16π
2
√

15xyz

t1u t2 x3 −
√

3
2
√

2
π2 +

√
5

2
√

2
φ2

√
7

16π
x(5x2 − 3r2)

y3 −
√

3
2
√

2
π1 −

√
5

2
√

2
φ1

√
7

16π
y(5y2 − 3r2)

z3 σ
√

7
16π

z(5z2 − 3r2)

t2u t1 x(y2 − z2) −
√

5
2
√

2
π2 −

√
3

2
√

2
φ2

√
7

16π

√
15x(y2 − z2)

y(z2 − x2)
√

5
2
√

2
π1 −

√
5

2
√

2
φ1

√
7

16π

√
15y(z2 − x2)

z (x2 − y2) δ1

√
7

16π

√
15z (x2 − y2)
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Table A3 Spin-orbit operator in the f spin-orbitals basis.

l̂ · ŝ |σ〉 |π̄1〉 |π̄2〉 |δ1〉 |δ2〉
∣∣φ̄1

〉 ∣∣φ̄2

〉
|σ̄〉 |π1〉 |π2〉

∣∣δ̄1〉 ∣∣δ̄2〉 |φ1〉 |φ2〉

〈σ| 〈σ̄| 0 −2µ −i2µ 0 0 0 0
〈π̄1| 〈π1| −2µ 0 − i

2
ν −iν 0 0

〈π̄2| 〈π2| i2µ i
2

0 iν ν 0 0
〈δ1|

〈
δ̄1
∣∣ 0 ν −iν 0 i −µ −iµ

〈δ2|
〈
δ̄2
∣∣ 0 iν ν −i 0 iµ −µ〈

φ̄1

∣∣ 〈φ1| 0 0 0 −µ −iµ 0 −3i
2〈

φ̄2

∣∣ 〈φ2| 0 0 0 iµ −µ 3i
2

0

µ =
√

3
2
√

2
; ν =

√
5

2
√

2

Table A4 l̂u operators in the f spin-orbitals basis.

l̂x |σ〉 |π1〉 |π2〉 |δ1〉 |δ2〉 |φ1〉 |φ2〉
|σ̄〉 |π̄1〉 |π̄2〉

∣∣δ̄1〉 ∣∣δ̄2〉 ∣∣φ̄1

〉 ∣∣φ̄2

〉
〈σ| 〈σ̄| 0 i

√
6 0 0 0 0 0

〈π1| 〈π̄1| −i
√

6 0 0 −i2ν 0 0 0
〈π2| 〈π̄2| 0 0 0 0 i2ν 0 0
〈δ1|

〈
δ̄1
∣∣ 0 i2ν 0 0 0 i2µ 0

〈δ2|
〈
δ̄2
∣∣ 0 0 −i2ν 0 0 0 −i2µ

〈φ1|
〈
φ̄1

∣∣ 0 0 0 −i2µ 0 0 0
〈φ2|

〈
φ̄2

∣∣ 0 0 0 0 i2µ 0 0

l̂y |σ〉 |π1〉 |π2〉 |δ1〉 |δ2〉 |φ1〉 |φ2〉
|σ̄〉 |π̄1〉 |π̄2〉

∣∣δ̄1〉 ∣∣δ̄2〉 ∣∣φ̄1

〉 ∣∣φ̄2

〉
〈σ| 〈σ̄| 0 0 i

√
6 0 0 0 0

〈π1| 〈π̄1| 0 0 0 0 i2ν 0 0

〈π2| 〈π̄2| −i
√

6 0 0 i2ν 0 0 0
〈δ1|

〈
δ̄1
∣∣ 0 0 −i2ν 0 0 0 i2µ

〈δ2|
〈
δ̄2
∣∣ 0 −i2ν 0 0 0 i2µ 0

〈φ1|
〈
φ̄1

∣∣ 0 0 0 0 −i2µ 0 0
〈φ2|

〈
φ̄2

∣∣ 0 0 0 −i2µ 0 0 0
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l̂z |σ〉 |π1〉 |π2〉 |δ1〉 |δ2〉 |φ1〉 |φ2〉
|σ̄〉 |π̄2〉 |π̄1〉

∣∣δ̄1〉 ∣∣δ̄2〉 ∣∣φ̄2

〉 ∣∣φ̄1

〉
〈σ| 〈σ̄| 0 0 0 0 0 0 0
〈π1| 〈π̄1| 0 0 i 0 0 0 0
〈π2| 〈π̄2| 0 −i 0 0 0 0 0
〈δ1|

〈
δ̄1
∣∣ 0 0 0 0 −2i 0 0

〈δ2|
〈
δ̄2
∣∣ 0 0 0 2i 0 0 0

〈φ1|
〈
φ̄1

∣∣ 0 0 0 0 0 0 3i
〈φ2|

〈
φ̄2

∣∣ 0 0 0 0 0 −3i 0
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