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The concept and use of local orbitals is deeply connected to the history of Quantum Chemistry. Indeed, most types of bonds are explained through the concept of bonding and antibonding local orbitals. We describe here the main procedures that can be used to obtain localized orbitals. After a brief description of the underlying formalism, the different algorithms are compared through the application to simple systems. It is possible, in this way, to emphasize the advantages and inconveniences of the different approaches.

Introduction

The formalism of Quantum Mechanics is inseparably connected to the concept of wave function, which is a non-local object by definition. This fact was already clear from the very beginning of this theory, and pointed out in the famous debates [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] that followed the development of the Schrödinger Equation, in 1926 [START_REF] Schrödinger | An Undulatory Theory of the Mechanics of Atoms and Molecules[END_REF] .

This aspect leads to a difficulty in conciliating Quantum Mechanics with other branches of Physics or different sciences, like Chemistry or Biology. Things are particularly evident in the case of Chemistry. Traditionally, Chemistry is associated with the concept of bond, which is the entity that ties together two neighbour atoms in a molecule. Quantum Chemistry, and in particular the Electronic-Structure branch of it, has the ambition of deriving the bonding mechanism in a molecule from the principles of Quantum Mechanics. Therefore, one has to use the wave function of a molecule, a non-local object, in order to define the bonds of the molecule, which are essentially local objects. Despite the tremendous success of Quantum Chemistry in explaining and predicting the behaviour of a countless number of molecular systems, it is not always easy to conciliate the two points of view. The difficulties connected to the interpretation of Quantum Mechanics are obviously totally beyond the scope of this work. Nevertheless, we believe that the duality between the nonlocal nature of the wave function and the locality of our common everyday experience is at the root of the localized/delocalized description of the Molecular Orbitals of a system. Let us consider, for instance, the case of a cyclic polyene, composed of N units of CH 2 type, placed in a regular way on a circle. The situation is particularly evident when we are in presence of spatial symmetry, and we assume that the symmetry of the resulting structure is (at least) C N . At the equilibrium geometry, the usual chemical intuition tells us that the whole structure is held together by a series of C-C simple bonds that are established between every pair of neighbouring carbon atoms. However, if we perform a straightforward calculation, for instance at SCF or DFT level, or even a semi-empirical one, the picture that emerges is totally different. In a one-electron picture, the electrons occupy orbitals that belong to irreducible representations of the symmetry group of the system. For this reason, the MOs of the system will be totally delocalized over the entire chain, regardless its length. Notice that this situation is by no means specific to Chemistry. A similar situation occurs, in fact, in Solid-State Physics, with the two alternative and complementary approaches of Bloch and Wannier wave functions. This dichotomy between a localized versus a delocalized philosophy goes back to the very beginning of Quantum Chemistry. The concept of a bond resulting from an electron pair shared between two atoms was first proposed by Lewis 3 in 1916, even before the Schrödinger equation. This concept was reformulated by Heitler and London 4 in 1927, who used Schrödinger's wave equation (published just one year earlier!) to show how two hydrogen-atom wave functions combine themselves to form the bond. This was the birth to the Valence-Bond (VB) formalism. In VB, each bond is built by using orbitals that have essentially an atomic character. The resulting orbitals are therefore strictly localized. At the opposite, the Canonical Orbitals that emerge from an SCF or CASSCF calculation are often spread out over several atoms (sometimes the entire system, as was seen in the previous example). Historically, the canonical description became much more popular than the localized one since it is possible to associate the difference between two MO energies with a well defined measurable quantity, i.e., the frequency of the electronic transition associated to the two orbitals.

In the present context, we are neither interested in the subtle, and still open, problems posed by the nonlocality of the wave function nor in emergence of locality out of an entangled wave function. From our point of view, it is interesting to study how the different representations of the orbitals, localized vs. delocalized, are related, and which advantages and/or disadvantages they both have. In fact, the global many-electron wave function is a tremendously complex object, and the orbitals are usually the building blocks needed for its description. Since the important object is the electronic wave function, it turns out that it is possible to perform a unitary transformation on these orbitals without changing the final wave function, and this fact is the crucial point that is behind the freedom of using either a localized or a delocalized description of the system. The type of unitary transformation that can be applied to the orbitals depends on the wave function we are using to describe our system. Broadly speaking, in the vast majority of cases, we have to choose from one of the three following possibilities: Full Configuration Interaction (FCI), Hartree-Fock Self Consistent Field (HF-SCF) and Complete Active Space SCF (CASSCF).

1. FCI: the wave function is invariant under any arbitrary unitary transformation of the orbitals, provided the CI coefficients are accordingly transformed. 2. HF-SCF: the wave function is invariant under any unitary transformation that does not mix the occupied orbitals with the virtual ones. Under this condition, the HF determinant remains a single determinant. 3. CASSCF: the wave function is invariant under three separate unitary transformations, in each of which only orbitals within one of the three classes "doubly occupied orbitals", "active orbitals" and "virtual orbitals" are separately rotated. Notice that rotation of Active orbitals needs transformation of related CI coefficients as well.

In most cases, the localization procedure is aimed at obtaining a set of local orbitals, that will be subsequently used to express the desired wave function, or to investigate its nature. Broadly speaking, the existing localization procedures can be divided into two large classes:

1. A posteriori: The Localized Molecular Orbitals (LMO) are obtained from the set of "Canonical" Molecular Orbitals (CMO) (HF-SCF, CASSCF or other) of a previous calculation by using a suitable localization procedure. 2. A priori: By starting from a guess of LMO, the HF-SCF or CASSCF convergence procedure is imposed, by taking into account the fact that the orbitals must remain as local as possible (in practice, they are often required not to be too different from the guess orbitals [START_REF] Daudey | Direct determination of localized SCF orbitals[END_REF][START_REF] Rubio | Direct determination of localized Hartree Fock orbitals as a step toward N scaling procedures[END_REF] ).

In the recent past, local orbitals enjoyed a renewed interest, since they have been used to implement Linear Scaling (LS) algorithms. LS approaches consist in a reformulation of already existent Quantum Chemistry methods in order that they scale linearly as a function of the system size. This is possible since the interaction between different fragments goes to zero with increasing distance. In order to take advantage of these vanishing interactions, it is necessary to work with localized orbitals. LS has been achieved so far for Single-Reference Approaches (SCF), and for the treatment of the Dynamical Correlation: Perturbation Theory, Coupled Cluster, Configuration Interaction, and also for Density Functional Theory. Indeed, using localized orbitals allows to reduce the size of the determinant or configuration space by restricting the excitations to neighbour orbitals. However, non-Dynamical Correlation, needed to deal with Quasi-Degenerate systems, is often very important in chemistry. In these cases, localized orbitals may be useful for selecting the molecular region where the physical processes take place. Some examples are:

-Chemical reactions: different determinants can be dominant on the two sides of the Transition State. -Electronically excited states: they are often of Multi-Reference (MR) nature. -Magnetic systems: there is usually a competition among a large number of Quasi-Degenerated determinants.

In the following, we will concentrate on the construction of local orbitals with some widely used localization procedures for typical molecular systems like small linear molecules, aromatic compounds and metal complexes. In Section 2, the mathematical formalism used in the different localization procedures is described. Then the different techniques are illustrated in Section 3 via application to a particularly straightforward system, two weakly interacting H 2 molecules described by the Hückel approximation. Section 4 is dedicated to selected applications: small molecules (Subsections 4.1 -4.3); coordination complexes (Subsection 4.4); Polycyclic Aromatic Hydrocarbons (Subsection 4.5). Finally, some Conclusions are drawn is Section 5. The Reference section is split into two parts. The first includes all references explicitly quoted in the text. A second part from reference 67 to the end contains pertinent articles that are not cited in the work, organized in chronological order.

Localization Formalism

We start from the usual Born-Oppenheimer (BO) scheme, and we use the nonrelativistic "exact" Hamiltonian. It is composed of zero-, one-and two-body terms (H 0 is actually a constant, E 0 ):

H = H 0 + H 1 + H 2 , (1) 
where

H 0 ≡ E 0 = A<B Z A Z B R A -R B , (2) 
H 1 ≡ T + V = - 1 2 a ∇ 2 a + A,a -Z A R A -r a , (3) 
H 2 ≡ W = a<b 1 r a -r b . (4) 
In the following, atomic units are used; the labels A, B, indicate nuclei, while a, b indicate electrons. The "exact" (in the BO approximation) wave function of the system is solution of the electronic Schrödinger Equation

HΨ (x) = EΨ (x) , ( 5 
)
where H is the BO Hamiltonian, and E the BO energy. The vector |Ψ belongs to the complete Hilbert space spanned by all Slater determinants having the given number of electrons, m, with spatial and spin coordinates, x. The wave function is supposed to be normalized, i.e. Ψ |Ψ = 1. The total energy E is the sum of the zero-, one-, and two-body energies:

E = E 0 + E 1 + E 2 . ( 6 
)
We place ourselves in the Linear Combination of Atomic Orbital (LCAO) formalism, and expand the Molecular Orbitals (MO) of the system in terms of a set of (in general) non-orthogonal Atomic Orbitals (AO). Notice that, however, in what follows the adoption of a LCAO scheme is not really required. In most ab initio approaches, there is a first step that involves an orbital optimization, in order to obtain the best MO set according to some criterion. These orbitals are often called the "Canonical" Molecular Orbitals (CMO) of the system according to a given method. In most approaches, the CMO are obtained through the diagonalization of a one-electron Hamiltonian, of which the CMO are eigenvectors. If, as it is in general the case, this Hamiltonian commutes with the operators associated to the symmetry point group of the system, the CMO will belong to some irreducible representation (irrep) of the symmetry group. Therefore corresponding AO placed on atoms that are equivalent by symmetry will have coefficients that are dictated by the symmetry irrep to which the CMO belongs. This is, particularly for highly symmetric small molecules, the main reason of the delocalization of the CMO. Notice that this phenomenon is not related to a physical interaction between different regions of the molecule, but is an unavoidable consequence of the structure of Quantum Theory.

In the case of large non-symmetric systems, exact equivalence among different atoms is missing. The CMO, however, are still spread over a large number of different centers. The localization techniques here described are precisely used in order to minimize the number of centers over which the LMO are significantly different from zero.

We will indicate by χ µ the AO set, by ψ i the CMO set, usually obtained via some SCF (either HF or DFT) or CASSCF calculations, while the set φ k is composed of the localized orbitals:

ψ i = µ C µi χ µ (7) 
and

φ k = i U ik ψ i . ( 8 
)
Here U ik are the elements of a unitary matrix U. The elements C µi , on the other hand, define a matrix C that is usually not unitary, since the AO basis set is, with few exceptions, not orthogonal.

A posteriori Techniques

Most localization formalisms that have been proposed in Quantum Chemistry are a posteriori techniques: a set of CMO is transformed into a set of LMO through the action of a unitary matrix U. In order to define U, several techniques can be used: in most cases, one searches for a stationary point of a suitably chosen functional L 7 .

We consider here in detail three among the most popular localization schemes: Foster-Boys 8 , Edmiston-Ruedenberg 9 , and Pipek-Mezey [START_REF] Pipek | A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions[END_REF] . These localization methods are used for localizing occupied orbitals while the virtual orbitals can be obtained from the atomic orbital basis by projecting the atomic basis functions into the virtual subspace as in the case of the Projected Atomic Orbitals (PAOs). These virtual orbitals are local and orthogonal to the occupied ones but not to one another. The computational cost of the localization methods scales differently. The Foster-Boys, Pipek-Mezey and Cholesky decomposition [START_REF] Aquilante | Fast noniterative orbital localization for large molecules[END_REF] procedures scale as N 3 , while the Edmiston-Ruedenberg localization scales formally as N [START_REF] Daudey | Direct determination of localized SCF orbitals[END_REF] , where N is the number of electrons. However, several numerical techniques have been proposed to reduce the computational effort of these procedures [START_REF] Leonard | Calculation of localized molecular orbitals[END_REF][START_REF] Rajzmann | Localized virtual and occupied molecular orbitals[END_REF] .

Foster-Boys

In the Foster-Boys scheme 8,14 (FB), the functional is based on the spatial position of the orbitals. See reference [START_REF] Bartha | Localization of virtual orbitals[END_REF] for an application of the FB formalism in a Many-Body Perturbation-Theory context. The FB localization functional is given by

L FB = k=x,y,z i∈occ ( φ i |r 2 k |φ i -φ i |r k |φ i 2 ) . (9) 
The local orbitals are obtained by imposing the condition that L FB is a minumum [START_REF] Magnasco | Uniform Localization of Atomic and Molecular Orbitals. I[END_REF][START_REF] Magnasco | Uniform Localization of Atomic and Molecular Orbitals. II[END_REF] . As noticed by Resta 18 , this is the one-electron part of the trace of the TPS tensor [START_REF] Resta | Electron localization in the insulating state[END_REF][START_REF] Resta | Electron Localization in the Quantum Hall Regime[END_REF][START_REF] Resta | Polarization Fluctuations in Insulators and Metals: New and Old Theories Merge[END_REF][START_REF] Khatib | Computing the Position-Spread tensor in the CAS-SCF formalism[END_REF] .

Let us consider a MO |φ(θ) expanded in terms of two pointlike AO |χ 1 and |χ 2 , placed at (1, 0, 0) and (-1, 0, 0), respectively:

|φ(θ) = cos θ |χ 1 + sin θ |χ 2 . ( 10 
)
We have

x 2 c = φ(θ)|x 2 |φ(θ) -φ(θ)|x|φ(θ) 2 = cos 2 θ + sin 2 θ -(cos 2 θ -sin 2 θ) 2 = 1 -cos 2 2θ . (11) 
with similar expressions for y and z. The localization effect is due to fact that x 2 c takes its minimum for θ = 0 + kπ/2 where k is an integer number. This corresponds to |φ(θ) being perfectly localized either on |χ 1 or |χ 2 .

A variant of the FB procedure is obtained by replacing the second moment of the position by the fourth moment [START_REF] Høyvik | Orbital localization using fourth central moment minimization[END_REF][START_REF] Jansík | Local orbitals by minimizing powers of the orbital variance[END_REF] . This procedure has been introduced in order to obtain orbitals restricted to small volume in space with a thin tail as required in most of the local correlation methods. We put

L 4M = k=x,y,z i∈occ ( φ i |r 4 k |φ i -φ i |r k |φ i 4 ) . ( 12 
)
Since this is not conceptually very different, we will not describe this approach in detail. We notice that a drawback of this choice is that L 4M , and hence the final result, is not rotationally invariant.

Edmiston-Ruedenberg

The Edmiston-Ruedenberg procedure 9,25 (ER) is based on the minimization of interorbital Coulomb repulsions, or, equivalently, on the maximization of the intraorbital Coulomb repulsion:

L ER = i∈occ φ i φ i | 1 r µν |φ i φ i . (13) 
Therefore, this method is not suitable, for instance, for Hückel or Tight-Binding Hamiltonians. For a variant of the ER method, see reference [START_REF] Von Niessen | Density Localization of Atomic and Molecular Orbitals. I[END_REF] Let us consider the same orbitals as in the FB case. For pointlike orbitals, the Coulomb interaction has to be regularized, and we set, as is usually done,

1 r µν → 1 1 + r µν . ( 14 
)
We have

φ(θ)φ(θ)| 1 1 + r µν |φ(θ)φ(θ) = cos 4 θ + sin 4 θ + cos 2 θ sin 2 θ = (cos 2 θ + sin 2 θ) 2 -cos 2 θ sin 2 θ = 1 -cos 2 θ sin 2 θ . ( 15 
)
The requirement that self repulsion is a maximum leads again to θ = 0 + kπ/2.

Pipek-Mezey

The Pipek-Mezey scheme 10 is based purely on the atomic charges, originally Mulliken charges. Different other charge definitions [START_REF] Lehtola | Pipek-Mezey Orbital Localization Using Various Partial Charge Estimates[END_REF][START_REF] Cioslowski | Partitioning of the orbital overlap matrix and the localization criteria[END_REF][START_REF] Alcoba | An orbital localization criterion based on the theory of "fuzzy" atoms[END_REF][START_REF] Knizia | Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts[END_REF] have also been suggested, in particular to overcome the problem introduced by unbalanced basis sets. For a mathematically defined definition of localization, based on Mulliken's population analysis, see reference [START_REF] Pipek | Localization measure and maximum delocalization in molecular systems[END_REF] . The Pipek-Mezey scheme preserves the σ-π separation in linear and planar systems, unlike the schemes introduced by Foster-Boys and Edmiston-Ruedenberg. The distances between atoms in the molecule do not play any direct role, but they act only indirectly by determining the system wave function, and hence the charges.

The functional to be maximized is given by the sum of the squares of the partial charges (orbitals and atoms):

L PM = A i∈occ q 2 Ai . ( 16 
)
where the sum over A runs over all atoms in the molecule. The application to the example used for the previous methods yields the following charges on atoms 1 and 2:

q 1 = cos 2 θ ( 17 
)
and

q 2 = sin 2 θ . ( 18 
)
Hence the contribution to the functional is

L PM = cos 4 θ + sin 4 θ = 1 -2 cos 2 θ sin 2 θ . ( 19 
)
The requirement that the sum of the squares of the partial charges is a maximum leads, once again, to the condition θ = 0 + kπ/2.

Natural Bond Orbitals and Natural Localized Molecular Orbitals

Another widely used method in computational chemistry is the method of the Natural Bond Orbitals (NBO) or its extension, the Natural Localized Molecular Orbitals (NLMO) approach, developed by Reed and Weinhold [START_REF] Reed | Natural bond orbital analysis of near-Hartree-Fock water dimer[END_REF][START_REF] Reed | Natural localized molecular orbitals[END_REF][START_REF] Reed | Natural population analysis[END_REF] . This type of analysis is very frequently used, as it is a standard tool 35 available in many popular quantum chemistry packages.

As indicated above, usual localization procedures use unitary transformations from the canonical molecular orbitals (CMO) to obtain localized orbitals. In the NBO approach, the first step consists in obtaining orthogonal Natural Atomic Orbitals (NAO). These NAOs are obtained by block diagonalization of the density matrix Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] built from the CMOs. The blocks are defined over all angular momenta of each atom, resulting in NAOs with atomic symmetry. Once the NAOs are obtained, they are used to get the Natural Hybrid Orbitals (NHO) by diagonalizing atomic and two-centers density matrices in the NAO basis. These NHOs typically look like lone-pairs and usual hybrid orbitals. Finally, the bonding and anti-bonding NBOs, whose occupation numbers are respectively close to 2 and to 0, are obtained for each bond by a final diagonalization of the bond density matrix in the basis of the involved NHOs. Once the NBOs are obtained they may be efficiently transformed to NLMOs which are similar to Boys or Edmiston-Ruedenberg orbitals (see [START_REF] Reed | Natural population analysis[END_REF] ).

NBOs provide a representation of the many electron wave function that is very close to the chemists' Lewis structure, the deviation of the occupation numbers to 2 and 0 being an indicator of electronic delocalization. Further decomposition of the NLMOs over NBOs and complementary atomic hybrids, characterizing the delocalization tail, brings some additional information.

Cholesky Decomposition

It has recently been suggested to use a Cholesky decomposition of the onebody density matrix Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] in the AO basis in order to obtain a set of suitable LMO [START_REF] Aquilante | Fast noniterative orbital localization for large molecules[END_REF] . In principle, Cholesky decomposition does not ensure per se the locality of the resulting orbitals. It should be noticed, however, that if the system breaks down into several non-interacting subsystems, the matrix Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] is block diagonal. Since the decomposition of a block-diagonal matrix gives a set of nonoverlapping Cholesky vectors, the orbitals obtained in this way are localized onto each one of the fragments. In fact, this approach has several appealing properties:

-Once the AO set is defined, the decomposition is unique.

-High numerical efficiency.

-Non iterative approach.

-Absence of an initial guess as starting orbitals.

-If needed, virtual molecular orbitals can be obtained exactly in the same way as occupied ones.

Being based on the knowledge of the Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] matrix only, this procedure is obviously particularly attractive for density-matrix based approaches. We notice that knowledge of CMO is not needed.

The method scales as N 3 , but is faster than the Foster-Boys and the Edmiston-Ruedenberg schemes due to the non-iterative approach. There are, however, some drawbacks that should be pointed out. Although the decomposition is unique, it depends on the order of the orbitals. Moreover, as shown later in this section, equivalent orbitals are treated in a different way for the simple fact of being placed in a different position in the orbital list. Finally, as recognized by the authors themselves, "the main disadvantage is that the Cholesky MOs are less local than the localized orbitals obtained by the conventional procedures. The major culprit seems to be the inability of the Cholesky localization to reproduce two-center MOs, (i.e., the common "chemical bond")" 11 .

As a stringent numerical test, we applied Cholesky decomposition to a cyclic polyene C n H n , containing an even number n of carbon atoms, and treated the π-system at the Hückel level. The atomic 2p π orbitals are assumed being arranged in consecutive order, with every center connected to the previous and the following ones. Since the system is cyclic, the last center in connected to the first one. In absence of dimerization (a unique value of the hopping parameter β for all the bonds), the system is gapless and has a metallic character in the limit n → ∞. It is well known that this is a challenging situation, since the localized orbitals in this case can have at most a rational decay [START_REF] Bhattacharjee | Localized orbital description of electronic structures of extended periodic metals, insulators, and confined systems: Density functional theory calculations[END_REF] .

The Cholesky decomposition is applied to the CMO of π symmetry for the case n = 82. Notice that this is a closed-shell system, since the Hückel 4k + 2 rule is satisfied. There are 41 doubly occupied orbitals (a lowest nondegenerate one and twenty doubly degenerate pairs), and 41 empty ones. In Figure 1, the coefficients of the first and the last occupied Cholesky orbitals are plotted as a function of the AO number. The first orbital is well localized and symmetrical, with a peak on χ 1 , large identical coefficients on χ 2 and χ 82 , and oscillating coefficients on the remaining atoms that become smaller and smaller as the topological distance form χ 1 is increased. The following orbitals (not shown in the Figure ) have a less local character. The last doubly occupied Cholesky orbital φ 41 , on the other hand, has strictly zero coefficients on the first 40 atoms (as ensured by the properties of Cholesky decomposition). It is peaked on atom 46, and has relatively large coefficients on most of the remaining atoms, up to the last AO of the chain. It is by no means symmetrical, and very poorly localized. It is clear that for such a highly symmetric system, Cholesky decomposition, although perhaps computationally efficient, from a formal point of view is very unsatisfactory.

A priori Localization

A posteriori techniques are very effective, but are difficult to apply in all those cases where localization is used to identify the physically "interesting" region of the system. For instance, the region where the Active Space should be placed in a CASSCF calculation. In such cases, a priori formalisms can be extremely useful.

A set of local orbitals is built, often based on chemical intuition, and then used as a guess in order to start the iterative SCF or CASSCF procedure. Special care is needed during this procedure, since the diagonalization step usually destroys the locality of the orbitals.

The best option in order to obtain local orbitals is through the action of a localizing unitary operator U which is defined via an exponential expansion,

U = exp(A) , ( 20 
)
where A is an antihermitian operator, A + = -A 37 . Notice that in practical calculations A is usually a real, antisymmetric matrix. We consider now the case where the orbital space is split into several subspaces, and we assume that, for the sake of notational simplicity, the orbitals are ordered in such a way that orbitals belonging to a given subspace are contiguous. The unitary transformations that leave each subspace invariant are block diagonal. Without loss of generality, we can restrict ourselves to the case where only two blocks are present. This is the case, for instance, of HF description, or a CASSCF in absence of core orbitals. As already discussed, the origin of delocalization in HF formalism is connected to diagonalization. This step is very convenient in order to obtain a well-defined set of orbitals (the canonical orbitals), but in almost any case leads to a set of orbitals strongly delocalized over the whole system. This is the case in particular if the system is composed of two or several equivalent subsystems.

Let us start from a guess of local orbitals. If this set does not satisfy the optimal conditions, the one-body density matrix Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] will not be block diagonal. The key point in getting local orbitals is, in the course of the optimization procedure that produces a block-diagonal density matrix, to avoid as much as possible orbital rotations within each block ("in-block rotations"), and to concentrate the rotations between orbitals belonging to different blocks ("outblock rotations"). Of course, some in-block rotations are in general unavoidable in order to maintain the orthogonality of the final orbital set, but these operations should be reduced as much as possible.

For this purpose, let us consider the density matrix Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] at some point of the iterative procedure. It will be of the form

Γ [1] = A D + D B . ( 21 
)
The unitary operator U is defined in such a way as to block-diagonalize Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] by setting the off-diagonal blocks D and D + equal to zero, while leaving as much as possible unchanged within the diagonal blocks A and B. A suitable operator for such an action will be given by

U = exp (X) (22) 
with the operator X given by

X = 0 -Y + Y 0 . (23) 
The 0 diagonal block ensures that, at the lowest order, in-block rotations are absent in U. We want to impose the block-diagonal condition U Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] U + = Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] ,

which means that Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] has the form

Γ [1] = A 0 0 B . ( 25 
)
Since we introduce this scheme into an iterative procedure, it is enough to impose equation ( 25) at the first order in Y. At this level, U has the form

U = 1 -Y + Y 1 . ( 26 
)
while U -1 = U + is given by

U -1 = 1 Y + -Y 1 . (27) 
Equation ( 25) implies

YA -BY -YDY + + D = 0 (28) 
or, to the first order,

-YA + BY = D . (29) 
In order to solve this equation and obtain Y in a non-iterative way, it is convenient to fully diagonalize the two diagonal blocks A and B with the help of two unitary operators V A and V B , such that

V A AV + A = Λ A (30) 
and

V B BV + B = Λ B , (31) 
where Λ A and Λ B are two diagonal matrices with elements λ a and λ b , respectively. Now we multiply equation ( 29) by V + A from the right and V B from the left, and we get

-V B YAV + A + V B BYV + A = V B DV + A . (32) 
By taking into account that

V + A V A = 1 A and V + B V B = 1 B
, the latter can be rewritten as

-V B YV + A V A AV + A + V B BV + B V B YV + A = V B DV + A , (33) 
and finally, with equations ( 30) and ( 31), as

-V B YV + A Λ A + Λ B V B YV + A = V B DV + A . (34) 
The solution of the equation system ( 34) is now straightforward, because, due to the diagonal form of the matrices Λ A and Λ B , the different equations are decoupled. Therefore we have

(V B YV + A ) ab = (V B DV + A ) ab λ b -λ a . (35) 
Finally, the elements of the rectangular matrix Y can be obtained by transforming the matrix elements of equation ( 35) back into the original basis set, i.e., by multiplying V B YV + A by V A from the right and V + B from the left.

In practice, in our previous work, [START_REF] Maynau | Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy[END_REF] we implemented the block-diagonalization of the density matrix by fully diagonalizing it through a unitary transformation U, and then avoiding the complete delocalization by multiplying U from the left by the operator U -1 D , with U D given by

U D = V A 0 0 V B . (36) 
Notice that the two procedures coincide for quasi-diagonal density matrices.

Again, we applied this localization scheme to the π system of the cyclic polyene C 82 H 82 previously discussed in connection with the Cholesky decomposition. Starting from a guess of localized bonding π orbitals that alternate every two bonds,

1 √ 2 (χ 1 +χ 2 ), 1 √ 2 (χ 3 +χ 4 ), . . ., 1 √ 2 (χ 81 +χ 82
), the SCF conditions are iteratively imposed up to convergence. We denote as φ i,i+1 the LMO that derives from the guess orbital 1 √ 2 (χ i + χ i+1 ). Two LMO at convergence are illustrated in Figure 2. The orbitals partly respect the symmetry of the system, since they are equivalent by the D 41h subgroup of the full symmetry group of the system, which is D 82h . Notice that the symmetry lowering of the LMO is due to the half-filled character of the energy band, and hence the metallic nature of the wave function. An alternative possibility, showing the same D 41h symmetry, would be obtained by starting from the atomic orbitals χ 1 , χ 3 , . . ., χ 81 (or, alternatively, χ 2 , χ 4 , . . ., χ 82 ), and obtain SCF orbitals that have somehow an "atomic" character. In any case, since there are a total of 41 doubly occupied orbitals, it is impossible to completely respect the full symmetry of the system. Other, less symmetric, localization would also be possible. Needless to say, all these choices of orbitals give the same total wave function, that has the full D 82h symmetry of the system.

Finally, one can note that the cost of the a priori localization scales as N 2 , N being the number of electrons.

A simple application: the Hückel Hamiltonian

In this section, we examine a simplified model, composed of two weakly interacting Hydrogen molecules, (H 2 ) 2 , described by a Hückel-type Hamiltonian. Because of its extreme simplicity, and due to the one-electron nature of interactions of the mode, an explicit solution can be found. Moreover, because of the absence of two-electron interactions, the convergence to the HF solution does not require any iterative process.

Each Hydrogen atom of the two dimers is placed at the vertex of a rectangle, as shown in Figure 3. We assume that the intramolecular interaction appearing in the one-electron Hückel-type Hamiltonian is given by the usual Hückel parameter β while the intermolecular interaction is described by a parameter δ. Both β and δ are negative quantities, and we have |β| > |δ|.

H = 0 β δ 0 β 0 0 δ δ 0 0 β 0 δ β 0 . ( 37 
)
Since the Hückel Hamiltonian does not take into account the electronelectron interaction, different-spin electrons do not interact in any way. Electrons having equal spin, on the other hand, interact indirectly via the Pauli exclusion principle. For this reason, it is sufficient in this case to consider electrons of one spin type only, say α.

The two lowest eigenvalues of H are

ε + + = β + δ (38) 
and

ε - + = β -δ (39) 
with the corresponding eigenvectors

|ψ + + = 1 2 (|χ A 1 + |χ A 2 + |χ B 1 + |χ B 2 ) (40) 
and

|ψ - + = 1 2 (|χ A 1 + |χ A 2 -|χ B 1 -|χ B 2 ) . (41) 
These two states form the occupied manifold. For completeness, we give also the virtual manifold, which is given by the eigenvalues

ε + -= -β + δ (42) and ε - -= -β -δ (43) 
with the corresponding eigenvectors

|ψ + -= 1 2 (|χ A 1 -|χ A 2 + |χ B 1 -|χ B 2 ) (44) 
and

|ψ - -= 1 2 (|χ A 1 -|χ A 2 -|χ B 1 + |χ B 2 ) . ( 45 
)
We consider in the following subsections the localization of the CMO via a posteriori or a priori techniques. Within the first group, the Edmiston-Ruedenberg approach cannot be used, since the electron-electron repulsion is not taken into account within the Hückel model. The fourth moment procedure, on the other hand, is extremely similar to the Foster-Boys one, so we will concentrate our attention on Foster-Boys and Pipek-Mezey schemes.

A posteriori Approach

We define the two linear combinations

|φ cs + (θ) = cos θ |ψ + + + sin θ |ψ - + = 1 2 [(cos θ + sin θ)(|χ A 1 + |χ A 2 ) + (cos θ -sin θ)(|χ B 1 + |χ B 2 )] (46) 
and

|φ sc + (θ) = -sin θ|ψ + + + cos θ|ψ - + = 1 2 [(-sin θ + cos θ)(|χ A 1 + |χ A 2 ) + (-sin θ -cos θ)(|χ B 1 + |χ B 2 )] . (47) 

Foster-Boys

In order to localize the occupied orbitals by using the Foster-Boys procedure, we have to minimize the quantity

Λ(θ) = x 2 (θ) c + y 2 (θ) c (48) 
where

x 2 (θ) c = φ cs + (θ)|x 2 |φ cs + (θ) -φ cs + (θ)|x|φ cs + (θ) 2 + φ sc + (θ)|x 2 |φ sc + (θ) -φ sc + (θ)|x|φ sc + (θ) 2 (49) 
and a similar expression holds for y 2 (θ) c .

Since δ is smaller, in absolute value, than β, orbital localization can happen with respect to the y position. In fact, x 2 (θ) c does not depend on θ, and is a constant equal to one for each orbital. The spread in the y direction, on the other hand, is given by two identical contributions for the two orbitals, given by y 2 (θ) c = 1 -4 sin θ cos θ .

The total spread, therefore, becomes

Λ(θ) = 4 -2 sin 2 2θ . (51) 
The function Λ(θ) is bounded between 2 and 4, and its plot as a function of θ is shown in 

A + = 1 √ 2 (|χ A 1 + |χ A 2 ) and |φ B + = 1 √ 2 (|χ B 1 + |χ B 2 ), i.e.
, localized occupied molecular orbitals on each hydrogen molecule.

We notice that, while the Hamiltonian is diagonal in its eigenbasis {|ψ ± ± }:

H ψ = β + δ 0 0 0 0 β -δ 0 0 0 0 -β + δ 0 0 0 0 -β -δ , (52) 
it is only block-diagonal in the basis

{|φ A + , |φ B + , |φ A -, |φ B -}: H φ = β δ 0 0 δ β 0 0 0 0 -β δ 0 0 δ -β . ( 53 
)
However, the Slater determinants that describes the HF ground state in the two cases are the same,

|ψ + + ψ - + = |φ A + φ B + ≡ |Φ 0 , (54) 
and this shows that the two treatments are equivalent.

Pipek-Mezey

We define the Mulliken charges for each occupied orbital and atom (i = 1, 2) as the sum of the squares of the coefficients of the orbitals. The Mulliken charges for the |φ cs + and |φ sc + are

Q A i (cs) = 1 2 (cos θ + sin θ) 2 = 1 2 (1 + 2 cos θ sin θ) , (55) 
Q B i (cs) = 1 2 (cos θ -sin θ) 2 = 1 2 (1 -2 cos θ sin θ) , (56) 
Q A i (sc) = 1 2 (cos θ -sin θ) 2 = 1 2 (1 -2 cos θ sin θ) , (57) 
Q B i (sc) = 1 2 (cos θ + sin θ) 2 = 1 2 (1 + 2 cos θ sin θ) . (58) 
The sum of charges over the occupied orbitals and the centers gives obviously 2, since two electrons are in the molecule (we remind that only one type of spin is considered, and hence the charge is to be multiplied by 2).

The Pipek-Mezey localizing functional, L PM , is given by the sum of the squares of the charges,

L PM = 1 + 4 cos 2 θ sin 2 θ . ( 59 
)
The maximum of this functional is reached for θ = π/4 + kπ/2.

A priori Local Orbitals

We consider now a priori localization. In this case, one selects the physical nature of the occupied and virtual localized orbitals and then imposes the HF procedure while keeping as much as possible of the nature of these localized orbitals. Let us assume we want for our LMO something located either on fragment A or on fragment B. We start from the LMO guess |φ

X o = |χ X 1 and |φ X v = |χ X 2 , for X = A, B.
This corresponds to a 1-body Density Matrix given by Γ [START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] χ = 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

. ( 60 
)
The unitary transformation that mixes the occupied and virtual orbitals on each one of the two fragments, but not between them, has the general form

U χ = cos ξ A sin ξ A 0 0 -sin ξ A cos ξ A 0 0 0 0 cos ξ B sin ξ B 0 0 -sin ξ B cos ξ B . ( 61 
) with ξ A , ξ B ∈ [0, 2π].
The transformed density matrix becomes

Γ [1] = cos 2 ξ A sin ξ A cos ξ A 0 0 sin ξ A cos ξ A sin 2 ξ A 0 0 0 0 cos 2 ξ B sin ξ B cos ξ B 0 0 sin ξ B cos ξ B sin 2 ξ B . (62) 
The energy associated with this density matrix is

E = tr(Γ [1] H) = 2β (sin ξ A cos ξ A + sin ξ B cos ξ B ) = E(ξ A , ξ B ) .
By differentiating this expression with respect to ξ A and ξ B and setting the derivatives equal to zero, one is able to find maxima, minima and saddle points of the energy (see Figure 5). The extrema correspond to ξ X = π/4, 3π/4, 5π/4, 7π/4, with X = A, B. The values ξ X = π/4, 5π/4 on both A and B yield minima, while ξ X = 3π/4, 7π/4 correspond to maxima (we remind that β is negative). All other combinations give saddle points.

Notice that the local orbitals obtained via the two procedures are identical. This is due to the extreme simplicity of the present model, and this property does not hold in general.

Selected applications of Localized Orbitals

We consider now some examples related to small-size molecules. In particular, we will consider here linear molecules (like C 2 H 2 , C 2 F 2 ) for which several a posteriori localization schemes are probed and compared to the localized orbitals obtained with an a priori localization scheme (dubbed DoLo). The aspect of the selection of a suitable active space thanks to the localization of the orbitals will also be considered for the bond dissociation of a linear system (C 2 HF). Flexibility of the a priori localization is illustrated for the planar benzene molecule and for trans-stilbene, for both planar and non-planar conformers. Subsequently, the common Boys localization technique is successfully applied to two coordination compounds. Finally, localization in large Polycyclic Aromatic Hydrocarbons (PAH) is investigated with both the Boys and the DoLo methods.

The a priori local orbitals are obtained thanks to the DoLo program. DoLo requires an initial guess of non-orthogonal local orbitals. Usually, two steps follow: (i) the projection of this guess of local orbitals onto the SCF or CASSCF orbitals; the quality of the guess of local orbitals is then improved (proj_scf code), and (ii) the Schmidt orthogonalization of the obtained orbitals (separately within the three subspaces of occupied/active/virtual sets of orbitals, with the schmudort code). Finally, this multi-step process provides a set of local and orthogonal orbitals, with SCF or CASSCF quality, i.e., it gives the same total energy. In some cases, the projection step is not relevant, as for example when a molecule presents several resonance structures. In that case, a suitable guess set of local orbitals has to be built for each structure. The local orbitals are orthogonalized and optimized by iterative procedures keeping their locality (localized CASSCF [START_REF] Leininger | Geometry optimization within a localized CAS-SCF approach[END_REF][START_REF] Maynau | NOSCF, a development of Laboratoire de Chimie et Physique Quantiques de Toulouse[END_REF] , Monte-Carlo method [START_REF] Zulfikri | Multiple-Resonance Local Wave Functions for Accurate Excited States in Quantum Monte Carlo[END_REF] ). However, most of the time, the local orbitals are used as starting orbitals of a CASSCF calculation or to introduce dynamical correlation and the three-steps (DoLo/proj_scf/schmudort) procedure is relevant. All the DoLo orbitals presented in this chapter are obtained in this way. Input data for the a priori localization are given in the Appendix on page 73.

Beyond its role as tool for analysing the wave function, orbital localization is also particularly useful to select the active space, in particular for the new-generation Multi-Reference Self-Consistent-Field (MR-SCF) methods like GASSCF [START_REF] Ma | The generalized active space concept in multiconfigurational self-consistent field methods[END_REF][START_REF] Vogiatzis | Systematic Expansion of Active Spaces beyond the CASSCF Limit: A GASSCF/SplitGAS Benchmark Study[END_REF] , ORMAS [START_REF] Ivanic | Direct configuration interaction and multiconfigurational selfconsistent-field method for multiple active spaces with variable occupations. I. Method[END_REF] , FRACCIS [START_REF] Krah | A rational reduction of CI expansions: combining localized molecular orbitals and selected charge excitations[END_REF] etc. or to reduce reference space in the case of Configuration-Interaction calculations. In addition, localized orbitals are a necessary ingredient for the development of linear-scaling methods required to treat dynamical correlation.

The role of symmetry in a localized-orbitals context is particularly important (see also [START_REF] Mezey | The shape of molecular charge distributions: Group theory without symmetry[END_REF] ). In fact, the Canonical Molecular Orbitals transform according to irreducible representations of the symmetry point group of the considered molecule. For this reason, the CMO are intrinsically delocalized, and spread out, in principle, over all the equivalent centers of the molecule. Generally speaking, Local MO break the symmetry of the system. This fact is unpleasant, since the symmetry of a molecule is extremely useful in order to reduce the computational complexity of the studied system. This is true, in particular, for highly symmetric small molecules, while it is usually less crucial in the case of large systems that often belong to the C 1 symmetry group (in other words, they do not have any symmetry at all). In presence of symmetry, one faces an alternative: either use localized orbitals, and renounce to the symmetry advantages, or keep the Canonical Orbital approach. This fact is well illustrated by Boys localization, where even the symmetry distinction between σ and π orbitals in the case of conjugated systems is lost. It is possible, however, to use a somehow intermediate approach, and define Symmetry-Adapted LMO, i.e., symmetry combinations of strictly localized orbitals. In this way, all the advantages of localization are essentially kept, while the symmetry information is conserved, in order to reduce the computational cost. This possibility has been implemented, in particular, in the EXSCI [START_REF] Bories | Selected excitation for CAS-SDCI calculations[END_REF][START_REF] Ben Amor | Direct selected multireference configuration interaction calculations for large systems using localized orbitals[END_REF][START_REF] Chang | Multiscale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones[END_REF] and DoLo 38 chains. EXSCI is a quasi-linear-scaling MRCI code, which takes into account all the symmetry information at the CI step, in order to reduce the computational complexity of a calculation.

Computational Details

For the small linear systems C 2 H 2 , C 2 F 2 , C 2 HF we used the Atomic Natural Orbital (ANO) basis set optimized by Widmark and coworkers [START_REF] Widmark | Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions: I. First row atoms[END_REF] , taking small contractions: 2s1p for H, 3s2p1d for the atoms of the second period (C, F). In all cases, we decided not to use higher-angular-momentum orbitals, like f or g orbitals. The same basis sets and contractions are used for the trans-stilbene while for the benzene, we used different contractions: 3s2p for H, 4s3p2d for C. For the polycyclic aromatic hydrocarbons and for the coordination complexes we used Dunning-type basis sets [START_REF] Dunning | Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen[END_REF] , with overall singlypolarized valence double-zeta quality. The basis set for Ni thus includes f functions.

Different software packages were used, like Molcas 52 , Molpro 53 , Turbomole 54 DoLo 55 and the figures were generated with GV 52,56 , Avogadro 57 and Molden [START_REF] Schaftenaar | Molden: a pre-and post-processing program for molecular and electronic structures[END_REF][START_REF] Schaftenaar | Molden 2.0: quantum chemistry meets proteins[END_REF] . Notice that throughout this article, even if the orbitals were drawn with different orbital visualization software, we tried to keep the same contour value to allow fair comparison.

Small linear molecules: C

2 H 2 , C 2 F 2
As a general choice, in an HF context, we will use the notation On as label for the n-th Occupied orbital and, conversely, the notation Vn to label the n-th Virtual orbital (Figures 678910111213). At CASSCF level, this convention, will by augmented by An as label for the n-th Active orbital.

C 2 H 2
In Figures 6 and7, the Boys and Dolo localized orbitals of C 2 H 2 are shown. The most striking difference between the two sets is the fact that Boys Orbitals do not reflect the σ-π separation of this system. This is a well-known defect of Boys orbitals: in order to minimize the Boys functional, combinations of orbitals of different symmetries are generated, so that the resulting orbitals do not belong to any irreducible representation of the symmetry group of the molecule. In fact, the obtained orbitals are hybrid orbitals that transform into a corresponding orbital under the action of some symmetry operation. Notice that this is not related to the non-Abelian nature of the group (in this case, D ∞h ). As we can see in Figure 6, the C-H σ bonds are well represented by O1 and O3, and do not pose particular problems. The C≡C triple bond, on the other hand, is built with the combination of σ, π x and π y C-C bonds. Three equivalent orbitals are obtained, that mutually transform under the action of the C 3z symmetry operation. They are O2, O4 and O5 in the figure. The Boys localization procedure is usually applied only to occupied orbitals, and the virtual ones are left at the canonical level. However, should the procedure be applied to the virtual orbitals obtained with a small basis set, the same type of behaviour would be observed.

In Figure 7, some of the localized orbitals obtained with the DoLo procedure are shown. The σ-π symmetry separation is respected. Notice that this would be true for many of the localization procedures, except for the Boys scheme. Moreover, the virtual orbitals are local. The sigma antibonding orbitals (V1, V2 and V3) are each one on a bond, with delocalization tails somehow more important than for the corresponding occupied orbitals. Because of the symmetry property, the virtual π orbitals are essentially identical to the canonical ones (Figure 8).

C 2 F 2
In Figures 9101112, the localized orbitals are shown for the C 2 F 2 molecule. The situation is very much the same as for the C 2 H 2 system, except for the presence of the lone-pair orbitals on the Fluorine atoms. The Boys orbitals, Figure 9, mix the σ and π orbitals. The Pipek orbitals, Figure 10, and Natural orbitals, Figure 11, keep this separation. They look extremely similar. The DOLO orbitals, Figure 12, as in the previous example, give local virtual orbitals too.

Bond dissociation of C 2 HF

As we already pointed out, one of the most interesting aspects of localization is the possibility to focus the description of a part of the electronic structure in a molecule on that region of space where "the interesting things" happen. We illustrate this fact by considering the two possible dissociation processes of C 2 HF, whose structure is F-C-C-H (Figure 13 shows the structure and the DoLo localized orbitals). Two possible fragmentation processes considered here are fragmentation either into F+CCH or into FCC+H. In this particular case, the complete valence space could be chosen as active space, and this would not pose any problems. However, this choice corresponds to an active space of CAS(16/13) type, which is unreasonably large. Moreover, the addition of just a few more atoms would transform this system from a computationally difficult one to a simply unfeasible one. Indeed, it is clear that the use of such a large active space is completely useless in the present case. In each of the two bond-breaking processes just mentioned, only two orbitals and two electrons are involved (this is the case of simple single bonds; if the bond is a double or triple bond, the number of orbitals and electrons would become four or six, respectively).

In Figures 14 and15, the energy profiles from short bond distances up to dissociation are reported. In particular, Figure 14 shows the curve for the two different processes, obtained by using a CAS(2,2) active space of localized and delocalized orbitals. Let us consider first the CAS defined on energetic criteria (the "delocalized" one, obtained by starting from the HOMO-LUMO pair of HF orbitals). The point is that, while for long distances the active space is always located, for energetic reasons, on the breaking bond, close to equilibrium it will be located on C-H, since this is the bond that has the largest correlation contribution at CAS(2,2) level, as shown in Figure 15. For this reason, the corresponding energy curve for the C-F dissociation will be discontinuous (Figure 14, bottom), while it is continuous for C-H (Figure 14, top). The curves obtained by localizing the active space on the studied bond, on the other hand, show no sign of discontinuity.

Benzene and trans-stilbene

The use of localized orbitals allows the understanding of the electronic structure of a molecule in terms of chemical concepts such as bonds, lone pairs. In the case of an aromatic molecule, "delocalized electrons" are not associated with a bond but with several molecular orbitals. For Edmiston and Ruedenberg [START_REF] Edmiston | Localized Atomic and Molecular Orbitals[END_REF] , the localized orbitals provide a quantitative basis for the qualitative chemical concepts of "localized electrons" and "delocalized electrons". This will be illustrated here with the benzene and trans-stilbene molecules.

Consider first the benzene molecule (Figure 16). The molecular orbitals coming from a CAS(6,6)SCF calculation are localized according to the core of the C atoms, the occupied and virtual σ bond orbitals as well as the occupied and virtual π ones and the remaining atomic orbitals. There are several possibilities to localize the π bonds. When the π orbitals are localized according to CC bonds, the wave function of the ground state ψ 0 π , expressed hereafter only on the active orbitals of the main determinants (weight 0.02), becomes multireferential: 

ψ 0 π = 0.
where the order of the active orbitals corresponds from left to right to the orbitals presented in Figure 17b. With this localization scheme, the |222000 determinant is defined on three occupied π CC bonds and their corresponding antibonding orbitals.

Of course, the multireferential wave function character is then enhanced in order to reintroduce the conjugation. It is also the case of the excited states of benzene which are no longer described simply by a few mono-excitations on the |222000 determinant as in a delocalized description, but by numerous excitations (mainly mono-and di-excitations) with small weights. Furthermore, the first excited state ψ 1 π wave function has a very similar weight on the |222000 determinant as the ground state:

ψ 1 π = 0.34 |222000 + 0.09 |111111 + 0.05 |211011 + 0.05 |121101 + 0.05 |112110 + 0.02 |220002 + 0.02 |202020 + 0.02 |022200 .( 64 
)
In some cases, the localization can then reduce the understanding of the electronic structure instead of making it easier. Some solutions have been proposed, as the intermediate localization of Zimmerman [START_REF] Zimmerman | Orbitals with intermediate localization and low coupling: Spanning the gap between canonical and localized orbitals[END_REF] , leading to orbitals preserving the almost diagonal nature of the Fock matrix while maximizing orbital locality.

With the a priori DoLo localization, a different solution is proposed. Indeed, the π orbitals can be localized on the entire cycle while keeping the locality of all the other orbitals. The delocalized and localized π orbitals are shown in Figure 17. The DoLo input file is given in the Appendix, while all the valence localized orbitals are shown in Figure 18. With this mixed solution, the eigenfunctions of the ground and the first excited states (weight 0.02) are: 

ψ 0 cycle = 0.89 |222000 + 0.03 |211110 + 0.02 |220020 + 0.02 |202200 ( 
where the order of the active orbitals corresponds from left to right to the orbitals presented in Figure 17a. The weights of these determinants are now similar to those obtained with a delocalized CASSCF calculation, but the determinants are expressed on localized doubly occupied orbitals, delocalized active orbitals and localized virtual orbitals (Figure 18).

Concerning the trans-stilbene (also on Figure 16), two conformers are studied. In the first one, the two cycles are in the same plane and present a delocalization through the central π CC bond. This conformer is called "in-plane". In the second (highly unstable) conformer, "out-plane", the two cycles are in two parallel planes, but there is no more delocalization between the two cycles. In both cases, all the orbitals are localized on the bonds (or kept atomic for the core and virtual ones) except the π orbitals which are localized on each cycle, and on the central bond (Figure 19). The SCF molecular orbitals of the in-plane conformer are completely delocalized over the two cycles and the double bond connecting them (Occupied π orbitals are presented in Figure 20), whereas the out-plane SCF MOs (Figure 21) present a break-down of the delocalization at the level of the central bond. In the latter case, the localized orbitals (Figure 22) on each cycle show a similarity with those found for the benzene molecule, only slightly distorted by the presence of the first neighbour carbon of the central bond. This similarity is lost when the two cycles are completely delocalized (Figure 19). 

and

ψ out = 0.76|22222220000000 + 0.03|22202220002000 + 0.02|22222110000110 + 0.02|21122221100000 (68) 
Numbers in red refer to one cycle, those in cyan to the other one, and numbers in black refer to the central bond. First of all, the weight of the main determinant is larger in the out-plane conformer than in the in-plane one, as expected for a lower delocalization of the electrons. In the two conformers, the double excitation on the central bond has the same weight while the excitation from one cycle to the central bond (or from the central bond to one cycle) occurs only in the in-plane conformer and is representative of the delocalization of the electrons between the two cycles. The double excitations localized on one cycle have a larger weight in the out-plane conformer than in the in-plane one. This mixed localization, separating the two cycles, illustrates the possibility to obtain wave functions that have a chemical meaning.

The flexibility of the a priori DoLo localization allows the description of "delocalized electrons" keeping at the same time all the other orbitals localized, a necessary feature for the development of linear scaling methods [START_REF] Bories | Selected excitation for CAS-SDCI calculations[END_REF][START_REF] Ben Amor | Direct selected multireference configuration interaction calculations for large systems using localized orbitals[END_REF][START_REF] Chang | Multiscale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones[END_REF] .

Orbital localization can be seen as a tool to select different regions of a molecule in order to choose the relevant active space, as in the example of the dissociation of C 2 HF, or to study the approach of an atom or a molecule to one side of another one [START_REF] Chang | Multiscale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones[END_REF] . Another example is the description of excited states by limiting the size of the active space to those orbitals involved in the excitations [START_REF] Ben Amor | Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods[END_REF] .

Coordination Complexes

Now we lift the restriction to molecules composed exclusively of atoms from light main-group elements, at least partly, and exemplarily consider two diamagnetic molecular compounds of metals: tetracarbonylnickel, [Ni(CO) 4 ], and tris(acetylacetonato)aluminium, [Al(C 5 H 7 O 2 ) 3 ] or [Al(acac) 3 ] (Hacac is pentane-2,4-dione or acetylacetone). Under standard ambient conditions, tetracarbonylnickel is a colorless transparent liquid , whereas tris(acetylacetonato)aluminium forms a white or pale yellow crystalline powder. These few experimental facts already suffice as strong indications for a closed-shell electronic ground state and for absence of low-lying excited electronic states. In fact, the electronic ground state of the molecules forming these two compounds is found to be a totally symmetric singlet state, in both cases.

The structure of a tetracarbonylnickel molecule is shown in Figure 23. The molecular point group is T d . The electron configuration in its electronic ground state can be derived from the superposition (or combination) of a Ni atom with closed-shell electron configuration 3d 10 and of the filled MOs of the four CO molecules in their closed-shell electronic ground states (|C ---O|), see the Appendix on page 76 for the summarized final result. The electron configuration of [Ni(CO) 4 ] is built up from seventeen atomic core orbitals (Ni 1s 2 2s 2 2p 6 3s 2 3p 6 , four C 1s 2 , and four O 1s 2 ), which transform as 5a 1 ⊕ 4t 2 , and twenty-five valence orbitals. These latter originate from the five orbitals of the filled 3d shell of Ni, which transform as e ⊕ t 2 , and four sets of valence orbitals of the CO molecules (each containing five filled MOs: σ CO , a π CO pair, lone pairs n on C and O). The twenty valence orbitals of the four CO molecules transform as 3a 1 ⊕ e ⊕ t 1 ⊕ 4t 2 . From these, the e and t 1 shells originate exclusively from the four pairs of π CO MOs of the ligands (which contribute a set of t 2 MOs as well). In the Abelian subgroup D 2 , the molecular electron configuration of the electronic ground state of tetracarbonylnickel corresponds to the following types and numbers of filled shells: 12a ⊕ 10b 1 ⊕ 10b 2 ⊕ 10b 3 . After repetition of the SCF calculation in point group C 1 , subsequent orbital localization was successfully achieved by the iterative algorithm for Boys localization as implemented in Molpro (17 iteration steps), but this required the grouping of the canonical valence MOs into three different disjoint subsets: a set of five MOs of mainly d character at Ni (e ⊕ t 2 in T d ), a set of eight MOs of mainly π character at the CO ligands (e ⊕ t 1 ⊕ t 2 in T d ) and a set of all remaining valence MOs. A subset of the resulting Boys localized MOs is shown in Figure 24. In addition to the set of five d orbitals on Ni, shown in the lower row, one can readily identify in the upper row a nonbonding orbital on O (at the distant end of the ligand), a set of three bonding orbitals of CO (σ CO and a π CO pair) and an orbital of mainly σ donor character (at the proximal end of the ligand).

The molecules of tris(acetylacetonato)aluminium exist in two enantiomeric forms, both shown in Figure 23. These two forms differ in the way in which the three bidentate anionic acetylacetonate ligands (C 5 H 7 O - 2 ) are arranged around the central Al 3+ ion, resembling either a right-handed or a left-handed screw. The molecular point group is D 3 . For both forms, the electron configuration in their electronic ground state can be derived from the superposition (or combination) of an Al 3+ ion with Ne-like closed-shell electron configuration and of the filled MOs of the three C 5 H 7 O - 2 ligands being in closed-shell electron configurations as well, see the Appendix on page 76 for the summarized final result. The electron configuration of [Al(acac) 3 ] is built up from twenty-six atomic core orbitals (Al 1s 2 2s 2 2p 6 , fifteen C 1s 2 , and six O 1s 2 ), which transform as 6a 1 ⊕ 4a 2 ⊕ 8e, and sixty valence orbitals. Each of the three C 5 H 7 O - 2 ligands contributes twenty valence orbitals, which exist in the space spanned by seven σ CH orbitals, four σ CC orbitals, two σ CO orbitals, four non-bonding orbitals (n) for free electron pairs on the O atoms of the carbonyl groups, and three π orbitals delocalized over the chain of atoms O-C-CH-C-O. These sixty valence orbitals transform as 10a 1 ⊕ 10a 2 ⊕ 20e. In the Abelian subgroup C 2 , the molecular electron configuration of the electronic ground state of tris(acetylacetonato)aluminium corresponds to the following types and numbers of filled shells: 44a ⊕ 42b. After repetition of the SCF calculation in point group C 1 , subsequent orbital localization was successfully achieved by the iterative algorithm for Boys localization as implemented in Molpro (23 iteration steps). No grouping of canonical valence orbitals into different disjoint subsets was necessary. A subset of the resulting Boys localized MOs, the twenty localized valence MOs on one of the three acetylacetonato ligands, is shown in Figure 25. Most interesting here are the following four points: (i) all non-hydrogen atoms in each of the three ligands are found to lie almost in one plane (this is also found in the crystal structures of the different known polymorphs 62 ); (ii) the ligand acts as a bidentate chelating ligand with the two O atoms of the carbonyl groups behaving as σ donors; (iii) the bonding orbitals of the carbonyl groups (one σ orbital and one π orbital on each of these groups) are mixed, so that they appear as pairs of banana-shaped orbitals, as one might have expected (since the Boys local-ization algorithm was used without any further restrictions); (iv) a reasonably well localized π orbital is found at and in the neighborhood of the central methylidyne group (CH) of each acetylacetonate ligand.

We have shown here, with two coordination compounds as examples, that common orbital localization techniques can be successfully applied also to cases outside the class of compounds that are built exclusively from covalently linked atoms of light main-group elements.

Large Systems: Polycyclic Aromatic Hydrocarbons

As seen in a previous subsection, it is well possible to localize not only the occupied π orbitals, but also the virtual π orbitals in small aromatic hydrocarbon molecules, e. g., in the case of benzene (see Figure 17). Each of the localized π orbitals thus obtained can be easily assigned to a particular pair of neighboring carbon nuclei. In benzene, the resulting complete set of six localized π orbitals may be used even to study π π * excitations, at least in first approximation, since it spans the same part of function space as does the complete set of the six canonical π orbitals.

We turn now to polycyclic aromatic hydrocarbons (PAHs), a class of compounds that includes large molecular systems. Well-known families of PAHs are the homologous sequences of the [n]acenes and the [n]phenacenes (with common chemical formula C 4n+2 H 2n+4 , see Figures 26 and27) as well as the [n]coronenes (C 6n 2 H 6n , see Figure 28). In the limit n → ∞ the former sequences turn into carbon nanoribbons of smallest possible width (with limit formula 1 ∞ (C 4 H 2 )), whereas the coronenes approach graphene (two-dimensional infinite hexagonal lattice of carbon atoms, with two carbon atoms per unit cell, 2 ∞ (C 2 )). A common feature of the electronic structure of all PAHs is the presence of carbon p orbitals oriented normal (or perpendicular) to the surface containing the atomic nuclei, which form the so-called π orbitals. The surface mentioned, a two-dimensional manifold embedded in three-dimensional Euclidean space, does not need to be a plane, see, e. g., the [n]cyclacenes, cyclo-(C 4 H 2 ) n , where this surface is part of a right circular cylinder with carbon p orbitals normal to the surface pointing radially out-and inwards.

It has been properly stated above that orbital localization methods can destroy orbital symmetry, because these methods form new localized functions by linearly combining canonical orbitals of different symmetry behaviour (too) freely. Mixing of σ and π orbitals would be a problem in PAHs too, but this problem can be resolved, as shown below.

However, before we attempt to localize the canonical orbitals in PAHs in such a way that their symmetry with respect to the surface containing the atomic nuclei is conserved, we need to make sure that the correct (or desired) electronic state has been selected (irrespective of whether the point group of the PAH has been, or is going to be, fully exploited or not -we remind the reader that the localization process forces us to use point group C 1 ). As shown in Table 1 with three examples taken from the [n]acene sequence (n = 10 or 20 or 30; point group D 2h ), an erroneous choice or selection of the electron configuration for a state as simple as a totally symmetric closed-shell singlet state ( 1 A g ) easily leads to failure in finding the solution with lowest possible total energy. In comparison with the electron configuration selected in some automatized way by the software applied, the correct choice leads to a lower total energy and to a lower (higher) orbital energy for the HOMO (LUMO), thus ensuing a larger HOMO-LUMO gap. The two totally symmetric electron configurations involved in each example simply differ in the selection of type and number of occupied π orbitals. In the cases of [10]-and [20]acene, a simple orbital rotation, exchanging the role of HOMO and LUMO, corrects the fault. For [30]acene, in contrast, the initial guess for the number of fully occupied π orbitals is wrong for all four irreducible representations (irreps) available for π orbitals.

As it appears now, it may seem to be difficult to select the π orbital part of the electron configuration in such a way that it gives the totally symmetric closed-shell singlet state with lowest total energy for the larger members of the homologous sequences of PAHs considered here ([n]acenes, [n]phenacenes and [n]coronenes), but this is wrong. The sought-after electron configuration can be straightforwardly calculated from the reducible representation carried by the occupied localized orbitals (both σ and π) seen in or represented by the point-group adapted structural formulas already shown in Figures 26, 27 and 28. As shown, these structural formulas sometimes require inclusion of Robinson-Clar π sextets. Each such π sextet is to be understood then as representing three occupied π orbitals (which are well-known from benzene, in point group D 6h , as the 1a 2u orbital and the 1e 1g orbital pair). In each sixmembered ring of the PAH decorated with a Robinson-Clar π sextet these three π orbitals then simply contribute to the character of the reducible representation in the usual way. After reduction of the reducible representation, the electron configuration for the PAHs considered here in their lowest-energy totally symmetric closed-shell singlet states is determined (details are given in the Appendix on page 76). The group theoretical approach works because it extracts information that is invariant under orthogonal transformation from one set of orbitals (like filled canonical orbitals) to another, equivalent set (like filled localized orbitals).

The problem discussed here the problem of choice of an initial guess for the electron configuration of a totally symmetric closed-shell singlet state for molecules from homologous sequences of PAHs. When the HOMO-LUMO gap is small, which happens quickly upon increase of PAH size, the typical algorithms and methods used to accomplish this task (based, e. g., on application of extended Hückel theory or on superposition of atomic densities) very likely fail sooner or later. Of course, it is not the software that is to be blamed for such failures.

After having solved the problem of electron configuration and electronic state, we show in Figure 29 that consistent and converging results are obtained for several quantities of interest for the series of members of the homologous sequences of [n]acenes and [n]phenacenes up to n = 30. Figure 29(a) shows the convergence of the energy per monomer unit, ∆E(C 4 H 2 ), as derived from data obtained both in single-point calculations at the initially assumed molecular structure (labelled ASP) and after full optimization of molecular structure (labelled OPT). Convergence of this quantity to better than 10 -6 hartree (much smaller than the unit shown in the figure) for the fully optimized molecular structures required to go up to [30]acene in the acene sequence, while it was achieved in the phenacene sequence already at [16]phenacenes. Figure 29(b) shows corresponding data for the HOMO-LUMO gap. Upon optimization of molecular structure, the HOMO-LUMO gap opens up significantly, as expected, and it does so much more strongly for the [n]acenes than for the [n]phenacenes. Figure 29(c) shows the lowest normal mode frequency found among the rod-bending out-of-plane modes for the fully optimized molecular structures of the [n]acenes and [n]phenacenes. As n → ∞, i. e., as the length of these PAH molecules tends to infinity, one expects that this frequency approaches zero. To be sure, normal mode frequencies for a finite-sized system in a local minimum of its potential energy hypersurface have to be positive. The figure clearly shows that this criterion is fulfilled. As a final statement on Figure 29 we remark that any incorrect choice of electronic state made for members in these homologous sequences of PAHs would have lead to severe "kinks" or "steps" in the curves shown here. Now that the question of correct choice of the electronic state of the PAH molecules has been settled, we can eventually turn to the task of determination of localized orbitals for them. This orbital localization usually takes place within point group symmetry C 1 , i. e. the symmetry recognition of the software tools is or has to be switched off. However, one must not forget that the set of nuclear Cartesian coordinates (frequently dubbed "molecular geometry") still carries the full point-group symmetry into the electronic structure calculation even when its use has been switched off by intention. The check for correctness of results obtained from a calculation done without use of symmetry for a system that does have symmetry requires availability of results obtained from a previous calculation where that symmetry has been fully exploited.

As for all other systems, orbital localization in PAHs can be achieved either by a posteriori methods or by a priori methods. The usually unwanted mixing of σ and π orbitals that may occur when a posteriori methods of orbital localization are applied can be safely avoided by preparation of two disjoint subsets of canonical orbitals, a subset of σ orbitals and a subset of π orbitals, and subsequent application of orbital localization separately within each of these two subsets. It has to be emphasized again that both the SCF calculation, which precedes the orbital localization step and generates the canonical orbitals, as well as the orbital localization step itself are done completely without exploitation of point-group symmetry, i. e., they use point group C 1 only.

We firstly show in Figure 30 two sets of localized π-MOs for the six molecules representing the first members from the homologous sequences of the [n]acenes and the [n]phenacenes (n = 1 to 4). Benzene and naphthalene serve as possibly somewhat untypical first members of both sequences. The group of panels associated with each molecule shows in its upper half a set of localized π-MOs obtained from Boys localization, whereas the lower half presents a set of localized π-MOs obtained by the DoLo method. In all cases shown, for both the [n]acenes and the [n]phenacenes, the Boys localized π-MOs are found at those positions where localized π-MOs were drawn in the point-group adapted structural formulas presented in Figures 26 and27. In the cases of benzene and anthracene, a set of three Boys localized π-MOs is found to be associated with the (central) six-membered ring, thus representing the Robinson-Clar π sextet, as expected. It is worth to mention here in passing that in the case of benzene, C 6 H 6 (point group D 6h ), the three localized π-MOs can be rotated continuously around the hexagon [START_REF] Scheurer | Externally Localized Molecular Orbitals: A Numerical Investigation of Localization Degeneracy[END_REF][START_REF] Scheurer | Continuous Degeneracy of Sets of Localized Orbitals[END_REF] .

We turn now to the localized π-MOs obtained by the DoLo method. Since this localization method is an a priori method, the freedom of choice of unitary (orthogonal) transformation, here within the set of occupied π-orbitals, can be exploited by the user in order to generate a new set of occupied localized π-orbitals with user-specified properties. For phenanthrene and chrysene, the localized π-MOs obtained by the DoLo method are identical to the ones obtained from Boys localization. However, in the case of the first members of the [n]acene sequence, the DoLo method offers the possibility to choose (or to enforce) localization of a subset of n + 1 π-orbitals (out of a total of 2n + 1) at the n + 1 CC σ bonds that connect the two (upper and lower) zigzag chains of carbon atoms seen in these molecules. This attempt is successful indeed, and leads (i) to these n + 1 localized π-MOs, as intended, and (ii) to n π-MOs localized across each of the n six-member rings and having an additional nodal surface perpendicular to the molecular mirror plane.

The Figures 31 and32 show complete sets of localized π-MOs for coronene and for circumcoronene, two members of the [n]coronene sequence with n = 2 and n = 3. Comparison with the point-group adapted structural formulas seen in Figure 28 shows for both molecules a close similarity between the localized π-MOs and the symbols (lines and circles) used to represent the π-system in these structural formulas. For all twelve localized π-MOs of coronene, one finds a one-to-one correspondence between a localized π-MO in Figure 31 and a line formally indicating a double bond in Figure 28. The twenty-seven localized π-MOs of circumcoronene can be grouped into seven sets, each containing three MOs associated with one six-membered ring, and six other π-MOs located at the periphery of this disk-shaped molecule. Figure 32 shows these seven three-membered sets of localized π-MOs in its upper part and the remaining six π-MOs in its lower part. The three-membered sets of π-MOs correspond in a one-to-one fashion to the circles drawn in the formula for circumcoronene in Figure 28. Each of the localized π-MOs at the periphery corresponds to a line formally indicating a double bond, exactly in the same way as seen before for coronene.

It has been demonstrated now with the examples considered so far in this subsection that the generation of localized occupied σ-MOs (not shown) and π-MOs in PAHs can be achieved, in more than one way, without problems. In order to be successful, the Boys localization method requires identification and specification of the canonical σ-and π-MOs, in terms of lists to be processed, prior to its application. The DoLo method, on the other hand, gives much freedom to the user and can generate also quite unconventional, but equally valid sets of localized π-MOs, as shown above for the early members of the acene sequence.

All PAH molecules discussed up to now belong to the class of alternating aromatic hydrocarbons. Our last example, the comparative study of π-MO localization in naphthalene and azulene, includes a non-alternating aromatic hydrocarbon. Structural formulas for these two isomers of C 10 H 8 are shown in Figure 33. The next figure, Figure 34, shows the five canonical occupied π-MOs ψ i and the five localized occupied π-MOs φ k for both molecules. The panels are arranged in a way that facilitates comparison. In the middle, one sees the canonical π-MOs, those for naphthalene in Figure 34(b) and those for azulene in Figure 34(c), arranged from left to right according to increase of orbital energy. The localized π-MOs, as obtained from Boys localization, are shown in Figure 34(a) for naphthalene and in Figure 34(d) for azulene. As for the canonical π-MOs, there is again a close similarity and correspondence between localized π-MOs for naphthalene and localized π-MOs for azulene. However, despite the fact that the iterative Boys localization for azulene eventually converged (to very good quality, but only after 489 iterations), the Boys localized π-MOs for azulene are less well localized than those for naphthalene: they extend over three (φ 31 to φ 34 ) to four (φ 30 ) carbon nuclei and sometimes exhibit comparatively large orthogonalization tails (see φ 30 ). In Figures 35 and36 we show two different sets of localized π-MOs for azulene obtained with the DoLo method. In addition, both figures include the unoccupied anti-bonding localized π-MOs in the upper row. The localized π-MOs in Figure 35 have been generated by imposing that a localized occupied π-MO is found at the bond common to both rings (this is the fourth π-MO from the left in the lower row). As seen before for Boys localization, some of the π-MOs in this set extend over three carbon nuclei (the first and the last in the lower row). It is worth to point out that the localized π-MOs seen in the last row of Figure 36 perfectly correspond to the lines drawn in the structural formula for azulene in Figure 33 as formal indicators of a double bond.

As an example demonstrating the usefulness of localized π-MOs in PAH molecules we consider the calculation of CCSD correlation energies within the π-system using either canonical π-MOs or localized π-MOs. The calculation of correlation energies with CMOs is done as usual, whereas LMOs require application of the method of increments. [START_REF] Stoll | The correlation energy of crystalline silicon[END_REF][START_REF] Paulus | The method of increments -a wavefunction-based ab initio correlation method for solids[END_REF] The relevant data for seven small aromatic hydrocarbon molecules are shown in Table 2. We can draw the following conclusions with respect to the usefulness of localized π-MOs for calculating correlation energies:

(1) the sum of single-electron-pair or one-body contributions e π 1 gives at least 60 % of the correlation energy of the π-system in alternating PAHs, but only about 56 % in the case of the non-alternating hydrocarbon azulene;

(2) inclusion of the two-body terms (e π 1 + e π 2 ) increases this fraction to at least 99 % in alternating PAHs, and to the slightly smaller value of 98 % in the case of azulene. Future studies will show whether these findings can be generalized to larger PAH molecules or not. Inclusion of localized σ-MOs and study of the relative contributions to correlation energy from π-only, σ-only and mixed π/σ parts also require further study.

The data in Table 2 also allow us to compare total energies between isomers. For naphthalene and azulene, the two isomers of C 10 H 8 , the former is more stable than the latter at all levels of calculation, as expected. In the cases of anthracene / phenanthrene (isomers of C 14 H 10 ) and tetracene / chrysene (isomers of C 18 H 12 ) one finds that the acene compound is less stable than the phenacene compound. This is well known and had already been stated above with respect to the RHF energies. We find for all three pairs of isomers that the less stable molecule always exhibits the larger correlation energy (in all situations studied, i. e., in both π-only correlation and π-and-σ correlation).

Conclusion

In the vast majority of quantum chemistry methods, the system is described through mathematical objects (wave functions, densities, etc.) that are defined with respect to a set of Molecular Orbitals. At the end of some (usually iterative) procedure, one ends up with a set of Molecular Orbitals that are usually strongly delocalized on several atoms, in some cases even over the entire system. This is true, in particular, every time the orbitals are obtained via a diagonalization procedure that acts on a Hamiltonian matrix defined on a global set of Atomic Orbitals. The orbitals obtained in such a way are often named as "Canonical" for a given method, since in general every method produces a single set of Canonical Orbitals (usually, they will depend on the method). The orbitals that are obtained in such a way, however, have little in common with the orbitals that a chemist would expect to see, since the latter are associated, with a few exception, to the notion of bonds between specific pair of atoms in the molecule. This fact leads to some difficulties in the interpretation of the obtained results, and a difficulty in reading the physical nature of a molecular structure, whose essence is dispersed among an overwhelming number of contributions coming from the different orbitals.

For this reason, starting from the very beginning of Quantum Chemistry, a large number of numerical procedures have been proposed to transform the Canonical Molecular Orbitals into a set of equivalent Local Molecular Orbitals. We presented and discussed here some of the different techniques that can be used to obtain these Local Orbitals. Generally speaking, all these methods present advantages and drawbacks, and the choice of the method may sometimes crucially depend on the type of treatment one intends to perform for a given system.

In the more recent years, an additional reason for the use of Localized Orbitals has emerged, related to computational efficiency. In fact, through the use of Localized Orbitals it is possible to take advantage of the locality of the interaction, which is something almost universal in the physical world. In fact, with the partial exception of gravity, the interactions between the constituents of matter have a rather short-range nature. Even the Coulomb force between charged particles at distance R that decays, in principle, as R -2 like gravitational force, gives rise to effective interactions having a much weaker and shorter-ranging interaction because of the presence of an equal number of charges of opposite sign. In order to exploit from a computational point of view this locality of the interaction, and to obtain the methods that belong to the family of Linear-Scaling methods, it is crucial to approach the study of the system by using local orbitals.

It should be noticed, however, that the Localization methods that are needed to implement the Linear-Scaling approaches should essentially concentrate the orbitals in restricted regions of the space, without an absolute need of obtaining, for instance, orbitals having a bond nature. In other words, they are somehow less demanding than the methods that localize the orbitals in order to give a better chemical interpretation. From this point of view, methods that at first sight could seem formally less satisfactory, can be used with good results.

Even though the "perfect localization method" has never been proposed, and probably it simply does not exist, very efficient and versatile procedures are nowadays available. In such a way, a larger and larger number of systems have become not only computationally treatable, but it is also possible to understand the precise nature of their structure in term of local entities. b number of electron pairs in the core, in the σ-system (excl. core) and in the π-system (Nπ = Ncore/2).

c total energy at Hartree-Fock level.

d canonical correlation energy of the π-system at CCSD level.

e sum of single electron pair (one-body) contributions to the correlation energy of the π-system.

f sum of non-additive increments of pairs of electron pairs (two-body) contributions to the correlation energy of the π-system.

g canonical correlation energy of π-and σ-system (excl. core) at CCSD level.

Appendix: a priori orbitals : input Data (DoLo)

The a priori local orbitals are obtained thanks to the DoLo program. DoLo gives a guess of non orthogonal local orbitals. Usually, two steps follow: (i) the projection of this guess of local orbitals onto the SCF or CASSCF orbitals; the quality of the guess of local orbitals is then improved (proj_scf code) and (ii) the orthogonalization of the obtained orbitals (schmudort code). Finally, this multi-step process provides a set of local and orthogonal orbitals, with a SCF or CASSCF quality. Input data for the first step (DoLo) are reported here for several examples presented in the chapter. Some explanations are given here and more details can be found in the manual. The source and manual are available on https://github.com/LCPQ/Cost_package. Table 1 C 2 H 2 : localization of the SCF orbitals The core orbitals are defined using CORE_. In this example, the star character (C*) is used to define the core of all C atoms in the same time. To define the CH bond orbitals with a distance lower than 1.2 Å, SIGMA_ data is used. BOND_ allows to define the σ CC bond and DELOC_ the π orbitals. In all cases, the atomic orbitals used to construct the local orbitals are defined. * at the beginning of the line corresponds to a comment. Appendix: Molecular electronic states and electron configurations

By intention, all small molecules selected for discussion in this work on orbital localization have a closed-shell totally symmetric singlet electronic ground state. For larger molecules (for example, acenes and phenacenes), such an electronic state can still always be easily defined and fully characterized, so that it may serve at least as a reference state for other subsequent purposes. As a consequence, the configuration state function (CSF) of the electronic state is a single Slater determinant. Both the CSF and the total energy associated with it (that is the expectation value of the Born-Oppenheimer Hamiltonian taken over the CSF) are invariant with respect to unitary transformations among the set of doubly occupied molecular orbitals (MOs). Orbital localization then simply takes advantage of the fact that all observables of such molecular electronic states, in particular their total energy, are invariant with respect to a unitary transformation carried out within the space of doubly occupied MOs (in fact, an orthogonal transformation suffices, as only real-valued quantities are involved).

The following list provides for each molecule its point group, the symmetry label of the closed-shell totally symmetric singlet state considered here, and the corresponding electron configuration, i. e., symmetry label and number of all the completely filled shells (an entry like 'e 1-3' is to be understood as 1e 4 2e 4 3e 4 ). All results summarized above have been confirmed in several ways. Firstly, the group theoretical information given above, which is an invariant of the closed-shell singlet electronic state, is in conformity with (or can be derived from) the molecular structural formula, if the latter is adapted to the molecular point group (this may require extension/inclusion of Robinson-Clar π sextets for some polycyclic aromatic hydrocarbons). Examples of such structural formulas are shown in Figures 26, 27 and 28. Secondly, the molecular structures shown have been confirmed as representing local minima of the total energy hypersurface at the SCF level of theory, via full optimization of molecular structure followed by normal mode analysis with full exploitation of molecular point group symmetry. In the case of the [n]acenes and [n]phenacenes, this has been done for all n up to and including n = 30; in the case of the [n]coronenes for all n up to and including n = 6.

Thirdly, the electron configurations and corresponding total energies were vindicated in calculations where the use of molecular symmetry has been completely and intentionally switched off (so that convergence to a state lower in energy may occur, but was never observed). Since the geometric structure of the nuclear framework (the 'molecular geometry') still carries the full point group symmetry information into the calculation running now under point group C 1 , all symmetry information is still present (and has to be so).

Both types of calculations (those with as well as those without exploitation of point group symmetry) are important, since orbital localization typically and necessarily ignores point group symmetry. In general, one needs to be able to orient oneself within the set of occupied CMOs, in order, e. g., to select and sort these orbitals into different groups prior to localization. An example is provided by the acenes, where separation of σ CMOs from π CMOs appears to be (an easily achievable) step before any attempt to localize the orbitals.
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 4 For θ = 0 or θ = π/2 the function adopts its maximum Λ = 4. This corresponds to the situation where the new orbitals coincide with the canonical ones, |φ cs + = |ψ + + and |φ sc + = |ψ - + (or vice versa). For θ = π/4 or θ = 3π/4, on the other hand, the functional has its minima, that correspond to |φ cs + = |φ A + and |φ sc + = |φ B + (or vice versa), where we have defined |φ

65 ) and ψ 1

 651 cycle = 0.40 |212010 + 0.40 |221100 + 0.05 |112110 + 0.04 |211101 + 0.02 |121020 + 0.02 |121200

  Similar conclusions are obtained when we analyze the wave functions. The ground state wave functions of the two conformers (weight 0.02) are: ψ in = 0.65 |22222220000000 + 0.03 |22202220002000 + 0.02 |22122220001000 + 0.02 |22222210001000 + 0.02 |22212220000100 + 0.02 |22212221000000
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 1 Fig. 1 Cholesky orbitals for cyclic polyene C 82 H 82
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 2 Fig. 2 A priori orbitals for cyclic polyene C 82 H 82
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 3 Fig. 3 A simple application of the Hückel Hamiltonian: the (H 2 ) 2 dimer
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 6728291112213 Fig. 6 Boys local orbitals of C 2 H 2 (Molpro program)
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 14 Fig. 14 Dissociation of C 2 HF along the CH or CF bond. The active space is formed by the HOMO and LUMO SCF orbitals.

Fig. 15

 15 Fig. 15 Dissociation of C 2 HF along the CH or CF bond at CAS(2,2). The active space is constituted by the CH or CF localized bond, respectively. At the (common) equilibrium distance, the active space localized on the C-H bond gives the lowest energy.

Fig. 16

 16 Fig. 16 Structural formulas for the molecules of benzene, C 6 H 6 , and of (E)-1,2-diphenylethene (trans-stilbene), H 5 C 6 -CH--CH-C 6 H 5 , showing circles representing Robinson-Clar π sextets for the π-systems in the six-membered rings.
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 17 Fig. 17CASSCF and Localized π active orbitals of the benzene molecule.

  Fig. 17CASSCF and Localized π active orbitals of the benzene molecule.
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 18 Fig. 18 Localized valence molecular orbitals of the benzene molecule. The π orbitals are defined on the whole cycle.
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 192324325 Fig. 19 In-plane trans-stilbene: localization on the cycles and on the central bond of the SCF MOs

Fig. 26

 26 Fig.26Point-group adapted structural formulas for the first six members of the homologous sequence of the [n]acenes, C 4n+2 H 2n+4 , (D 2h ; cases where the number of hexagons n is odd require use of the single Robinson-Clar π sextet that can be drawn here, being placed in the central hexagon).

Fig. 27

 27 Fig.27Point-group adapted structural formulas for the first six members of the homologous sequence of the [n]phenacenes, C 4n+2 H 2n+4 (n odd: C 2v , n even: C 2h ; the use of Robinson-Clar π sextets for the purpose of symmetry adaption is not necessary here).

Fig. 28

 28 Fig. 28 Point-group adapted structural formulas for the first four members of the homologous sequence of the [n]coronenes, C 6n 2 H 6n (D 6h ; cases where n is odd require use of Robinson-Clar π sextets).
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 291230 Fig. 29 Results from RHF-SCF calculations (basis set cc-pVDZ) for [n]acenes (in red) and [n]phenacenes (in blue) at assumed molecular structure (ASP: squares) and after full optimization (OPT: circles): (a) energy per monomer unit C 4 H 2 ; (b) HOMO-LUMO gap; (c) lowest frequency of rod-bending normal modes.

Fig. 31

 31 Fig. 31 Localized π-MOs for coronene ([2]coronene), C 24 H 12 , as obtained from Boys localization applied to the set of occupied canonical π-MOs.

Fig. 32

 32 Fig. 32 Localized π-MOs for circumcoronene ([3]coronene), C 54 H 18 , as obtained from Boys localization applied to the set of occupied canonical π-MOs.

Fig. 33

 33 Fig. 33 Structural formulas for the molecules of naphthalene (C 10 H 8 , D 2h ) and azulene (C 10 H 8 , C 2v ).

  (a) Naphthalene, localized π-MOs:

Fig. 34

 34 Fig. 34 Canonical π-MOs (2nd and 3rd row) and Boys localized π-MOs (first and last row) for naphthalene and azulene.

Fig. 35

 35 Fig. 35 Localized π orbitals on each cycle of the azulene molecule.

Fig. 36

 36 Fig. 36 Localized π orbitals on bonds of the azulene molecule.

  to change of electron configuration: -0.0599 a all nuclei in the xy plane, all CC bond lengths equal to 142.1 pm, all CH bond lengths equal to 108.4 pm, all bond angles equal to 120 • . b confirmation of a corresponding local minimum on the potential energy hypersurface was subsequently achieved by optimization of molecular structure followed by normal mode analysis, see Figure 29 and text for more details.

c

  orbital irreps given in parentheses. d negative value of ε LUMO at this level (RHF-SCF) hints at possible existence of either stable mono-anion or low-lying open-shell state(s).

  * CORE ORBITALS CORE_ C* 1S(1) * σ CH BONDS SIGMA_ C* 1S(2) 2P(1) : H* 1S(1) DMAX=1.2 ANGSTROM * σ CC BONDS BOND_ chain='C1-C2',bas=2*'1S(2) 2pz(1)',noc=1,nvirt=1 * π CC BONDS DELOC_ chain='C1-C2',bas=2*'2px(1) 2py(1)',noc=2,nvirt=2 Table 4 trans-distilbene: localization of the π SCF orbitals The input data of the trans-distilbene molecule is very similar to the benzene The π bonds are defined on each cycle and on the central bond using the DELOC_data. * CORE ORBITALS CORE_ C* 1S(1) * σ CH BONDS SIGMA_ C* 1S(2) 2P(1) : H* 1S(1) DMAX=1.2 ANGSTROM * σ CC BONDS SIGMA_ c* 1S(2) 2P(1) : c* 1S(2) 2P(1) dmax=1.5 ANGSTROM * π CC BONDS DELOC_ chain='C1-C8',bas=2*'2pz(1)',noc=1,nvirt=1 DELOC_ chain='C2-C3-C4-C5-C6-C7',bas=6*'2pz(1)',noc=3,nvirt=3 DELOC_ chain='C9-C10-C11-C12-C13-C14,bas=6*'2pz(1)',noc=3,nvirt=3

1 .

 1 Ethane, C 2 H 6 (18 electrons) X 1 A 1g (D 3d ) / 1 A 1 (D 3 ) / 1 A 1 (D 3h ), electron configuration: a 1g 1-3, e g 1, a 2u 1-2, e u 1 (D 3d ) / a 1 1-3, a 2 1-2, e 1-2 (D 3 ) / a 1 1-3, e 1, a 2 1-2, e 1 (D 3h ) 2. Ethene (ethylene), C 2 H 4 (16 electrons)X 1 A g (D 2h ), electron configuration: a g 1-3, b 1g 1, b 1u (π) 1, b 2u 1-2, b 3u 1 3. Ethyne (acetylene), C 2 H 2 (14 electrons) X 1 Σ + g (D ∞h ), electron configuration: σ g 1-3, σ u 1-2, π u 1 4. Monofluoroethyne, C 2 HF (22 electrons) X 1 Σ + (C ∞v ), electron configuration: σ 1-7, π 1-2 5. Difluoroethyne, C 2 F 2 (30 electrons) X 1 Σ + g (D ∞h ), electron configuration: σ g 1-5, σ u 1-4, π g 1, π u 1-2 6. Benzene, C 6 H 6 (42 electrons) X 1 A 1g (D 6h ), electron configuration: a 1g 1-3, e 1g (π) 1, e 2g 1-3, a 2u (π) 1, b 1u 1-2, b 2u 1, e 1u 1-3 7. (E)-1,2-diphenylethene (trans-stilbene), C 14 H 12 (96 electrons) X 1 A g (C 2h ), electron configuration (planar conformation): a g 1-21, b g (π) 1-3, a u (π) 1-4, b u 1-20 8. Tetracarbonylnickel, [Ni(CO) 4 ] (84 electrons) X 1 A 1 (T d ),electron configuration: a 1 1-8, e 1-2, t 1 1, t 2 1-9 9. Tris(acetylacetonato)aluminium, [Al(acac) 3 ] (172 electrons) X 1 A 1 (D 3 ), electron configuration: a 1 1-16, a 2 1-14, e 1-28 10.[n]acenes, C 4n+2 H 2n+4 (26n + 16 electrons)[START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] A g (D 2h ; all nuclei in the plane z = 0, largest molecular extension oriented along the y-axis), electron configuration for n = 2k + 1 (k = 0: benzene, k = 1: anthracene, . . .):a g 6k + 6, b 1g 5k + 3, b 2g (π) k + 1, b 3g (π) k + 1, a u (π) k, b 1u (π) k + 1, b 2u 6k + 4, b 3u 5k + 5, electron configuration for n = 2k (k = 1: naphthalene, k = 2: tetracene, . . .): a g 6k + 3, b 1g 5k + 1, b 2g (π) k, b 3g (π) k, a u (π) k, b 1u (π) k + 1, b 2u 6k + 1, b 3u 5k + 2 11.[n]phenacenes, C 4n+2 H 2n+4 (26n + 16 electrons, all nuclei in the plane z = 0, largest molecular extension oriented along the y-axis), 1 A 1 (C 2v , n odd) or 1 A g (C 2h , n even), electron configuration for n = 2k + 1 (k = 0: benzene, k = 1: phenanthrene, . . .):a 1 11k + 10, a 2 (π) 2k + 1, b 1 11k + 8, b 2 (π) 2k + 2, electron configuration for n = 2k (k = 1: naphthalene, k = 2: chrysene, . . .): a g 11k + 4, b g (π) 2k, a u (π) 2k + 1, b u 11k + 3 12. [n]coronenes, C 6n 2 H 6n (6n(6n + 1) electrons, number of hexagons N hex = 3n(n -1) + 1,all nuclei in the plane z = 0, central hexagon oriented such that two of its carbon nuclei lie on the y-axis),[START_REF] Einstein | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?[END_REF] A 1g (D 6h ), electron configuration for n = 2k + 1 (k = 0: benzene, k = 1: circumcoronene, . . .):a 1g (k + 1)(5k + 3), a 2g k(5k + 3), b 1g (π) k(k + 1), b 2g (π) k(k +1), e 1g (π) 2k 2 + 2k + 1, e 2g (2k + 1)(5k + 3), a 1u (π) k 2 , a 2u (π) k 2 + 2k + 1, b 1u 5k 2 + 5k + 1, b 2u 5k 2 + 6k + 2, e 1u (2k + 1)(5k + 3), e 2u (π) 2k(k + 1), electron configuration for n = 2k (k = 1: coronene, . . .): a 1g k(5k + 3), a 2g k(5k -2), b 1g (π) k 2 , b 2g (π) k 2 , e 1g (π) 2k 2 , e 2g k(10k + 1), a 1u(π) k(k -1), a 2u (π) k(k + 1), b 1u 5k 2 , b 2u k(5k + 1), e 1u k(10k + 1), e 2u (π) 2k 2 13. Azulene, C 10 H 8 (68 electrons) X 1 A 1 (C 2v ; all nuclei in the plane y = 0), electron configuration: a 1 1-17, a 2 (π) 1-2, b 1 1-12, b 2 (π) 1-3

  

  

  

  

  

Table 1

 1 Electron configuration (number of filled MOs per irrep), total SCF energy (single point a

	, RHF/cc-pVDZ, in hartree) and frontier orbital

Table 2

 2 Total energy at RHF level (basis set: cc-pVDZ) and various correlation energies at CCSD level (in hartree) for some polycyclic aromatic hydrocarbons.

	Azulene	C 10 H 8	10/19/5	-383.303824	-0.187560	-0.104903	55.9%	-0.079191	98.2%	-383.491384	-1.358196	-384.662019
	Phenanthrene Chrysene	C 14 H 10 C 18 H 12	14/26/7 18/33/9	-536.028684 -688.683101	-0.259434 -0.335108	-0.159906 -0.206156	61.6% 61.5%	-0.099540	100.0%	-536.288118 -689.018209	-1.879221 -2.405850	-537.907905 -691.088951
	Benzene Naphthalene Anthracene Tetracene	C 6 H 6 C 10 H 8 C 14 H 10 C 18 H 12	6/12/3 10/19/5 14/26/7 18/33/9	-230.716167 -383.371777 -536.018362 -688.661379	-0.108098 -0.184584 -0.263737 -0.344314	-0.065836 -0.117347 -0.162564 -0.209505	60.9% 63.6% 61.6% 60.8%	-0.041238 -0.066721 -0.099657	99.1% 99.7% 99.4%	-230.824264 -383.556361 -536.282099 -689.005693	-0.828104 -1.353339 -1.880633 -2.408871	-231.544271 -384.725116 -537.898996 -691.070251
	Compound a	Molecular formula	Ncore/Nσ/Nπ b	E RHF c	E π corr d e π 1 e e π 1 /E π corr e π 2 f (e π 1 + e π 2 )/E π corr (π) E tot = E E π+σ corr g RHF + E π corr	E (π+σ) tot = E RHF + E π+σ corr

a all nuclei in the xy plane, all CC bond lengths equal to 142.1 pm, all CH bond lengths equal to 108.4 pm, n-membered rings as regular n-gons with CH bonds pointing radially outwards.
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Table 3 Benzene: localization of the CAS(6,6)SCF orbitals The core orbitals are defined using CORE_. To define the CH and CC bond orbitals, SIGMA_data is used. The π bonds are defined on all the cycle using the DELOC_data. In all cases, the atomic orbitals used to construct the local orbitals are defined. LABEL='A' means that the local orbitals correspond to active orbitals. * at the beginning of the line corresponds to a comment. Inside the BOND or the SIGMA data, * is used when all the occurrence of an atom are considered. For example, C* means all C atoms.