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ABSTRACT: We investigate the steady dynamical response of the atmosphere on the equatorial b plane to a steady, local-
ized, midtropospheric heating source at the equator. Expanding Gill’s seminal work, we vary the latitudinal and longitudinal
scales of the diabatic heating pattern while keeping its total amount fixed. We focus on characteristics of the response that
would be particularly important if the circulation interacted with the hydrologic and energy cycles: the overturning circulation
and the low-level wind. In the limit of very small scale in either the longitudinal or latitudinal direction, the vertical energy
transport balances the diabatic heating and this sets the intensity of the overturning circulation. In this limit, a fast low-level
westerly jet is located around the center of diabatic heating. With increasing longitudinal or latitudinal scale of the diabatic
heating, the intensity of the overturning circulation decreases and the low-level westerly jet decreases in maximum velocity
and spatial extent relative to the spatial extent of this heating. The associated low-level eastward mass transport decreases
only with increasing longitudinal scale. These results suggest that moisture-convergence feedbacks will favor small-scale equa-
torial convective disturbances while surface-heat-flux feedbacks would favor small-scale disturbances in mean westerlies and
large-scale disturbances in mean easterlies. Part II investigates the case of off-equatorial heating.

KEYWORDS: Tropics; Atmospheric circulation; Large-scale motions; Shallow-water equations; Monsoons; Idealized
models

1. Introduction

Gill’s (1980, hereafter G80) seminal work aimed to provide
a very simple model of the Walker circulation that results
from the longitudinal distribution of diabatic heating in the
tropics, with maxima of convective heating over the three
equatorial landmasses or archipelagos—Amazonia, Africa,
and the Maritime Continent (Krueger and Winston 1974)—as
well as monsoon circulations resulting from off-equatorial
regional diabatic heating. G80 showed that the damped, lin-
ear, baroclinic dynamical response of the tropical atmosphere
to a localized, steady, midtropospheric diabatic heating repro-
duces the main features of these circulations.

This simple model has become one of the main frameworks
to understand tropical circulations and its solutions are now
commonly called Gill circulation. A generalization of G80’s
work attempted to simulate the seasonal mean flow realisti-
cally (Zhang and Krishnamurti 1996), with some success. The
relevance of G80’s work to the atmospheric circulation associ-
ated with El Niño–Southern Oscillation was also revealed
soon after the publication of the original article (Pazan and
Meyers 1982; Philander 1983). Later studies of the dynamical
pattern associated with the Madden–Julian oscillation (MJO)
(Madden and Julian 1971; Zhang 2005) revealed that this pat-
tern is essentially G80’s equatorially symmetric solution
(Hendon and Salby 1994; Kiladis et al. 2005). Very recently,

this framework has shown promise to understand the observed
pattern of tropical precipitation in detail (Adam 2018) and the
superrotation on tide-locked exoplanets (Showman and Polvani
2010, 2011; Pierrehumbert and Hammond 2019). Because of
this widespread relevance, G80’s model has come to be consid-
ered foundational, and is used as a test for further theoretical
development (e.g., Bretherton and Sobel 2003).

One of the main caveat of G80’s original model is that it only
considers midtropospheric diabatic heating, typically released by
condensation associated with deep convection. An alternative
framework considers surface sensible heating that ties surface air
temperatures to sea surface temperatures, and the corresponding
model has shown a dominant role of the surface in driving the
pattern of surface convergence, particularly in the tropical east-
ern Pacific (Back and Bretherton 2009), hence making G80’s
model less relevant to the Walker circulation than initially con-
cluded. Nevertheless, as pointed by Neelin (1989), G80’s model
can be interpreted as a surface-forcing model and the two models
differ only by the thermodynamic normalization scales and
parameters. The pattern and sensitivities of the Gill circulation
are therefore also relevant to the surface-forcing model.

G80 mostly focused on two cases, with latitudinal distribu-
tions of diabatic heating for which there are simple analytical
solutions: one symmetric about the equator, the other anti-
symmetric. G80 and Heckley and Gill (1984) presented a few
additional cases with little analysis. But observations docu-
ment diabatic heating patterns with a wide range of horizontal
scales and latitudinal locations and we have yet to understand
the sensitivity of the Gill circulation to these parameters. The
present work aims to understand how the equatorially sym-
metric Gill circulation depends on the latitudinal and

Publisher's Note: This article was revised on 24 March 2022 to
fix Fig. 3, which was incomplete when originally published.

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/JAS-D-21-
0067.s1.

Corresponding author: Gilles Bellon, gilles.bellon@auckland.
ac.nz

DOI: 10.1175/JAS-D-21-0067.1

Ó 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

3

V O L UM E 7 9 JOURNAL OF THE ATMOSPHERIC SCIENCES JANUARY 2022

Brought to you by Meteo-France | Unauthenticated | Downloaded 08/25/22 04:19 PM UTC

https://doi.org/10.1175/JAS-D-21-0067.s1
https://doi.org/10.1175/JAS-D-21-0067.s1
mailto:gilles.bellon@auckland.ac.nz
mailto:gilles.bellon@auckland.ac.nz
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


longitudinal scales of the imposed diabatic heating, with a par-
ticular focus on characteristics of the circulation that, in the
real world, interact with the energy cycle: the vertical, over-
turning circulation, which is associated with moisture trans-
port and latent heat release, and the surface wind, which
modulates the surface turbulent heat fluxes. Bellon and
Reboredo (2021, hereafter Part II) investigates the off-
equatorial case.

In section 2, we present the solutions to the Matsuno–Gill
equations (Matsuno 1966; G80), as well as the f-plane case.
Section 3 presents some solutions as well as the scale sensitiv-
ity of the overturning circulation and low-level wind. Section
4 summarizes our findings and concludes. For brevity, we will
refer to “imposed diabatic heating” simply as “heating” in the
next sections.

2. Method

In this section, we summarize the Matsuno–Gill equations
and the method of solution by decomposition in parabolic cyl-
inder functions. We present semianalytical solutions for a
more general case than in G80, i.e., applicable to heating of
varied horizontal extents and we also derive the asymptotes
for small zonal extent of the heating.

a. The Matsuno–Gill equations

The Matsuno–Gill equations describe the steady first-baro-
clinic dynamical response of the tropical atmosphere to pre-
scribed midtropospheric heating. They are equivalent to the
steady-state, linear, shallow-water equations with damping
terms in the zonal-momentum and continuity equations. The
linear approximation and the neglect of the momentum
damping in the meridional direction (the so-called longwave
approximation) are evaluated in the online supplementary
material using simplified versions of the quasi-equilibrium
tropical circulation models (QTCM) (Neelin and Zeng 2000;
Zeng et al. 2000; Lintner et al. 2012) and they are deemed
acceptable for large-scale circulations and realistic amplitudes
of heating. Using midtropospheric temperature in the conti-
nuity equation instead of pressure (as in G80) or depth of the
layer (as in the shallow-water equations), the Matsuno–Gill
equations write

«u2
1
2
yy52­xT; (1)

1
2
yu52­yT; (2)

«T1­xu1­yy5Q; (3)

with (u, y) the horizontal baroclinic velocity (i.e., the differ-
ence between upper-tropospheric and lower-tropospheric
velocity), T the midtropospheric temperature, andQ the heat-
ing. All variables are nondimensional; in particular, distances
are normalized by the equatorial radius of deformation, which
is about 1000 km. These equations are equivalent to Eqs.

(2.6), (2.8), and (2.12) in G80. The Matsuno–Gill equations
have proven successful in explaining observed tropical vari-
ability in large part because the gravity wave phase speed,
which is the normalizing scale for velocity, is fairly uniform in
the tropics as a result of the fairly uniform gross moist stability
(Yu et al. 1998). We take the value of the damping rate «

from G80: « 5 0.1, which corresponds to a damping time scale
of 2.5 days. This damping rate was at times assessed to be too
large (e.g., Battisti et al. 1999) and Stechmann and Ogrosky
(2014) suggest that the Walker circulation can be modeled
with no damping at all, if only the longitudinal anomaly of
heating is imposed and the meridional wind is known. How-
ever, other studies suggest that such a large value is justified,
in particular because of convective momentum transport (Lin
et al. 2005, 2008; Iipponen and Donner 2021). The sensitivity
of the Gill circulation to « is related to that of the zonal scale
Lx, as we show in section 2d.

The nondimensional upward midtropospheric vertical
velocity is equal to the nondimensional baroclinic divergence
and can be written:

w5­xu1­yy5Q2«T: (4)

If the damping term 2«T is Interpreted as a local, diabatic,
thermodynamic response to the imposed heating Q, this equa-
tion expresses a balance between vertical advection and diabatic
heating known as weak-temperature-gradient approximation
(Sobel and Bretherton 2000), although Bretherton and Sobel
(2003) interpreted the damping term differently.

G80’s framework assumes that the atmospheric response to
the heating has a smaller scale than the planetary scale so that
longitudinal and latitudinal boundaries can be considered infi-
nite. The QTCM experiments in the supplementary material,
which use realistic boundary conditions, show that this assump-
tion is suitable for realistic horizontal extents of the heating on
Earth. This might not hold for larger extents or on exoplanets.

b. Solutions to cylinder-mode forcing

G80 presented some analytical solutions to Eqs. (1)–(3) for
heating patterns that follow:

Q(n) 5F(x)Dn(y)with n ∈ N; (5)

and F a half period of cosine function in a limited range of
longitude:

F x( )5 k cos kx( ) for |x| ,Lx;

0 for |x| .Lx;
with k5

p

2Lx
;

{
(6)

and Dn a parabolic cylinder function of degree n, i.e., the
product of a polynomial of degree n and an exponential that
limits the latitudinal extent of significant heating:

D0 5 exp 2
y2

4

( )
;

D1 5 yexp 2
y2

4

( )
;

Dn1 1 5 yDn 2 nDn2 1;;n. 0:

(7)
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We will also use D21 5 D22 5 0 to write generalized equa-
tions. Appendix A documents some of the properties of these
parabolic cylinder functions that we will also call latitudinal
modes. Note that our function F differs from the function F in
G80 by a factor k, which we introduced to make the integral
of F over the longitude independent of Lx.

The method of solution as described in G80 introduces two
new variables q and r that combine T and u in Eqs. (1)–(3) as

q5T1u; (8)

r5T2u: (9)

For each forcing Q(n) 5 F(x)Dn(y) following a latitudinal
mode, the solutions [q(n), y(n), r(n)] can be written as the sum
of two additive components (G80; Heckley and Gill 1984;
Abramowitz and Stegun 1964), [q(n,1), y(n,1), r(n,1)] and [q(n,2),
y(n,2), r(n,2)], in which q(n,1) is proportional to Dn(y) and
q(n,2) ∝ Dn12(y), y

(n,1) ∝ Dn21(y) and y(n,2) ∝ Dn11(y), r
(n,1) ∝

Dn22(y) and r(n,2) ∝ Dn(y):

q(n) 5q(n;1) 1 q(n;2) 5q(n)n (x)Dn(y)1q(n)n1 2(x)Dn1 2(y);
y(n) 5y(n;1) 1y(n;2) 5y(n)n2 1(x)Dn2 1(y)1y(n)n1 1(x)Dn1 1(y);
r(n) 5 r(n;1) 1 r(n;2) 5 r(n)n2 2(x)Dn2 2(y)1 r(n)n (x)Dn(y):

(10)

The functions of longitude x in the first component are solu-
tions of

dq(n)n

dx
2 (2n2 1)«q(n)n 5 2 (n2 1)F(x); (11)

y(n)n2 1 5 2n«q(n)n 2 nF(x); (12)

r(n)n2 2 5 nq(n)n : (13)

And in the second component, they are solutions of

dq(n)n1 2

dx
2 (2n1 3)«q(n)n1 2 5 2F(x); (14)

y(n)n1 1 5 2(n1 2)«q(n)n1 2 2F(x); (15)

r(n)n 5 (n1 2)q(n)n1 2: (16)

Solving Eqs. (11) and (14) for q(n)n and q(n)n12 yields the com-
plete solution q(n) since Eqs. (12), (13), (15), and (16) give
y(n)n21, y

(n)
n11, r

(n)
n22, and r(n)n as functions of q(n)n and q(n)n12. The

solutions detailed in G80 are for n 5 0 (symmetric heating)
and n5 1 (antisymmetric heating).

The longitudinal dependence of the first component can be
written:

for n 5 0, «2 1k2{ }q(0)0 5

0 if x,2Lx;

«k cos(kx)1k2 sin(kx)1 k2 exp 2«(x1Lx)
[ ]

if x| |,Lx;

2k2 cosh «Lx( )exp{2«x} if x.Lx;

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (17)

for n 5 1, q(1)1 5 0; (18)

for n . 1,
(2n2 1)2«2 1 k2

n2 1
q(n)n 5

2k2cosh (2n2 1)«Lx
[ ]

exp (2n2 1)«x[ ]
if x,2Lx;

(2n2 1)«kcos(kx)2 k2sin(kx)1k2exp (2n2 1)« x2Lx( )[ ]
if |x| ,Lx;

0 if x.Lx:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (19)

Note that only q(0)0 is nonzero east of the heating region
(x. Lx), and zero west of it (x,2Lx). All other components
extend west of the heating region.

It is clear from the similarity of Eqs. (11) and (14) and
from the same boundary and continuity conditions that
apply to q(n)n and q(n)n12 that the longitudinal dependence of
the second component can be written, for all n:

q(n)n1 2 5
1

n1 1
q(n1 2)
n1 2 : (20)

To get back to the physical nondimensional variables, we
use T(n) 5 [q(n) 1 r(n)]/2 and u(n) 5 [q(n) 1 r(n)]/2. The first
component of the solution is, for n5 0,

u(0;1) 5T(0;1) 5
1
2
q(0)0 (x)D0(y);

y(0;1) 5 0;

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (21)

for n5 1,
u(1;1) 5T(1;1)

1 5 0;

y(1;1) 5 2F(x)D0(y);

}
(22)

for n. 1, it is

R E BOREDO AND B E L LON 5JANUARY 2022

Brought to you by Meteo-France | Unauthenticated | Downloaded 08/25/22 04:19 PM UTC



T(n;1) 5
1
2
q(n)n (x) Dn(y)1nDn2 2(y)

[ ]
;

u(n;1) 5
1
2
q(n)n (x) Dn(y)2nDn2 2(y)

[ ]
;

y(n;1) 5n 2«q(n)n (x)2F(x)[ ]
Dn2 1(y);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(23)

and the solution for the second component is, for all n,

T(n;2) 5
1
2
q(n)n1 2(x) Dn1 2(y)1 (n1 2)Dn(y)

[ ]
;

u(n;2) 5
1
2
q(n)n1 2(x) Dn1 2(y)2 (n1 2)Dn(y)

[ ]
;

y(n;2) 5 2(n1 2)«q(n)n1 2(x)2F(x)
[ ]

Dn1 1(y):

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)

Following from Eq. (20), it is straightforward that the second
component of the temperature and zonal wind response to
heating along Dn has the same pattern as the first component
of the response to heating along Dn 1 2: T

(n,2) 5 T(n12,1)/(n1 1)
and u(n,2) 5 u(n12,1)/(n1 1).

Both components’ contributions to the midtropospheric
vertical velocity can be written:

w(n;m) 5
1
2
F(x)Dn(y)2«T(n;m); (25)

for all n and form5 1 or 2.
Note the following:
1) Only the first component of the solution for n 5 0

extends beyond x5 Lx in the longitudinal direction. It is asso-
ciated with no meridional wind and has a Kelvin wave struc-
ture as noted in G80.

2) All other components have a Rossby wave structure with
gyres meridionally aligned in the region x , Lx, with a west-
ward extent that decreases with n. On each side of the equa-
tor, cyclonic and anticyclonic gyres alternate in the poleward
direction.

c. More general forcing

Because of the variety of scales of diabatic heating in the
tropics, it is of interest to understand the dynamical response
to heating with a wide range of horizontal extents from the
synoptic to the planetary scale. The present work expands on
the results of G80 by studying the response to heating Q with
a similar shape as in G80 (half-period cosine in the longitudi-
nal direction, Gaussian in the meridional direction), but with
varying longitudinal and latitudinal extents (this Part I) and
latitude (Part II).

Let us start with the same longitudinal distribution as in
G80 and a very general latitudinal distribution:

Q5F(x)D(y); (26)

with F(x) in the form given by Eq. (6), and D(y) a bounded
function of y.

With inner product 〈f ;g〉5
�
fgdy, Dn functions form an

orthogonal basis Dn( )n∈N. The norm of each Dn is
���������
n!

����
2p

√√
.

Any bounded function D can be decomposed in a series on
the basis Dn( )n∈N:

D(y)5 ∑∞
n5 0

an Ly
( )

Dn(y): (27)

It follows thatQ can also be written as a series ofQ(n)
n∈N:

Q5
∑∞
n5 0

anQ(n)F(x): (28)

Because the Matsuno–Gill equations are linear, the solu-
tion to the steady, linear equation set (1)–(3) forced by Q 5

F(x)D(y) can be determined semianalytically as a series of the
solutions to heating patterns with latitudinal distributionsDn:

T5
∑∞
n5 0

anT(n);

u5
∑∞
n5 0

anu(n);

y5
∑∞
n5 0

any(n):

(29)

We will study the cases of a Gaussian latitudinal distribu-
tion ofQ of varying latitudinal extent centered on latitude y0:

D(y)5 1
Ly

exp 2
(y2 y0)2

4L2
y

{ }
: (30)

With such a formulation, the heating Q is a “patch” of heating
centered on (x, y) 5 (0, y0). This patch is close to circular for
Lx 5 3Ly. By design, the maximum heating varies with Lx and
Ly in k/Ly so that the total heating provided to the atmosphere
is independent of the longitudinal and latitudinal scales:

[Q]5
� 1Lx

2Lx

� 1∞

2∞
Qdxdy5 4

���
p

√
; (31)

with the square brackets [·] indicating global integration. This
allows us to isolate the sensitivity to the scales independently
from that to a change in global energy input.

In this Part I, we focus on heating symmetric with respect
to the equator, i.e., with y0 5 0. The coefficients an are

a2n 5
1

2nn!

L2
y 2 1

L2
y 1 1

( )n ���������
2

L2
y 1 1

√
; (32)

a2n1 1 5 0: (33)

In practice, since the infinite sum in Eq. (27) is convergent,
it can be approximated by a finite sum up to a value m follow-
ing a convergence criterion (Cauchy 1821). The convergence
criterion requires to set a positive error of tolerance h for

which any index l . m satisfies
���∑l

n50an Ly
( )

Dn(y)2∑l21
n50an Ly

( )
Dn(y)

���#h. This value m will differ for different

values of Ly. For example, setting h 5 0.001, one mode is
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enough for the trivial case where Ly 5 1, whereas for Ly 5 0.5
we need 10 modes to meet the error criterion, and more
modes are needed for smaller Ly. Heckley and Gill (1984)
used the same approach to study the transient response to a
very localized heating. The results on the Gill circulation pre-
sented in this article are the finite-sum approximations of the
semianalytical solutions [Eq. (29)], except in the case of the
limit Lx → 0 for which we can find analytical expressions.

d. Limits for heating with small longitudinal extent

Here, we explore the asymptotic solutions for Lx → 0, but
this is also relevant for the limit « → 0. Indeed, it is easy to
write the solutions in Eqs. (17)–(20) as functions of «Lx and
x/Lx [using k 5 p/(2Lx)], with no other dependency on « or
Lx. This means that the sensitivity of the solutions to « is the
same as the sensitivity to Lx, except that the patterns scale
zonally with Lx. All the characteristics of the circulation that
we study will actually have identical sensitivities to « and
to Lx.

We focus on the interval 2Lx # x # Lx. Outside this inter-
val, qualitatively, there is subsidence, but there is no simple
expression for the solutions. This limit is identical to the limit
«→ 0 if we consider the zonal coordinate x/Lx.

As pointed in G80, the damping in the meridional-momentum
equation is negligible only if «k,, 1. In the limit Lx → 0, this is
not verified, so the limit of the Gill circulation for Lx → 0 is not
well described by the Matsuno–Gill equations. Nevertheless, the
supplementary material shows that meridional-momentum
damping has a small impact on the Gill circulation down to
Lx 5 0.075 (or about 70 km), i.e., down to the smallest synoptic
scales. Therefore, for large-scale circulations, the asymptote of
the solution to the Matsuno–Gill equations for Lx → 0 is still
relevant.

In this limit, k→1∞ and we have

q(0)0 ∼ 11 sinkx;

q(n)n ∼ (n2 1)(12 sinkx) for n. 0;

q(n)n1 2 ∼ (12 sin kx) for all n;
(34)

for |x|# Lx. Noting that

Dn 1nDn2 2 5 2
1

n2 1
Dn 2n yDn2 1( ) for n. 1

and

Dn1 2 1 (n1 2)Dn 5Dn 1 yDn1 1;

we can write the temperature responses to cylindrical forcing
as follows:

T(0;1) ∼ 1
2

11 sin kx( )D0(y);
T(1;1) ∼ 0,

T(n;1) ∼ 2
1
2

12 sin kx( ) Dn(y)2nyDn2 1(y)
[ ]

for n. 1;

T(n;2) ∼ 1
2

12 sinkx( ) Dn(y)1 yDn1 1(y)
[ ]

: (35)

By combining the odd-n latitudinal modes using Eq. (7), we
can further write

T(0) ∼ 1
2

12 sin kx( ) y2 D0(y)1D0(y); (36)

T(n) ∼ 1
2

12 sinkx( ) y2Dn(y) for n. 0: (37)

By multiplying T(n) by an and summing over n, we get the
asymptote of the solution T for Lx → 0:

T ∼ 1
2

12 sin kx( ) y2 D(y)1 a0D0(y): (38)

This result is valid for any bounded function D, not only the
Gaussian distribution given in Eq. (30). A scale analysis
reveals the first order for w: «T5O (D), while Q5O D=Lx

( )
so that «T,,Q and

w∼ k cos (kx)D(y)5Q; (39)

which expresses a balance between heating and transport.
The asymptotes for the zonal and meridional winds can be

obtained using Eqs. (1) and (2):

u ∼ 2 2 12 sin kx( ) D(y)1 y
2
dD
dy

[ ]
1 a0D0(y); (40)

y ∼ 2k cos (kx) yD(y); (41)

valid for any bounded function D. For heating following a
Gaussian distribution symmetric about the equator [Eq. (30)
with y0 5 0], which is the case of interest in this Part I,
Eq. (40) further simplifies into

u ∼ 2 2 12 sin kx( ) 12 y2

4L2
y

( )
D(y)1 a0D0(y); (42)

which is negative around the heating center, indicating upper-
tropospheric easterlies and low-level westerlies in this region.
The zonal wind is maximum on the equator at the western
boundary of the heating region (x 5 2Lx), and it decreases
both eastward and poleward, eventually changing sign.

If Ly → 0 as well, all the results above hold, and the last term
on the right-hand side of Eq. (42) is negligible: the equatorial
zonal wind scales with 1/Ly and the jets extends in longitude all
the way to the eastern boundary of the heating region (x 5 Lx)
and in latitude to y 5 62Ly on both sides of the heating center.
This limit shows that the Gill response is zonally asymmetric
even for scales that are much smaller than the equatorial radius
of deformation: it is characterized by a westerly low-level jet at
the heating center. This suggests significant limitations on the
approach considering that small systems in the equatorial regions
are well approximated by nonrotating systems.

e. A baseline: The f-plane case

The zonal asymmetry that is characteristic of the Gill circula-
tion results from the b effect. This calls for a further evaluation of
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this effect. To do so, we also present some elements of the solu-
tion on an f plane. In this case, the solution is a damped inertio-
gravity wave. Equations for momentum and continuity reduce to

w5 2
«

«2 1 f 2
∇T; (43)

T5
1
«
Q1

1
«2 1 f 2

∇T; (44)

in which ∇ is the Laplacian operator. In the equatorial case, f 5
0, i.e., rotation is neglected, and the solution is a damped gravity
wave, in which the horizontal wind is exclusively divergent.

These equations make clear that, in the absence of any cir-
culation, the temperature response is the direct thermody-
namic response Q/«. Vertical energy transport appears as a
diffusive term DT/(«2 1 f2) that damps temperature gradients
and makes the equilibrium temperature response to heating
spatially smoother than the heating itself. Both the ascending
motion and diffusive effect are larger in the equatorial case (f
5 0) than in the off-equatorial case (fÞ 0).

Scale analysis allows us to establish the asymptote of this
solution for small horizontal extent of the heating, if Lx → 0
(or Ly → 0, since this set of equations is isotropic). If the scal-
ing of the temperature is T , the scaling of the diffusive term
on the right-hand side of Eq. (44) is

1
«2 1 f 2

∇T ∼ 1
«2 1 f 2

T
L2

x
..T · (45)

Consequently, the term on the left-hand side of Eq. (44) is
negligible, and this equation shows a balance between vertical
transport and heating w ∼Q in the limit of very small horizon-
tal extents of the heating, as for the Gill circulation.

3. Results

a. Temperature and wind response

Here, we present the features of the solutions in terms of
temperature, surface winds, and midtropospheric vertical
motion for heating distributions Q with a few different hori-
zontal extents. Figure 1 depicts contours of temperature
perturbation and surface velocity field for the Gill circula-
tion forced by heating of different meridional scales, but
with the same total, horizontally integrated heating [Q]:
Ly 5 1 (equatorial radius of deformation, Fig. 1a), Ly 5 1/2
(Fig. 1b), and Ly 5 1/4 (Fig. 1c), with a fixed aspect ratio so
that Lx 5 3Ly (corresponding to a heating pattern close to cir-
cular). Figure 2 shows the corresponding contours of midtro-
pospheric vertical velocity together with contours of heating.
Figures 1a and 2a are almost identical to the symmetric forcing
presented in G80, the only difference being the longitudinal
extent: Lx 5 3 here while G80 showed solutions for Lx 5 2.

As expected, the Gill circulation exhibits Kelvin wave east-
erlies east of the heating region and cyclonic gyres straddling
the equator west of it, with maxima of temperature at the
center of the gyres (Fig. 1). As the horizontal extent of the heat-
ing is decreased, winds get stronger, especially the equatorial

westerly jet between the gyres, and the off-equatorial tempera-
ture maxima move closer to the equator, they even merge for
small Ly (Fig. 1). As the horizontal extent of the heating is
decreased, the maximum vertical speed increases faster than
the maximum heating, which scales with L21

x L21
y , and the verti-

cal speed pattern becomes more similar to that of the heating
(Fig. 2).

Overall, the meridional extent of the response decreases.
The eastward extent of the temperature and horizontal-wind
response increases and the westward extent decreases slightly
with decreasing horizontal extent of heating (Fig. 1). This
reveals a decrease in the Rossby wave response in the west,
while the Kelvin wave response expands eastward. The latter
corresponds to an increase in the projection of D on D0 with
decreasing Ly, which is consistent with the expression of a0
[see Eq. (27)].

b. Overturning circulation

One of the most important characteristics of a tropical cir-
culation is its overturning mass flux, because of its potential
interaction with the hydrologic cycle. We define the intensity
of the overturning circulation G as the upward vertical mass
flux integrated over the horizontal domain (which, by mass
conservation, is the same as the downward vertical mass flux
integrated over the domain):

G5

� �
w. 0

wdx dy: (46)

FIG. 1. Solutions for the Gill circulation: temperature response
(contours) and low-level velocity (vectors) for (a) Ly 5 1 (equatorial
radius of deformation), (b) Ly 5 1/2, and (c) Ly 5 1/4. In all cases,
Lx 5 3Ly.

J OURNAL OF THE ATMOS PHER I C S C I ENCE S VOLUME 798

Brought to you by Meteo-France | Unauthenticated | Downloaded 08/25/22 04:19 PM UTC



The value of G can be computed numerically using the expres-
sion of w in Eq. (25).

Figure 3a shows the intensity G of the overturning circu-
lation, as a function of the characteristic extents of heating
Lx and Ly. For Lx → 0 or Ly → 0, G has the same limit. As
shown in section 2d, in the limit Lx → 0, w ∼Q . 0 in the
heating region and by spatial integration, G ∼ [Q]. It
appears that G has the same limit for Ly → 0.

The f-plane case described in section 2e sheds some light
on this: the damped inertio-gravity wave presents the same
limit for w ∼ Q for Lx or Ly → 0, and therefore also G ∼ [Q].
For small-scale heating, the heating Q and the local tempera-
ture response to this heating Q/« are very peaked at the cen-
ter of heating, the diffusive transport is therefore very
efficient at reducing the temperature response, so efficient
that the resulting temperature perturbation is negligible

compared to Q and the main balance is between vertical
energy transport and heating (w ∼ Q). We hypothesize that
the physical mechanism is the same in the Gill circulation for
both Lx → 0 and Ly → 0.

G decreases with increasing Lx and Ly, in a similar fashion
for both scales [for Ly 5 1, the sensitivity to Lx is also docu-
mented in Iipponen and Donner (2021)]. There are two fac-
tors contributing to this:

• First, even without rotation (i.e., the f-plane case detailed
in section 2e with f 5 0) G decreases with increasing hori-
zontal extent of the heating. Indeed, as the horizontal
extent increases, Q becomes spatially smoother because
[Q] is fixed. As a result, the diffusive effect of large-scale
transport becomes less efficient at damping the tempera-
ture response. W 5 Q 2 «T becomes smaller, and by spa-
tial integration, this decrease is transmitted to G. A similar
sensitivity to zonal scale and vertical scales was found by
Iipponen and Donner (2021) for a nonrotating, meridio-
nally averaged model of the Walker circulation.

• Rotation increases the sensitivity of the overturning circula-
tion to the horizontal extent of the heating pattern. Indeed,
Fig. 1 shows that rotation creates gyres straddling the equa-
tor, which are mostly rotational, while the damped gravity

FIG. 2. Forcing and solution for the Gill circula-
tion: heating (dashed lines) and midtropospheric
vertical velocity (solid lines) for (a) Ly 5 1, (b) Ly

5 1/2, and (c) Ly 5 1/4. In all cases, Lx 5 3Ly.

FIG. 3. (a) Intensity G of the overturning circulation; the letters
“a,” “b,” and “c” indicate the cases shown in Figs. 1 and 2, and
“G80” indicates the case discussed in G80 (contours interval
0.5); (b) contribution G∗u of the zonal flow to the overturning cir-
culation (in % of G∗); and (c) contribution G(0;1)

∗u of the easterly
flow to the overturning circulation (in % of G∗).
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wave is exclusively divergent. The poleward flow associated
with these gyres compensates most of their equatorward flow
and we expect the meridional wind to contribute little to the
divergence of the horizontal wind and associated upward
motion. We can also propose an energetic interpretation of this
sensitivity.1 The energy source of the system is the heating, and
the sinks are the kinetic energy loss through Rayleigh friction
and the thermal energy loss through Newtonian cooling, the
sum of which is proportional to the total energy (kinetic plus
thermal). Assuming the global thermal energy (and thermal
energy loss) does not vary significantly with rotation, the global
kinetic energy should be similar with and without rotation.
Without rotation, all kinetic energy corresponds to divergent
motion while in the rotating case part of it is associated with
rotational motion and the kinetic energy of divergent motion is
smaller than without rotation. We can therefore expect the
divergent flow to be weaker with rotation than without.

A more quantitative understanding of G can be hindered by
the fact that the domain of integration in Eq. (46) is determined
by the field w itself, which we know only as a sum. But Fig. 2
suggests that the upward motion is limited to a region between
2Lx and Lx in longitude, with a meridional extent that scales
with Ly. We find that G can be approximated by the integral G∗
of w over the domain [2Lx, Lx], [24Ly, 4Ly]), with the latitudi-
nal bounds corresponding to twice the e-folding distance ofD:

G∗ 5
�4Ly

2 4Ly

�Lx

2Lx

w dx dy ≈ G: (47)

Approximating G by G∗ introduces an error that is small
(,5%) for most relevant values of Lx and Ly, but becomes

larger is both Lx and Ly are large. It is up to 16%, for the
maximum values we have considered ∼( Lx, Ly) 5 (6, 2); nev-
ertheless, combinations of such large values of Lx and Ly are
outside the observed range (Lx 5 6 corresponds to more than
a quarter of Earth’s circumference and Ly 5 2 to heating that
extend to the extratropics in both hemispheres), and G∗ is
therefore a reasonable approximation to G for realistic extents
of Q. This approximation allows us to decompose the inten-
sity of the overturning circulation into the sum of contribu-
tions from the different latitudinal modes:

G∗ 5
∑∞
n5 0

G(2n)
∗ 5

∑∞
n5 0

G(2n;1)
∗ 1G(2n;2)

∗ ; (48)

with G(2n;1)
∗ and G(2n;2)

∗ the contributions of the first and second
part of the response to the projection of the heating latitudi-
nal distribution D on the nth symmetric latitudinal modes
D2n, i.e., a2n multiplied by the response to heating in the form
F(x)D2n(y):

G(2n;i)
∗ 5 a2n

�4Ly

2 4Ly

�Lx

2Lx

w(2n;i) dxdy; (49)

for i 5 1, 2. Appendix B shows that we can write these contri-
butions as

G(2n;1)
∗ 5g2n Lx( )f2n Ly

( )
1 12g2n Lx( )[ ]

g2n;1 Ly
( )

, (50)

G(2n;2)
∗ 5g2n1 2 Lx( )f2n Ly

( )
1 12g2n1 2 Lx( )[ ]

g2n;2 Ly
( )

, (51)

with the variation in Lx given by the series of functions g2n:

g0 5
1
2
q(0)0 Lx( ) 5

1
2
11 e2 2«Lx

11«2l2x
;

g2n 5
1
2
q(2n)2n 2Lx( )

2n2 1
5

1
2
q(2n2 2)
2n 2Lx( ) 5

1
2
11 e2 2(4n2 1)«Lx

11 (4n2 1)2«2l2x
for n. 0;

(52)

with lx 5 1/k5 2Lx/p; and the variation in Ly given by

f2n 5 a2n Ly
( )

I2n with I2n 5
�4Ly

2 4Ly

D2n dy; (53)

g2n;1 5 2
8n

4n2 1
a2n Ly

( )
D2n2 1 4Ly

( )
; (54)

and

g2n;2 5
4

4n1 3
a2n Ly

( )
D2n1 1 4Ly

( )
: (55)

Figure 4 shows these functions for n # 5. In terms of
amplitude, G∗ is dominated by the response of mode n 5 0,
because the differences f0 2 g0,1 5 f0 and f0 2 g0,2 are the
largest, and because g0’s decrease with increasing Lx is the
slowest of all g2n. But in terms of sensitivity to Lx and Ly,
modes with larger n contribute significantly.

Since g2n(0) 5 1, G(2n;i)
∗ 0;Ly

( )
5 f2n for all n and i 5 1, 2; we

can establish that

G∗ 0;Ly
( )

5 2
�4Ly

2 4Ly

∑∞
n5 0

a2nD2n dy5 2
�4Ly

2 4Ly

Ddy5 erf(2)[Q]; (56)

which is a good approximation to G(0, Ly) 5 [Q] (erf(2) ≈
0.995). This limit is independent of Ly, which is consistent
with Fig. 3a. G∗ also appears to tend toward a value close to
[Q] for Ly → 0.

1 The supplementary material shows that our quasi-analytical
solutions to the linear equations with the longwave approximation
are very similar to the numerical solutions to the full nonlinear,
energy-conserving equations, which shows that our equations
approximately satisfy energy conservation and energy-based rea-
soning is sound.
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With g2n → 0 for Lx → ∞, each contribution G(2n;i)
∗ tends

toward g2n,i for Lx → ∞. Figure 4a shows the functions g2n for
n from 0 to 5. The decrease of g0 with Lx results from the sen-
sitivity of the diffusive effect of large-scale circulation
described above (since the first component of the response to
D’s projection onto D0 is a damped Kelvin wave, G(0;1)

∗ is not
affected by rotational effects). The decay of g2n with Lx is
increasingly fast with increasing n, which means that the
larger n (and the larger i), the faster the convergence of G(2n;i)

∗
toward its limit g2n,i for Lx → ∞. A more intricate latitudinal
structure of heating (i.e., a larger n) yields a stronger sensitiv-
ity of the circulation response to Lx. We can attribute this
change in sensitivity to the effect of rotation: for larger n, the
heating pattern has extrema farther from the equator, where
the effect of rotation is larger and temperature anomalies gen-
erate circulations that are increasingly rotational and less and
less convergent, creating less vertical motion.

From its value for Lx 5 0 independent of Ly [see Eq. (56)],
the decrease of G∗ with Lx is determined by the circulation
responses to heating along D2n, f2n(Ly) for Lx 5 0, and
g2n,i(Ly) for Lx → ∞. The sensitivity of these functions f2n and
g2n,i to Ly result from (i) the change in projection of D onto
the latitudinal modes D2n, given by a2n, and (ii) the extension
of the horizontal domain of integration ([2Lx, Lx], [24Ly,
4Ly]) with Ly. Figures 4b–4d show functions f2n(Ly) and
g2n,i(Ly). We can distinguish two domains:

• Ly $ 1: for Ly 5 1, D 5 D0—this is the case described in
G80. For increasing Ly . 1, D is less and less peaked at
the equator; it projects increasingly on higher-and-higher-n
Dn while projecting less and less on D0, as shown in
Fig. 4b. Because of the exponential decay of Dn(4Ly) with
increasing Ly, g2n, 1 and g2n, 2 are negligible in this range
of Ly (see Figs. 4c,d); for the same reason, I2n is similar
to its limit I∞2n

2 for Ly → ∞. As a result, G(2n;i)
∗ ≈

g2(n1 i21) Lx( )a2n Ly
( )

I∞2n and its variation with Ly is mostly
determined by the variation of a2n (see Figs. 4b–d), with a
decreasing contribution of mode 0 and an increasing con-
tribution of higher and higher n modes for increasing Ly.
Considering the sensitivity of the functions g2n,i(Lx) to n
explained above, the decrease of G∗ with Lx is therefore
larger for larger Ly. Since G∗ is independent of Ly for Lx 5

0, this explains the sensitivity of G∗ to both Lx and Ly.
• Ly , 1: there is still a strong influence of the response of

mode n 5 0 and the influence of modes with larger n is
complex. For Ly close to zero, both a2n(0) and I2n ≈
8LyD2n(0) alternate sign as (21)n [see Eqs. (27) and (5)],
so f2n is positive for all n. But f2n 2 g2n,1 is negative for n .

0, which means that the contributions to the circulation
G(2n;1)
∗ increases with increasing Lx. f2n 2 g2n,2 is positive

and G(2n;2)
∗ decreases with increasing Lx and compensates

the increase of G(2n;1)
∗ . For Ly closer to 1, f2n, g2n,1, g2n,2,

and their differences can change sign for n . 0 since D2n

and D2n61 changes sign at least once over the interval
[24Ly, 4Ly], resulting in an increase of the contributions
G(2n;i)
∗ with increasing Lx in intervals where a2n(f2n 2 g2n,i) ,
0. These contributions in these intervals reduce the sensitiv-
ity of G∗ to Lx and, since G∗(0;Ly) is a constant, G∗ for Lx Þ

0 is larger for reduced sensitivity to Lx, i.e., for smaller Ly.

Despite this overall complexity, it appears clearly that the two
components of the response to heating along D0 are the main
contributors to G∗ and its sensitivity. This is because in this
mode, the Kelvin wave pattern and the Rossby wave pattern
both contribute to low-level wind convergence in the region
of ascent through the easterlies at the eastern boundary (for
the first component) and westerlies at the western boundary
(for the second component). By contrast, the two components
for modes with n . 0 are opposite close to the equator, with
gyres that circulate in opposite directions, and there is a sig-
nificant amount of compensation between components of the
response to heating alongD2n with n. 0.

Thanks to the continuity equation, we can also decompose
G∗ into the sum of a contribution from the meridional wind (y
integrated over the boundary at y564Ly) and a contribution
G∗u from the zonal wind (u integrated over the boundaries at
x 5 6Lx). And each contribution G(2n;i)

∗ can also be decom-
posed in the same way:

G∗ 5G∗u 1G∗y and G(2n;i)
∗ 5G(2n;i)

∗u 1G(2n;i)
∗y :

FIG. 4. Functions determining the sensitivity of the contribution
G(2n;i)
∗ to the longitudinal extent Lx and Ly of heating for n # 5: (a)

g2n(Lx) gives the variation of G(2n;1)
∗ and G(2n22;2)

∗ from the f2n for Lx

5 0 to, respectively, g2n,1 and g2n,2 for Lx → ∞; (b) a2n the projec-
tion coefficient of D on the latitudinal mode D2n, normalized by
|a2n(0)/a0(0)|; (c) f2n (thick lines) and g2n,1 (thin lines) give the limits
of G(2n;1)

∗ for, respectively, Lx 5 0 and Lx → ∞; and (d) f2n (thick
lines) and g2n,2 (thin lines) give the limits of G(2n;2)

∗ for, respectively,
Lx 5 0 and Lx →∞.

2

I∞2n 5
���
p

√ (2n)!=2n2 1n!:
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Because u(0,1)(2Lx) 5 0 and u(2n,i)(Lx) 5 0 for all n . 0 or
i 5 2, the contribution from the zonal wind at the eastern
border results exclusively from the damped Kelvin wave
extending eastward from the heating region, while the con-
tribution from the zonal wind at the western border results
from a combination of damped Rossby waves. By integrat-
ing u given in Eqs. (21)–(24), we can write (see last para-
graph of appendix B)

G(2n;1)
∗u 5g2n Lx( ) f2n Ly

( )
2 4n2 1( )g2n;1 Ly

( )[ ]
; (57)

G(2n;2)
∗u 5g2n1 2 Lx( ) f2n Ly

( )
1 4n1 3( )g2n;2 Ly

( )[ ]
; (58)

and we can compute G∗u by summing over n. Figure 3b shows
that except for small Ly, G∗u is the dominant contribution to
G∗. The smaller contribution of the meridional wind G∗y results
from the partial compensation between the equatorward and
poleward branches of the gyres. And the westerly low-level
zonal flow into the ascending region through its western
boundary, which is also part of these gyres, contributes very
significantly to the overturning circulation. In the limit Lx →
0, G∗ ≈ G∗u. Section 2d also shows that, in this limit, w ∼ Q;
this means that the region of ascent is the region of heating
that extends to infinity in the latitudinal direction, so that
there is no flow at the meridional boundaries:

Gu ∼ G ∼ [Q] and Gy ∼ 0 (59)

irrespective of Ly: this result is valid for both G and its approx-
imation G∗.

Figure 3c shows that the contribution G(0:1)
∗u of the damped

Kelvin wave represents a significant fraction of G∗ (and G∗u)
except for small Ly. This relative contribution is larger than
60% for large Lx, which is consistent with the results in Iippo-
nen and Donner (2021, see their Fig. 4), and it can be as low
as one-third for small Lx and large Ly, which shows the impor-
tance of the low-level westerly jet associated with the damped
Rossby waves for small Lx, even away from the limit Ly → 0.

c. Equatorial westerly jet

The main feature of the zonal asymmetry of the Gill circu-
lation is the low-level westerly jet located at and around the
heating center, which does not exist in the f-plane case. This
feature is of particular interest for the potential coupling of
circulation with explicitly modeled diabatic processes. Since
such a low-level jet can modulate the surface turbulent heat
fluxes, it could influence tropical intraseasonal variability
(Sobel et al. 2008, 2010) and contribute to horizontal moisture
advection, which is thought to contribute to the eastward
propagation of tropical intraseasonal disturbances (Maloney
et al. 2010; Leroux et al. 2016). The two cyclonic gyres that
extend west of the heating center on both sides of the equator
interact constructively to create this jet. As can be seen in Fig.
1, as the scale of the heating decreases, the gyres become
smaller, faster, and closer to the equator, which accelerates
the low-level westerly jet and decreases its latitudinal extent.
For infinitely small heating, the jet is infinitely fast at the
equator, as established in section 2d.

As metrics of this jet, we will study the low-level wind
speed at the heating center: uo 5 2u(0, 0) (u describes the
first baroclinic mode, so that low-level winds have the
opposite sign), the zonal extent of the jet xu defined as the
zonal coordinate at which u changes sign along the x axis:
u(xu, 0) 5 0, the meridional extent of the jet yu defined as
the positive meridional coordinate at which u changes sign
along the y axis: u(0, yu) 5 0, and the integrated intensity

of the jet: U5 2

�yu

2yu
u(0;y)dy, which describes the low-

level eastward mass transport around the equator. Figure 5
shows the sensitivity of these four metrics as a function of
Lx and Ly.

The low-level equatorial wind uo at the heating center
decreases with both Lx and Ly (see Fig. 5a). It tends toward
zero for large Lx or large Ly, and toward infinity if both Lx

and Ly tend toward zero. We can also decompose uo into a
sum of contributions from the different modes:

uo 5
∑∞
n5 0

u(2n)o 5
∑∞
n5 0

u(2n,1)o 1u(2n,2)o

[ ]
; (60)

with u(2n,1)o and u(2n,2)o the contributions of the first and sec-
ond components of the response to the projection of the
heating latitudinal distribution D on the nth symmetric lati-
tudinal mode D2n. Appendix C shows that there is a signifi-
cant compensation between u(2n,2)o and u(2n,1)o for n . 0
because the two gyres straddling the equator have opposite
rotation (cyclonic vs anticyclonic) in the two components.
We can write

FIG. 5. Characteristics of the equatorial westerly jet in the Gill cir-
culation: (a) westerly zonal velocity at the origin uo; the letters “a,”
“b,” and “c” indicate the cases shown in Figs. 1 and 2 and “G80”
indicates the case discussed in G80; (b) intensity U of the jet; (c)
zonal extent xu of the jet normalized by Lx; (d) meridional extent yu
of the jet.
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u(2n)o 5n2n Lx( )h2n Ly
( )

; (61)

with the variation in Lx (respectively, Ly) encapsulated in the
series of functions n2n (respectively, h2n):

n0 Lx( )5 2
1
2
q(0)0 (0)1 3

2
q(0)2 (0);

n2n Lx( )5 2 n2
1
4

( )
q(2n)2n (0)
2n2 1

1 n1
3
4

( )
q(2n)2n1 2(0); for n. 0,

(62)

h0 Ly
( )

5 a0 Ly
( )

D0(0)5
���������

2
11L2

y

√
;

h2n Ly
( )

5 2a2n Ly
( )

D2n(0)5 (2n)!
(2nn!)2

12L2
y

11L2
y

( )n ���������
8

11L2
y

√
;

for n. 0: (63)

Figure 6 shows the functions n2n and h2n for n # 5. These
show that the response to the forcing along D0 is the larg-
est contribution to uo except for Lx and Ly → 0, but most
latitudinal modes do contribute to the sensitivity of uo to
Lx and Ly. The functions n2n include the two compensating
effects of u(2n,1)o and u(2n,2)o . As a result of this compensation,
n2n(0) 5 1 is independent of n, and n2n decreases toward 0
for Lx → ∞. This decrease is faster for larger n, similarly to
the functions g2n that describe the sensitivity of G∗ to Lx.

The functions h2n describe the sensitivity of u(2n)o to Ly,
which is essentially dominated by the sensitivity of a2n in
terms of amplitude (see the similarity between Figs. 4b and
6b), but D2n(0) contributes to the sign: D2n(0)’s sign is given

by (21)n, while a2n is given by 12L2
y

( )
= 11L2

y

( )[ ]n
; as a

result, h2n is positive for all n if Ly , 1 and for even n if Ly . 1;
it is negative for odd n if Ly . 1. As in the case of G∗, we find
this distinction between two regimes on each side of Ly 5 1:

• For Ly # 1, all latitudinal modes interact constructively to
strengthen the low-level westerly jet. The amplitudes of
functions h2n decrease with Ly. For all n . 0, h2n and its
(n 2 1) first derivatives are zero at Ly 5 1; h2n also slowly
decreases with increasing n for Ly 5 0 {h2n(0) 5 [1 2

(2n)21]h2n2 2(0)}. h0 is different, first because h0(1) 5 1
(case with D 5 D0), and also because h0(0) is not larger
than h2(0): this results from the specificity of the first com-
ponent of the response to heating along D0, i.e., the
damped Kelvin wave, which decreases the low-level west-
erly jet more efficiently than a competing gyre. The
decrease of all h2n with Ly in this regime results from the
decrease in the amplitudes of projection coefficients a2n
with Ly (see Fig. 4b), which results directly from the
smoother latitudinal distribution of heating with larger Ly.
Moreover, the decrease in |a2n| with Ly is larger for larger
n, so that the relative contribution to uo from latitudinal
modes with large n decreases with Ly, which decreases its
sensitivity to Lx.

• For Ly . 1, there is still a strong influence of the response
of mode n 5 0, and the influence of modes with larger n is
complex. Because h2n changes sign for each increment in
n, there is considerable compensation between the contri-
butions from successive latitudinal modes. For even n, h2n
. 0 and u(2n)o decreases with increasing Lx; for odd n, h2n

, 0 and u(2n)o increases with increasing Lx u2no
∣∣ ∣∣decreases( )

,

which reduces the sensitivity of uo to Lx. The sensitivity of
|h2n| to Ly is still controlled by that of a2n. The projection

coefficient a0 decreases as 11L2
y

( )21
, and, for n . 0, a2n

increases from zero for Ly 5 1 to a maximum for a value
of Ly that increases with n, because D projects more and
more onto latitudinal modes that have significant ampli-
tude farther and farther away from the equator as Ly

increases. As a result, the contribution to uo from latitudinal
modes with n . 0 comes largely from a subset of modes
with similar n, with significant compensation between them,
and as a result, its sensitivity to Ly results mostly from the
contribution of the latitudinal mode n 5 0. For Ly → ∞,
the contributions of latitudinal modes with larger and larger
n get relatively larger, but all projections coefficients a2n
tend rapidly to zero, so that uo also tends to zero.

Figure 5c shows the eastward longitudinal extent xu of the
low-level westerly jet normalized by Lx. For small Lx and Ly,
xu ∼ Lx, which means that the westerly jet extends over the
whole heating region at the equator. xu decreases with Ly and
increases significantly less than Lx if Lx is increased. For very
large Lx or Ly, xu tends toward zero (not shown), which
means that the zonal flow becomes more symmetrical in longi-
tude with respect to the heating center, with low-level wester-
lies to the west and easterlies to the east. Figure 5d shows, on
the other hand, that the latitudinal extent yu of the low-level
westerly jet increases mostly with Ly. For Lx → 0, yu scales
like 2Ly for Ly → 0 and this scaling is approximately valid for
larger values of Ly as long as Lx → 0: the region of westerlies
scales in latitude with the heating region. For Lx . 0, yu is

FIG. 6. Functions determining the sensitivity of the contributions
u(2n)o to the westerly zonal velocity at the origin uo for n # 5: (a)
n2n(Lx) gives the variation of u(2n)o with Lx and (b) h2n gives the vari-
ation of u(2n)o with Ly.
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small but nonzero for Ly 5 0 and the latitudinal widening of
the region of westerlies with increasing Ly is less pronounced
than for Lx → 0. As a result, while yu increases slightly with
increasing Lx for Ly → 0, it decreases with Lx for Ly . 0.7.
The sensitivities of yu and uo help explain that of the intensity
U of the low-level westerly jet shown in Fig. 5b: as the velocity
uo at the center of the jet decreases with Ly, its latitudinal
extent yu increases, and as a result, U is not very sensitive to
Ly. On the other hand, U decreases with Lx because of the
dominant influence of uo. Using Eq. (42) in section 2d, we can
confirm the following scalings in the limit Lx, Ly → 0:

uo ∼ 2
Ly

; (64)

xu ∼ Lx; (65)

yu ∼ 2Ly; (66)

and

U ∼ 2
���
p

√
erf(1)1 4e2 1: (67)

Note that the maximum westerly wind is located at the equa-
tor, west of the heating center (not shown). It is furthest from
the heating center, at (2Lx, 0) for Lx → 0 (see section 2d).

4. Summary and conclusions

In this article, we explore the scale sensitivity of the equato-
rial Gill circulation, focusing on characteristics of this circulation
likely to couple it with the energy cycle: we study the sensitivity
of the overturning circulation intensity (total upward/downward
mass flux), which interacts with cloud processes, and the charac-
teristics of the low-level westerly flow, which influences turbu-
lent surface heat fluxes. In all our cases, we impose the same
horizontally integrated diabatic heating in order to understand
how the dynamical response of the atmosphere depends on
how spatially concentrated this diabatic heating is. In this Part I,
we study the case of diabatic heating symmetric about the equa-
tor (Part II studies asymmetric cases).

We find that the intensity of the overturning circulation
decreases with both the longitudinal and the latitudinal
extents of the diabatic heating. Part of this sensitivity can be
explained by the diffusive effect of vertical energy transport
on temperature perturbation; as a result, this perturbation T
is spatially smoother than the diabatic heating Q. This diffu-
sive effect is less efficient for large horizontal scales of the
heating than small scales, because the anomalies of T directly
forced by Q are smoother. This also means that the vertical
motion is smaller for large scales than for small ones. This
sensitivity is enhanced by the influence of rotation, which
causes the rotational part of the horizontal winds to be larger,
as evidenced by the off-equatorial gyres west of the heating
region. Since the imposed diabatic heating powers both the
divergent and rotational circulations, stronger rotational
winds result in weaker divergent winds and less intense over-
turning circulation. These results suggest that the coupling of

the Gill circulation with the energy and hydrologic cycle
would result in a stronger moisture-convergence feedback for
small heating regions than for large ones.

As for the low-level westerly jet in the region of diabatic
heating, we find that for most metrics, it is relatively smaller
and weaker for large horizontal scales than for small ones. The
velocity at the center of the jet decreases with increasing scales,
the latitudinal and longitudinal extents of the jet increase with
increasing scales, but less than the latitudinal and longitudinal
scales of the diabatic heating. The total zonal mass flux in this
jet decreases with the longitudinal scale of the diabatic heating
and its sensitivity to the latitudinal scale is small. Overall these
results suggest that, in the heating region, the coupling with sur-
face turbulent heat fluxes would result in a decrease of surface
fluxes in easterlies and an increase in westerlies via the wind-
induced surface heat flux mechanism. Over most of the tropics
where trade winds are dominant, this creates a negative feed-
back to a diabatic-heating perturbation. Over the equatorial
Indian Ocean where winds are westerlies, this would create a
positive feedback. The amplitude of this feedback would be
larger for small heating regions than for large ones.

Whether the amplitude and pattern of these moisture-con-
vergence and surface-flux feedbacks would allow to sustain or
enhance a circulation is beyond the scope of this article since
it would require explicit coupling with the hydrologic and
energy cycles; our results provide insights into the scale sensi-
tivity of such feedbacks.

Our results are significant in general for the steady or
slowly evolving tropical circulations, for which the dynamical
response is very similar to the steady response. In particular,
they are relevant for the MJO, the fundamental mechanisms
of which are still debated (Yano and Tribbia 2017; Rostami
and Zeitlin 2019; Zhang et al. 2020; and references therein).
While the dynamical signature of the MJO resembles the sym-
metric solution described in G80, its latitudinal scale is
smaller, and the scale sensitivity of the overturning circulation
combined with its coupling to the hydrologic cycle might con-
tribute to explaining the MJO scale selection. Also, the MJO
convective disturbances do grow in the equatorial westerlies
of the Indian Ocean, and some studies have suggested that
these background winds are crucial to their development
(Sobel et al. 2008, 2010; Maloney et al. 2010; Leroux et al.
2016), particularly because of wind-induced surface-heat-flux
feedback described above, but also because of horizontal
moisture advection; the scale sensitivity of the low-level west-
erly jet suggests that such mechanisms are particularly active
for perturbations of small horizontal extent, e.g., during the
development of MJO disturbances.

The observed MJO and interannual climate variability pro-
vide multiple opportunities to evaluate whether the scale
dependency of observed circulations responding to equatorial
heating follows the sensitivity predicted by the Gill circula-
tion. This will be the topic of further work.
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APPENDIX A

A Few Properties of the Parabolic Cylinder Functions Dn

The parabolic cylinder functions Dn are defined by the
recursive Eq. (7). They also verify, as pointed out by G80
[their Eqs. (3.7) and (3.8)],

dDn

dy
1

y
2
Dn 5 nDn2 1; (A1)

dDn

dy
2

y
2
Dn 5 2Dn1 1; (A2)

and they are solutions of the differential equations:

d2Dn

dy2
1 n1

1
2
2

y2

4

( )
Dn 5 0: (A3)

D2n are even functions and D2n11 are odd functions of y.
We have

D2n1 1(0)5 05
dD2n

dy
(0); (A4)

D2n(0)5 2 (2n1 1)D2n22(0)5 2
1
2

( )n (2n)!
n!

5 2
dD2n1 1

dy
(0):

(A5)

Using Eqs. (A1) and (A2), we can also write�Y2

Y1

Dn1 1 dy5n
�Y2

Y1

Dn21 dy2 2 Dn Y2( )2Dn Y1( )[ ]
: (A6)

APPENDIX B

Contributions of the Latitudinal Modes to G∗

By using the expressions of w(2n,i) (i 5 1 or 2) in Eq. (25)
combined with the expressions of T(2n,i) from Eqs. (23) and
(24) we can write G(2n;i)

∗ as

G(2n;1)
∗ 5 a2n I2n 2

«

2

�Lx

2Lx

q(2n)2n dx I2n 1 2nI2n22[ ]
( )

; (B1)

G(2n;2)
∗ 5 a2n I2n 2

«

2

�Lx

2Lx

q(2n)2n1 2 dx I2n12 1 (2n1 2)I2n
[ ]( )

;

(B2)

for all n. We have used
�Lx

2Lx

F dx52 and introduced the
notation

I2n5
�4Ly

24Ly

D2n dy for n $ 0 and I22 5 0.

The differential Eqs. (11) and (14) yield the following
expressions for the integrals of the functions q(2n)2n(12):

«

�Lx

2Lx

q(0)0 dx5 22 q(0)0 Lx( ); (B3)

«

�Lx

2Lx

q(2n)2n dx5
1

4n2 1
4n2 22q(2n)2n 2Lx( )
[ ]

for n. 0;

(B4)

«

�Lx

2Lx

q(2n)2n1 2 dx5
1

4n1 3
22q(2n)2n1 2 2Lx( )
[ ]

for all n; (B5)

in which we have used q(0)0 2Lx( )50, q(2n)2n Lx( )50 for n .

0, and q(2n)2n12 Lx( )50 for all n.
Equation (A6) yields

I2n2 2 5
1

2n2 1
I2n 1 4D2n2 1 4Ly

( )[ ]
and

I2n1 2 5 (2n1 1)I2n 2 4D2n1 1 4Ly
( )

: (B6)

Using Eqs. (B3)–(B6), Eqs. (B1) and (B2) can be rewritten:

G(0;1)
∗ 5

q(0)0 Lx( )
2

a0I0; (B7)

G(2n;1)
∗ 5

q(2n)2n 2Lx( )
4n2 2

a2nI2n 2
8n

4n2 1
a2nD2n2 1 4Ly

( )

3 12
q(2n)2n 2Lx( )

4n2 2

[ ]
for n. 0; (B8)

G(2n;2)
∗ 5

q(2n)2n1 2 2Lx( )
2

a2nI2n 1
4

4n1 3
a2nD2n1 1 4Ly

( )
3 12

q(2n)2n1 2 2Lx( )
2

[ ]
for all n: (B9)

By replacing q(2n)2n by its expression from Eqs. (17) and (19),

and using q(2n)2n 5 (2n21)q(2n22)
2n , G(2n;i)

∗ can be written as in
Eqs. (50) and (51).

The contribution G(2n;i)
∗u to G(2n;i)

∗ from the zonal flow is
simply the integral of the zonal velocity u(2n, i) over the
zonal boundary of the rectangle (2Lx, 8Ly) where it is not
zero, multiplied by 6a2n. Using Eqs. (21), (23), and (24), it
can be written as

G(0;1)
∗u 5

a0
2
q(0)0 Lx( )I0 5G(0;1)

∗ ; (B10)

G(2n;1)
∗u 5 2

a2n
2

q(2n)2n 2Lx( ) I2n 2 2nI2n2 2[ ] for n. 0; (B11)
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G(2n;2)
∗u 5 2

a2n
2

q(2n)2n1 2 2Lx( ) I2n1 2 2 (2n1 2)I2n
[ ]

for all n:

(B12)
The last two can be simplified using Eq. (B6) into

G(2n;1)
∗u 5

q(2n)2n 2Lx( )
4n2 2

a2n I2n 1 8nD2n2 1 4Ly
( )[ ]

for n. 0;

(B13)

G(2n;2)
∗u 5

q(2n)2n1 2 2Lx( )
2

a2n I2n 1 4D2n1 1 4Ly
( )[ ]

for all n:

(B14)

By replacing q(2n)2n by its expression from Eqs. (17) and (19),

and using q(2n)2n 5 (2n21)q(2n22)
2n , G(2n;i)

∗u can be written as in
Eqs. (57) and (58).

APPENDIX C

Contributions of the Latitudinal Modes to uo

By using the expressions of u(2n,i) (i 5 1 or 2) in Eqs.
(23) and (24) we can write u(2n;i)o as

u(0,1)o 5 2
a0
2
q(0)0 (0)D0(0); (C1)

u(2n,1)o 5 2
a2n
2

q(2n)2n (0) D2n(0)2 2nD2n2 2(0)
[ ]

for n. 0; (C2)

u(2n,2)o 5 2
a2n
2

q(2n)2n1 2(0) D2n1 2(0)2 (2n1 2)D2n(0)
[ ]

for all n:

(C3)

Using Eq. (A5), we can express the linear combinations of
latitudinal modes at y 5 0 as proportional to D2n(0):

u(2n,1)o 5 2
a2n
2

q(2n)2n (0) 4n2 1
2n2 1

D2n(0); (C4)

u(2n,2)o 5
a2n
2

q(2n)2n1 2(0)(4n1 3)D2n(0); (C5)

for all n. u(0,1) is the westward wind associated with the
Kelvin wave response. u(2n,1)o is the westward equatorial
branch of the anticyclonic gyres along the equator for n . 0
and u(2n,2)o is the eastward equatorial branch of the cyclonic
gyres along the equator. They both scale with n and there is
considerable compensation between them; therefore it does
not provide any insight to present them independently. Their
sum yields Eq. (61).
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