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ABSTRACT: We investigate the steady dynamical response of the atmosphere on the equatorial b plane to a steady, local-
ized, midtropospheric heating source. Following Part I, which investigates the case of an equatorial diabatic heating, we
explore the sensitivity of the Gill circulation to the latitudinal location of the heating, together with the sensitivity to its hori-
zontal scale. Again, we focus on characteristics of the response that would be particularly important if the circulation inter-
acted with the hydrologic and energy cycles: overturning circulation and low-level wind. In the off-equatorial case, the
intensity of the overturning circulation has the same limit as in the equatorial case for small horizontal extent of the diabatic
heating, which is also the limit in the f-plane case. The decrease in this intensity with increasing horizontal scale of the diabatic
heating is slightly faster in the off-equatorial case than in the equatorial case, which is due to the increase of rotational winds
at the expense of divergent winds. The low-level westerly jet is more intense than in the equatorial case, with larger maximum
wind and eastward mass transport that tend to infinity for small horizontal extent of the diabatic heating. In terms of spatial
characteristics, this jet has a similar latitudinal extent as in the equatorial case but, unlike in the equatorial case, it extends far-
ther equatorward than poleward of the diabatic-heating center. It also extends farther eastward than in the equatorial case.

KEYWORDS: Atmosphere; Atmospheric circulation; Idealized models; Large-scale motions; Monsoons; Shallow-water
equations; Tropics

1. Introduction

Gill’s (1980, hereafter G80) seminal work showed that the
damped, linear, baroclinic dynamical response of the tropical
atmosphere to a localized, steady, midtropospheric diabatic
heating reproduces the main features of some tropical circula-
tions. G80’s study aimed to provide a very simple model of
the Walker circulation resulting from equatorial regional dia-
batic heating, a success with some caveats as pointed in
Reboredo and Bellon (2021, hereafter Part I), as well as of
the monsoon circulations resulting from off-equatorial dia-
batic heating (Webster 1972). Monsoon circulations exhibit
distinct features compared to circulations in response to equa-
torial forcing, and in particular a change of direction of off-
equatorial low-level winds from easterlies to westerlies to
form a monsoon jet (Ramage 1971; Joseph and Raman 1966).

In the context of slow intraseasonal oscillations (30–60
days), for which the circulation can be considered in quasi
equilibrium with the diabatic heating, the off-equatorial Gill
circulation is particularly relevant to the monsoon intraseaso-
nal oscillation [also called northward-propagating, boreal-
summer intraseasonal oscillation; see Goswami (2005) for a
review]. Although the main mechanisms of this intraseasonal
oscillation are still debated (Jiang et al. 2004; Bellon and Sri-
nivasan 2006; Bellon and Sobel 2008a; Boos and Kuang 2010;
Kang et al. 2010; Sharmila et al.2013; Gao et al. 2019), mois-
ture-convergence feedback and wind-induced surface heat
fluxes are expected to play major roles in the development
and propagation of the convective disturbances. A better the-
oretical understanding of the off-equatorial Gill circulation is

therefore useful to improve our grasp of the dynamical fea-
tures susceptible to impact these feedbacks.

G80 focused on two cases: the simplest case with diabatic heat-
ing symmetric about the equator and the simplest case with dia-
batic heating antisymmetric about the equator. G80 considered
that the monsoon circulation was well represented by the sum of
these two solutions, but monsoon circulations are probably bet-
ter depicted by the dynamical response of the tropical atmo-
sphere to a simple patch of off-equatorial diabatic heating rather
than by the response to the sum of these two heating patterns
(Wu et al. 2009), and extending G80’s work to study this
response is the motivation of this article. We base a lot of the
present work on the derivations presented in Part I, in which we
analyze the scale dependence of the equatorial Gill circulation.

In section 2, we present some specifics of the off-equatorial
case to complete the derivations in Part I. Section 3 presents
some solutions as well as the scale sensitivity of the overturning
circulation and of the low-level wind to the size and latitude of
the imposed diabatic heating. Section 4 summarizes our findings
and concludes. As in Part I, for brevity, we will refer to “imposed
diabatic heating” simply as “heating” in the next sections.

2. Method

a. Semianalytical solutions

We use the analytical results of Part I (sections 2a and 2b)
that we summarize briefly here. We use the Matsuno–Gill
equations (Matsuno 1966; G80; Part I):

«u2
1
2
yy 5 2xT; (1)
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1
2
yu 5 2yT; (2)

«T1xu1yy 5Q; (3)

with (u, y) the horizontal baroclinic velocity (i.e., the differ-
ence between upper-tropospheric and lower-tropospheric
velocity), and T the midtropospheric temperature. As for
the midtropospheric upward vertical speed, it can be
obtained using w 5 xu 1 yy 5 Q 2 «T. The online supple-
mentary material of Part I shows that the approximations
made to obtain these equations (linearization and longwave
approximation) are valid in the parameter range of interest,
i.e., for synoptic- and planetary-scale circulations. It proves,
in particular, that the linear equations approximately con-
serve energy.

On the right-hand side of Eq. (3), Q is the imposed heating,
in the form

Q5F(x)D(y); (4)

with

F(x)5 kcos(kx) for|x| ,Lx;
0 for|x| .Lx;

with k5
p

2Lx

{
(5)

and

D(y)5 1
Ly

exp 2
y2 y0( )2
4L2

y

[ ]
: (6)

This heating pattern is close to circular at its center for Lx 5

3Ly. By construction; the horizontally integrated heating is
kept constant: Q[ ]54

���
p

√
. The equatorial case with y0 5 0 is

the focus of Part I, and the focus of this Part II is to analyze
the solutions’ sensitivity to y0.

As shown in Part I, the method of solution is to use ana-
lytical solutions (T(n), u(n), y(n)) to the Matsuno–Gill equa-
tions for diabatic heating in the form Q(n) 5 F(x)Dn(y),
with Dn a parabolic cylinder function. D can be decom-
posed on the basis Dn(y)

{ }
n∈N, and the solution for heating

Q given by Eq. (4) can be written semianalytically as a
series of the solutions (T(n), u(n), y(n)) (see Part I for
details).

In the off-equatorial case with y0 Þ 0, D can be decom-
posed as follows:

D(y)5 ∑∞
n5 0

an Ly;y0
( )

Dn(y); (7)

with

a0 5

���������
2

L2
y 1 1

√
exp 2

y20
4 L2

y 1 1
( )⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭;

a1 5
y0 a0
L2

y 1 1
; (8)

and

an 5
y0 an2 1 1 L2

y 2 1
( )

an2 2

n L2
y 1 1

( ) for n. 1:

Indeed, for y0 5 0, this expression of an reduces to the expres-
sions of a2n and a2n 1 1 given in Part I [Eqs. (32) and (33)].

In practice, we approximate the infinite sum by a finite sum
up to a value n 5 m set by a convergence criterion (Cauchy
1821; see Part I).

b. Limits for heating with small zonal extent

Here, we explore the asymptotic solutions for Lx→ 0,
focusing on the interval 2Lx # x # Lx. Outside this interval,
there is no simple expression for the infinite sums or integrals
of exponentially decreasing modes that are solutions. Qualita-
tively, there is subsidence outside of [2Lx, Lx] in both the
b-plane and the f-plane cases.

Equations (38)–(41) in Part I give the asymptote in the limit
Lx→ 0 for all latitudinal heating distribution D. In particular,
we have in that limit w ∼Q, and, for the off-equatorial Gauss-
ian heating distribution given by Eq. (6):

u:2 2 12 sinkx( ) 12 y y0 2 y( )
4L2

y

[ ]
D(y)1 a0D0(y): (9)

In the limit Ly → 0, the second term on the right-hand side is
negligible in front of the first one.

3. Results

a. Temperature and wind response

We present here the features of the solutions in terms of
temperature, surface winds, and midtropospheric vertical
motion for a few cases with heating patterns of different hori-
zontal extents centered away from the equator. In all these
cases, we set Lx 5 3Ly so that isolines of heating are close to
circular near its maximum. We have investigated cases with
different ratios Lx/Ly and found that the sensitivity of the off-
equatorial Gill circulation to the aspect ratio of the heating
region is similar to the equatorial case discussed in Part I; in
particular, the relative sensitivity of the global metrics of the
circulation (intensities of the overturning circulation and the
low-level westerly jet) to y0 is almost independent of this ratio
Lx/Ly. We show results for Lx 5 1.5Ly and Lx 5 6Ly in
appendix A, and we focus on the case Lx 5 3Ly in the main
text of this article.

Figure 1 depicts contours of temperature perturbation and
surface velocity vectors forced by heating with meridional
scale Ly 5 1 (one equatorial radius of deformation, Figs. 1a,c)
and Ly 5 1/2 (Figs. 1b,d), centered at y0 5 1 (Figs. 1a,b) and
y0 5 2 (Figs. 1c,d). Figure 2 shows the corresponding contours
of midtropospheric vertical velocity together with contours of
heating. Figures 1a, 1b, 2a, and 2b in Part I show the corre-
sponding figures for the same heating pattern centered at the
equator (y0 5 0).
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The off-equatorial Gill circulation exhibits a strong rota-
tional gyre, located poleward and westward of the heating
center and a much weaker cyclonic gyre in the other hemi-
sphere; it also exhibits Kelvin wave easterlies east of the heat-
ing region (Fig. 1). A low-level westerly jet develops between
the equator and the heating center; it is similar to the
observed monsoon jets. Compared to the equatorial case
(Figs. 1a,b in Part I), the gyre next to the heating center and

the low-level westerly jet equatorward of it are faster; the Kel-
vin wave easterlies and the gyre in the other hemisphere are
weaker. Subsidence is preferentially west and poleward of the
heating center, and more so for large y0 and large horizontal
extent of the heating (Fig. 2).

The sensitivity of the off-equatorial Gill circulation to the
horizontal extent of the heating is similar to that of the equa-
torial circulation detailed in Part I. The smaller Ly, the faster

FIG. 2. Forcing and solution for the Gill circulation: diabatic heating (dashed contours) and
midtropospheric vertical velocity (solid contours) for (a) (y0, Ly) 5 (1, 1), (b) (y0, Ly) 5 (1, 1/2),
(c) (y0, Ly)5 (2, 1), and (d) (y0, Ly)5 (2, 1/2); in all cases, Lx 5 3Ly. Contour spacing is 0.1 in (a)
and (c) and 0.4 in (b) and (d), with black for w5 0 and red for w, 0.

FIG. 1. Solutions for the Gill circulation: temperature response (contours) and low-level velocity (vectors) for (a) (y0, Ly) 5 (1, 1),
(b) (y0, Ly) 5 (1, 1/2), (c) (y0, Ly) 5 (2, 1), and (d) (y0, Ly) 5 (2, 1/2); in all cases, Lx 5 3Ly; temperature contours are at (0.25, 0.5, 1, 1.5, 2,
3, 4, 5).
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the main gyre, the larger the temperature perturbations
(Fig. 1), and the faster the ascending motions (Fig. 2).

As the latitude y0 of the heating center is increased, the
gyre near the heating moves poleward and becomes faster,
and the temperature maximum increases, while the gyre in
the other hemisphere and the equatorial, Kelvin-like east-
erlies weaken (Fig. 1). The latter can be attributed to the
decrease of heating in the equatorial region. The ascending
motion weakens and becomes more asymmetric with
respect to the heating center (Fig. 2).

b. Overturning circulation

As in Part I, we study the intensity of the overturning circula-
tion, because of its relevance to the coupling between dynamics
and the hydrologic cycle. We define the intensity of the over-
turning circulation G as the upward vertical mass flux integrated
over the horizontal [see Eq. (46) in Part I]; by mass conserva-
tion, it is the same as the downward vertical mass flux inte-
grated over the horizontal. G is computed numerically on the
basis of the semianalytical solutions.

Figure 3a shows the intensity G of the overturning circulation,
as a function of y0 and Ly. In all cases, the longitudinal extent of
heating is still proportional to the latitudinal extent: Lx 5 3Ly,
so that Ly controls the horizontal extent of heating in
both directions. For Lx, Ly → 0, G is independent of y0: G ∼ [Q],
as established in section 2b). G decreases with Ly by up to 60%
as in the equatorial case. For y0 5 0, the sensitivity of G is that of
the equatorial case studied in Part I (the decrease with Ly corre-
sponds to the decrease along the diagonal of Fig. 3a in Part I). G
also decreases slightly with y0; Fig. 3b shows G as a percentage
of its value in the equatorial case (for y0 5 0), which confirms
that G only decreases by up to 15% for y0 going from 0 to 2.

This sensitivity is consistent with the effects of scale and
rotation commented in section 3a of Part I. As shown by Eqs.
(43) and (44) describing the f-plane case in section 2e of
Part I, the vertical energy transport act as a diffusive effect of
the direct, local temperature response Q/«. It is less efficient
for spatially smoother heating (i.e., larger scales) than for
peaked heating (i.e., small scales), and it decreases if the heat-
ing center is displaced poleward because rotational effects
become larger and a larger fraction of the energy input
Q powers rotational winds to the expense of divergent
motion. Equation (43) in Part I shows that, in the case of a
damped inertio-gravity wave, the vertical motion scales with

(«2 1 f2)21 and therefore decreases very significantly with
increasing f. The vertical velocity (Fig. 2) and the sensitivity
of G to y0 suggest that this decrease is not as steep for the off-
equatorial Gill circulation (on a b plane) as for the damped
inertio-gravity wave (on an f plane).

Figure 2 suggests that most of the upward motion is lim-
ited to a region between 2Lx and Lx in longitude, with a
meridional extent that scales with Ly. As in Part I, we find
that G can be approximated by the integral G∗ of w over the
domain ([2Lx, Lx], [y0 2 4Ly, y0 1 4Ly]), with the latitudi-
nal bounds corresponding to twice the e-folding distance
of D:

G∗ 5
�y1

y2

�Lx

2Lx

w dx dy ≈ G; (10)

with y2 5 y0 2 4Ly and y1 5 y0 1 4Ly. Approximating G by
G∗ introduces an error that is small for most of the domain of
(y0, Ly) values considered here. It becomes significant only
for unrealistically large horizontal heating regions. This
approximation allows us to analyze the contribution of the
different cylinder modes to the sensitivity of the overturning
circulation; it can be decomposed in a series:

G∗ 5
∑∞
n5 0

G(n)
∗ 5

∑∞
n5 0

G(n;1)
∗ 1G(n;2)

∗ ; (11)

with G(n;1)
∗ and G(n;2)

∗ the contributions of the first and second
part of the response to the projection of heating Q onto the
nth cylinder function Dn, i.e., an multiplied by the response to
heating in the form F(x)Dn(y).

G(n;i)
∗ 5 an

�y1

y2

�Lx

2Lx

w(n;i) dxdy; (12)

for i 5 1, 2. Appendix B shows that we can write these contri-
butions as

G(n;1)
∗ 5gn Lx( )fn y0;Ly

( )
1 12g2n Lx( )[ ]

gn;1 y0;Ly
( )

, (13)

G(n;2)
∗ 5gn1 2 Lx( )fn y0;Ly

( )
1 12gn1 2 Lx( )[ ]

gn;2 y0;Ly
( )

, (14)

with the variation in Lx given by the series of functions gn:

g0 5
1
2
q(0)0 Lx( ) 5

1
2
11 e2 2«Lx

11«2l2x
;

g1 5 1;

gn 5
1
2
q(n)n 2Lx( )

n2 1
5

1
2
q(n2 2)
n 2Lx( ) 5

1
2

11 e2 2(2n2 1)«Lx

11 (2n2 1)2«2l2x
for n. 0;

(15)

with lx 5 1/k5 2Ly/p; and the variation in y0 and Ly given by

fn 5 an Ly
( )

In with In 5
�y1

y2

Dn dy; (16)

gn;1 5 2
2n

2n2 1
an Ly

( )
Dn2 1 y1

( )
2Dn2 1 y2( )[ ]

; (17)

and
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gn;2 5
2

2n1 3
an Ly

( )
Dn1 1 y1

( )
2Dn1 1 y2( )[ ]

: (18)

All these functions are consistent with the expressions
obtained in Part I for y0 5 0. We also have I1 5 22[D0(y

1) 2
D0(y

2)], which yields g1,1 5 f1. For nÞ 1, gn → 0 for Lx →∞.
As a result, G(n;i)

∗ → gn;i for all n and i 5 1, 2 in that limit
Lx →∞.

Since gn(0) 5 1, G(n;i)
∗ 5 fn for all n and i 5 1, 2 in the limit

Lx → 0, and G∗ in this limit can be expressed

G∗ 0;Ly;y0
( )

5 2
�y1

y2

D dy5 erf(2)[Q]; (19)

it is independent of y0 and a good approximation of G(0, Ly,
y0)5 [Q] (as in the equatorial case).

Figure 4 shows some functions gn(Lx) (for n even, these
functions are also shown in Fig. 4a of Part I). All but g1 tend
to zero for Lx → ∞, and their decay is faster for larger n. For
all n Þ 1, G(n;i)

∗ decreases from fn for Lx 5 0 to gn,i for Lx → ∞
(with i 5 1, 2). They converge faster toward their asymptotes
for larger n; this is explained in Part I by the increasing effect
of rotation on circulations forced by heating along cylinder
functions Dn of increasing n, which have maxima increasingly
far from the equator in regions of increasingly large Coriolis
parameter. The increasing effect of rotation weakens the
overturning circulation and increases the temperature pertur-
bation. g1 is an exception: it is constant as a result of the zero
temperature perturbation (T(n,1) 5 0). This means that the
contribution G(1;1)

∗ will vary exclusively with Ly and y0.
Figures 5–7 show the functions fn, gn,1, and gn,2 for n # 5.

The functions f2n, g2n,1, and g2n,2 shown in Figs. 4c and 4d of
Part I correspond to the axis y0 5 0 in the first column of
Figs. 5–7. For small y0 and/or large Ly, the intensity of the cir-
culation is dominated by the contributions from the projec-
tion of the heating on D0 since f0 is significantly larger than
the other fn, and g0 and g2 make the contributions of the two
components G(n;1)

∗ and G(n;2)
∗ decay slowly toward g0,1 5 0 and

g0,2 (Figs. 4, 5a, and 7a); this is similar to the equatorial case.
For larger y0 and Ly , 1, the contributions for n 5 1 become
dominant instead, and more so for large Lx since g1 is cons-
tant (Figs. 4, 5b, and 7b). But the modes with larger n also
contribute to the sensitivity of G to Lx, Ly, and y0. Note that
the limit of G∗ for Lx → 0 gives us a constraint on the sum of
all fn:

∑∞
n50fn5erf(2)[Q], independent of Ly and y0. For n .

1, we can distinguish the domain Ly # 1 from the Ly . 1.

• For Ly . 1: for n odd, fn, gn,1, and gn,2 decay rapidly
toward zero as Ly increases (Figs. 5b,d,f, 6b,d, and 7b,d,f):
this is a result of the decrease of an with increasing Ly and
the fact that the Dn with n odd are odd functions of y, and
compensations between the positive and negative segments
of Dn contribute to reduce In. For n even, fn are similar to
the case y0 5 0 (see Part I for details): they increase from
zero at Ly 5 1, reach a maximum and slowly decrease to
zero for Ly → ∞. The maximum value of fn decreases with n
and the value of Ly at which fn reaches this maximum
increases with n. As the sum of all fn is constant, this means
the decrease of f0 with increasing Ly is compensated by fn
with increasingly large n. For Lx . 0, the contributions from
these modes decrease like gn and gn12, which decrease faster
for larger n, and as a result the decrease of G∗ with increasing
Lx is faster for larger Ly, and creates a decrease of G∗ with Ly

for Lx . 0. To summarize, an increase in Ly results in larger
projections of D onto cylinder functions Dn with larger n,
which cause dynamical responses that are weaker in terms of
divergent circulation due to the increasing influence of rota-
tion. In this range of Ly, this decrease is very similar across

FIG. 3. (a) Intensity G of the overturning circulation for the
b-plane case; the letters “a,” “b,” “c,” and “d” indicate the cases
shown in Figs. 1 and 2; (b) ratio of this intensity to that in the equa-
torial case (y0 5 0); (c) contribution G∗u of the zonal flow to the
approximated overturning circulation G∗ (in % of G∗); (d) contribu-
tion G(1;1)

∗y of the first component of the mode n5 1 (purely meridio-
nal flow) to the approximated overturning circulation G∗ (in % of
G∗); and (e) contribution G(0;1)

∗u of the easterly flow to the approxi-
mated overturning circulation G∗ (in % of G∗); in all cases, Lx 5 3Ly.
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the range of y0 under consideration, so this sensitivity is simi-
lar to the equatorial case.

• For Ly # 1: the influence of modes with n . 1 is complex,
with multiple compensations, and there is a stronger sensi-
tivity to y0. A few points can be made:

– For all y0, we can see that all fn $ 0 for small Ly, and it is
zero if y0 is a root of Dn. This is because the projection
coefficient an is proportional to the cylinder function Dn

for Ly → 0:

an ≈
��
2

√
n!

Dn y0( );

and we have the following asymptotes:

In ∼ 8Dn y0( )Ly and fn ∼ 8
��
2

√
n!

Dn y0( )2Ly $ 0:

In the limit Lx ! 0, all modes contribute positively to �*

for small Ly. The asymptotes of functions gn,1 and gn,2
are proportional to Dn(y0), so they are zero for values of
y0 (among others) that also cancel fn.

– In the small-to-intermediate range of y0, for n . 1, the
integral In changes within an interval of Ly included in
]0 1[ because the sign of the function Dn is opposite to
Dn(0) for most of the interval [y2y1]. In terms of sensi-
tivity to Lx and Ly, this causes large compensations
between modes and between components of the modes
in terms of sensitivity. For small y0, it is very similar to
the equatorial case (see Part I for details), with all gn,1
and gn,2 contributing positively to G∗ in the limit Lx→∞;
furthermore gn,1 . fn and gn,2 , fn, which means that
the contributions Gn;1

∗ decrease the sensitivity of G∗ to Lx

while the contributions Gn;2
∗ increase this sensitivity:

there is a compensation between the contributions of
the two components’ gyres to the divergent circulation.

– For large y0 (larger than the largest root of Dn), Dn ∼ yn

exp 2 y2/4 is positive over the interval [y2, y1], so its
integral In is positive. We also have

FIG. 4. Functions gn determining the sensitivity of the contribution
G(n;i)
∗ to the longitudinal extent Lx of the diabatic heating for

n# 5, n5 10, and n5 20.

FIG. 5. Functions fn determining the sensitivity of G(n;i)
∗ (i 5 1, 2)

in the limit for Lx 5 0 to the latitude of the y0 of the diabatic heat-
ing and its latitudinal extent Ly, for n# 1.

FIG. 6. Functions gn,1 determining the sensitivity of G(n;1)
∗ in the

limit for Lx →∞ to the latitude y0 of the diabatic heating and its lati-
tudinal extent Ly, for n# 5. g0,1 5 0 and g1,1 5 f1 are not shown.
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an∼ yn0
n! L2

y 1 1
( )n

���������
2

L2
y 1 1

√
. 0;

which yields fn = anIn � 0 for all Ly. In, and therefore fn,
increases for increasing small Ly (with In = 0 for Ly = 0) and an,
and therefore fn, tends to zero for large Ly. This asymptotic
behavior is visible within the range of y0 plotted in Fig. 5 for n �
3. For these large values of y0, D projects increasingly on Dn of
larger n (since an scales with yn0 ), and its sensitivity to the
horizontal extent increases due to the larger influence of rotation
on the dynamical response to heating along Dn with larger n.
Despite these complex details, a few points appear clearly: (i)
the two components of the cylinder modes n 5 0 and n 5 1
are the main contributors to G∗, because of large fn, small gn,2,
and because gn decreases slowly (or not at all) with Lx; (ii) for
mode n 5 0, Kelvin wave and Rossby wave pattern both con-
tribute to convergence in the heating region; (iii) for mode
n 5 1, the first component is exclusively divergent and con-
tributes to a large part of the cross equatorial flow; (iv) for
n . 1, the sensitivity of the first and second components G(n;1)

∗
and G(n;2)

∗ partially offset each other for small Ly, which
explains the smaller influence of these modes.

Thanks to the continuity equation, we can also decompose
G∗ into the sum of a contribution from the meridional wind (y

integrated over the boundary at y 5 y6) and a contribution
G∗u from the zonal wind (u integrated over the boundaries at
x 5 6Lx). And each contribution G(n;i)

∗ can also be decom-
posed in the same way:

G∗ 5G∗u 1G∗y and G(n;i)
∗ 5G(n;i)

∗u 1G(n;i)
∗y :

Because u(0,1)(2Lx) 5 0 and u(n,i)(Lx) 5 0 for all n . 0 or i 5
2, the contribution from the zonal wind at the eastern border
results exclusively from the damped Kelvin wave extending
eastward from the heating pattern, while the contribution
from the zonal wind at the western border results from a com-
bination of damped Rossby waves. By integrating u(n,i) using
Eqs. (17)–(24) in Part I, we can write

G(n;1)
∗u 5gn Lx( ) fn y0;Ly

( )
2 (2n2 1)gn;1 y0;Ly

( )[ ]
; (20)

G(n;2)
∗u 5gn1 2 Lx( ) fn y0;Ly

( )
1 (2n1 3)gn;2 y0;Ly

( )[ ]
; (21)

and we can obtain G∗u by summing over n. Note that G(1;1)
∗u 50,

as expected, since f1 5 g1,1. Figure 3d shows that G∗u is the
dominant contribution to G∗, above 90% for most of the
parameter range under consideration, and even slightly above
100% for a significant parameter range, with little sensitivity
to y0. As in the equatorial case, the contribution G∗y from the
meridional wind is small and can be negative, as shown in Fig.
3f, because of the compensation between the branches of the
gyres in opposite directions. Within the contribution of the
zonal wind, we can distinguish that of the damped Kelvin
wave G(0:1)

∗u , which is also the contribution from the eastern
boundary at x 5 Lx. Figure 3e shows that G(0:1)

∗u is negligible
for small Ly (and small Lx 5 3Ly); this is consistent with the
asymptote for Lx → 0 [see Eq. (9), with Lx 5 3Ly] in which
the zonal wind is zero at x 5 Lx. G

(0:1)
∗u increases with increas-

ing Ly, up to 60% of G∗ for large Ly, larger than the contribu-
tion from the western boundary at x 5 2Lx. While the
meridional contribution G∗y to G∗ is small and in places nega-
tive (see Fig. 3f), the contribution G(1;1)

∗y of the purely meridio-
nal flow for n 5 1 is positive, and Fig. 3g shows that it can
account for a significant fraction (up to 50%) of G∗ for heating
away from the equator for moderate values of Ly; in this case
the combination of other contributions G(n;i)

∗y essentially offsets
this contribution G(1;1)

∗y .

c. Equatorial westerly jet

The b effect creates a low-level westerly jet between the
heating center and the equator in the Gill circulation. If a cou-
pling with surface thermodynamics is activated, this jet will
decrease the surface turbulent heat fluxes if the background
surface wind is easterly, for example in trade winds; it will
increase the surface fluxes if the background wind is westerly,
as in the equatorial the Indian Ocean or in monsoon jets. The
resulting modulation of surface fluxes has been pointed out as
a potential energy source for tropical intraseasonal variability
(Bellon and Sobel 2008a,b; Sobel et al. 2008, 2010) and an
important mechanism for their coupling with the surface
ocean (Maloney and Sobel 2004; Bellon et al. 2008). In the

FIG. 7. Functions gn,2 determining the sensitivity of G(n;2)
∗ in the

limit for Lx → ∞ to the latitude y0 of the diabatic heating and its lat-
itudinal extent Ly, for n# 5.
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off-equatorial case, the westerly jet is not symmetric with
respect to the central latitude of heating (see Fig. 1), it results
mainly from the gyre near the heating center and reaches its
maximum equatorward of the heating maximum. As can be
seen in Fig. 1, as y0 increases, the jet accelerates; as Ly

decreases, the main gyre becomes smaller and faster, which
also accelerates the low-level westerly jet. Appendix C details
the characteristics of the jet for Ly → 0.

The low-level westerly wind uo at the heating center was
studied in detail for the equatorial case in Part I; for the off-
equatorial case, its sensitivity to the latitude y0 of the heating
center is small and its sensitivity to the horizontal extent of
the heating Lx and Ly is similar to the equatorial case (see
Fig. 5a in Part I). But uo is not as relevant in the off-equatorial
case as it is in the equatorial case: while in that case uo is the
maximum westerly wind on the y axis, in the off-equatorial
case this maximum wind uM is equatorward of the heating
center. Figure 8a shows the sensitivity of this maximum wind:
it increases with the latitude y0 of the heating center, but
mostly it increases with decreasing horizontal extent Ly, and
tends toward infinity for Ly → 0. Part I showed that, for y0 5
0, uM 5 uo ∼ 2/Ly in that limit; appendix C shows that uM
diverges faster for y0 Þ 0:

uM∼ 1���
2e

√ y0
L2

y
: (22)

Figure 8b shows the latitudinal shift of this maximum low-
level westerly wind along the y axis [uM5u 0;y01y′uM

( )
]. For

large Ly (.1), the latitude of the wind maximum is mostly
sensitive to y0: the farther poleward the heating center, the
farther the wind maximum from the heating center. For small
Ly, the latitude of the wind maximum is mostly sensitive to
Ly: it converges toward y0 for very small Ly (appendix C
shows that y′uM∼2

��
2

√
Ly for Ly → 0).

As in Part I, we also investigate the integrated intensity of

the jet U5 2

�
u,0

u(0;y)dy, the longitudinal extent of the jet

xu along y 5 y0, and characteristic latitudinal extent of the jet
yu along the y axis. Because the jet is not symmetric in latitude
with respect to the heating center, the latitudinal extent yu is
the average between the poleward and equatorward extents:

yu 5
1
2

y1u 2 y2u
( )

; with u 0;y2u
( )

5 u 0;y1u
( )

5 0 and

y2u , y0 , y1u :

In addition, we introduce a measure of the asymmetry of the
jet, the equatorward asymmetry index Eu, which measures
how much more than half the jet is equatorward of the heat-
ing center (Eu 5 0 corresponds to a jet symmetric about the
latitude y0, Eu 5 1 to a jet entirely equatorward of the heating
center):

Eu 5 2
y0 2 y2u

yu
2 1:

Figure 8c shows the sensitivity of the intensity U of the jet to
y0 and Ly. The sensitivity of U is similar to that of uM, with an

increase of U with increasing y0, but mostly an increase of U
with decreasing Ly. For Ly → 0, U is finite if y0 5 0 (see
Part I), but if y0 Þ 0, U ∼ y0/Ly (see appendix C), which tends
toward infinity for Ly → 0. Figure 8e shows the latitudinal
extent yu of the jet along the y axis; it is not very sensitive to
y0 and scales roughly with the horizontal extent Ly of heating
for moderate and large values of Ly. Appendix C shows that
this linear scaling breaks down for Ly → 0: yu ∼ Ly

������������
22lnLy

√
.

Compared to the equatorial case in which the scaling of the
maximum wind uM 5 ∼2/Ly and that of the latitudinal extent
of the jet yu ∼ 2Ly provide a finite upper bound for U, in the
off-equatorial case there is no such upper bound: both the
scaling of the wind maximum uM ∼ y0=(

���
2e

√
L2

y) and that of

the jet’s latitudinal extent yu ∼ Ly
������������
22lnLy

√
increase faster or

decrease slower with decreasing Ly than in the equatorial
case, and both effects explain the divergence of U for Ly → 0.
The scaling of yu results from the slow convergence of the
equatorward boundary y2u of the westerly jet toward y0 for
Ly → 0, as can be seen from the asymmetry index Eu in Fig.
8f: Eu → 1 for y0 Þ 0 and Ly → 0, which means that the jet
extends exclusively equatorward of y0 in this limit. The jet is

FIG. 8. Characteristics of the equatorial westerly jet in the Gill cir-
culation: (a) maximum westerly zonal velocity uM on the y axis; the
letters “a,” “b,” and “c” indicate the cases shown in Figs. 1 and 2;
(b) equatorward latitudinal shift 2y′uM of the maximum westerly
zonal velocity; (c) intensity U of the jet; (d) zonal extent xu of the jet
normalized by Lx; (e) meridional extent yu of the jet; (f) equatorward
asymmetry index Eu of the jet.
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symmetric about y0 (Eu 5 0) in the equatorial case (y0 5 0),
and the asymmetry of the jet increases with increasing y0. It
also decreases with increasing Ly for small Ly, but this sensi-
tivity becomes nonlinear at larger Ly.

Finally, Fig. 8d shows the jet’s eastward extent xu along y 5

y0, normalized by Lx. For small Ly (and small Lx 5 3Ly), xu ≈
Lx, which means that the westerly jets extends longitudinally
over the whole heating region at latitude y0, irrespective of y0
(see appendix C). The value of xu/Lx decreases with Ly but
more so in the equatorial case than in the off-equatorial case:
for y0 5 2, this decrease is twice smaller than for y0 5 0.

In summary, compared to the equatorial case presented in
Part I, the low-level westerly jet in the off-equatorial case

• has about the same latitudinal extent yu except for small hor-
izontal extents of heating for which yu does tend toward zero
for Ly → 0, but more slowly than in the equatorial case;

• is about as fast at the heating center, but faster at its maxi-
mum wind speed, and causes a larger low-level eastward
mass transport; these differences are markedly larger for
Lx, Ly → 0;

• is asymmetric with respect to the latitude y0 of the heating
center, extending farther equatorward than poleward, with
its maximum wind speed equatorward of the heating cen-
ter; for Lx, Ly → 0, the jet is almost exclusively equator-
ward of the heating center; and

• extends farther eastward than in the equatorial case.

In terms of sensitivity to the horizontal extent of heating,
the difference is significant in terms of the normalized longitu-
dinal extent of the westerly jet (same limit for Ly → 0, but
less sensitivity to increasing Ly), and in terms of the maximum
speed uM and intensity U for small horizontal scales (larger
scaling for Ly → 0).

4. Summary and conclusions

In this article, we explore the scale sensitivity of the off-
equatorial Gill circulation (Part I studies the equatorial case),
keeping the horizontally integrated diabatic heating fixed in
order to understand how the spatial spread of the diabatic
heating influences the dynamical response of the tropical
atmosphere. In our analysis, we focus on characteristics of
this circulation likely to couple it with the energy cycle: inten-
sity of the overturning circulation (linked to cloud moist pro-
cesses) and characteristics of the low-level westerly flow
(linked to turbulent surface heat fluxes).

We find that the intensity of the overturning circulation G

decreases slightly with increasing latitude y0 of the diabatic-
heating center, except for very small horizontal extent of
the heating for which it is independent of y0 and the same as
in the damped inertio-gravity wave. In other words, the sen-
sitivity of G to the horizontal extent of the heating increases
slightly with y0. As argued in Part I from an energy perspec-
tive, if the heating center is displaced poleward, the effect of
rotation is larger and the horizontal winds have a larger
rotational component; the conversion of thermal energy to

kinetic energy in rotational circulation is at the expense of
the divergent circulation and reduces the overturning
circulation.

The overturning circulation results mostly from the conver-
gence of the zonal wind, with a large contribution of the
Kelvin wave component for large-scale diabatic heating. The
meridional contribution tends to be small and can be nega-
tive, despite a significant positive contribution of the meridio-
nal-only, n 5 1, component for significantly off-equatorial
diabatic heating. Also, the region of ascent is less and less col-
located with the region of diabatic heating as the latitude of
the heating increases. Overall, the sensitivity of the Gill circu-
lation indicates that its coupling with the hydrologic cycle
would create a weaker moisture-convergence feedback in the
off-equatorial case compared to the equatorial case.

The low-level westerly jet intensifies as the diabatic heating
is shifted poleward. At the same time the position of maxi-
mum wind respective to the heating center shifts equatorward.
For small-scale heating, the jet extends entirely equatorward
of the heating center, its latitudinal extent is very small, its
maximum speed and the eastward low-level mass transport
tend to infinity. This sensitivity of the low-level westerly jet is
consistent with the monsoon low-level jet (Joseph and Raman
1966) being faster than the equatorial westerlies in the Indian
Ocean during other seasons. It is also consistent with the large
intraseasonal variability of this monsoon jet in response to the
intraseasonal variability of convection (Joseph and Sijikumar
2004). The low-level westerly jet impacts turbulent surface
fluxes, increasing them in westerlies and decreasing them in
easterlies, and the intensity of this jet suggests a large impact.
The combination of the seasonal monsoon jet and an intrasea-
sonal westerly jet south of northward-propagating convective
disturbances has been suggested as a growth mechanism for
the boreal-summer monsoon intraseasonal oscillation (Bellon
and Sobel 2008a,b; Sobel et al. 2010) and as a large component
of its coupling with the ocean (Sengupta et al. 2001; Roxy and
Tanimoto 2007; Bellon et al. 2008; Gao et al. 2019; among
others). Our results suggest that, over mean westerlies, the
wind-induced surface fluxes are larger and extend to a larger
fraction of the heating region for small convective disturbances
than for large convective disturbances, favoring the develop-
ment of small disturbances. And these wind-induced surface
fluxes are expected to increase with increasing latitude y0 of
the diabatic heating. But the influence of these surface fluxes
on convective disturbances is not straightforward because of
the location of the westerly low-level jet: the region of wester-
lies is increasingly asymmetric with respect to the heating cen-
ter with decreasing horizontal extent of the diabatic heating,
which favors equatorward propagation of a convective distur-
bance or slows poleward propagation in westerlies, addition-
ally to enhancing the convective disturbance. The complex
combination of sensitivities should have some bearings on the
development, scale, and propagation of monsoon intraseaso-
nal oscillation events worthy of further investigation.

The observed seasonal cycle in the tropics and observed
boreal-summer monsoon intraseasonal oscillation provide
multiple opportunities to evaluate whether the sensitivity to
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scale and latitude of observed circulations responding to off-
equatorial heating follows the sensitivity predicted by this
study. This will be the topic of further work.
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APPENDIX A

Sensitivity to the Aspect Ratio Lx/Ly

This appendix investigates the sensitivity of the integrated
metrics of the overturning circulation and the low-level west-
erly jet G and U to changes in the aspect ratio of the diabatic-
heating region. Since isolines of heating are close to circular
for Lx 5 3Ly, which is the case discussed in the main text, we
set Lx 5 3aLy and document the sensitivity of our main
results to parameter a. Figure A1 shows the ratio of the inten-
sity G of the overturning circulation in the off-equatorial case
to its intensity in the equatorial case (y0 5 0) for different
aspect ratios of the heating region: a 5 1/2 (Fig. A1a) and
a 5 2 (Fig. A1b); the case a 5 1 is shown in Fig. 3b. It
appears that the sensitivity of G to the latitude of the heating
varies little with the aspect ratio of the region of heating. In
all cases, the intensity of the overturning circulation for Lx →
0 is G 5 [Q], independent of both Ly and y0; for large Lx and
Ly, the normalized decrease of G with increasing y0 is similar
in all cases. There is one difference in the scale for which this
decrease with y0 is fastest: while it is for Ly ≈ 1.3 for a 5 1/2,
it is for a smaller Ly ≈ 0.5 for a 5 2.

Figure A2 shows that the sensitivity of the intensity of
the westerly mass transport U exhibits a very similar sensi-
tivity to the latitude y0 of the heating center. The normal-
ized increase of U with y0 is essentially independent of a.

APPENDIX B

Contributions of the Cylinder Modes to G∗

By using the expressions of w(n,i) [Eq. (25) in Part I]
combined with the expressions of T(n,i) [Eqs. (21)–(24) in
Part I], we can write G(n;i)

∗ as

G(n;1)
∗ 5 an In 2

«

2

�Lx

2Lx

q(n)n dx In 1 nI(n2 2)
[ ]{ }

; (B1)

G(n;2)
∗ 5 an In 2

«

2

�Lx

2Lx

q(n)n1 2 dx In1 2 1 (n1 2)In
[ ]{ }

; (B2)

for all n. We have used
�Lx

2Lx

F dx52 and introduced the

notation In5
�y1

y2
Dn dy for n $ 1 and I21 5 I22 5 0.The

differential Eqs. (11) and (14) in Part I yield the following

expressions for the integrals of the functions q(n)n(12):

«

�Lx

2Lx

q(0)0 dx5 22 q(0)0 Lx( ); (B3)

«

�Lx

2Lx

q(1)1 dx5 0; (B4)

«

�Lx

2Lx

q(n)n dx5
1

2n2 1
2n2 22 q(n)n (2Lx)
[ ]

for n. 1; (B5)

«

�Lx

2Lx

q(n)n1 2 dx5
1

2n1 3
22q(n)n1 2 2Lx( )
[ ]

for all n; (B6)

FIG. A1. Ratio of the intensity G of the overturning circulation in
the off-equatorial case to its intensity in the equatorial case (y0 5 0)
for (a) a5 1/2 and (b) a5 2 (Lx 5 3aLy); the case a5 1 is shown in
Fig. 3b.

FIG A2. Ratio of the intensity U of the low-level westerly jet in the off-equatorial case to its
intensity in the equatorial case (y0 5 0) for (a) Lx 5 1.5Ly, (b) Lx 5 3Ly, and (c) Lx 5 6Ly.
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in which we have used q(0)0 2Lx( )50, q(1)1 50, q(n)n Lx( )50
for n . 1, and q(n)n12 Lx( )50 for all n.

Equation (A6) in Part I yields

In2 2 5
1

n2 1
In 1 2 Dn2 1 y1

( )
2Dn2 1 y2( )[ ]{ }

(B7)

and

In1 2 5 (n1 1)I2n 2 2 Dn1 1 y1
( )

2Dn1 1 y1
( )[ ]

: (B8)

Using Eqs. (B3)–(B8), Eqs. (B1) and (B2) can be rewritten:

G(0;1)
∗ 5

q(0)0 Lx( )
2

a0I0; (B9)

G(1;1)
∗ 5 a1I1; (B10)

G(n;1)
∗ 5

q(n)n 2Lx( )
2n2 2

anIn

2
2n

2n2 1
an Dn2 1 y1

( )
2Dn2 1 y2( )[ ]

12
q(n)n 2Lx( )
2n2 2

[ ]
for n. 1; (B11)

G(n;2)
∗ 5

q(n)n1 2 2Lx( )
2

anIn

1
2

2n1 3
an Dn1 1 y1

( )
2Dn1 1 y2( )[ ]

12
q(n)n1 2 2Lx( )

2

[ ]
for all n: (B12)

By replacing q(n)n by its expressions [Eqs. (17)–(19) in Part
I], and using q(n)n 5 (n21)q(n22)

n , G(n;i)
∗ can be written as in

Eqs. (13) and (14).
The contribution G(n;i)

∗u to G(n;i)
∗ from the zonal flow is sim-

ply the integral of the zonal velocity u(n,i) over the zonal
boundary of the rectangle (2Lx, 8Ly) where it is not zero,
multiplied by 6an. Using the expressions of u(n,i) [Eqs.
(17)–(24) in Part I], it can be written as

G(0;1)
∗u 5

a0
2
q(0)0 Lx( )I0 5G(0;1)

∗ ; (B13)

G(1;1)
∗u 5 0; (B14)

G(n;1)
∗u 5 2

an
2
q(n)n 2Lx( ) In 2nIn2 2[ ] for n. 1; (B15)

G(n;2)
∗u 5 2

an
2
q(n)n1 2 2Lx( ) In1 2 2 (n1 2)In

[ ]
for all n: (B16)

The last two can be simplified into [using Eq. (A6) in Part I]

G(n;1)
∗u 5

q(n)n 2Lx( )
2n2 2

an In 1 2n Dn2 1 y1
( )

2Dn2 1 y2( )[ ]{ }
for n. 1; (B17)

G(n;2)
∗u 5

q(n)n1 2 2Lx( )
2

an In 1 2 Dn1 1 y1
( )

2Dn1 1 y2( )[ ]{ }
for all n: (B18)

By replacing q(n)n by its expression from Eqs. (17)–(19) in
Part I, and using q(n)n 5 (n21)q(n22)

n , G(n;i)
∗u can be written as

in Eqs. (20) and (21).

APPENDIX C

Characteristics of the Jet for Ly fi 0

In this appendix, we focus on the limit of the solution for
Ly (and Lx) → 0 in the off-equatorial case (y0 Þ 0). From
Eq. (9), which gives the expression of the zonal baroclinic
wind field for Lx → 0, it is clear that along y 5 y0, the
zonal wind is negative (westerly in the low-troposphere) for
x # xu, with

xu∼ 1
k
arcsin 12

a0
2
e2 y20=4Ly

( )
→ Lx for Ly → 0; (C1)

since a0 →
��
2

√
exp 2y20=4

( )
and k 5 p/2Lx.

Along the y axis, the baroclinic zonal wind can be
written:

u(0;y)5 2 2 12
y y2 y0( )
4Ly

2

[ ]
D(y)1 a0D0(y); (C2)

for Ly → 0, it is westerly around the heating center (uo ,

0) and it is easterly for y 5 0. There is no straightforward
solution for the latitude of sign change or maximum of
u(0, y). But we can see that for small Ly the westerly jet
becomes narrow and close to y0, so we can look for solu-
tions in the form of a asymptotic development:

y5 y0 1
∑∞
n5 1

bnLn
y : (C3)

For u(0, y) 5 0, this yields one solution:

y1u ∼y0 1 4
y0

L2
y; (C4)

and it is unsuccessful to determine y2u [because y(y 2 y0) , 0
in the range of y of interest, and the first parenthesis on the
right-hand side in Eq. (C2) is always larger than 1]. By a care-
ful study of the scalings of the different terms in Eq. (C2), we
can find the following asymptotic solution:

y2u ∼y0 2 2
��
2

√
Ly Y1

1
4Y

ln(Y y0)1 y20
2

[ ]{ }
; (C5)
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with Y5
����������
2 lnLy

√
:

For Ly → 0, we can obtain an expression for U using
Eq. (9) to integrate u(0, y) by parts over the interval
[y2u y1u ]:

U5 yu1D y1u
( )

2 yu2D y2u( )1 ���
p

√
erf

y1u 2 y0
2Ly

( )[

2 erf
y2u 2 y0
2Ly

( )]
1 a0

���
p

√
erf

y1u
2

( )
2 erf

y2u
2

( )[ ]
; (C6)

and taking the limit for Ly → 0 (using the approximations
of y1u and y2u above), we get

U∼ y0
Ly

: (C7)

As for the maximum westerly wind, it is located at y5yuM
where

05
du(0;y)

dy
5

1
2L2

y
3y′ 1 y 12

y′2

2L2
y

( )[ ]
D(y)2 a0

2
yD0(y);

(C8)

in which we used y′ 5 y 2 y0 for simplicity.
Looking for an asymptotic expansion following Eq. (C3)

for yuM , we find

yuM∼y0 2
��
2

√
Ly (C9)

and the expression of uM in Eq. (22).
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