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Abstract: This work is part of a collaborative research project to evaluate the relevance of combining an oxidation technique to a complementary process for the treatment of 

VOCs in air. VOCs are volatile organic molecules that are among the main atmospheric pollutants. They have several uses in different industry sectors, in particular as solvents, 

but they have harmful effects on health and the environment. Conventional VOC treatment methods (adsorption, oxidation...) are not always sufficient. The use of non-thermal 

plasmas can be a solution. The present study is done with the purpose of evaluating and understanding the effect of a dielectric barrier discharge (DBD) on a heavy hydrocarbon in 

terms of removal efficiency in dry air as well as by-product formation, in view of further coupling to a complementary process. The chosen molecule, n-hexane, C6H14, is a VOC 

found in different types of industries, its treatment is likely to generate numerous by-products. This aim of this study is to understand the physicochemical processes involved in the 

abatement of n-hexane in air by non thermal plasma, 
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• Results were obtained at the exit of the reactor using 

the micro -GC Fusion ( black points) and the BTrap ( 

hollow points ). 

• Exponential decay: 

 

[COV] = [COV]0exp(-SED)/β 

 

• [COV]0: inlet concentration of n-hexane 

• β: characteristic energy 

• n-hexane : [5-500] ppm 

• Results obtained at the exit of the 

reactor using the BTrap, and the 

Micro-GC Fusion.  

• SED = 250 J/L, f = 500 Hz.  

• Applied voltage 25 kV, Q = 0,5 L/min 

 
 

Q = 0.5 L/min and f = 500 Hz N-hexane abatement:  

Ozone production:
  

• Ozone production: [2,3] 

 O2 + e →O(3P) + O(3P) + e  

 O2 + e → O(1D) + O(3P) + e  

   

 O(1D) +M → O(3P) +M   

    

 O2 + O(3P) +M → O3 +M  

 

• Ozone destruction: [2,3] 

 O3 + NO → NO2 + O2,  

 O3 + O2(
1Δ) → O2 + O2 + O(3P)  

 O(3P) + O3 → O2 + O2  

 O(3D) + O3 → O2 + O2(
1Δ) 
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Thermal effect in an air discharge 
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Q = 0.5 L/min and f = 500 Hz Q = 1 L/min and f = 500 Hz 

EXPERIMENTAL SET-UP 

RESULTS AND DISCUSSION 

Complete conversion: 

• at 930 J/L (5 ppm) 

• at 1350 J/L (11 ppm)  

Removal efficiency: 
     

By-product formation:     
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By-products detected using the Btrap (210 J/L, 

500 Hz, 0.5 L/min).  
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Detection of by-products that aren’t issued from the oxidation of n-hexane: 

H2 (13 ppm for 500 ppm of n-hexane) and HCN.  

 

Evolution of the main by-products in the discharge in 

air with and without n-hexane (100 ppm) (210 J/L, 
500 Hz, 0.5 L/min) 
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There are three possibilities for initiation reactions with breaking on : 

C1(C6), C2(C5) or C3(C4) in n-hexane molecule  

In the presence of C6H14 in the gas stream, in addition to the previous reactions, an atomic oxygen 

O or a hydroxyl radical HO° can break a C-H bond on the n-hexane molecule. 

C6H14 + O(3P) → HO° + C6H13 

C6H14 + HO° → H2O + C6H13 

O and especially OH are also involved in other reactions with by-products.  

This explains the lower ozone detection when n-hexane is introduced into the discharge. 

Main by-products:  

formaldehyde, acetaldehyde, propanal, carbon dioxide   

The less polluted the air stream, 

the easier is the treatment 

  

Effect of total gas flow rate: 

In our case: no critical influence 

of the gas flow rate on the 

abatement of C6H14 

Residual C6H14 measured at the reactor exit as a 

function of the SED for an inlet concentration of 50 ppm 

of C6H14 at 500 Hz and 0.5 L/min and 1 L/min). 

DBD reactor:                                                                                                    Electrical Parameters :  

 

Reactor volume = 3.9 cm3  

Flow rate : Q = [0.5, 1] L/min  

         

 
 

• Frequencies : f = [500, 1000, 

1500] Hz. 

 

• Energy Epulse (J) deposited in 

the plasma per pulse:  

Epulse = ʃ I(t)*V(t)dt   

 

• Specific energy density(J/L): 

SED = E*f/Q  

Detectors at the reactor outlet:  

• Real-time ozone (UV 254 nm) and 

CO2 (IR) 

• Detection et  quantification of n-

hexane, H2, CO, formaldehyde 

using gas-phase chromatography 

(Micro-GC Fusion).   

• Detection of remaining by-

products (ppb) using high-

resolution mass spectrometry. 

Mesures effectuées avec un 

oscilloscope LeCRoy 

204MXi-A (0.5 L/min, 500 Hz) 

BTrap : The high mass resolution allows to 

separate quasi-isobaric compounds and to 

follow their evolution in the discharge. The 

chemical ionization can be done with two 

different precursors: either O2+ (to follow the 

n-hexane) or H3O+ (to follow the by-products). 
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