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Coupled Macroscopic Modelling of Electric Vehicle Traffic and Energy
Flows for Electromobility Control

Mladen Čičić and Carlos Canudas-de-Wit

Abstract— The simultaneous proliferation of electric vehicles
and intermittent renewable energy sources promises to expedite
decarbonization of two sectors with highest emissions. However,
both these developments threaten to endanger power system
stability, which may hinder their widespread adoption. To
tackle these challenges, there is a need for joint modelling
of electric vehicle traffic flows, together with their battery
dynamics. We propose a macroscopic electromobility model,
augmenting the LWR model, describing the traffic dynamics,
with an inhomogeneous advection equation, describing the
evolution of vehicles’ State of Charge (SoC). The Riemann
problem for the joint model is solved for the case of triangular
fundamental diagram, and the solutions are used to formulate a
Godunov-like scheme for model discretization. Additionally, we
propose an advection-based charging station model, discretize
it, and link it with the rest of the traffic and SoC model. We
demonstrate the capabilities and use of the full coupled model
by proposing a pedagogic example where a simple control law
regulates the average SoC of all vehicles on a ring road by
controlling the traffic flow entering the charging station.

I. INTRODUCTION

The emergent coupling between the transportation and
power systems, brought about by the rise of electric vehicles
(EVs), will have far-reaching consequences for both sectors
[1]. From the mobility side, the range constraints, need for
charging, and drivetrain specificities need to be taken into
account when making routing decisions and considering driv-
ing strategies for EVs [2]. Furthermore, dynamic charging
price policies might affect the flows of EVs, potentially
providing a way to influence mobility patterns [3]. From the
power system side, the EVs will be a significant contributor
to the overall power demand due to their charging needs [4],
but could also be used to provide power system flexibility
(ability to react to changing conditions by storing energy
or changing power supply or demand). Recently, there has
been much interest in using EVs and their batteries to provide
ancillary services [5], [6], by shaping their aggregated power
demand, or even providing Vehicle-to-Grid (V2G) power and
energy storage via bidirectional charging stations, which is
likely to be crucial for renewable energy integration [7].

For all these reasons, there is a need to consider both
the transportation system and the power system holistically.
For example, [3] considers static EV traffic assignment using
power and congestion pricing, taking into account the full
coupled transportation-power system. In [8], the authors
use a dynamic traffic assignment model connected with the
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power grid to study equilibrium flow patterns. These works,
and references therein, approach the problem at the scale
of full networks. Other works focus on individual EVs,
modelling their power consumption based on propulsion and
braking forces [9], or driving behaviour and ambient factors
[10]. However, to the authors’ best knowledge, this modelling
problem was not approached from the macroscopic traffic
modelling perspective, describing both energy and traffic
flows on a road, which this work seeks to address.

Many recently introduced macroscopic traffic models be-
long to the GSOM family [11] (Generic second order mod-
elling). These models augment the base traffic dynamics,
described by the Lighthill-Whitham-Richards (LWR) model
[12], to include some additional property (e.g. aggressive-
ness, portion of connected and automated vehicles, etc.)
which is conserved and advected (transported) along the
trajectories of individual vehicles, as proposed in [13], and
used to specify the driver behaviour. We propose that a
similar approach can be applied to advected properties that
are not conserved, such as the State of Charge (SoC) of EVs.

The main contribution of this work is in proposing a cou-
pled macroscopic model for traffic and energy flows of EVs.
The traffic flow dynamics, described by the LWR model, are
augmented with flows of energy, carried by vehicles SoC.
While vehicles are driving on the road, energy contained
in their batteries is advected, and dissipated according to
the battery discharge model. While charging, the vehicles’
SoC evolution is described by the charging station model,
providing a convenient interface for interconnection with the
power system. The model is similar to the one proposed
in [5], but it models EVs charging at individual charging
stations, and allows for different charging rates at different
SoC, instead of relying on splitting the EVs into charging,
idle, and discharging categories. All model components
are discretized using a Godunov-like scheme based on the
presented Riemann problem solution for the triangular flux
function case, and charging stations are interconnected with
the road dynamics via on- and off-ramps. Finally, a control
law based on the simplified approximate prediction model
is used to regulate the average SoC of all vehicles on the
road by controlling flows to the charging station. This model
will serve as a basis for more sophisticated models to be
envisioned in the future, that would be used to study the
interplay between the power grid operators and the EVs.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce the proposed coupled traffic, energy,
and charging (CTEC) model, and then in Section III discuss
its discretization and coupling via ramp flows. Next, in



Section IV, we design control laws for regulating the SoC of
the vehicles on a road, which are then test in simulations in
Section V. Finally, in Section VI, we summarize the results
and outline some future work directions.

II. CTEC MODEL

In this section, we present the different components of the
CTEC model: EV traffic, battery discharging, and charging
stations dynamics.

A. Traffic model

We use the LWR model [12] to model the traffic flow
dynamics,

𝜕𝜌

𝜕𝑡
+

𝜕𝑄(𝜌)

𝜕𝑥
= 0, (1)

where 𝜌(𝑥, 𝑡) denotes the traffic density at position 𝑥 and
time 𝑡, and 𝑄(𝜌) is the flux function (also known as
fundamental diagram) that describes the dependence of traf-
fic flow on the traffic density. The average vehicle flow
speed 𝒱(𝜌) also directly depends on the traffic density,
since 𝑄(𝜌) = 𝒱(𝜌)𝜌. In this work, we use the triangular
fundamental diagram,

𝑄(𝜌) = min{𝑉 𝜌,𝑊 (𝑃 − 𝜌)} (2)

𝑉 is the free-flow speed, 𝑊 the congestion wave speed, and
𝑃 the jam density, yielding critical density 𝜎 = 𝑊𝑃

𝑉+𝑊 , and

𝒱(𝜌) =

{︃
𝑉, 𝜌 ≤ 𝜎,

𝑊
(︁

𝑃
𝜌 − 1

)︁
, 𝜌 > 𝜎.

B. Energy model

The discharge rate of EV batteries depends on a plethora
of influences [10], but the main contributor is naturally their
motion. We denote the SoC of vehicle 𝜉 as 𝜀𝜉(𝑡) ∈ [0, 1],
and approximate its discharge during driving as

𝜀̇𝜉(𝑡) = 𝒟𝜉(𝑥𝜉(𝑡)), (3)

where 𝑥𝜉(𝑡) is the vehicle’s trajectory. Typically, the rate of
discharge is assumed to depend on vehicle speed 𝑥̇𝜉(𝑡) and
acceleration 𝑥̈𝜉(𝑡).

We can instead study the macroscopic SoC of all vehicles
at different positions on the road 𝜀(𝑥, 𝑡) ∈ [0, 1], modelling
the evolution of 𝜀(𝑥, 𝑡) as an inhomogeneous linear transport
PDE with speed varying in space and time as a function of
traffic density,

𝜕𝜀

𝜕𝑡
+ 𝒱(𝜌) 𝜕𝜀

𝜕𝑥
= 𝒟(𝜌) (4)

where 𝒟(𝜌(𝑥, 𝑡)) models the battery discharge dynamics de-
pending on the traffic conditions, analogous to 𝒟𝜉(𝑥𝜉(𝑡)).
Here we assume that 𝜀 has no direct impact on the traffic
flow, by e.g., having some vehicles run out of charge. Since
the traffic dynamics are such that the trajectories of the vehi-
cles never intersect, using the method of characteristics, we
may confirm that the SoC along trajectories of the vehicles
𝑥̇𝜉(𝑡) = 𝒱(𝜌(𝑥𝜉(𝑡), 𝑡)) evolves as 𝜀̇𝜉(𝑡)=𝒟(𝜌(𝑥𝜉(𝑡), 𝑡)), con-
sistently with (3). Equivalently, (4) can be written in terms
of energy density 𝜌𝜀 as

𝜕𝜌𝜀

𝜕𝑡
+

𝜕(𝒱(𝜌)𝜌𝜀)
𝜕𝑥

= 𝜌𝒟(𝜌), (5)

which can be verified by expanding the left side and substi-
tuting (1) and (4). Energy density is an important concept
since it is a conserved quantity, apart from the dissipation
term 𝜌𝒟(𝜌), allowing us to apply a Godunov-like scheme to
numerically solve (5) coupled with (1).

The simplest way to model battery discharge rate is by
assuming it is linearly proportional to vehicle speed, yielding
𝒟𝜉(𝑥𝜉(𝑡))=𝐷1𝑥̇𝜉(𝑡) and 𝒟(𝜌)=𝐷1𝒱(𝜌), 𝐷1< 0, in which
case the spent energy depends only on the distance travelled,

𝜀𝜉(𝑡2)− 𝜀𝜉(𝑡1)=

∫︁ 𝑡2

𝑡1

𝒟𝜉(𝑥𝜉(𝑡))d𝑡=𝐷1(𝑥𝜉(𝑡2)− 𝑥𝜉(𝑡1))

if 𝑥̇𝜉(𝑡)≥ 0 for all 𝑡, and the range of the EV is − 1
𝐷1

. A
special form of the problem is for 𝒟(𝜌)=0, in which case
we model the advection of some quantity 𝜀 by vehicles in
traffic, and the model belongs to the GSOM family [11].

C. Charging stations model

In order to model the SoC dynamics of charging vehicles,
some simplifying assumptions need to be made about the
charging speed. We denote the charging rate of vehicle 𝜉,
within charging station 𝜁 and with current SoC 𝜀𝜉(𝑡), as
𝑐𝜁(𝜀𝜉, 𝑡), yielding 𝜀̇𝜉 = 𝑐𝜁(𝜀𝜉(𝑡), 𝑡). The charging dynamics
of an ensemble of charging vehicles can then be modelled
macroscopically as an advection equation

𝜕𝜂𝜁
𝜕𝑡

+
𝜕(𝑐𝜁(𝜀, 𝑡)𝜂𝜁)

𝜕𝜀
= 0, (6)

where 𝜂𝜁(𝜀, 𝑡) denotes the number of vehicles in charging
station 𝜁 with SoC 𝜀 at time 𝑡, and we need 𝑐𝜁(0, 𝑡) ≥ 0 and
𝑐𝜁(1, 𝑡) ≤ 0 to ensure the SoC remains within [0, 1]. Note
that the charging rate 𝑐𝜁(𝜀, 𝑡) for each (𝜀, 𝑡) may either be
positive, modelling charging the batteries of the EV, negative,
modelling V2G energy flow, or zero.

The coupling between the charging stations and the road
is done through on- and off-ramp dynamics. These flows are
not explicitly defined in the CTEC model, where they would
enter as additional source terms, but are instead defined in
the discretized version of the model presented in further text.

III. CTEC MODEL DISCRETIZATION

In order to enable numerical evaluation of the CTEC model
presented in the previous Section, we now discuss its dis-
cretization in space and time. First, the Riemann problem
for traffic and energy density is solved, then its solution is
used to formulate a Godunov-like discretization scheme, and
finally, the road and the charging stations are connected by
describing the ramp dynamics.

A. Riemann problem for traffic and energy density

Riemann problems, i.e., PDE initial value problems given
piecewise-constant initial conditions with a single discon-
tinuity, arise naturally in Godunov-like schemes used for
PDE discretization, since they describe what happens at
the boundary between two cells. The Riemann problem for
(1) and (4) or (5),

𝜌(𝑥, 0) =

{︃
𝜌−, 𝑥 < 0,

𝜌+, 𝑥 > 0,
𝜀(𝑥, 0) =

{︃
𝜀−, 𝑥 < 0,

𝜀+, 𝑥 > 0,



can be split into two parts, determining 𝜌(𝑥, 𝑡) first by
solving the Riemann problem for (1), and then using this
solution in the Riemann problem for (5), since the coupling
between 𝜌 and 𝜀 is only unidirectional. Due to the assumption
that the SoC everywhere is such that it does not affect the
motion of the vehicle, the evolution of 𝜌 does not depend on
𝜀. The full Riemann problem with triangular flux function
𝑄(𝜌) (2), can be solved explicitly,

𝜌(𝑥, 𝑡)=

⎧⎪⎨⎪⎩
𝜌−, 𝑥<𝜆−𝑡,

𝜎, 𝜆−𝑡<𝑥<𝜆+𝑡,

𝜌+, 𝑥>𝜆+𝑡,

(7)

𝜀(𝑥, 𝑡)=

⎧⎪⎨⎪⎩
𝜀−+𝑑−𝑡, 𝑥<𝜆−𝑡,

𝜀−+𝑑−
𝑥−𝑣+𝑡

𝜆−−𝑣+
+𝑑+

𝜆−𝑡−𝑥

𝜆−−𝑣+
, 𝜆−𝑡<𝑥<𝑣+𝑡,

𝜀++𝑑+𝑡, 𝑥>𝑣+𝑡,

(8)

where we write 𝑣± = 𝒱(𝜌±), 𝑑± = 𝒟(𝜌±), and 𝜆− and 𝜆+

are the propagation speeds of the upstream- and downstream-
most wavefront originating from 𝑥 = 0 at 𝑡 = 0, respectively,

𝜆− =

{︃
𝑣+𝜌+−𝑣−𝜌−

𝜌+−𝜌−
, 𝜌− ≤ 𝜎,

−𝑊, 𝜌− > 𝜎,
(9)

𝜆+ =

{︃
𝑣+𝜌+−𝑣−𝜌−

𝜌+−𝜌−
, 𝜌+ > 𝜎,

𝑉, 𝜌+ ≤ 𝜎.
(10)

An example Riemann problem solution is shown in Fig. 1.
Unless 𝜌− > 𝜎 and 𝜌+ < 𝜎, these two wavefronts coincide,
and 𝜌(𝑥, 𝑡) has only one discontinuity in 𝑥, 𝑡 ≥ 0, except
in the degenerate case when 𝜌− = 𝜌+. The energy density
𝜌(𝑥, 𝑡)𝜀(𝑥, 𝑡) can be written jointly, multiplying (7) and (8),

𝜌(𝑥, 𝑡)𝜀(𝑥, 𝑡)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜌−(𝜀−+𝑑−𝑡), 𝑥<𝜆−𝑡,

𝜎
(︁
𝜀−+

𝑑−(𝑥−𝑣+𝑡)+𝑑+(𝜆−𝑡−𝑥)
𝜆−−𝑣+

)︁
,𝑥∈(𝜆−𝑡,𝜆+𝑡),

𝜌+

(︁
𝜀−+

𝑑−(𝑥−𝑣+𝑡)+𝑑+(𝜆−𝑡−𝑥)
𝜆−−𝑣+

)︁
,𝑥∈(𝜆+𝑡,𝑣+𝑡),

𝜌+(𝜀++𝑑+𝑡), 𝑥>𝜆+𝑡.

(11)

B. Godunov scheme for traffic density

Discretization of the LWR model (1) using Godunov
scheme yields the Cell Transmission Model [14], [15].
Splitting the road into 𝑁𝑥 cells, we denote by 𝜌𝑘𝑖 the average
traffic density in cell 𝑖 at time step 𝑘, and it is updated as

𝜌𝑘𝑖+1 = 𝜌𝑘𝑖 +
𝑇

𝐿

(︀
𝑞𝑘𝑖− − 𝑞𝑘𝑖+

)︀
(12)

𝑥=𝜆−𝑡

𝑥=𝜆+𝑡

𝑥=𝑋1+𝑣−𝑡
𝑥=𝑋3+𝑣+𝑡

Fig. 1: Riemann problem solution with colour-coded traffic density
(warmer is denser) shown in the background , and SoC evolution
along three example vehicle trajectories shown by the colour of
the circles (warmer is higher). Once vehicles cross the wavefront
𝑥 = 𝜆−𝑡 and leave the congestion (𝜌−, yellow), they proceed at
higher speed, incurring faster reduction of SoC.

where 𝑇 ≤ 𝐿
𝑉 ensures numeric stability, 𝑞𝑘𝑖− is the traffic

flow at the upstream boundary of cell 𝑖 (from cell 𝑖 − 1 to
cell 𝑖), and 𝑞𝑘𝑖+ at its downstream boundary (from 𝑖 to 𝑖+1),

𝑞𝑘𝑖+ = min
{︁
𝑉 𝜌𝑘𝑖 ,𝑊 (𝑃 − 𝜌𝑘

𝑖+1
)
}︁
= 𝑞𝑘𝑖+1−,

denoting 𝜌𝑘
𝑖
= max{𝜌𝑘𝑖 , 𝜎}, and 𝜌𝑘𝑖 = min{𝜌𝑘𝑖 , 𝜎}.

It is also possible to rewrite the traffic density update (12)
into a form that more directly reflects the solutions to the
Riemann problem (7),

𝜌𝑘𝑖+1 = 𝜌𝑘𝑖 +
𝑇

𝐿

(︁
𝜆𝑘
𝑖+−
(𝜌𝑘𝑖−1 − 𝜌𝑘𝑖 )− 𝜆

𝑘

𝑖−+
(𝜌𝑘

𝑖+1
− 𝜌𝑘𝑖 )

)︁
,

denoting 𝜆𝑘
𝑖+−

= max{0, 𝜆𝑘
𝑖+−
}, and 𝜆

𝑘

𝑖−+
= min{0, 𝜆𝑘

𝑖−+
}. Wave-

front speeds 𝜆𝑘
𝑖∘*

arise from the solutions to the Riemann
problems at the boundaries of cell 𝑖 at time 𝑘, with
* ∈ {−,+} denoting whether we consider the upstream
(−) or downstream (+) boundary, and ∘ ∈ {−,+} denotes
whether we are looking for the upstream-most (−), or
downstream-most (+) wavefront. If ∘ = −, 𝜆𝑘

𝑖−*
is given

by 𝜆− in (9), and if ∘ = +, 𝜆𝑘
𝑖+*

is given by 𝜆+ in (10).
In both cases, 𝜌± and 𝑣± in expressions (9) and (10) are
given by 𝜌− = 𝜌𝑘𝑖−1, 𝜌+ = 𝜌𝑘𝑖 , 𝑣− = 𝑣𝑘𝑖−1, 𝑣+ = 𝑣𝑘𝑖 , if * = −,
or by 𝜌− = 𝜌𝑘𝑖 , 𝜌+ = 𝜌𝑘𝑖+1, 𝑣− = 𝑣𝑘𝑖 , 𝑣+ = 𝑣𝑘𝑖+1, if * = +.
Note that for convenience of notation, in this work we denote
𝑣𝑘𝑖 = 𝒱(𝜌𝑘𝑖 ) which may not reflect the actual current average
speed of vehicles in cell 𝑖 in case the cell lies on the boundary
between congestion and free flow. A similar form will be
employed when formulating the energy density update.

C. Godunov-like scheme for energy density

We describe the evolution of the SoC 𝜀(𝑥, 𝑡) indi-
rectly, through finding the updates to the energy den-
sity 𝜌(𝑥, 𝑦)𝜀(𝑥, 𝑡). To simplify the expressions, we adopt
𝑇 ≤ 𝐿

𝑉+𝑊 , ensuring that wavefronts originating from cell
up- and downstream boundary do not collide, so each vehicle
encounters at most one wavefront. We denote by 𝜀𝑘𝑖 the
average SoC in cell 𝑖 at time step 𝑘. Based on (11), the
energy density update can be expressed as

𝐿𝜌𝑘+1
𝑖 𝜀𝑘+1

𝑖 =𝜌𝑘𝑖−1𝐼𝑖,1(0, 𝜆
𝑘
𝑖−−
𝑇 )+𝜌𝑘

𝑖
𝐼𝑖,2(𝜆

𝑘
𝑖−−
𝑇, 𝑣𝑘𝑖 𝑇 )

+𝜌𝑘𝑖 𝐼𝑖,3(𝑣
𝑘
𝑖 𝑇, 𝐿+𝜆

𝑘

𝑖−+
𝑇 )+𝜌𝑘

𝑖+1
𝐼𝑖,4(𝜆

𝑘

𝑖−+
𝑇, 0),

(13)

where 𝐼𝑖,𝑗 , 𝑗 = 1, 2, 3, 4 are given as integrals of parts of (8),

𝐼𝑖,1(𝑥1, 𝑥2) =(𝜀𝑘𝑖−1 + 𝑑𝑘𝑖−1𝑇 )(𝑥2 − 𝑥1),

𝐼𝑖,2(𝑥1, 𝑥2) =

(︃
𝜀𝑘𝑖−1 +

𝑑𝑘𝑖 𝜆𝑖−−
− 𝑑𝑘𝑖−1𝑣

𝑘
𝑖

𝜆𝑖−−
− 𝑣𝑘𝑖

𝑇

)︃
(𝑥2 − 𝑥1)

+
𝑑𝑘𝑖−1 − 𝑑𝑘𝑖
𝜆𝑘
𝑖−−
− 𝑣𝑘𝑖

𝑥2
2 − 𝑥2

1

2
,

𝐼𝑖,3(𝑥1, 𝑥2) =(𝜀𝑘𝑖 + 𝑑𝑘𝑖 𝑇 )(𝑥2 − 𝑥1),

𝐼𝑖,4(𝑥1, 𝑥2) =

(︃
𝜀𝑘𝑖 +

𝑑𝑘𝑖+1𝜆
𝑘
𝑖−+
− 𝑑𝑘𝑖 𝑣

𝑘
𝑖+1

𝜆𝑘
𝑖−+
− 𝑣𝑘𝑖+1

𝑇

)︃
(𝑥2 − 𝑥1)

+
𝑑𝑘𝑖 − 𝑑𝑘𝑖+1

𝜆𝑘
𝑖−+
− 𝑣𝑘𝑖+1

𝑥2
2 − 𝑥2

1

2
,



and 𝑑𝑘𝑖 = 𝒟(𝜌𝑘𝑖 ). This Godunov-like scheme simplifies to

𝜌𝑘+1
𝑖 𝜀𝑘+1

𝑖 = 𝜌𝑘𝑖
(︀
𝜀𝑘𝑖 + 𝑑𝑘𝑖 𝑇

)︀
+

𝑇

𝐿

(︀
𝜑𝑘
𝑖− − 𝜑𝑘

𝑖+

)︀
,

with 𝜑𝑘
𝑖− and 𝜑𝑘

𝑖+ given by

𝜑𝑘
𝑖−= 𝜆̃

𝑘

𝑖−−
𝜌𝑘𝑖−(𝜀

𝑘
𝑖− + 𝑑𝑘𝑖−𝑇 ) +

(︁
𝑣𝑘𝑖 − 𝜆̃

𝑘

𝑖−−

)︁
𝜌𝑘
𝑖
𝜀𝑘𝑖−

+
𝑇

2

(𝜆̃
𝑘

𝑖−−
−𝑣𝑘𝑖 )𝜌

𝑘
𝑖

(︁
𝑑𝑘𝑖

(︁
𝜆
𝑘

𝑖−−
−2𝜆̃𝑘

𝑖−−
+𝑣𝑘𝑖

)︁
+𝑑𝑘𝑖−

(︁
𝑣𝑘𝑖 −𝜆̃

𝑘

𝑖−−

)︁)︁
𝜆̃𝑘
𝑖−−
− 𝑣𝑘𝑖

, (14)

𝜑𝑘
𝑖+=(𝑣𝑘𝑖 − 𝜆̃

𝑘

𝑖−+
)𝜌𝑘𝑖 (𝜀

𝑘
𝑖 + 𝑑𝑘𝑖 𝑇 ) + 𝜆̃

𝑘

𝑖−+
𝜌𝑘
𝑖+
𝜀𝑘𝑖

+
𝑇

2

𝜆̃
𝑘

𝑖−+
𝜌𝑘
𝑖+

(︂
𝑑𝑘𝑖

(︂
𝜆̃
𝑘

𝑖−+
−2𝑣𝑘𝑖+

)︂
+𝑑𝑘𝑖+

(︂
2𝜆̃𝑘

𝑖−+
−𝜆̃

𝑘

𝑖−+

)︂)︂
𝜆̃𝑘
𝑖−+
− 𝑣𝑘𝑖+

. (15)

Here, 𝜌𝑘𝑖−=𝜌𝑘𝑖−1, 𝜌𝑘𝑖+=𝜌𝑘𝑖+1, 𝜀𝑘𝑖−=𝜀𝑘𝑖−1, 𝜀𝑘𝑖+=𝜀𝑘𝑖+1,
𝑣𝑘𝑖±=𝒱(𝜌𝑘𝑖±), 𝑑𝑘𝑖±=𝒟(𝜌𝑘𝑖±), 𝜆̃𝑘

𝑖−−
is given by (9) with

𝜌−=𝜌𝑘𝑖−, 𝜌+ = 𝜌𝑘𝑖 , and 𝜆̃𝑘
𝑖−+

is given by (9) with 𝜌−=𝜌𝑘𝑖 ,
𝜌+=𝜌𝑘𝑖+. Flows of traffic and energy between cells are
illustrated in Fig. 2.

D. Charging stations discretization and ramp flows

Assuming the amplitude of the charging rate is bounded by
some maximum rate 𝐶, |𝑐(𝜀, 𝑡)| ≤ 𝐶, (6) can be discretized
by dividing 𝜀 into 𝑁𝜀 discrete SoC levels, with discretization
step 𝑆 and 𝑇 ≤ 𝑆

𝐶 , to ensure numeric stability. The evolution
of the number of vehicles with discrete SoC 𝑗 present at
charging station 𝜁 is then

𝜂𝑘+1𝜁,𝑗 =𝜂𝑘𝜁,𝑗+
𝑇

𝑆

(︀
𝑐𝑘𝜁,𝑗−1𝜂

𝑘
𝜁,𝑗−1−

⃒⃒
𝑐𝑘𝜁,𝑗
⃒⃒
𝜂𝑘𝜁,𝑗−𝑐𝑘𝜁,𝑗+1𝜂

𝑘
𝜁,𝑗+1

)︀
, (16)

where 𝑐𝑘𝜁,𝑗=max{0, 𝑐𝑘𝜁,𝑗}, 𝑐𝑘𝜁,𝑗=min{0, 𝑐𝑘𝜁,𝑗}, 𝑐𝑘𝜁,1≥0, and
𝑐𝑘𝜁,𝑁𝜀

≤0. Each group of vehicles 𝜂𝑘𝜁,𝑗 corresponds to SoC
𝜀=(𝑗−1)𝑆, with 𝜂𝑘𝜁,1 having SoC 𝜀=0 and 𝜂𝑘𝜁,𝑁𝜀

SoC 𝜀=1.
Finally, the discretized CTEC model is completed by defin-

ing the interconnections between the dynamics of the road
(12), (13) and the charging stations (16). A depiction of
a ring-road with one charging station and one pair of on-
and off-ramps is shown in Fig. 3. The road dynamics are
augmented by flows from and to the charging stations or on-
ramps 𝑟𝑘on,𝑖, and to the charging stations or off-ramps 𝑟𝑘off,𝑖,

𝜌𝑘+1𝑖 =𝜌𝑘𝑖 +
𝑇

𝐿

(︀
𝑞𝑘𝑖−−𝑞𝑘𝑖+

)︀
, (17)

𝜌𝑘𝑖 , 𝜀
𝑘
𝑖 𝜌𝑘𝑖+1,𝜀

𝑘
𝑖+1𝜌𝑘𝑖−1, 𝜀

𝑘
𝑖−1 𝑞𝑘𝑖−1+ 𝑞𝑘𝑖− 𝑞𝑘𝑖+ 𝑞𝑘𝑖+1−

𝑑𝑘𝑖
𝜑𝑘
𝑖− 𝜑𝑘

𝑖+𝜑𝑘
𝑖−1+ 𝜑𝑘

𝑖+1−

𝑟𝑘off,𝑖−1 𝑟𝑘on,𝑖,𝜀
𝑘
on,𝑖 𝑟𝑘off,𝑖 𝑟

𝑘
on,𝑖+1, 𝜀

𝑘
on,𝑖+1

Fig. 2: Illustration of traffic and energy flows. Note that 𝜑𝑘
𝑖−

and 𝜑𝑘
𝑖+ do not strictly represent flows of energy over the cell

boundaries, but rather the contributions of the solutions to the
Riemann problem at the upstream and downstream boundary of
cell 𝑖, respectively. The flows to and from on- and off-ramps 𝑟 are
described in Section III-D.

𝜌𝑘𝑖 , 𝜀
𝑘
𝑖

𝜂𝑘𝜁,𝑗

𝑐𝑘𝜁,𝑗

𝑟𝑘
off,𝑖in𝜁

, 𝜇𝑘
𝜁,in,𝑗

𝑟𝑘on,𝑖out𝜁
, 𝜇𝑘

𝜁,out,𝑗

𝑟𝑘off,𝑖offr

𝑟𝑘on,𝑖onr

Fig. 3: Discretized CTEC Model illustration. Vehicle SoC is shown
colour-coded (colder is lower, warmer is higher), grey arrows
represent movement in 𝑥 on the road (accompanied by a decrease
in 𝜀), and green arrows represent change in 𝜀 in the charging station
(assuming positive charging rate 𝑐𝑘𝜁,𝑗).

𝑞𝑘𝑖+=min

{︃
𝑉 𝜌𝑘𝑖 ,

𝑊 (𝑃 − 𝜌𝑘
𝑖+1

)− 𝑟𝑘on,𝑖+1

1− 𝛽𝑘
𝑖

}︃
,

𝑞𝑘𝑖−=𝑞𝑘𝑖−1+(1− 𝛽𝑘
𝑖−1) + 𝑟𝑘on,𝑖,

𝜌𝑘+1𝑖 𝜀𝑘+1𝑖 =𝜌𝑘𝑖
(︀
𝜀𝑘𝑖 +𝑑𝑘𝑖 𝑇

)︀
+
𝑇

𝐿

(︀
𝜑𝑘
𝑖−−𝜑𝑘

𝑖+

)︀
, (18)

where 𝑟𝑘off,𝑖=𝑞𝑘𝑖+𝛽
𝑘
𝑖 is defined by splitting ratios 𝛽𝑘

𝑖 , 𝜀𝑘on,𝑖
is the average SoC of vehicles entering the road at time
step 𝑘 in cell 𝑖, and we need to ensure 𝑟𝑘on,𝑖≤𝑊 (𝑃−𝜌𝑘

𝑖
).

Additionally, when calculating 𝜑𝑘
𝑖± in (18), we incorporate

the effect of on- and off-ramps by modifying

𝜌𝑘𝑖− =
𝑞𝑘𝑖−
𝑉

, 𝜌𝑘𝑖+ = 𝑃 −
𝑃 − 𝜌𝑘

𝑖+1
− 𝑟𝑘on,𝑖+1

𝑊

1− 𝛽𝑘
𝑖

,

𝜀𝑘𝑖− =
𝑞𝑘𝑖−1+(1− 𝛽𝑘

𝑖−1)𝜀
𝑘
𝑖−1 − 𝑟𝑘on,𝑖𝜀

𝑘
on,𝑖

𝑞𝑘𝑖−
,

in (14) and (15), as well as updating 𝑣𝑘𝑖±, 𝑑𝑘𝑖±, and 𝜆̃𝑘
𝑖−±

accordingly. Similarly, the charging station dynamics become

𝜂𝑘+1𝜁,𝑗 = 𝜂𝑘𝜁,𝑗+
𝑇

𝑆

(︀
𝑐𝑘𝜁,𝑗−1𝜂

𝑘
𝜁,𝑗−1−

⃒⃒
𝑐𝑘𝜁,𝑗
⃒⃒
𝜂𝑘𝜁,𝑗−𝑐𝑘𝜁,𝑗+1𝜂

𝑘
𝜁,𝑗+1

)︀
+ 𝑇

(︀
𝜇𝑘
in,𝜁,𝑗−𝜇𝑘

out,𝜁,𝑗

)︀
,

(19)
where 𝜇𝑘

in,𝜁,𝑗 and 𝜇𝑘
out,𝜁,𝑗 represent the flows of vehicles

with discrete SoC 𝑗 entering and leaving the charging station,
respectively. The flows between the road and the charging
station 𝜁 are

𝑟𝑘on,𝑖out𝜁
=

𝑁𝜀∑︁
𝑗=1

𝜇𝑘
out,𝜁,𝑗 , 𝑟𝑘on,𝑖out𝜁

𝜀𝑘on,𝑖out𝜁
=

𝑁𝜀∑︁
𝑗=1

𝜇𝑘
out,𝜁,𝑗(𝑗−1)𝑆,

𝜇𝑘
in,𝜁,𝑗=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︃
𝑗−

𝜀𝑘
𝑖in
𝜁

𝑆

)︃
𝑟𝑘
off,𝑖in𝜁

, 𝑗−1≤
𝜀𝑘
𝑖in
𝜁

𝑆 <𝑗,(︃
𝜀𝑘
𝑖in
𝜁

𝑆 −𝑗+2

)︃
𝑟𝑘
off,𝑖in𝜁

, 𝑗−2≤
𝜀𝑘
𝑖in
𝜁

𝑆 <𝑗−1,

0, otherwise,

𝜇𝑘
out,𝜁,𝑗∈

⎡⎣0,
⎛⎝1

𝑇
−

⃒⃒⃒
𝑐𝑘𝜁,𝑗

⃒⃒⃒
𝑆

⎞⎠𝜂𝑘𝜁,𝑗+ 𝑐𝑘𝜁,𝑗−1

𝑆
𝜂𝑘𝜁,𝑗−1−

𝑐𝑘𝜁,𝑗+1

𝑆
𝜂𝑘𝜁,𝑗+1

⎤⎦,



ensuring both the vehicles and the energy are conserved,

𝑟𝑘off,𝑖in𝜁
=

𝑁𝜀∑︁
𝑗=1

𝜇𝑘
in,𝜁,𝑗 , 𝑟𝑘off,𝑖in𝜁

𝜀𝑘𝑖in𝜁
=

𝑁𝜀∑︁
𝑗=1

𝜇𝑘
in,𝜁,𝑗(𝑗−1)𝑆.

The vehicles enter the charging station from cell 𝑖in𝜁 , and
return to the road in cell 𝑖out𝜁 , typically with 𝑖out𝜁 = 𝑖in𝜁 +1,
to ensure that the vehicles return to the road downstream of
the point where they left it. The splitting ratios and the flow
exiting the charging stations can either be defined according
to some heuristics, or used as control inputs.

Note that it is possible to closely approximate (18) by

𝜌𝑘+1𝑖 𝜀𝑘+1𝑖 =𝜌𝑘𝑖
(︀
𝜀𝑘𝑖+𝑑𝑘𝑖+𝑇

)︀
+
𝑇

𝐿

(︁
(𝑞𝑘𝑖−−𝑟𝑘on,𝑖)

(︀
𝜀𝑘𝑖−1+𝑑𝑘𝑖−1+𝑇

)︀
+ 𝑟𝑘on,𝑖𝜀

𝑘
on,𝑖 − 𝑞𝑘𝑖+

(︀
𝜀𝑘𝑖 +𝑑𝑘𝑖+𝑇

)︀)︁
,

essentially assuming that all vehicles in cell 𝑖 move at the
same constant speed 𝑣𝑘𝑖+ during the time step 𝑘, with

𝑣𝑘𝑖+ =
𝑞𝑘𝑖+
𝜌𝑘𝑖

, 𝑑𝑘𝑖+ = 𝒟
(︀
𝒱−1(︀𝑣𝑘𝑖+)︀)︀ .

IV. CONTROL

We exemplify the use of the proposed CTEC model on a
regulation problem with tiered priorities, considering a ring
road with one charging station and one on-off-ramp pair.
The ring road flow is implemented by replacing cell index
0 with 𝑁𝑥 and cell index 𝑁𝑥 + 1 with 1 in all expressions.
The studied control goals, in order of priority, are to

1) Ensure that the average SoC 𝜀𝑘avg on the road does not
go below 𝜀min,

2) Minimize the maximum number of concurrent vehicles
at the charging station 𝜂max

𝜁,tot,
3) Regulate the average SoC 𝜀𝑘avg to its reference 𝜀ref .

A. Control structure

In this work, we assume that we exert no direct control
over the charging station dynamics, but instead, the only used
control input 𝑢𝑘

𝛽 is the ratio of the mainstream flow that
leaves the road and enters the charging station,

𝑢𝑘
𝛽 = 𝛽𝑘

𝑖in𝜁
∈ [0, 1].

All non-full-battery vehicles charge at maximum rate,

𝑐𝑘𝜁,𝑗 =

{︃
𝐶, 𝑗 < 𝑁𝜀,

0, 𝑗 = 𝑁𝜀.

and leave with full battery as soon as there is some capacity
available on the road,

𝜇𝑘
out,𝜁,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑊 (𝑃−𝜌𝑘

𝑖out
𝜁

)𝜇𝑘
out,𝜁

𝑉 𝜌𝑘
𝑖out
𝜁

−1

(︂
1−𝛽𝑘

𝑖out
𝜁

−1

)︂
+𝜇𝑘

out,𝜁

, 𝑗 = 𝑁𝜀,

0, 𝑗 < 𝑁𝜀,

𝜇̃𝑘
out,𝜁 = min

{︃
𝑛𝑘
𝜁,𝑁𝜀

𝑇
+

𝐶𝑛𝑘
𝜁,𝑁𝜀−1

𝑆
, 𝑟max

on,𝑖out
𝜁

}︃
,

yielding 𝑟𝑘on,𝑖out
𝜁

= 𝜇𝑘
out,𝜁,𝑁𝜀

, and 𝜀𝑘on,𝑖out
𝜁

=1. Here, 𝑟max
on,𝑖out𝜁

is the on-ramp capacity, and the road capacity is allocated
between the mainstream and the on-ramp flow proportionally
to the demand.

We assume that the current total number of vehicles on
the road 𝑅𝑘 and total energy contained in them 𝐸𝑘,

𝑅𝑘 =

𝑁𝑥∑︁
𝑖=1

𝜌𝑘𝑖 𝐿, 𝐸𝑘 =

𝑁𝑥∑︁
𝑖=1

𝜌𝑘𝑖 𝜀
𝑘
𝑖 𝐿, 𝜀𝑘avg =

𝐸𝑘

𝑅𝑘
,

can both be measured or estimated, providing the average
SoC measurement 𝜀𝑘avg. Finally, we also assume that the
traffic density at the charging station entrance 𝜌𝑘𝑖on𝜁

can be
measured, and that the full time profile of the on-ramp flow
𝑟𝑘on,𝑖onr , the SoC of entering vehicles 𝜀𝑘on,𝑖onr , and the constant
splitting ratio towards the off-ramp 𝛽𝑖offr

are all known. The
average initial traffic density on the road 𝜌0avg = 𝑅0/(𝑁𝑥𝐿)
is taken so that 𝑟0on,𝑖onr = 𝑉 𝜌0avg𝛽𝑖offr

.
The proposed control law can be split into two layers: the

outer control loop, regulating the average SoC by setting the
reference for the number of vehicles at the charging station
𝑢𝑘
𝜂 , and the inner control loop, regulating the number of

vehicles at the charging station 𝜂𝑘𝜁,tot using the splitting ratio
towards it 𝑢𝑘

𝛽 . The control structure is shown in Fig. 4.

B. Inner control loop

The inner control loop regulates the number of vehicles
at the charging station 𝜂𝑘𝜁,tot =

∑︀𝑁𝜀

𝑗=1𝜂
𝑘
𝜁,𝑗 to its reference

value 𝑢𝑘
𝜂 provided by the outer control loop. The controller

is a gain-scheduled PI controller with anti-windup, given by

𝑢𝑘
𝛽 =

𝜌0avg

𝜌𝑘
𝑖in𝜁

max
{︁
0,min

{︁
1,𝐾p,𝜂𝑒

𝑘
𝜂 +𝐾i,𝜂𝐼

𝑘
𝑒𝜂

}︁}︁
,

𝑒𝑘𝜂=𝑢𝑘
𝜂−𝜂𝑘𝜁,tot, 𝐼𝑘+1

𝑒𝜂 =

{︃
𝐼𝑘𝑒𝜂+𝑇𝑒𝑘𝜂, 0<𝑢𝑘

𝛽<1,
𝑢𝑘
𝜂−𝐾p,𝜂𝑒

𝑘
𝜂

𝐾i,𝜂
, 𝑢𝑘

𝛽=0∨𝑢𝑘
𝛽=1.

Parameters 𝐾p,𝜂 and 𝐾i,𝜂 are tuned empirically to produce
good reference tracking with little overshoot, and the gain-
scheduling variable 𝜌0avg/𝜌

𝑘
𝑖in𝜁

aims to compensate for varia-
tions in the flow on the road.

C. Outer control loop

The outer control loop sets the reference for the inner
control loop 𝑢𝑘

𝜂 , and also consists of a PI controller with
anti-windup,

𝑢𝑘
𝜂 = max

{︀
𝑢𝑘
𝜂,min

{︀
𝑢𝑘
𝜂,𝐾p,𝜀𝑒

𝑘
𝜀 +𝐾i,𝜀𝐼

𝑘
𝑒𝜀

}︀}︀
, (20)

𝑈𝜂

𝑢𝑘
𝜂

𝑈𝛽
𝑢𝑘
𝛽

𝜀ref
𝜀min

𝑅𝑘, 𝐸𝑘 𝜂𝑘𝜁,tot

𝜌𝑘𝑖on𝜁

𝑟𝑘on,𝑖onr
𝜀𝑘on,𝑖onr

Fig. 4: Full control structure for regulating average SoC, consisting
of the outer (𝑈𝜂) and inner (𝑈𝛽) control loop.



𝑒𝑘𝜀 =𝜀ref−
𝐸𝑘

𝑅𝑘
, 𝐼𝑘+1

𝑒𝜀 =

{︃
𝐼𝑘𝑒𝜀+𝑇𝑒𝑘𝜀 , 𝑢𝑘

𝜂<𝑢𝑘
𝜀 <𝑢𝑘

𝜂,
𝑢𝑘
𝜀−𝐾p,𝜂𝑒

𝑘
𝜂

𝐾i,𝜂
, 𝑢𝑘

𝜀 =𝑢𝑘
𝜂∨𝑢𝑘

𝜀 =𝑢𝑘
𝜂.

The first two control goals can be achieved by tuning pa-
rameters 𝐾p,𝜂 and 𝐾i,𝜂 , letting 𝑢𝑘

𝜂 = 0 and 𝑢𝑘
𝜂 → ∞, or by

using these control constraints to address them directly. The
two approaches will be compared in simulations.

In the approach using dynamic control constraints, we
set 𝑢𝑘

𝜂 to ensure that 𝜀𝑘avg > 𝜀min, based on a simplified
prediction model, and aim to minimize 𝜂max

𝜁,tot by setting

𝑢𝑘
𝜂 = max

{︂
𝑢𝑘
𝜂, max

ℎ=𝑘−𝐻,...,𝑘−1
𝜂ℎ𝜁,tot

}︂
, (21)

where 𝐻 is the time horizon length. The simplified prediction
model gives approximate predictions of 𝑅𝑘 and 𝐸𝑘 for times
ℎ = 𝑘 + 1, . . . , 𝑘 +𝐻 ,

𝑅̂ℎ+1=𝑅̂ℎ + 𝑇
(︁
𝑟ℎon,𝑖onr − 𝑟ℎoff

)︁
,

𝑟ℎoff =

⎧⎪⎨⎪⎩
min{𝑉 𝜎,

𝛽
𝑖offr

1−𝛽
𝑖offr

(𝑉 𝜎 − 𝑟ℎon,𝑖onr )}, 𝑅ℎ>𝑅0,

min{𝑟ℎon,𝑖onr ,
𝛽
𝑖offr

1−𝛽
𝑖offr

(𝑉 𝜎 − 𝑟ℎon,𝑖onr )}, 𝑅ℎ=𝑅0,

𝐸̂ℎ+1
0 = 𝐸̂ℎ

0 + 𝑇
(︁
𝑟ℎon,𝑖onr 𝜀ℎon,𝑖onr − 𝑟ℎoff𝜀

ℎ
off + 𝑅̂ℎ𝒟(0)

)︁
,

𝐸̂ℎ= 𝐸̂ℎ
0 + 𝑢̃︀𝑘𝜂𝐶(ℎ− 𝑘)𝑇,

𝑅̂𝑘=𝑅𝑘, 𝐸̂𝑘
0 =𝐸𝑘,

where we let 𝜀ℎoff = 𝜀min, and the future reference is assumed
to be constant, 𝑢ℎ

𝜂 = 𝑢̃︀𝑘𝜂 , ℎ = 𝑘 + 1, . . . , 𝑘 +𝐻 . Due to the
specific form of 𝐸̂ℎ, it is straightforward to find the minimum
𝑢̃︀𝑘𝜂 for which 𝐸̂ℎ > 𝑅̂ℎ𝜀min for all ℎ = 𝑘 + 1, . . . , 𝑘 +𝐻 ,
which is used as the dynamic control constraint 𝑢𝑘

𝜂 ,

𝑢𝑘
𝜂 = max

ℎ=𝑘+1,...,𝑘+𝐻

𝐸̂ℎ
0 − 𝑅̂ℎ𝜀min

𝐶𝑇 (ℎ− 𝑘)
, (22)

assuming 𝐸𝑘 > 𝑅𝑘𝜀min. Finally, PI parameters 𝐾p,𝜂 and
𝐾i,𝜂 are tuned solely to regulate the average SoC, since
the first and second control goals are handled by 𝑢𝑘

𝜂 and
𝑢𝑘
𝜂 , respectively. Note that the discussed approximate pre-

diction model provides no hard guarantees that the average
SoC of the real road will remain within the allowed range,
but achieves this goal nonetheless, with suitably tuned PI
parameters, as will be shown in simulations.

Symbol Value Unit Symbol Value Unit

𝑉 100 km/h 𝑡end 10 h
𝜎 30 veh/km 𝜌0

avg 24 veh/km
𝑃 120 veh/km 𝜀ref 0.5 1
𝐿 1 km 𝜀min 0.45 1
𝑁𝑥 50 1 𝜀on 0.2 1
𝐶 25 1/h 𝑟lowon 800 veh/h
𝑆 0.1 1 𝑟high

on 1500 veh/h
𝑁𝜀 11 1 𝑡high

start 4 h
𝑇 4 · 10−3 h 𝑡high

end 5 h
𝐷0 −2·10−2 1/h 𝛽

𝑖offr
1/3 1

𝐷1 −10−3 1/km 𝑖offr 50 1
𝐷2 −2·10−5 h/km2 𝑖out

𝜁 25 1

TABLE I: Simulation parameters and their values.

V. SIMULATION RESULTS

The proposed CTEC model and control law are put to the
test in a simulation example, whose parameters are given in
Table I. The traffic density and SoC on the road are initialized
as uniformly distributed random variables
𝜌0𝑖∼𝒰(0, 2𝜌0avg), 𝜀0𝑖∼𝒰(𝜀ref−0.1, 𝜀ref+0.1), 𝑖=1, . . . , 𝑁𝑥,

and the charging station is initially empty, 𝜂0𝜁,𝑗 = 0. Battery
discharge rate 𝒟(𝜌) is modelled as a polynomial function of
traffic speed

𝒟(𝜌) = 𝐷0 +𝐷1𝒱(𝜌) +𝐷2𝒱(𝜌)2,
corresponding to a range of 312.5 km at free flow speed 𝑉 .
The simulation runs from 𝑡 = 0 to 𝑡 = 𝑡end, and the states
evolve according to the discretized CTEC model (17)–(19).
Vehicles enter the road via the on-ramp in cell 1 at rate

𝑟𝑘on,1 =

{︃
𝑟lowon , 𝑡 /∈ [𝑡highstart, 𝑡

high
end ),

𝑟highon , 𝑡 ∈ [𝑡highstart, 𝑡
high
end ),

and 𝛽𝑖offr
of the flow leaves the road via the on-ramp in cell

𝑖offr . Since the vehicles enter the road via the on-ramp with
low SoC 𝜀on < 𝜀min < 𝜀ref , the increase in on-ramp flow
during 𝑡 ∈ [𝑡highstart, 𝑡

high
end ) acts as a disturbance to the system,

causing a drop in the average SoC.
We compared two outer loop PI controller (20) cases:

(a) 𝐾p,𝜀=𝐾
(a)
p,𝜀 , 𝐾i,𝜀=𝐾

(a)
i,𝜀 , without control constraints,

𝑢𝑘
𝜂 = 0, 𝑢𝑘

𝜂 → ∞, and
(b) 𝐾p,𝜀=𝐾

(b)
p,𝜀 , 𝐾i,𝜀=𝐾

(b)
i,𝜀 , with dynamic control con-

straints given by (22) and (21),
while the inner loop controller parameters were the same,
𝐾p,𝜂 and 𝐾i,𝜂 . Dynamic control constraints were calculated
with 𝐻 = 500, corresponding to a time horizon of 𝐻𝑇 = 2 h.
The PI parameters are given in Table II. The discrepancy in
gain values is due to the fact that 𝜂𝜁,tot is in general two
orders of magnitude larger than 𝜀avg and 𝛽.

The simulation results are given in Fig. 5, showing the
space-time profiles of 𝜌 and 𝜀, and the SoC-time profile
of 𝜂 for the example simulation run with dynamic control
constraints, which are very similar to those without control
constraints, and in Fig. 6, showing the average SoC 𝜀𝑘avg
and number of charging vehicles 𝜂𝑘𝜁,tot for both cases of
control. We can see that both controllers manage to keep
the average SoC 𝜀𝑘avg above its minimum allowed value
𝜀min, and eventually regulate it to 𝜀ref , but control (a)
requires about 18% higher maximum number of charging
vehicles than control (b), 𝜂

max,(a)
𝜁,tot = 41.746 compared to

𝜂
max,(b)
𝜁,tot = 35.2715. Since the peak power demand of a

charging station grows with the maximum number of concur-
rent charging vehicles, control law (b) achieves better results
by reacting to the disturbance before it arrives, despite using
a simplified approximate prediction model.

𝐾p,𝜂 0.01 𝐾
(a)
p,𝜀 100 𝐾

(b)
p,𝜀 50

𝐾i,𝜂 0.1 𝐾
(a)
i,𝜀 400 𝐾

(b)
i,𝜀 100

TABLE II: Parameters of the PI controllers.



(a) Traffic density profile 𝜌 (b) Traffic SoC profile 𝜀 (c) Charging vehicles SoC profile 𝜂

Fig. 5: Example simulation results for the case with dynamic control constraints. Disturbance period [𝑡highstart, 𝑡
high
end ] is outlined in dotted

red, and dashed lines indicate on- and off-ramps (black) and entrance and exit to charging stations (blue).

(a) Without control constraints

(b) With dynamic control constraints
Fig. 6: Average SoC 𝜀𝑘avg and number of charging vehicles
𝜂𝑘
𝜁,tot for the two control cases. Disturbance period [𝑡highstart, 𝑡

high
end ] is

outlined in dotted red, references 𝜀ref and 𝑢𝑘
𝜂 are shown in dashed

black, and dynamic control constraints 𝑢𝑘
𝜂 and 𝑢𝑘

𝜂 in dotted purple.
Other simulation runs are shown in dotted blue.

VI. CONCLUSION

In this paper, we attempt to bridge the gap between the
transportation and power system by proposing a macroscopic
model that captures the coupled flows of EV traffic and the
energy, the CTEC model. The model extends the LWR traffic
model by adding the advection, discharging, and charging
dynamics of the energy contained by EV batteries. The dis-
cretized model is used in simulations to design and test a
control law with tiered control objectives, first ensuring the
average SoC does not go below some value, then minimizing
the maximum number of concurrently charging vehicles, and
finally regulating the average SoC to its reference value.

Note that the addition of on- and off-ramps were only con-
sidered for the discretized model, due to the complications

with the Riemann problem that they cause. For future work,
the full Riemann problem should be solved in order to be
able to handle exactly merges and diverges, including on-
and off-ramps, as well as to extend the model from one road
to a road network. Furthermore, the simplifying assumption
that the traffic consists solely of EVs should be dropped,
and the model should be extended to the case when only a
portion of vehicles are electric. Finally, once the model is
extended to the full network, the power system requirements
could be explicitly considered, and control laws using EVs
to provide flexibility designed.
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