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We propose a general theoretical approach to the modelling of complex dispersion characteristics of leaky
optical modes operating in photonic crystal slab composed of two coupled high-index contrast gratings. Our
analytical model, based on a non-Hermitian Hamiltonian, allows for a unified description of the wide family
of optical modes which may be generated within uni-dimensional photonic crystals. Our theory stands for a
variety of illustrative examples relating to the manipulation of bound states in the continuum and exceptional
points, and can be used as a powerful enabler for the discovery of novel photonic species. Finally, as proof-of-
concept, we demonstrate experimentally the formation of a Dirac point at the merging of three bound states in
the continuum that is the most achieved photonic specie discussed in this work.

I. INTRODUCTION

Taming losses has always been the main challenge for the
development of photonic devices in modern history: nurtur-
ing lasing emission from leaky channel of an optical cav-
ity [1], minimizing attenuation of guided light in integrated
circuit [2], confining photons to interact strongly with quan-
tum emitters [3], sharpening photonic resonances for high-
sensitivity optical sensing [4], engineering emission pattern
of light-emitting diodes [5], to cite a few examples. As a
matter of fact, most photonic phenomena are dictated by
the complex energy-momentum dispersion characteristic of
which the imaginary part corresponds to system losses and
the real part corresponds to light frequency. The matu-
rity of nano-fabrication technologies nowadays offers un-
precedented degree-of-freedom for dispersion engineering of
light via molding periodic arrangement of materials with dif-
ferent permittivity and geometry. More importantly, since
the past few years, modern photonics has entered a new
paradigm for the research of non-conservative optical sys-
tems exploiting non-Hermiticity notions [6–8]. In this ap-
proach, the complex energy-momentum dispersions, theoreti-
cally described by non-Hermitian Hamiltonians, reveal unique
features with no Hermitian counterparts. The most famous
example is the non-Hermitian extension of topological band
theory which is originally built for lossless band structure
from condensed matter physics [9–11]. Two distinctive ob-
jects of non-Hermitian topology are Bound states In the Con-
tinuum (BICs) and Exceptional Points (EPs). The first one,
BICs, are lossless states resulting from destructive interfer-
ence of coupled lossy photonic resonances [12, 13]. They
are topological charges pinned at polarization vortices in mo-
mentum space [14, 15]. Topological manipulations (merging,
splitting..) of BIC charges [16] propose unique way to mod-
ify farfield radiation[17], robustness [18] and threshold [19]
of light emitting devices. The second one, EPs, where pho-
tonic complex resonances coalesce, are degeneracy points of
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non-Hermitian physics [20]. Fundamentally, they take the
role of Dirac points as singularities in non-Hermitian topo-
logical band theory [9]. For devices applications, they offer
novel concepts for making optical sensors with high sensitivi-
ties [21, 22] and lasers with intriguing properties [23–25]. In-
terestingly, in light of non-Hermiticity, “text-book” dispersion
characteristics may gain or evolve with new behaviors: half of
photonic band-edges at the centre of the Brillouin zones are
BICs in one dimensional lattice [26], Dirac points transform
into EP rings in two dimensional lattice [27] ... Thus strate-
gies used for Hermitian photonics may suggest fruitful sce-
narii to investigate and study complex dispersion engineering
in non-Hermitian context.

We have recently proposed an analytical approach of One
Dimensional (1D) Photonic Crystals (PCs) with broken trans-
verse symmetry, which were shown to provide a new degree
of freedom for the design of optical dispersion, and hence for
the control of spatial and spectral characteristics of light [28].
The 1D PCs were composed of two high-index-contrast sub-
wavelength dielectric gratings of same period and in close
near field proximity. We demonstrated that breaking trans-
verse symmetry opens the way to the generation of any local
density of photonic states from zero (Dirac cone) to infinity
(flatband of zero curvature), as well as any constant density
over an adjustable spectral range for the same photonic band.
At this stage, the considered photonic modes were assumed
to operate inside the light cone and were fully preserved from
radiating into the continuum, thus the system were perfectly
described by a Hermitian Hamiltonian.

In the present work, we generalize our theoretical approach
to the modelling of complex dispersion characteristics of
leaky modes operating above the light cone in 1D PCs. Open-
ing access of wave-guided resonances to free space continuum
provides large amount of extra degrees of freedom for mode
coupling engineering. Not only can the two gratings com-
municate via near field coupling, but they are also allowed
to couple via the propagating radiated field. A general non-
Hermitian Hamiltonian is proposed to capture both coupling
schemes. In particular, we show that the lateral and transverse
symmetry, both described by phase parameters in the non-
Hermitian Hamiltonian, play crucial roles in the radiative cou-
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Figure 1. Schematic view of the different types of coupled grating
structures investigated in this paper: with full lateral and transverse
symmetry (a), with broken lateral symmetry (b), with broken trans-
verse symmetry (c), “fish-bone” structure, a specific case where both
the lateral and transverse symmetry are broken (d).

pling processes. Our approach allows for a unified description
of the wide family of optical modes which may be generated
within an arbitrary 1D PC. Remarkably, through a variety of
illustrative examples, we show that our theoretical approach
provides a simplified categorization of these modes, and it is
also a powerful enabler for the discovery of novel photonic
species. Finally, as a proof-of-concept, we demonstrate ex-
perimentally the formation of a Dirac point at the merging of
three BICs that is the most achieved photonic specie discussed
in this work.

This paper is organized as follows. The next section II
is devoted to the presentation of the non-Hermitian Hamil-
tonian H . This general Hamiltonian is the back-bone of the
present work and makes it possible the derivation of a phys-
ically insightful analytical model of the dispersion character-
istics. Figure 1 provides a schematic view of the variety of
coupled grating structures, which we propose to handle, us-
ing our theoretical approach. Since the number of parameters
involved for full generality is rather large, it is appropriate to
implement simplified versions of the general Hamiltonian, en-
compassing a wide variety of specific practical cases.

In sections III to VI, we select a few exemplifying typi-
cal grating configurations to assess the validity and illustrate
the effectiveness of our analytical model, whose results are
confronted to RCWA (Rigorous Coupled-Wave Analysis) and
FEM (Finite Element Method) numerical simulations [29].
This selection is directly related to specific symmetry char-
acteristics of coupled grating structures : in sections III to
V, we consider aligned grating structures successively with
full lateral and transverse symmetry III , with broken lateral
symmetry IV, and finally with broken transverse symmetry
V. The section VI focuses on a specific case of misaligned
grating structures, so called “fish-bone” structure formed by
two misaligned, identical and fully symmetrical gratings. The
“fish-bone” is a unique specific case of 1D periodic structure,
where both the lateral and transverse symmetries are broken.

We will show that our analytical model is particularly suited

as a predictive qualitative design tool for the production of a
great variety of photonic states. This includes a simplified and
accurate classification of BICs, which have been the matter of
intense investigation during recent years [13–16, 18, 19, 30–
41]. Our model provides the clues for the generation of BICs,
- with adjustable (from very flat to Dirac like) complex disper-
sion characteristics - as well as the generation of such fasci-
nating photonic species as EPs [20] in the complex dispersion
curves; particular attention is paid on the physical impact of
transverse as well as lateral symmetry of the photonic struc-
tures. A specific emphasis will be placed on the demonstration
of two unique photonic species, called thereafter (i) “triple
BIC”, exhibiting unprecedented low optical radiation losses
over a very large k-vector range of the Brillouin zone and (ii)
“Dirac point at triple BIC”, originating from the degeneracy
of one triple and one double BICs at the Γ point. Since the
latter may be considered as the most achieved photonic specie
based on the combination and interaction of BICs, we present
our experimental demonstration of “Dirac point at triple BIC”
in section VII as a proof-of-concept. In the last section VIII,
we point out the great potential of photonic crystals with con-
trolled lateral and transverse symmetry, as generic building
blocks for a range of new practical applications as well as for
original physical studies.

Additional specific developments, complementary to the
main text, are provided in the Appendix.

II. THEORETICAL APPROACH

A. Non-Hermitian Hamiltonian

Properties of the eigenmodes in PC slabs are dictated by
two symmetry categories [42]: the “transverse symmetry” (or
vertical symmetry), defined by the z-reflection operation σz ,
and the “lateral symmetry” (or in-plan symmetry), defined by
the x-reflection operation σx in the case of 1D PC (see Ap-
pendix A for details of these operators). Leaky optical reso-
nances in PC slabs are generally described as complex eigen-
values of 2×2 non-Hermitian Hamiltonian; this approach has
been successfully applied to leaky resonances exhibiting pe-
culiar states such as EP and BIC [13, 27]. However this ap-
proach, although attractive in terms of simplified mathemat-
ical resolution, provides a rather partial description of the
structures. It ignores explicitly the transverse dimension of the
structures. The 2×2 Hamiltonian cannot therefore accounts
for the impact of a transverse symmetry breaking nor can it de-
scribe properly the transverse radiative properties, for exam-
ple the occurrence of resonance trapped BICs [31, 43], named
transverse BICs thereafter. To fully consider this symmetry,
a more complete description with non-Hermitian Hamiltonian
of higher dimension is required.

In the case of 1D PC slabs, the transverse dimension and
symmetry can be taken into account by using a description
based on two coupled grating structures, with no defined
transverse dimensions (ie bilayer 1D PC [28]). This approach
might also be considered as a simplified description of a real
grating structure, naturally provided with a transverse dimen-
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sion; however, switching from one single grating, with no
transverse dimension, to a pair of coupled gratings allows for
taking into account number of factors related to the transverse
dimension of a real grating, despite the transverse dimension-
less nature of each of the two individual coupled gratings. The
reader may find complementary explanation of the rationale
and phenomenology of our model in the appendix section B 1.

A sketch of the two coupled gratings (with common pe-
riod Λ) is presented in Fig.2(a). The gratings are depicted
with finite thickness, although this parameter is not explicitly
accounted for in the analytical model, nor is explicit the ge-
ometrical distance between the two structures. Indeed, these
two parameters are merged into a single one, the phase pa-
rameter ψ, shown in Fig.2(b). This phase is the key parameter
describing the transverse dimension of the structure, and is
further discussed later in the main text (see II D) and in the
appendix section B 1. The transverse symmetry of the system
of the bilayer PC is partly defined by the characteristics of
each individual grating.

The lateral symmetry of the system is partly set by the lat-
eral symmetries of the grating unit cells. In addition, both
symmetries are also controlled by the lateral offset δ × Λ be-
tween the two gratings [see Fig.2(b)]. For the sake of simpli-
fying the writing of the equations of the analytical model, the
origin of the lateral x-coordinate is taken at mid lateral offset
between the two gratings. Referring the gratings to this origin
is straightforward, if both have laterally symmetric unit cells.
If this is not the case, it is appropriate to define the anchorage
position of each grating at the x-centroid of the lateral distri-
bution of the effective dielectric constant.

In our model, the ω(kx) dispersion characteristics are de-
rived from different coupling processes undergone by the for-
ward (a1+, a2+) and backward (a1−, a2−) fundamental zero-
order waves of the two planar waveguides of effective refrac-

Figure 2. Schematic presentation of the coupled grating structure (a)
and detailed cross-sectionnal view of the unit cell (b); δ is the lateral
off-set between the two grating of period Λ. ψ is the transverse phase
shift. (c) Different coupling mechanisms between the four guided
modes a1±,a2±.

tive index which are assumed to be single-mode in the spectral
range of interest. The dispersion engineering is focused in the
vicinity of the second Brillouin zone boundary, where second-
order diffractive coupling processes between backward and
forward wave components as well as first order coupling pro-
cesses with the radiation continuum (in the vicinity of the Γ
point) take place. A phenomenological description of cou-
pling processes within the two gratings as well as of cross cou-
pling processes occurring between them can be obtained using
the coupled mode theory formalism. In the basis formed by
(a1+, a1−, a2+, a2−), the equations of coupled mode theory
end up in an eigenequation of a 4 × 4 non-Hermitian Hamil-
tonian, given by:

H =

(
H11 H12

H21 H22

)
, (1)

in which Hij are 2×2 matrices, which describe the optical
interactions intra each gratings (Hij=i) and inter the two grat-
ings (Hij ̸=i). The general expressions of Hij are given in
the Appendix section B 2. As pointed out in the introductory
section, the Hamiltonian is not meant to be exploited in its full
generality, but instead to be broken down into a variety of sim-
plified versions suited to specific practical cases. The parame-
ters chosen to build up the various matrix element expressions
(given in the Appendix section B 2) allow for comprehensive
analytical description of leaky 1D PC slabs. They are cate-
gorized and scrutinized into different coupling strengths and
phases, and will be discussed in the following.

B. Uncoupled modes

The dispersion characteristics of the uncoupled modes (i.e.
a1± for the upper grating and a2± for the lower grating) are
given by the pulsations ω1,2 of the two non-corrugated waveg-
uides at 2π/Λ wave vector, and their corresponding group ve-
locities v1,2.

In the rest of the manuscript, we denote k the variation of
the wave vector in the vicinity of the second Brillouin zone
boundary (i.e. 2π/Λ). The dispersion relationship of uncou-
pled modes can be written as ωi± = ωi ± vik with i = 1, 2.

C. Coupling rates

The coupling mechanisms between modes in the basis
(a1+, a1−, a2+, a2−), as depicted in Fig.2(c), include the cou-
pling between guided modes from the same membrane (intra-
layer coupling) or from separated ones (inter-layer coupling),
and the coupling between these guided modes with the radia-
tive continuum. The corresponding coupling rates are:

• For intra-layer diffractive coupling rates (expressed in
intra-layer Hii sub-matrices) :

– κ1,2:diffractive coupling rates between counter-
propagating guided waves in the same grating (1
or 2), due to their own corrugation
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– γ1,2:diffractive coupling rates between guided
waves in grating 1 and 2 and the radiation contin-
uum. The two gratings are supposed to be zero
order in the spectral range of interest (Λλ < 1)
around the Γ point.

– β1,2:evanescent relative weight of grating 2(1) to
the total diffractive coupling rate of grating 1(2).
These coefficients quantify the amount of diffrac-
tive coupling rates within one membrane layer,
induced evanescently by the grating of the other
membrane layer. It is assumed that the relative
weight is the same, whether it is applied to κ1,2
or γ1,2. When the two gratings are far apart, β1,2
tend to zero, and Hii sub-matrices describe intra-
layer interactions within each individual grating,
taken alone

• For inter-layer diffractive coupling rates (expressed in
inter-layer Hij sub-matrices) :

– κd: evanescent coupling rate between co-
directional guided waves from different gratings,
with light transfer from grating 1 to grating 2 and
reciprocally.

– κc: diffracto-evanescent coupling rate between
counter-directional guided waves from different
gratings, with light transfer from one grating to the
other, then switching the propagation direction.

When the two gratings are far apart, κd and κc tend to zero;
however, the two gratings keep on interacting via radiative
coupling, which does not vanish, as expressed by inter-layer
Hij sub-matrices. This interaction is delayed by the light time
of flight between the two gratings, which is quantified by the
transverse phase shift ψ introduced in the upcoming section
II D and in Fig. 2. This key phase parameter is further com-
mented extensively in this paper (see, for example, section
III A and appendix sections B 1 and B 2).

The basis is chosen so that κ1,2 and γ1,2 are real positive
numbers. However, κd and κc are complex in general, and
they are real numbers if the two gratings are identical.

D. Coupling phases

While most of the coupling rates presented in the previous
subsection (II C) are real numbers, they are associated with
different phases when implemented in the Hamiltonian con-
struction:

• ϕ = 2πδ: phase parameter corresponding to differ-
ent diffraction order phase-shifts occurring in each grat-
ings. It results from their respective off-set x-coordinate
± δ

2 × Λ [see Fig. 2(b)]. The phase shifts are, respec-
tively, ±ϕ for the second order diffractive coupling
between forward and backward guided waves (in the
vicinity of the second Brillouin zone boundary), and
±ϕ/2 for the first order diffractive coupling between
guided waves and waves of radiation continuum (in the

vicinity of the Γ point). ϕ is therefore central in the
diffractive coupling processes mentioned above.

• ψ: transverse phase shift built up in free continuum
by radiated photons, along a one way trip between the
two gratings. ψ includes the phase shifts accumulated
within the gratings and in between; it is related to the
effective transverse optical distance Lopt between the
wave-guided resonances. Therefore, ψ is not solely re-
lated to the geometrical distance between the two grat-
ings, but is also impacted by the transverse field dis-
tribution. ψ is a central phenomenological parameter of
our model, which conveys in itself significant amount of
physical significance. An analytical expression of this
parameter will be derived later in this paper (Eq. (7) in
section III A).

• (φ1+, φ2+, φ1−, φ2−): phases related to the coupling
step of forward (+) and backward (-) guided waves to
the radiation continuum in gratings 1, 2. If the grating
unit cell is laterally symmetric φi+ = φi−. If the two
gratings are identical φ1± = φ2±.

Phases ψ and φi± play a major role in the radiative cou-
pling processes, which are accounted for by a phenomenolog-
ical description of the radiative channel connecting the two
gratings. The radiative channel includes successively 3 steps,
(i) the extraction of the wave-guided field from one grating
to free space continuum, (ii) the propagation of the radiated
field in free space continuum and finally (iii) the resonant in-
sertion of the latter into the other wave-guide grating. Phases
φi± are involved in the first and third steps, while the second
step is controlled by the phase ψ. Implementation of the dif-
ferent phases in the Hamiltonian construction is given in the
appendix section B 2.

The reader is invited to refer to this section of the appendix
for additional explanation about the derivation of the Hamil-
tonian matrix elements.

E. Approximation of the model

In order to establish a useful and tractable Hamiltonian,
two main approximations are made. First of all, as we will
see in the upcoming sections, the diagonalization of H gives
rise to an implicit equation for the complex eigenvalues ω =
ωR−iωI (see e.g. Eqs. (4) to (6)). Indeed, some parameters in
H are functions of the phase ψ (see e.g. Eqs. (7)). The latter
is related to the propagation of photons in the transverse di-
rection and obviously depends on ω. In the following we will
assume that ψ depends on the sole real part ωR. This remains
valid when the time spent by photons for propagating in the
transverse direction (called τrad in the appendix B 1; see also
Eq (12b) in section III C 2) is much smaller than 1/ωI . As
we will focus in this article on modes with high Q-factors, the
condition τrad ≪ 1/ωI is always met.

We also assume that the propagation of light in the vertical
direction can be taken into account by the sole dephasing ψ
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and is not affected by the interfaces between the dielectric lay-
ers. It can be shown that the qualitative behaviours described
in this article remain valid, even though some corrections must
be made on the eigenvalues, mainly on their imaginary parts.
These approximations are more extensively discussed in the
appendix (section B 1).

III. SYMMETRICAL AND ALIGNED GRATINGS

In this section, we will discuss and analyze in detail the
configuration of coupled gratings structure which is fully
symmetrical along both the transverse and lateral directions
(see Fig. 3). This is the simplest configuration, yet revealing
to be very generic in terms of complex dispersion character-
istics, as demonstrated in the following.

A. Analytical expression of Hamiltonian

The general Hamiltonian is considerably simplified; first,
the phase parameters, except for the phase ψ, are no longer
relevant: ϕ = 0, since the two gratings are aligned, andφ1± =

φ2±, together with φ1,2+ = φ1,2−, since they are identical
and formed with laterally symmetric unit cells. Second, the
coupling coefficients are identical, κ1,2 = κ, γ1,2 = γ, β1,2 =
β, together with the kinetic parameters, ω1,2 = ω0 and v1,2 =
v0. Finally, the coupling parameters κc,d are real. As a result
the Hamiltonian can be written along the following simplified
version:

Figure 3. Schematic presentation of the fully symmetrical coupled
grating structure, along both the transverse and lateral directions.

H(k) = (ω0 − iG)14 +


v0k K − iG κd − iGeiψ κc − iGeiψ

K − iG −v0k κc − iGeiψ κd − iGeiψ

κd − iGeiψ κc − iGeiψ v0k K − iG
κc − iGeiψ κd − iGeiψ K − iG −v0k

 , (2)

where K = κ (1 + β) and G = γ
(
1 +

√
β
)2

. The complex
eigenvalues of Eq. 2 can be expressed in a general form:

ω(k) = ωR(k)− iωI(k). (3)

Here ωR(k) and ωI(k) are given by the real and imaginary
part of ω(k) and represent the optical frequency and the radia-
tive loss respectively. Explicitly, the diagonalization ofH pro-
vides four complex eigenvalues which can be regrouped into
two couples corresponding to two opposite parities η = ±1 of
the transverse symmetry:

ω±
η = ω0 + ηκd − iGψ ± S(k)

2
. (4)

Here the “complex radiation rate” Gψ is given by:

Gψ = G
(
1 + ηeiψ

)
, (5)

and the “complex splitting” of each couple is determined by:

S(k) = 2

√
v20k

2 + (K + ηκc − iGψ)
2
. (6)

The first couple of Eq. (4), given by η = 1, corresponds
to two fundamental/even (along the transverse direction)
modes. The second one, given by η = −1, corresponds to

two excited/odd (along the transverse direction) modes. We
note that the parameter κd is negative, since the fundamental
guided mode of the coupled membranes is obviously even.
The even and odd branches of the complex eigenvalues ignore
each other, since the corresponding modes have opposite
parity. Therefore, possible crossing of these branches is not
avoided.

As pointed out in the previous section, the phaseψ is central
in our model; this parameter expresses the transverse phase
shift built up in free continuum by radiated photons within
the gratings and in between, along a one way trip between
the two gratings. It is related to the effective transverse opti-
cal distance Lopt between the wave-guided resonances. The
analytical expression of the phase ψ is thus simply given by
ψ = k⊥

n Lopt where k⊥ is the transverse component of the
wave-vector and n is the average refractive index perceived by
radiated photons along their trip in the continuum. Neglecting
the reflection at the membrane interfaces (see sections II E and
B 1 ), it can be written:

ψ(k) =

√[
ωR(k)

c

]2
−
(
k

n

)2

Lopt, (7)

where c is the light celerity in vacuum.
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The phase ψ can be controlled by adjusting the transverse
optical distance Lopt between the wave-guided resonances in
each membrane, which is set mainly by the thickness h of the
gratings, and by the distance D between them:

Lopt ≈ n.h+ n0.D. (8)

Here n n is the effective transverse refractive index of the grat-
ing and n0 is the refractive index of the spacer.

We point out that the real part of the eigenvalue ω depends
on ψ, through Eq. (4), as well as ψ depends on ω through
Eq. (7). Therefore different specific values of ψ apply to
the Eq. (4), except when degeneracy of ω occurs between
two eigenvalues. As it is illustrated in the following dis-
cussions of this section III, Eq. (7) is particularly relevant
when it comes to provide a quantitative description of the
real eigenvalues for symmetrical structures, featuring such
distinctive characteristics as, for example, double transverse
BICs (section III C 2) or Dirac point at triple BIC (section
III C 4). It provides also a faith-full qualitative prediction of
the behaviour of imaginary eigenvalues, especially regarding
the variations of the imaginary eigenvalues versus momentum
k around the Γ point.

Fully analytical resolution of this system of equations is ac-
cessible at (close to) the Γ point, while numerical assistance
is required further away, as this will be illustrated in the fol-
lowing. Numerical resolution procedure will be particularly
used, whenever it comes to validate our model against results
of RCWA/FEM numerical simulations.

B. General features of the complex eigenvalues

1. At the Γ point: Lateral BIC

At the Γ point (i.e. k = 0), the expressions given by
Eqs. (4),(5) and (6) are greatly simplified. One can easily
show that ω−

η (k = 0) for both parities have no imaginary
part. They are thus two “dark modes” which are free of
losses and are systematically observed at the Γ point in
structures being symmetric along the lateral direction. Both
of them belong to the category of “symmetry protected
BICs” [13, 44]. This protection arises from the symmetry of
the mode which turns to be odd with respect to the unit cell of
the grating which is symmetrical along the lateral direction.
As a result it cannot radiate at the Γ point since coupling
to plane waves is prevented, unlike the case of the bright
mode which symmetry is even. This type of BIC has been
widely documented in the literature [13, 44]. In this work, we
will refer to it as “lateral BICs”, since it is controlled by the
lateral symmetry of the grating structure. This point will be
addressed in more details in the section IV, where it is shown
that breaking the lateral symmetry prevents the formation of
lateral BICs at the Γ point.

On the other hand, Eq. (4) at k = 0 indicates that ω+
η (k =

0) for both parities are generally “bright modes” with non-
zero radiative losses (i.e. imaginary part of the eigenvalues).

From now on we denote « dark branches » the two branches
(one per parity) of dispersion characteristics showing a lateral
BIC at the Γ point and “bright branches”, the other branches.
Note that, for the latter, one may observe more than one
branch per parity, since they are solutions of the system of
two equations (4) and (7), which are not unique in general.
This is particularly the case when Lopt is significantly larger
than the wavelength, as further discussed in section III C 2 and
Fig. 7.

2. Out of the Γ point: Tranverse BIC

Equations (4) to (6) indicate that the four eigenmodes are
bright out of the Γ point. Lateral symmetry is broken for
k ̸= 0, and no more room is left to lateral BICs. It can be
shown, from expansion of equations around the Γ point, that
the imaginary part of the dispersion characteristics of the dark
branches varies like k2 (see appendix section C 2) .

However, for any k value and for each of the four eigen-
modes (but not for all of them at a time, in a given structure),
optical losses are inhibited when ψ = π(0) (mod 2π) for the
two even (odd) branches: the bright mode turns into a BIC,
occurring accidentally, as a result of destructive interferences
in the transverse direction. Occurrence of a BIC may therefore
take place on any of the two couples of above denoted dark/
bright branches of even/odd modes. It can be shown from Eqs.
(4) to (6) that the imaginary part of the dispersion character-
istics varies like (k − kBIC)

2 around the wave-vector kBIC
corresponding to the occurrence of the transverse BIC (see ap-
pendix section C 3 ). This type of BIC may occur for specific
geometrical / optical characteristics of the photonic structure;
it is also called resonance trapped BIC [31, 43]. We classify
this BIC within a common family which we name transverse
BICs, since it is controlled by the transverse symmetry of the
grating structure. This point will be addressed in more details
in section V, where it is shown that breaking the transverse
symmetry prevents the formation of transverse BICs at and
apart from the Γ point.

We may point out at this stage that the simplified classifi-
cation of BICs into the two categories, transverse and lateral
BICs, constitutes an attractive outcome of our model; we
will show indeed that this classification naturally applies to
a variety of BICs occurring in the generic structure formed
by two coupled gratings and revealed by our model, in
agreement with results of numerical simulation. Even more,
we will show that these two basic BIC building blocks can
be combined and result in structures featuring remarkable
characteristics (in the subsection III C and appendix C).

All the theoretical predictions of the model described above
are fully confirmed by RCWA simulations of a fully sym-
metrical coupled grating structure as reported in Fig. 4(a)
(Λ = 1 µm, h = 0.3 µm, L = 0.8 µm and D = 0.29 µm).
Indeed, from the angle-resolved reflectivity spectra, we dis-
tinguish four resonances corresponding to the four branches
previously discussed. These are Fano resonances resulting
from the coupling between incident plane-wave and the Bloch
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resonances. Since BICs correspond to a perfect uncoupling
of Bloch resonances from the radiative continuum, one may
identify easily BICs at local vanishings of these Fano reso-
nances. We observe two lateral BICs at the Γ point of A and
B branches that are the two dark branches; and a transverse
BIC in oblique direction on the bright branch C. More details
are written in the caption of Fig. 4. Finally, Fig. 4(b) depicts
the quality factor of the bright branch C in the vicinity of the
transverse BIC, extracted from FEM simulation. We observe
indeed a quadratic law as predicted by the analytical theory.

Figure 4. (a) Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing the two couples of dark/bright branches of
even/odd modes. The two systematic lateral BICs, even (A) and
odd (B), occurring at the Γ point can be observed. A transverse
BIC (black arrow) is also observed in oblique direction on the bright
branch of the even mode (C) ; (b) Log-log plot of the quality factor
of the branch C in the vicinity of the wave-vector kBIC correspond-
ing to the occurrence of the transverse BIC in oblique direction;
the imaginary part of the eigenfrequency varies like (k − kBIC)

2.
The black squares are numerical results obtained by FEM simu-
lations. The red line is a polynomial fit. The parameters are:
Λ = 1 µm, h = 0.3 µm, L = 0.78 µm and D = 0.29 µm.

C. Some selective cases with distinctive characteristics

1. Band Inversion and Double Exceptional Point

Further analytical treatment of the complex eigenvalues of
even modes in the vicinity of the Γ point or for small val-
ues of k, where they can be expanded, is given in section C 2
of the appendix. Results can be summed up as follows. In
general, the complex eigenfrequencies are a quadratic func-
tion of k in the vicinity of the Γ point. The real curva-
tures change in sign when the quantity K + κc + G sin(ψ0),
where ψ0 = ψ(k = 0), changes in sign as well, strictly
speaking for the dark branch, and in first approximation for
the bright branch. For K + κc + G sin(ψ0) > 0, it is ob-
served that the upper (lower) branch is bright (dark) with
upward (downward) curvature and the other way around for
K + κc +G sin(ψ0) < 0. This band inversion behaviour, re-
ferred to as band flip in [26], is shown in RCWA simulations
of Fig. 5. For K + κc + G sin(ψ0) = 0, degeneracy of the
real eigenvalue of the dark and bright branches occurs, which
means that the overall diffractive coupling processes between

wave-guided resonances cancel, and the dark branch is flat at
the Γ point (see Eq. (C7) of the appendix (C 2)). RCWA sim-
ulations show that the principal controlling parameter of the
band inversion phenomena is the filling factor FF = L

Λ of the
grating structure. Our model does not include explicitly an ab
initio parameter to account for FF; the latter is implicitly in-
cluded through the factorK+κc+G sin(ψ0), which expresses
the overall diffractive processes encountered by wave-guided
resonances. The reader may find complementary physical in-
sights in the appendix C 6, which details the practical design
rules of a Dirac point at triple BIC.

Conditions for full degeneracy of the complex eigenvalues
of the dark and bright branches can be met out of the Γ point
at double exceptional point for k = kEP . Section C 4 of the
appendix provides a detailed account of this occurrence, based
on our analytical model.

Figure 5. Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing band inversion phenomenon resulting from a
sign inversion of the factor K + κc + G sin(ψ0). At the onset of
the band inversion, the dark branch is flat and degeneracy occurs be-
tween the real eigenvalues of the dark and the bright branches. Other
than the lateral BIC at k = 0 of the dark branch, we distinguish also
two transverse BIC pinned at ∼ ±2 degrees in the upper branch of
both configurations. The band inversion is obtained by varying the
filling factor: (a) FF=0.35, (b) FF=0.36 and (c) FF=0.37. The other
parameters are Λ = 1µm, h = 0.25µm and D = 0.3µm.

2. Double transverse BIC

Let us concentrate on even modes, given that conclusions
are qualitatively similar for odd modes. At the Γ point of the
bright branch, the mode is generally bright except when con-
ditions are met for the formation of a transverse BIC, that is
for ψ = π (mod 2π), as explained in the previous section.
This particular circumstance corresponds to the merging of
two ordinary transverse BICs belonging to the bright branch
and occurring at ±kBIC vectors, when kBIC → 0. We call
this particular transverse BIC, double transverse BIC (see ap-
pendix sections C 2 and C 3 for complementary detailed anal-
ysis). The generation of a double transverse BIC in fully sym-
metrical coupled gratings is illustrated in RCWA simulation
of Fig. 6 .

Close to the Γ point (small k), it is possible to derive the
complex dispersion characteristic of this double transverse
BIC using Eqs. (4)- (6) where η = 1 and ψ(k = 0) ≡ ψ0 = π
(mod 2π). The expanded real part ωR of the complex disper-
sion characteristic close to the Γ point is given by Eq. (C3) of
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Figure 6. (a) Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing the occurrence of a double transverse BIC
at the Γ point (black arrow) of the bright branch (here dielectric
branch). The ubiquitous lateral BIC shows up at the Γ point of
the dark branch. (b) Log-log plot of the quality factor of the bright
branch versus k vector in the vicinity of the Γ point. Black squares
are numerical results obtained by FEM simulations. Red line is a
polynomial fit. The slope −3.95 of the fit confirms the results of our
analytical model anticipating variations of the imaginary eigenval-
ues like k4. The parameters are: Λ = 1 µm, h = 0.25 µm, L =
0.3 µm and D = 0.3 µm.

appendix C 2:

ωR(k) = ωR0 + CR
k2

2
, (9)

where

ωR0 = ωR(k = 0) = ω0 + κd +K + κc, (10)

and CR is the curvature of the real dispersion characteris-
tic at the Γ point (i.e. the second derivative of ωR(k)). The
curvature CR can be written:

CR =
τwgCwg + τradCrad

τwg + τrad
, (11)

where:

τwg =
1

2G
(12a)

τrad =
Lopt
c

(12b)

and:

Cwg =
v2

K + κc
(13a)

Crad =
(c/n)

2

ωR0

. (13b)

τwg is the average lifetime of photons in the wave-guided
state before being emitted into the continuum and τrad is the
average lifetime of photons in the radiated state during one
way trip between the two gratings. Cwg and Crad are the

guided and radiated curvature respectively, their contribution
to the total curvature is weighted by the relative time spent
by photons in the wave-guided state, i.e. τwg/(τwg + τrad),
and radiated state, i.e. τrad/(τwg + τrad), respectively. The
expression of the curvature is an eloquent illustration of the
hybrid character of this double transverse BIC, which is alto-
gether guided and radiated [45].

Real dispersion characteristic of double transverse BIC can
be made very flat if the condition CR = 0 is met. This is
shown to be achievable in the supplemental appendix (section
C 5), provided that Lopt is significantly larger than λ, that is
for relatively thick structures. As shown in Fig. 7, RCWA sim-
ulation demonstrates indeed that very flat transverse BIC with
zero curvature can be achieved provided that the thickness of
the structure exceeds a few times λ. The double transverse
BIC with flat band (zero curvature at the Γ point ) is observed
for a rather thick structure: the gratings are separated by a 13λ
thick spacer.

In that case, as Lopt varies rapidly with the wavelength,
solving equations (4) and (7) for the sole even modes gives
rise to more than 2 solutions, as this is confirmed by simula-
tions in Fig. 7. All these modes are quasi-Fabry-Pérot modes
where the photons share their life time between the guided
state in the corrugated membranes (propagation in the lateral
direction, see Eq. (12a)) which act as resonant reflectors, and
the radiated state in the spacer (propagation in the transverse
direction, see Eq. (12b)).

Figure 7. (a) Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing a flat double BIC with zero curvature of the
real eigenvalue at the Γ point (red arrow). (b) FEM simulations of
the real eigenvalues of the three branches A, B, C. The real curvature
changes from positive value (A) to negative value (C) and vanishes
for the intermediate plot (B). Common origin of the energy has been
chosen at Γ point for the three bands to improve readability of the
curvature changes. (c) The real part of the eigenvalue of the flat
double BIC is zoomed around the Γ point: it shows k4 variation, thus
confirming a zero curvature. The optical thickness of the spacer D is
about 13λ.The other parameters are Λ = 1 µm, h = 0.25 µm, L =
0.3 µm and D = 16.4423 µm.

As recalled in the introduction, achieving flat band (or zero
band curvature) conditions of the real dispersion character-
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istic provides slow light of zero group velocity with high
density of state (DOS) for a broad range of the Brillouin zone,
which is an attractive feature for a variety of applications.
We propose here a specific approach for that purpose, based
on the interplay between radiated and guided hybridized
components of a double transverse BIC.

The imaginary part ωI of the complex dispersion character-
istics of the transverse BIC close to the Γ point can also be
obtained from expansion of Eqs. (4)-(7) where η = 1. The
general expression of the imaginary part CI of the complex
curvature given by equation C5 of appendix C 2, for the even
bright branch, indicates that CI is null when ψ0 = π, that is
the case of a double transverse BIC. Expansion of ωI is there-
fore required to be extended up to the order 4. This means that
ωI , which is null at the Γ point, increases like k4. In other
word the imaginary part of the complex dispersion character-
istics of the double transverse BIC (belonging to the bright
branch) is flat close to the Γ point. This is confirmed by FEM
simulations (see Fig. 6), showing the quality factor of the dou-
ble transverse BIC to vary like k−4 in the vicinity of the Γ
point.

This result is consistent with our interpretation of the trans-
verse double BIC at the Γ point as resulting from the merg-
ing of two transverse BICs occurring off the Γ point at k =
±kBIC , when kBIC tends to zero momentum. We remind
that the imaginary part of the dispersion characteristics varies
like (k−kBIC)2 for the two transverse BICs with ±kBIC mo-
mentum. For the merging BIC design, that is kBIC = 0, the
imaginary part varies like (k−kBIC)2(k−kBIC)2 ∼ k4 (see
appendix C 3 and equation (C12) for complementary analy-
sis). This transverse BIC merging scenario, derived from ana-
lytical model, is in line with recent interpretation of radiative
losses of BICs based on their topological nature [18, 40, 46].

3. Triple BIC

At the Γ point of the dark branch, the mode is system-
atically dark since it is protected by the lateral symmetry.
If, in addition, conditions are met for the formation of a
double transverse BIC, the eigenmode turns to be doubly
protected. We call triple BIC the mode generated in these
particular conditions. This specific accidental circumstance
corresponds to the merging of two ordinary transverse
BICs belonging to the dark branch and occurring at ±kBIC
vectors, when kBIC approaches zero, with the lateral BIC
occurring systematically at the Γ point. Close to the Γ point
(small k), it is also possible to derive the complex dispersion
characteristic of the triple BIC from expansion of Eqs. (4)-(7).

The expanded real part ωR of the complex dispersion char-
acteristics close to the Γ point is given by Eqs. (C6) and (C7)
of the appendix C 2, for ψ(k = 0) ≡ ψ0 = π (mod 2π):

ωR(k) = ωR0 −
v2k2

2(K + κc)
, (14)

where, for the dark branch, ωR0
= ω0 + κd −K − κc.

We may note the fully wave-guiding nature of the real
dispersion characteristics, which expresses the efficient
protection of the triple BIC from the surrounding continuum.
This is clearly unlike the case of the double transverse BIC
issued from the bright branch, which hybrid character, both
wave-guided and radiated, has been pointed out before in Eq.
(11) and (C20).

The imaginary part ωI of the complex dispersion charac-
teristics of the triple BIC close to the Γ point can also be ob-
tained from expansion of Eqs. (4)-(7). Equation C8 of the
appendix C 2 indicates that the second derivative d2ωI/dk2 is
null when ψ0 = π (mod 2π). It can be shown that expan-
sion of ωI is required to be extended up to the order 6 (see
appendix C 3 for complementary analysis). This means that
ωI , which is null at the Γ point, increases like k6. In other
word the imaginary part of the complex dispersion character-
istics of the triple BIC is ultra-flat close to the Γ point. This
also means that the optical losses of a structure provided with
a triple BIC, which are strictly null at the Γ point, remain very
low off the Γ point, up to large lateral k momentum. These
predictions of the model are confirmed by RCWA and FEM
simulations, illustrated in Fig. 8. They indicate that, when a
triple BIC is generated, the quality factor of the resonance re-
tains very large values (around 104) up to large momentum
angle of the Γ point (±10◦). FEM data show the quality fac-
tor of the triple BIC structure to vary like k−6 in the vicinity
of the Γ point.

Figure 8. (a) Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing the occurrence of a triple BIC at the Γ point
(black arrow) of the dark branch (here dielectric). (b) log-log plot of
the quality factor of the same branch versus k vector in the vicinity
of the Γ point. Black squares are numerical results obtained by FEM
simulations. Red line is a polynomial fit. The slope −5.93 of the fit
confirms the results of our analytical model anticipating variations of
the imaginary eigenvalues like k6. Q factors larger than 1012 should
not be taken into account because they lies beyond the FEM accuracy.
The parameters are Λ = 0.55 µm, h = 0.279 µm, L = 0.275 µm
and D = 0.

This result is consistent with our interpretation of the triple
BIC at the Γ point as resulting from the merging of two trans-
verse BICs occurring off the Γ point at k = ±kBIC momen-
tum, with a lateral BIC at the Γ point, when kBIC tends to
zero momentum. For the triple BIC design, that is kBIC = 0,
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the imaginary part varies like (k − kBIC)
2(k − kBIC)

2k2 ∼
k6, given that the lateral BIC imaginary part varies like k2

(see complementary analysis in the appendix section C 3 and
Eq. (C13)).

4. Dirac point at triple BIC

The Dirac point at triple BIC is the central and most
outstanding character among all distinctive photonic species
described in previous sections, which combines all the
remarkable characteristics at a time. We again concentrate on
the two even modes, given that conclusions are qualitatively
similar for odd modes. We remind that one of the two
even modes is systematically dark at the Γ point, being
lateral symmetry protected (lateral BIC), while the other is
bright in general. Let us start with the double exceptional
point (see subsection III C 1) which is further described in
the supplemental appendix (section C 4). We remind that
a double exceptional point is formed when conditions for
full degeneracy of the complex eigenvalues of the dark and
bright branches is achieved [27]. It is shown in section
C 4 of the appendix (Eqs. (C16) and (C17)) that the double
exceptional points show up in the dispersion characteristics
at the wave vector k = kEP = ±G(1 + cosψ(kEP ))/v,
with the additional condition K + κc + G sinψ(kEP ) = 0.
If K + κc turns to be null, ψ(kEP ) = π (mod 2π) (for
the even mode) and k = kEP = 0. The two exceptional
points merge at the Γ point. It also results obviously that
ψ0 = ψ(k = 0) = π (mod 2π). Consequently, the bright
mode at the Γ point turns into a double transverse BIC, which
therefore degenerate with a lateral BIC. The double transverse
BIC and the lateral BIC having the same real eigenfrequency,
we may conclude that the lateral BIC is also a triple BIC, as
described in the previous section, since it benefits from both
lateral and transverse protections (the condition ψ0 = π (mod
2π) holds also for it). While the double transverse BIC and
the triple BIC are degenerated at the Γ point, the regime of
strong coupling between the two eigenmodes applies off the
Γ point, as soon as the lateral k momentum differs from 0
[47]. As a result, the real dispersion characteristics follow
a Dirac like linear variation. We call therefore Dirac point
at triple BIC this specific type of mode, since it features
zero-index behaviour at the Γ point, with very weak losses,
owing to a fine interplay between transverse and lateral BICs.
Dirac point at triple BIC characteristics are precisely ac-
counted for by our analytical model, as further detailed below.

The expanded real part ωR of the complex dispersion char-
acteristics close to the Γ point is derived from Eqs. (4)-(7),
with ψ = ψ0 = π (mod 2π) at the Γ point and K +κc = 0. It
yields the linear relation below:

ωR(k) = ω0 + κd ± vDk, (15)

where:

vD =
v√

1 + τrad

τwg

. (16)

We remind that τwg and τrad, given by Eqs. (12a) and
(12b) respectively, are the average lifetime of photons in the
wave-guided state before being emitted into the continuum,
and the radiated state during a one way trip between the two
gratings. The dispersion characteristics include an upper
Dirac branch (−vDk when k < 0 and +vDk when k > 0)
and a lower Dirac branch (+vDk when k < 0 and −vDk
when k > 0); both branches degenerate at the Γ point, where
the curvature is infinite.

The expanded imaginary part ωI of the complex dispersion
characteristics close to the Γ point can be again derived from
Eqs. (4)-(7), with ψ = ψ0 = π (mod 2π) at the Γ point
and K + κc = 0. If τwg ≫ τrad, it can be shown that for
both Dirac branches, which share the same optical loss rate in
strong coupling regime:

ωI(k) = −1

2
G

(
Lopt
nG

)2

k2, (17)

where nG is the group index of the non-corrugated grating
waveguide. This relation expresses that the wave-guided
photons retain the protecting umbrella of the triple BIC,
within a domain of the reciprocal space extending over
∆k ∼ nG/Lopt, around the Γ point. This is another mani-
festation of the interplay between radiated and wave-guided
propagations.

In summary, while the real part of dispersion characteristics
for the Dirac point at triple BIC is a linear function of k, the
imaginary part is a quadratic function of k, which means that
complex Dirac point at triple BIC characteristics retain low
optical losses, for k momentum around the Γ point. Eq. (17)
shows that optical losses are minimized, if the optical losses
of each individual grating and if the transit path of photons in
free continuum are kept low. These predictions of the model
are confirmed by RCWA and FEM simulations, as illustrated
in Fig. 9.

The practical design rules of a Dirac point at a triple BIC
are given in the appendix C 6.

D. Synthetic Summary

The diagrams of Fig. 10 thereafter summarize the principal
results and conclusions of this section and of the related ap-
pendix C. The basic BIC building blocks are respectively the
lateral BICs (represented by the dark dots) and the transverse
BICs (yellow dots). The lateral BICs originate from the lateral
symmetry protection, and occur systematically at the Γ point
on the dark dispersion branch (denoted as “Dark”, in the fig-
ure, against “Bright”, which stands for the bright branch, free
from lateral BICs). The transverse BICs are “accidental” and
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Figure 9. (a) Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing the occurrence of a Dirac point at triple BIC
at the Γ point (black arrow). (b) log-log plot of the quality factor
of the two branches A and B versus k vector in the vicinity of the Γ
point. The blue squares and red circles are numerical results obtained
by FEM simulations. The black line is a polynomial fit. The slope
−2 of the fit confirms the results of our analytical model anticipating
variations of the imaginary eigenvalues like k2. The parameters are
Λ = 1 µm, h = 0.3593 µm, L = 0.2735 µm and D = 0.

may occur anywhere on both the dark and bright branches:
their specific occurrences are set by specific opto-geometrical
characteristics of the structure. The green dots represent the
exceptional points, where the complex eigenvalues are degen-
erated. The successive steps of the different scenarii are in-
dicated by the double arrows. The orange double arrows are
related to merging-splitting processes of the BICs. The yellow
double dots stand for double BICs, originating from the merg-
ing at the Γ point of two transverse BICs on the bright branch.
Triple BICs (yellow-black-yellow triple dots) may also oc-
cur from the merging at the Γ point of two transverse BICs
with a lateral BIC on the dark branch: these triple BICs ben-
efit from both lateral and transverse protections, which help
them retaining very low optical losses away from the Γ point.
The blue double arrows point upon band inversion phenom-
ena, where a dark branch transmute into a bright branch and

vice versa. Transmutation event manifests itself by an inter-
mediate state where bands coalesce and show flat dispersion
characteristics. Finally, the Dirac characteristic can be viewed
as the central character of the plot: it is a particular double ex-
ceptional point, where the two exceptional points merge at the
Γ point and convert into two transverse BICs, which merge
in their turn at the Γ point with a lateral BIC. In addition, the
bright and dark branches degenerate at the Γ point. In brief,
the Dirac point coincides with two degenerated triple BICs,
represented by three red dots. Strong coupling is triggered be-
tween the two branches of the Dirac characteristic, right at the
Γ point, as soon as the lateral k vector deviates from zero, re-
sulting in linear dispersion characteristics. At last, we may re-
call that the double transverse BIC at the Γ point of the bright
branch can be made flat (cancellation of the curvature); this
is also the case of the lateral BIC at the Γ point of the dark
branch, in the configuration leading to the band inversion.

IV. LATERAL SYMMETRY BREAKING: ALIGNED
IDENTICAL GRATINGS WITH LATERAL BROKEN

SYMMETRY

We propose now to analyse in detail the case of a coupled
grating structure which is symmetrical along transverse di-
rection and which presents a lateral symmetry breaking (See
Fig. 11). We concentrate on the sole effect on dispersion char-
acteristics of breaking the lateral symmetry of the unit cell.

A. Analytical expression of Hamiltonian

The general Hamiltonian is similar to that derived for
the fully symmetrical structure, except for the phases
φ1+, φ2+, φ1−, φ2− related to the coupling step of forward
(+) and backward (-) guided waves to the radiation contin-
uum in gratings. The gratings being identical, we have φ1± =
φ2± = φ±, but the lateral symmetry breaking of the unit cell
leads to φ+ ̸= φ−. As a result, the Hamiltonian can be writ-
ten along the following modified version, with respect to the
fully symmetrical case:

H(k) = (ω0 − iG)14 +


v0k K − iGe−iφ κd − iGeiψ κc − iGei(ψ−φ)

K − iGeiφ −v0k κc − iGei(ψ+φ) κd − iGeiψ

κd − iGeiψ κc − iGei(ψ−φ) v0k K − iGe−iφ

κc − iGei(ψ+φ) κd − iGeiψ K − iGeiφ −v0k

 , (18)

where φ = φ+ − φ−. All other parameters are the same as
in the fully symmetrical case.

From diagonalization of the Hamiltonian, we obtain four

complex eigenvalues whose expressions are also given by
Eq. (4) (See appendix D for more details and physics), where
the "complex splitting" S (k) is now written:

S(k) = 2
√
v20k

2 + (K + ηκc − iGψe−iφ) (K + ηκc − iGψeiφ). (19)

As in the fully symmetrical case, the even and odd branches of the complex eigenvalues ignore each other, since the cor-
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Figure 10. Synthetic overview of the variety of BIC configurations, which are achievable using ordinary fully symmetrical coupled 1D PC
grating structures, and the scenarii for their generation. Here are lateral BICs, are transverse BICs, are triple BIC at Dirac point, are
EPs, indicate opening/closing of real gaps, indicate merging/splitting of tranverse BICs.

responding modes have opposite parity along the transverse
direction. Therefore, possible crossing of these branches is
not avoided. The analytical expression of the phase ψ given
by Eq. (7) remains valid.

Figure 11. Schematic view of the simplest coupled grating structure
with broken lateral symmetry. The vertical symmetry is preserved.

B. General features of the complex eigenvalues

In the following, we restrict the discussion to the couple of
even modes (η = 1 in Eq. (19)), given that the features of the
eigenvalues are qualitatively similar for odd modes (η = −1).
The expressions of the eigenvalues are similar to that applying
for fully symmetrical structures, except for the factors e±iφ,

whose major impact lies in the disappearance of the lateral
BICs, thus confirming the lack of lateral symmetry protection.
It is observed, in general, two bright modes for each transverse
opposite parities. φ = 0 (mod 2π) or φ = π (mod 2π) stand
for gratings with symmetrical unit cell along the lateral direc-
tion. Note that the eigenvalues are identical if K + κc ≥ 0
with φ = 0, or if K + κc ≤ 0 with φ = π. Therefore, in
general, all situations are accounted for, if one chooses either
K + κc ≥ 0 with φ ranging in the interval [0, π], or K + κc
spanning positive as well as negative values, with φ limited to
the interval [0, π2 ].

When φ ̸= 0 (or φ ̸= π), room is solely left to the category
of accidental transverse BICs. It is indeed possible to generate
a transverse BIC for each of the two eigenvalues for a given
transverse parity. For example, in the case of even transverse
parity (η = 1), this is achieved when the condition ψ = π
(mod 2π) is met, for any of the two eigenvalues and for two
distinct structures having specific opto-geometrical parame-
ters (e.g. the grating thickness). The condition ψ = π (mod
2π) can be realized for any k value as well as for any phase
φ. The dispersion characteristics around the Γ point (small k
values) of the two double transverse BICs are obtained from
expansion of Eq. (4), where S(k) is now given by Eq. (19).
The two double transverse BICs are referred to as BIC+ and
BIC−, below. The mathematical process is the same as in the
case of fully symmetrical structures, and leads to the real dis-
persion characteristics, in the case of even modes for example
(η = 1).
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Figure 12. Angle-resolved reflectivity spectra obtained by RCWA
simulations, showing (a) the generation of transverse BICs (red ar-
row) with on demand angular resolution achievable in lateral sym-
metry broken structures (e = 0.02), where they are solely observed,
lateral BICs at the Γ point being forbidden ; (b) in structures with pre-
served lateral symmetry (e = 0), transverse BICs in oblique (right
black arrow) have to cohabit with unavoidable lateral BICs at the
gamma point (left black arrow). (c) log-log plot of the quality fac-
tor of the corresponding branches versus k vector, confirming the
sole presence of a transverse BIC in the structure with broken lat-
eral symmetry, while, in the structure with preserved lateral symme-
try, both the transverse BIC and lateral BIC coexist. Here the red
and black squares are numerical results obtained from FEM simula-
tions. The others parameters are Λ = 1 µm, h = 0.25 µm, L1 =
0.1 µm, Le2 = 0.2 µm and D = 0.25 µm.

ω±
R(k) ≈ ω0 + κd ±K + κc + C±

R × k2

2
, (20)

where:

C±
R =

±τ±wg(φ)Cwg + τradCrad

τ±wg(φ) + τrad
, (21)

τ±wg(φ) =
1

G (1± cosφ)
, (22)

and where τrad, Cwg and Crad are given by Eqs. (12b),
(13a) and (13b) respectively.

In the case of fully symmetrical structure (φ = 0), we find,
as expected, that the BIC+ coincides with the double trans-
verse BIC issued from the bright branch mode given by Eq. (9)
and that the BIC− turns into a triple BIC given by Eq. (14).
As to the imaginary eigenvalue ωI , which is null at the Γ point
(transverse BIC), it can be shown easily that it increases like
k4, for both the double transverse BIC+ and the double trans-
verse BIC− (if φ ̸= 0).

C. Principal asset of structures with lateral symmetry
breaking: angular resolved BICs

Breaking some of the chains imposed upon fully symmetri-
cal structures by symmetry rules is the main asset of structures
with broken lateral symmetry. For example, it is possible to
get full resolution of the angular characteristics of BICs which
can be formed in broken lateral symmetry structures. This is
particularly the case at the Γ point where the presence of a BIC
can be decided or avoided on demand, unlike in fully symmet-
rical structures, where lateral BIC is systematically present.
This particular aspect, accounted for by our analytical model,
is illustrated in RCWA simulations showed in Fig. 12 in the
case of a lateral symmetry broken structure where Λ = 1µm,
h = 0.25µm, D = 0.25µm, L1 = 0.1µm, L2 = 0.2µm and
e = 0.02.

V. TRANSVERSE SYMMETRY BREAKING: ALIGNED
AND DIFFERENT SYMMETRICAL GRATINGS

In this section, we analyse the impact of breaking the
transverse symmetry of 1D PC wave-guiding structures on
the complex dispersion characteristics. Fig. 13 shows the
schematic view of a coupled grating structure, where the two
gratings are aligned and different: this is the general configu-
ration allowing for the analysis of the sole effect on dispersion
characteristics of breaking the transverse symmetry.

A. Analytical expression of Hamiltonian

With regard to the general Hamiltonian presented in section
II A and in appendix B 2, the only specific simplified charac-
teristics of the 4×4 Hamiltonian are: ϕ = 0, since the two grat-
ings are aligned, and φ1,2+ = φ1,2−, since they are formed
with laterally symmetric unit cells (no lateral symmetry break-
ing) and since the two gratings are different, φ = φ1−φ2 ̸= 0.

Writing and diagonalizing the Hamiltonian in the base
formed by base vectors (a1+, a1−, a2+, a2−) results in heavy
mathematical wording, which is detrimental to the physical
readability. The latter is considerably improved if the Hamil-
tonian is written in the new base (a1++a1−, a2++a2−, a1+−
a1−, a2+ − a2−), as below:
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H =


ω1 +K12 − iG12 K+ − i

√
G12G21e

i(ψ−φ) v1k 0
K∗

+ − i
√
G12G21e

i(ψ+φ) ω2 +K21 − iG21 0 v2k
v1k 0 ω1 −K12 K∗

−
0 v2k K− ω2 −K21

 , (23)

where Kij = κi + βiκj , Gij = (
√
γi +

√
βiγj)

2 and
K± = κd ± κc.

B. General features of the complex eigenvalues

As a result of broken transverse symmetry, it is no more
possible to separate the four eigenvalues into two couples of
eigenvalues of opposite parity along the transverse direction,
which would ignore each other and whose crossing would be
allowed, as in the case of symmetric structures. The 4 eigen-
values can be now classified into two couples of eigenvalues
with quasi-even and quasi-odd parities at k = 0, respectively.
This is schematically illustrated in Fig. 14.

Figure 13. Schematic view of the general coupled grating structure,
with broken transverse symmetry. The lateral symmetry is preserved.

Figure 14. Schematic representation of real dispersion charac-
teristics of structures with preserved transverse symmetry (a) and
with broken transverse symmetry (b). For the latter, crossing of
branches with opposite quasi-parities is avoided and modes are fully
hybridized in the anti-crossing areas

C. Specific properties of eigenvalues at the Γ point

At the Γ point, the Hamiltonian is a diagonal block matrix,
and the 4 eigenvalues can be easily determined through the di-
agonalization of the two 2×2 matrices being on the diagonal,
resulting respectively in two eigenvalues which are systemati-
cally complex for the first and purely real for the second. The
latter correspond to 2 lateral BICs which are systematically
observed, as a result of the lateral symmetry, while the former
correspond to bright modes which cannot turn into transverse
BICs, owing to the broken transverse symmetry. It can be eas-
ily deduced that the non-existence of transverse BICs results
from the finite phase φ, the two aligned gratings being differ-
ent. This fact is confirmed by results of numerical simulations,
which do not reveal the presence of transverse BICs, unlike
the case of fully symmetrical structures where φ = 0, and
where transverse BICs are present for ψ = 0 (mod π). Com-
plementary physical discussion concerning the generation of
quasi transverse BICs at the Γ point is given in the appendix
E.

D. Principal asset of structures with transverse symmetry
breaking: flat BIC

Lateral BICs can be made flat under specific conditions at
the Γ point: this category of flat BIC has not the same na-
ture as the flat transverse double BICs observed in structures
with preserved transverse symmetry and presented in sections
III and IV. For the latter, flat BICs result from the interplay
between the radiated and wave-guided components of trans-
verse BICs. In structures with broken transverse symmetry,
flat lateral BICs may result from the interplay between eigen-
modes with quasi-even and quasi-odd symmetries. This is un-
like the case of structures with preserved transverse symme-
try, where such an interplay does not exist. It is noteworthy
that this category of flat lateral BIC is the counterpart of the
loss-less flat band characteristics exhibited in structures with
broken transverse symmetry operating under the protection of
the light cone, around the first Brillouin zone boundary [28].
This category of flat BIC is also present in the “fish-bone”
structures, as exposed in details in subsection VI D.

E. Practical implementation of transverse symmetry breaking

A practical implementation of structures with broken trans-
verse symmetry is schematically represented in Fig. 15.

It consists in coupling a symmetrical grating with a plain
membrane, which can be considered as a non-corrugated grat-
ing. The right view is representative of a more standard con-
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Figure 15. Schematic views of a “Comb” structure. The right view
shows a more standard configuration, where the two superimposed
“gratings” are not separated

figuration, where the two parts of the structure are not sepa-
rated. It consists of an asymmetric grating, which is viewed as
two superimposed non separated symmetric gratings, the sec-
ond “grating" being non corrugated. A straightforward “joy-
stick" to tune the vertical symmetry breaking is the etch depth
ratio ϵ (the etch depth is equal to ϵh, where h is the total thick-
ness of the grating), which may span the range 0 to 1. This
configuration is very little demanding in terms of technologi-
cal constraints, yet featuring properties quite similar to those
presented in this section. Also, the mathematical treatment
of the analytical mode is significantly simplified, since such

parameters as κ2, γ2, in addition to the phase ϕ, vanish.

VI. TRANSVERSE AND LATERAL SYMMETRY
BREAKING: MISALIGNED GRATINGS

When the two coupled gratings are misaligned, both the lat-
eral and transverse symmetry are broken and a very wide vari-
ety of configurations can be considered and handled using the
general Hamiltonian presented in the theoretical approach in
section II. However, as noted in the introduction, the number
of parameters involved for full generality is rather large and it
is appropriate to implement simplified versions of the general
Hamiltonian, encompassing a wide variety of specific prac-
tical cases. In this section we concentrate on a simple case
of misaligned structure where the two gratings are identical
and symmetrical: we call this structure a “fish-bone” struc-
ture. In this particular configuration, both the lateral and the
transverse symmetry are broken. Fig. 16 shows a schematic
view of a “fish-bone” structure.

A. Analytical expression of Hamiltonian

The general 4 × 4 Hamiltonian can be written along the
following simplified version:

H =


ω0 + vk − i

√
GG∗ K∗ − iG∗ κd − ieiψG∗ κc − ieiψ

√
GG∗

K − iG ω0 − vk − i
√
GG∗ κc − ieiψ

√
GG∗ κd − ieiψG

κd − ieiψG κc − ieiψ
√
GG∗ ω0 + vk − i

√
GG∗ K − iG

κc − ieiψ
√
GG∗ κd − ieiψG∗ K∗ − iG∗ ω0 − vk − i

√
GG∗

 . (24)

The Hamiltonian is very similar to the case of a fully sym-
metrical structure: the only difference lies in the phase param-
eter ϕ, related to the respective x-coordinate off-set ±δ/2×Λ
of the two gratings (see Fig. 16). One may show that this
phase parameter is given by:

ϕ = 2πδ (mod 2π) (25)

It results that the coupling parametersG andK are complex
in general:

√
G =

√
γ
(
eiϕ/2 +

√
βe−iϕ/2

)
, (26)

K = κ
(
eiϕ + βe−iϕ

)
. (27)

The misalignment, characterized by the relative displace-
ment δ × Λ of the two gratings results in breaking both the
transverse and lateral symmetry of the structure, except for
two cases: δ = 0 (perfect alignment) and δ = ±0.5 (half pe-
riod misalignment). As discussed in details in the appendix
section A, one may show that both lateral and transverse sym-
metries of eigenmodes are preserved in these two cases (the

lateral symmetry requires in plus an operation at the Γ point).
Thus the aligned gratings and half period misalignment are
equivalent in term of symmetry for the complex eigenmodes.
Therefore transverse BICs and lateral BICs can be obtained in
both configurations.

The equivalence of the two cases δ = 0 and δ = ±0.5 is
also found in the resolution of complex eigenvalues. Indeed,
these two cases correspond to the value of phase parameter
ϕ = 0 (mod 2π) and ϕ = π (mod 2π) respectively. This
leads to real values of coupling parameters G and K given
by Eqs. (26),(27). Thus, the Hamiltonian given by Eq. (24) is
simplified into the one given by Eq. (2). In other words, the
two configurations share the same Hamiltonian description
of aligned gratings. Also, as noted in the appendix section
F 1 [eq. (F1)], the formal compact expressions of the Hamil-
tonian for aligned gratings and half period misalignment
are identical. This means that for these two limit cases, the
properties of the eigenvalues are formally identical. For
example, when ϕ = π (mod 2π), in the same way as when
ϕ = 0 (mod 2π), the four eigenvalues consists also in two
couples of fundamental and excited branches, which ignore
each other, respectively, and whose crossing is not avoided



16

Figure 16. Schematic view of a “fish-bone” structure. It consists
in two identical gratings, super-imposed and misaligned along the
lateral direction. The misalignment is given by the lateral off-set
±δ/2 × Λ with δ ∈ [−0.5, 0.5] of the upper and lower grating re-
spectively. This corresponds to a relative displacement δ×Λ between
the two gratings.

(see appendix section F 1, Eqs (F2),(F3)). Consequently, the
general as well as specific features of the fully symmetrical
structures described in sections III B and III C, apply to the
case of structures with half period lateral off-set.

In structures with arbitrary misalignment, physical read-
ability and exploitation of the Hamiltonian is significantly im-
proved if one choose the alternative base (a1+ + a2−, a2+ +
a1−, a1+ − a2−, a2+ − a1−). In this base, the Hamiltonian
can be written as below:

H =


ω0 + κc − i

√
GG∗(1 + eiψ) κd +K∗ − iG∗(1 + eiψ) vk 0

κd +K − iG(1 + eiψ) ω0 + κc − i
√
GG∗(1 + eiψ) 0 vk

vk 0 ω0 − κc − i
√
GG∗(1− eiψ) κd −K∗ − iG∗(1− eiψ)

0 vk κd −K − iG(1− eiψ) ω0 − κc − i
√
GG∗(1− eiψ)

 .

(28)

B. General features of the complex eigenvalues

As a result of broken transverse symmetry, it is no more
possible to separate the four eigenvalues into two couples of
eigenvalues of opposite parity along the transverse direction,
which would ignore each other and whose crossing would be
allowed, as in the case of symmetric structures. The 4 eigen-
values can be now classified into two couples of eigenvalues
with quasi-even and quasi-odd parities, respectively. This is
schematically illustrated in Fig. 17.

The two possible configurations shown in Fig. 17, depend-
ing on whether K0 = κ(1 + β) = K(ϕ = 0) is smaller [(a)

and (b)] or larger [(c) and (d)] than |κd|, will be discussed fur-
ther, later on in this paper, in connection with the topic of flat
BICs at the Γ point.

C. Specific properties of eigenvalues at the Γ point

At the Γ point, the Hamiltonian is a diagonal block matrix,
and the 4 eigenvalues can be easily determined through the
diagonalization of the 2×2 Hamiltonians, resulting in 4 eigen-
values, numbered 1 to 4 below:

ω1 = ω0 − κc − i
√
GG∗(1− eiψ) +

√
[κd −K + iG(1− eiψ)][κd −K∗ + iG∗(1− eiψ)]), (29)

ω2 = ω0 − κc − i
√
GG∗(1− eiψ)−

√
[κd −K + iG(1− eiψ)][κd −K∗ + iG∗(1− eiψ)]), (30)

ω3 = ω0 + κc − i
√
GG∗(1 + eiψ) +

√
[κd +K − iG(1 + eiψ)][κd +K∗ − iG∗(1 + eiψ)]), (31)

ω4 = ω0 + κc − i
√
GG∗(1 + eiψ)−

√
[κd +K − iG(1 + eiψ)][κd +K∗ − iG∗(1 + eiψ)]). (32)

In general, the 4 eigenvalues are complex and correspond to bright modes; in absence of lateral symmetry protection,
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Figure 17. Schematic representation of real dispersion characteristics of aligned grating structures, i.e. where ϕ = 0 [(a), (c)], and misaligned
grating structures, i.e. where ϕ ̸= 0 [(b), (d)]. Blue (red) curves represent respectively odd (even) branches for the former and quasi-odd
(quasi-even) branches for the latter. For the misaligned structures, the eigenvalues are fully hybridized in the area of dispersion characteristics
[(b), (d)] coloured in purple. There are two possible configurations depending on whether K0 = κ(1+β) = K(ϕ = 0) is smaller [(a), (b)] or
larger [(c), (d)] than |κd| (remind that κd < 0). The numbering 1 to 4 of eigenvalues at the Γ point corresponds to the numbering of Eqs. (29)
to (32).

lateral BICs are forbidden. On the other hand, for ψ = 0 or
ψ = π, that is for opto-geometrical parameters of the struc-
tures (e.g. the grating thickness and/or separation distance)
specific to each of the 4 considered eigenvalues, 4 transverse
BICs can be formed (one single transverse BIC at a time, for
a given coupled grating structure):

ω1,2(ψ = 0) = ωR±(ψ = 0) = ω0 − κc ± |κd −K|, (33)

ω3,4(ψ = π) = ωR±(ψ = π) = ω0 + κc ± |κd +K|. (34)

Note that for ϕ = 0 mod(2π) or ϕ = π mod(2π) (struc-
ture with preserved lateral symmetry), two of these transverse
BICs coincide with lateral BICs, the two other being trans-
verse double BICs.

Eqs. (33) and (34) show that the eigenfrequency values of
the BICs depend on the parameter ϕ, that is on the lateral off-
set between the two gratings. Hence, if ϕ is varied, the ef-
fective transverse optical distance Lopt between the grating
wave-guided resonances has to be adjusted to meet the condi-
tion required for the formation of a transverse BIC (ψ = 0 or
ψ = π). In summary, a fine interplay of the lateral and trans-
verse shifts between the two gratings may be implemented to
control the strength of the transverse eigenresonance.

At this stage, it must be emphasized that the analytical
model does not anticipate the presence of transverse BICs in

“fish-bone” structures off the Γ point in such a formal and
straightforward way as in the case of aligned or half period
shifted gratings. This is confirmed by RCWA simulations,
which show the presence of transverse BICs solely at the Γ
point, when ϕ ̸= 0, π mod(2π) . Interestingly, since the trans-
verse symmetry is broken, this transverse BIC is not inherent
to the transverse symmetry but another symmetry called “re-
versal symmetry” which is preserved for any misalignment
but requires operation at the Γ point. This symmetry is fully
described in the Appendix section A. Here the accidental BIC
at the Γ point goes by the name transverse symmetry only be-
cause its formation relies on the value of the transverse phase
shift ψ. As a result, BICs numbered 1 to 4 are single trans-
verse BICs and not double transverse BICs as in aligned grat-
ing structures or with half-period offset: they do not result,
indeed, from the merging of two transverse oblique BICs. In
summary, fish-bone structures of arbitrary misalignment can
accommodate in general only single transverse BICs at the Γ
point, with lateral BICs at the Γ point and transverse BICs off
the Γ point being excluded by lateral symmetry breaking and
transverse symmetry breaking respectively.

As a final comment about the behaviour of eigenvalues at
the Γ point, we draw the attention of the reader to the remarks
below:

• Since, in general, that is for ϕ ̸= 0, π mod(2π) , one
single BIC belonging to the sole category of transverse
BICs can be formed, it results that the generation of
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triple BIC is prohibited, in absence of lateral BICs.
We remind indeed that they may occur only in aligned
(ϕ = 0 mod(2π) or half-period shifted (ϕ = π mod(2π)
gratings, where lateral and transverse (or reversal) sym-
metry protection is made possible.

• The generation of Dirac point at triple BICs is also
prohibited, in general. They can be formed only in
aligned [ϕ = 0 mod(2π)] or half-period shifted [ϕ = π
mod(2π)] gratings, when degeneracy of a double trans-
verse BIC and a triple BIC is achieved.

Figure 18. (a) Angle-resolved reflectivity spectra obtained by
RCWA simulations, showing a flat BIC for a lateral offset δ = 0.133,
with zero curvature of the real eigenvalue at the Γ point. The proto-
col adopted for the generation of this flat BIC is based on the hy-
bridization of eigenmodes of opposite parities, as a result of trans-
verse symmetry breaking. The curvature of the dispersion charac-
teristic is efficiently controlled by the lateral off-set δ = ϕ/2π of
the two gratings: it vanishes for K0 cosϕ ≈ |κd|, it is positive for
K0 cosϕ > |κd| and negative for K0 cosϕ < |κd|. (b) FEM simu-
lations of real eigenvalues for several values of lateral offset δ. The
others parameters are Λ = 1 µm, h = 0.25 µm, L = 0.5 µm and
D = 0.

D. Flat BIC at the Γ point

Apart from the Γ point, the analytical resolution of equa-
tions is, in practice, either a bit heavy in its close vicinity
(small k momentum), or impossible further away in the k mo-
mentum space. For the latter, numerical resolution of the ana-
lytical equations is mandatory. We concentrate in the present
work on analysis in the vicinity of the Γ point. See comple-
mentary information in appendix section F 2.

For small k momentum, it is possible to derive the analyt-
ical expression of the dispersion characteristics by expanding
Eqs. (F4) and (7). We concentrate specifically on the study of
flat BICs, which can be considered as being among the most
attractive features of “fish-bone” structures. We therefore con-
centrate on the analysis of the curvature or second derivative
CR of dispersion characteristics at the Γ point. In subsection
III C 2, we have shown that it is possible to design flat dou-
ble transverse BICs in fully symmetrical structures, by engi-
neering a fine interplay between the radiated and wave-guided
components of the hybrid double transverse BIC. We apply

here a quite different protocol to design flat BICs at the Γ
point: it is based on the hybridization of eigenmodes of op-
posite parities, as a result of transverse symmetry breaking.
Therefore, the relevant eigenmodes lending themselves to ef-
ficient hybridization, are related to eigenvalues numbered 3
and 4, given to their spectral proximity. The general expres-
sion of CR is a bit heavy. We give below a version of the
expression of CR whose physical significance is made fully
readable; it is in line with the expression of CR obtained for
double transverse BICs, in fully symmetrical structures (see
Eq. (11)):

CR =
τwgCwg + τradCrad

τwg + τrad
, (35)

where τrad and Crad are given by Eq. (12b) and (13b) re-
spectively, and:

τwg =
1

(1 + α)|G|
, (36)

Cwg =
v2

Keff
. (37)

The expression of the parameters α and 1/Keff are given
in the appendix F 2 (Eqs. (F7) and (F8)). The module of
α is smaller than 1. The parameter Keff includes all the
diffractive processes in action within the structure. In the
limit case of aligned gratings (ϕ = 0), we have α = 1 and
Keff = K + κc. We remind that τwg and τrad are respec-
tively the average lifetime of photons in the wave-guided state
before being emitted into the continuum and in the radiated
state during a one way trip between the two gratings, and that
Cwg and Crad are the guided and radiated curvatures respec-
tively.

The similarity of the formal expressions of transverse BIC
curvatures in aligned (ϕ = 0) and misaligned (ϕ ̸= 0) struc-
tures should not hide the major difference introduced by the
lateral off-set δ between the two gratings. This difference lies
in the guided curvature Cwg , which is heavily dependent of
the parameter ϕ = 2πδ (mod 2π). Cwg can be controlled, ad
libitum and continuously, from negative to positive values by
varying the lateral offset δ. A detailed analysis of the parame-
ter 1/Keff (see Eq. (F8)) indicates that this is indeed possible
provided that K0 = κ(1 + β) = K(ϕ = 0) is larger than
|κd|. This condition corresponds to the dispersion characteris-
tic configuration shown in Fig. 17, (c) and (d). In the limit of
negligible losses (small G), it can be shown, from the expres-
sion of 1/Keff , that the condition for the production of a flat
BIC is reduced to the simple relation: K0 cosϕ ≈ |κd|.

In summary the lateral offset δ offers a very efficient joy-
stick for the production of flat transverse BICs in coupled grat-
ing structures, with no request for the thickness of the cou-
pled grating structure to be large and to exceed a few times
λ, as this is the case in the design scenario specific to aligned
gratings (see section III C 2). These conclusions are faithfully
confirmed by the results of RCWA numerical simulations pre-
sented in Fig. 18.
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VII. EXPERIMENTAL DEMONSTRATION

Although the present paper is essentially devoted to theoret-
ical work, we chose however to include a proof of concept of
the Dirac point at triple BIC in the current experimental sec-
tion, since it may be considered as the most achieved photonic
specie based on the combination and interaction of BICs.

The fabrication of the sample includes the different steps
described thereafter, starting from a commercial quartz sub-
strate on which a 590 nm-thick amorphous silicon film is
deposited by plasma-enhanced chemical vapor deposition
(PECVD) using SiH4 as a precursor and helium as the plasma
gas. The substrate temperature is kept at 300 ◦C and the pres-
sure in the chamber is 2 Torr. The plasma is set by an RF sig-
nal at 25W. A 100 nm-thick hydrogen silsesquioxane (HSQ)
resist is spun on the sample and baked at 80 ◦C for 4 minutes.
The resist is then exposed by electron-beam lithography and
developed with a solution of TMAH. The patterns are subse-
quently transferred to the a-Si by inductively-coupled reactive
ion etching (ICP-RIE) using a mixture of Cl2 and O2. To fi-
nalize the device, 828 nm of PMMA is spun directly on top of
the patterns (see Fig. 19(a)).

Devices are characterized using a home-made setup that
measures the angle-resolved reflectivity. A broadband white
light source (Halogen) is focused on the sample through a mi-
croscope objective (NA=0.42) and the reflectivity of the de-
vice is collected via the same objective. The back-focal plane
of the objective is imaged using a lens, focused at the en-
trance slit of a spectrograph and then collected on an InGaAs
camera sensor. With this configuration, we obtain a direct
measurement of the experimental energy- and momentum-
resolved dispersion of samples. A polarizer is placed between
the Fourier lens and the focusing lens to select the measured
polarization.

Figure. 19(b) depict the result of angle-resolved reflectivity
measurement. The Dirac point at triple BIC dispersion is ex-
perimentally demonstrated around a wavelength of 1.5 µm in
TE-polarization.

VIII. PROSPECTS

The theoretical approach for analytical modelling of com-
plex dispersion characteristics of optical modes operating in
PCs proposed in this work is, all at the same time, extremely
concise and very generic. It shows an unprecedented degree
of completeness and generality, owing to its capability to pro-
vide a faith-full description of the photonic properties of an
unlimited number of photonic structures. It reveals in particu-
lar that apparently simple photonic structures, featuring plain
fully symmetrical 1D PCs, may offer an unexpected wealth of
remarkable complex dispersion characteristics. It proves, in
addition, to be a powerful enabler of the design tool-box in
order to predict, control and assess the impact of breaking the
transverse and lateral symmetry of grating structures, on their
complex dispersion characteristics. Among the variety of con-
ceptual and practical outcomes provided by our approach, we
wish to emphasize that all remarkable photonic species being

Figure 19. (a) Sketch of the fabricated structure, (b) Experimental
angle-resolved reflectivity spectra of the sample with a close-up view
of the Dirac point at triple BIC. Parameters are Λ = 0.83 µm, h =
0.3 µm, L = 0.23 µm and D = 0.

generated in 1D PCs rely fully or, at least to an essential ex-
tent, on two basic building blocks so-named lateral and trans-
verse (accidental) BICs in this paper, and explicitly unveiled
by our modelling approach. It results that this theoretical an-
alytical approach provides very efficient support to numeri-
cal simulations which, taken alone, may not be able to pre-
dict the underlying physics, when it comes to design photonic
structures with remarkable desired properties. Along this de-
sign track, we selected, for experimental demonstration, such
a remarkable structure as the so-named “Dirac point at triple
BIC”, which results from the merging / degeneracy of two
couples of transverse BICs and one lateral BIC. This work
opens a unique playground for both exotic Dirac and flatband
physics. In particular, it will be possible to study the light de-
localization when a dispersion is gradually transformed from
flat dispersion (exceptional localized states and ultra-sensitive
to disorders [48–51]) to Dirac cones (very robust versus disor-
der effect of Anderson localization [52]). This gradual trans-
formation may be naturally implemented in moiré lattices,
where, for example, two grating structures with slightly dif-
ferent periods [53] or two identical gratings twisted around
a common axis [54] would be superimposed and coupled to
each-other with an adjustable coupling rate, thus resulting in
a fish-bone like moiré.

More generally, the conceptual and design approach pro-
posed in the present work offers a promising practical route
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for on demand tailoring of the local density of optical states
and processing of light at the nanometer scale [55], which
are paramount for applications in optoelectronic devices. At
this stage, plenty of room is left for an extra wide variety of
configurations, with, among other prospects, the extension to
2D PC slab, which naturally lend themselves to additional de-
grees of freedom in 3D manipulation of light. Indeed, extend-
ing these concept to 2D PC slab would benefit richer in-plane
symmetry (reflections and rotations) as well as the possibility
to harness diffractive couplings between different polarization
guided modes. In terms of non-Hermitian features, one may
expect more complicated scenario for merging/splitting BICs,

engineering exceptional rings/lines instead of EPs, studying
high-order EPs.
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Appendix A: Symmetry properties of bilayer structures made of two identical symmetric gratings

The lateral and transverse symmetries are at the heart of the Hamiltonian construction and the properties of its complex
eigenmodes. In this section, we will discuss in details the symmetry operators and their interplay with the 4× 4 Hamiltonian of
two identical symmetric gratings. The two gratings can be eventually misaligned to make a “fishbone” structure as discussed in
section VI of the main text, with a lateral offset ± δ

2 ×Λ for the upper and lower grating respectively (see Fig. 16). Note that the
case of aligned symmetric gratings of section III is a particular case of “fishbone” structure in which δ = 0.

a. Lateral symmetry of “fishbone”

Since each grating is symmetric, the lateral symmetry is dictated by the x-reflection operator σx that swaps the forwards and
backwards modes:

a1±
σx−→ a1∓ (A1a)

a2±
σx−→ a2∓ (A1b)

In the basis formed by (a1+, a1−, a2+, a2−), the corresponding matrix of the operator σx is therefore given by:

Mx =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (A2)

Moreover, the same operator would inverse the wavevector and the lateral off-set:

(k, δ)
σx−→ (−k,−δ), (A3)

Thus the Hamiltonian H(k, δ) needs to satisfy the symmetry condition:

H(k, δ) =Mx.H(−k,−δ).Mx (A4)

It is straightforward to demonstrate that the Hamiltonian in Eq. (24) verifies nicely the condition above.

We now look for the sets of (k, δ) for which the eigenmodes of the system preserve the lateral symmetry. These “high
symmetry points” require the commutation relationship [H(k, δ),Mx] = 0. From Eq. (A4), this requirement is equivalent to
H(k, δ) = H(−k,−δ). Therefore a trivial configuration is with k = 0 and δ = 0. In other words, the lateral symmetry is
preserved at the Γ point with perfectly aligned gratings.

Interestingly, the Hamiltonian in Eq. (24) shows that the requirement H(k, δ) = H(−k,−δ) is also fulfilled when k = 0 and
δ = ±0.5, i.e. half period misalignment. This is due to the fact that the phase parameters ϕ = π (mod 2π) and ϕ = −π (mod
2π) are strictly equivalent. As a consequence, the lateral symmetry is also preserved at the Γ point with gratings of half period
misalignment.

b. Transverse symmetry of “fishbone”

Since the two gratings are identical, the transverse symmetry is dictated by the z-reflection operator σz that swaps the co-
propagating modes from different layers:

a1±
σz−→ a2± (A5a)

a2±
σz−→ a1± (A5b)

In the basis formed by (a1+, a1−, a2+, a2−), the corresponding matrix of the operator σz is therefore given by:

Mz =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (A6)
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Moreover, the same operator would inverse the lateral off-set but keeping the wavevector unchanged:

(k, δ)
σz−→ (k,−δ), (A7)

Thus the Hamiltonian H(k, δ) needs to satisfy the symmetry condition:

H(k, δ) =Mz.H(k,−δ).Mz (A8)

Again, one may easily show that the Hamiltonian in Eq. (24) verifies nicely the condition above.

In the same fashion as the lateral symmetry in previous section, we now look for the sets of (k, δ) for which the eigen-
modes of the system preserve the transverse symmetry. These “high symmetry points” require the commutation relationship
[H(k, δ),Mz] = 0. From Eq. (A8), this requirement is equivalent to H(k, δ) = H(k,−δ). Following the discussion from the
lateral symmetry, we deduce that there are two configurations: the first one is the trivial case is with δ = 0 (perfectly aligned
gratings), and the second one is with δ = ±0.5 (half period misalignment). Unlike the “high symmetry points” of the lateral
symmetry, here both configurations are valid for any value of the wavevector k.

c. Reversal symmetry of “fishbone”

Other than lateral and transverse symmetry, the group symmetry of “fishbone” structure also exhibits another symmetry
inherited from the two previous ones. This symmetry is dictated by the operator σr that is defined by executing successively the
z-reflection operator σz and x-reflection operator σx or vice versa. Such operator, that is called here “reversal symmetry”, swaps
the counter-propagating modes from different layers:

a1±
σr−→ a2∓ (A9a)

a2±
σr−→ a1∓ (A9b)

In the basis formed by (a1+, a1−, a2+, a2−), the corresponding matrix of the operator σr is therefore given by:

Mr =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (A10)

One may verify that Mr =Mx.Mz =Mz.Mx.
Interestingly, since σx inverses both the wavevector and the lateral off-set while σz only inverses the lateral off-set, σr would

only inverse the wavevector but keeping the lateral off-set unchanged:

(k, δ)
σr−→ (−k, δ), (A11)

This action corresponds to the time reversal symmetry, thus explains the name “reversal symmetry”.
As a consequence, the Hamiltonian H(k, δ) needs to satisfy the symmetry condition:

H(k, δ) =Mr.H(−k, δ).Mr (A12)

Again, one may easily show that the Hamiltonian in Eq. (24) verifies nicely the condition above.

The reversal symmetry is preserved in eigenmodes of the system if H(k, δ) = H(−k, δ). That limits operation at the Γ point
in a similar way as the lateral symmetry. However, unlike the lateral and transverse symmetry which require δ = 0 or ±0.5,
the reversal symmetry is preserved for all lateral off-set. Thus this symmetry is the only one that is preserved for any arbitrary
misalignment.

d. Symmetry and dispersion of eigenmodes in “fishbone” structures

As discussed in previous subsections, the lateral and transverse symmetry are preserved in eigenmodes only for the cases
of perfect alignment or half period misalignment. Moreover, the lateral symmetry requires an operation at Γ point. When
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both symmetries are preserved, the four operator H , Mx, Mz and Mr commute one to each other and having the same four
eigenmodes, given by:

Ψ1 =
a1+ − a1−

2
+
a2+ − a2−

2
=

 1
−1
1
−1

 (A13a)

Ψ2 =
a1+ − a1−

2
− a2+ − a2−

2
=

 1
−1
−1
1

 (A13b)

Ψ3 =
a1+ + a1−

2
+
a2+ + a2−

2
=

1
1
1
1

 (A13c)

Ψ4 =
a1+ + a1−

2
− a2+ + a2−

2
=

 1
1
−1
−1

 (A13d)

Here Ψ1,2 and Ψ3,4 are eigenvectors of Mx with corresponding eigenvalues 1 (even mode) and −1 (odd mode) respectively.
Therefore Ψ3,4 are lateral BICs which are protected by the lateral symmetry. The photonic bands having Ψ1,2 and Ψ3,4 at the Γ
points are one called bright and dark branches respectively in the section III B.

Moreover, Ψ1,3 and Ψ2,4 are eigenvectors of Mz with corresponding eigenvalues 1 (even mode) and −1 (odd mode)
respectively. Since the transverse symmetry is preserved even at out of the Γ point, the photonic modes Ψ̃n(k) (n = 1..4) that
are Ψn at the Γ points preserve the transverse parity of Ψn. The eigenmodes are divided into two groups of opposite transverse
symmetry and the dispersions of two modes from different groups do not avoid crossings (see Fig. 14(a)). Most importantly,
transverse BICs can take place at any value of wavevector k as already discussed in section III B.

Finally, for an arbitrary misalignment having δ ̸= 0,±0.5, both lateral and and transverse symmetry are broken. However, the
reversal symmetry is still preserved as long as we stay at the Γ point. Therefore, it is still possible to obtain accidental BIC at
Γ point if the transverse phase shift ψ is equal to 0 or π (mod 2π) (see discussions in section VI B). Interestingly, although this
accidental BIC is inherent to the reversal symmetry and the transverse symmetry is broken, its formation is still dictacted by the
transverse phase shift. Therefore we still call it by the name of transverse BIC.

Appendix B: Complemental information on the theoretical approach

1. Discussion on the approximations of the model

a. Complements on the rationale and phenomenology of the model

As recalled in section II A, leaky optical resonances in PC slabs are generally described as complex eigenvalues of 2×2
non-Hermitian Hamiltonian. However this H2×2 approach, although attractive in terms of simplified mathematical resolution,
provides a rather partial description of the structures. In particular, it ignores explicitly the transverse dimension of the structures,
as illustrated in Fig. 20(a): along the H2×2 approach, a 1D grating is viewed as a flat zero thickness periodic structure, able to
accommodate wave-guided leaky resonances, which are, by design, restricted to be mono-modal in the transverse direction; also
the H2×2 approach cannot account for events encountered by the leaky light when travelling across the grating structure along
the transverse direction.

Let us now proceed one step further by considering the case of two identical and aligned h thick gratings, with are apart
by the distance D, as shown in Fig. 20(b) left. They may communicate via the near field, as well as via the radiated field. In
Fig. 20(b) right, it is proposed a simplified view of this coupled grating structure as two coupled flat zero thickness periodic
structures, which are considered as being strictly mono-modal. Coupling of the two single mode grating structures results in
the occurrence of additional modes of opposite (even and odd) parity along the transverse direction, which are the photonic
expression of the transverse dimension of the structure. It is then required to move to the H4×4 formalism proposed in this work
for a proper analytical description of the real grating structure. The parameter Lopt is the effective optical transverse distance
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Figure 20. rationale of the H4x4 versus the H2x2 approach

between the wave-guided resonances accommodated by each of the two periodic structures. Lopt encompasses transverse optical
paths across the two gratings as well as across the spacer and may be written along the following phenomenological relation:
Lopt = nh+n0D, where n(n0) is the refractive index of the effective (surrounding) medium. Our modelling approach applies to
the case of two gratings in contact (D = 0, Fig. 20(c)), at least for a physical trustworthy description of the physics, although the
small perturbation approximation of the coupled mode formalism may not strictly apply. For example this modelling approach
provides a faithful account of the variety of transverse BICs occurring in real grating structures, as fully demonstrated in the
present work.

One must also emphasize that, unlike in the H2x2 approach, our model can account for the impact of breaking the lateral as
well transverse symmetry of the coupled grating structure, as illustrated in Fig. 20(d) (different gratings of same period with
arbitrary lateral offsets), and as thoroughly developed in the main text of this article.

As explained in the main text (section II E), in order to get a tractable Hamiltonian, two main approximations are made. These
assumptions will be discussed in the following two subsections and exemplified in the case of two identical gratings.

b. Neglecting the imaginary part of ψ

In the case of two identical gratings, the implicit equation for the complex eigenvalue ω at Γ-point for the bright branch can
be written (see Eq. (4) and following):

ω = ωR + iωi = ωb − iγbe
iψ, (B1)

where ωb (γb) is a complex (real) constant. Rigorously speaking ψ = ω
Lopt

c , whereas we have assumed ψ = ωR
Lopt

c . This
leads to an error which can be quantified on the term:

|ω − ωb| = γbe
−ψi . (B2)

Neglecting ψi results in a relative error:

1− e−ψi = 1− e−ωi
Lopt

c , (B3)
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which is small if:

ωi
Lopt
c

=
τrad
τ

<< 1, (B4)

where τ is the lifetime of the eigenmode. In this wortk we always consider high quality factor modes, which valids this approx-
imation.

c. Neglecting the reflectivity of the interfaces

From first principle Coupled Mode Theory [56] and taking into account the effect of the interfaces on the transverse propa-
gation of photons, a rigorous Hamiltonian can be derived in the case of two identical gratings. Following this approach, new
implicit equations are obtained for the eigenvalues. For example Eq. (4) in the main text becomes (for η=+1):

ω = ωR + iωi = ω0 + κd − iG(1 + µ)±
√
v2k2 + (K + κc − iG(1 + µ))

2
, (B5)

where:

µ =
rm + tm
1− rmeiθ

eiθ, (B6)

with rm and tm the complex reflection and transmission coefficients of one grating at frequencies far from resonance. These
coefficients can be easily expressed by considering the propagation across a plain (non patterned) slab. θ is the phase acquired
by photons during their travel in the spacer layer between the 2 gratings. The term µ accounts for the interferential process
experimented by photons in the transverse stack. Obviously, if rm = 0 (which is our approximation):

µ = ei(θ+θm) = eiψ, (B7)

where θm is the phase corresponding to the transmission across the plain slab (tm = |tm|eiθm ). In other words, the Hamiltonian
in the main text is strictly valid if the slab thickness is half-wavelength (for the eigenfrequency). On the contrary, the error is
maximum if the slab thickness is quarter-wavelength. A numerical solving of Eq. (B5), for usual double gratings, shows that this
error can be significant for the imaginary part of the eigenfrequencies, while being negligible for the real one. More importantly,
Eq. (B5) leads to the same qualitative results which are exposed in the main text (especially kn dependencies of the dispersion).
As an illustration, in the case of the Dirac point at triple BIC (section III C 4), simple algebra allows to get the dispersion in the
vicinity of the γ-point:

dωR
dk

=
±v√

1 + 2G
1−|rm|2

∂ψ
∂ωR

. (B8)

Out of resonance, the stack can be consider as a simple Fabry-Pérot cavity closed by mirrors with reflection coefficient |rm|2.
The lifetime, τrad, inside this cavity is therefore (see e.g. [57]):

τrad =
1

1− |rm|2
∂ψ

∂ωR
, (B9)

and the dispersion obtained in the main text (Eqs. (15) and (16)) is found again:

dωR
dk

=
±v√

1 + τrad

τwg

. (B10)

2. Derivation of the Hamiltonian matrix elements

As explained in section II (Theoretical approach), the general 4×4 Hamiltonian is written:

H =

(
H11 H21

H12 H22

)
, (B11)
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where Hij are 2×2 matrices which describe the optical interactions intra each of the two gratings (Hij=i), and inter the 2
gratings (Hij ̸=i), with i = 1, 2.

The general expressions of Hij matrices are given below:

H11 =

(
ω1 + v1k − i

√
G1G∗

1 K∗
1 − iG∗

1e
−i(φ1+−φ1−)

K1 − iG1e
i(φ1+−φ1−) ω1 − v1k − i

√
G1G∗

1

)
, (B12)

H22 =

(
ω2 + v2k − i

√
G2G∗

2 K∗
2 − iG∗

2e
−i(φ2+−φ2−)

K2 − iG2e
i(φ2+−φ2−) ω1 − v2k − i

√
G2G∗

2

)
, (B13)

H12 =

(
κd − ieiψ

√
G1G∗

2e
i(φ1+−φ2+) κ∗c − ieiψ

√
G∗

1G
∗
2e
i(φ1−−φ2+)

κc − ieiψ
√
G1G2e

i(φ1+−φ2−) κd − ieiψ
√
G∗

1G2e
i(φ1−−φ2−)

)
, (B14)

H21 =

(
κ∗d − ieiψ

√
G∗

1G2e
−i(φ1+−φ2+) κ∗c − ieiψ

√
G∗

1G
∗
2e

−i(φ1+−φ2−)

κc − ieiψ
√
G1G2e

−i(φ1−−φ2+) κ∗d − ieiψ
√
G1G∗

2e
−i(φ1−−φ2−)

)
, (B15)

where: √
G1 =

√
γ1exp

iϕ2 +
√
β1γ2exp

−iϕ2 , (B16)

√
G2 =

√
γ2exp

−iϕ2 +
√
β2γ1exp

iϕ2 , (B17)

K1 = κ1e
iϕ + β1κ2e

−iϕ, (B18)

K2 = κ2e
−iϕ + β2κ1e

iϕ. (B19)

An approximate expression of κc may be derived from classical coupling rate evaluation based on the spatial overlap of the field
distribution within the two coupled gratings.

κc =
√
β1κ2e

−iϕ +
√
β2κ1e

iϕ. (B20)

This relation indicates that κc is real when the two gratings are aligned (ϕ = 0), or for any lateral off-set if they are identical. We
give below the clues for establishing the expressions of the Hamiltonian matrix elements through a few illustrative exemplifying
cases. Let us concentrate on the elements of the first column of H (first columns of H11 and H12), which express the optical
field transfers supplied by the forward wave of grating 1 a1+, to all waves ai± (i=1,2).

ω1 + v1k − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

−iϕ2 +
√
β1γ2e

iϕ2 )e−iφ1+

κ1e
iϕ + β1κ2e

−iϕ − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )e−iφ1−

κd − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

−iϕ2 +
√
γ2e

iϕ2 )e−iφ2+

κc − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

iϕ2 +
√
γ2e

−iϕ2 )e−iφ2−

 . (B21)

The matrix element in red expresses the optical field transfer from a1+ to a1+, mediated by the 1st order diffraction processes
at the Γ point occurring between the guided wave a1+ and the radiation continuum. This transfer takes place in two successive
steps, as illustrated in the figure below:

Diffraction of a1+ is induced by the corrugation of grating 1 (factor
√
γ1) and by the corrugation of grating 2, the action of

the latter being limited to the evanescent tail of the guided wave a1+ (factor γ2, weighted by the parameter β1). The coefficients
e±i

ϕ
2 , with ϕ = 2πδ, correspond to the 1st order diffraction phase-shift at Γ point between the two gratings due to the lateral

offset δ. The coefficients e±iφ1+ and e±iφ2+ account for the phase shifts resulting from the diffraction of a1+ to (+) or from (-)
the radiation continuum, induced by gratings 1 and 2 respectively. If the grating unit cell is laterally symmetric, φi+ = φi−. If
the two gratings are identical, φ1± = φ2±. When the two gratings are far apart, this matrix element is reduced to the parameter
γ1. 

ω1 + v1k − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

−iϕ2 +
√
β1γ2e

iϕ2 )e−iφ1+

κ1e
iϕ + β1κ2e

−iϕ − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )e−iφ1−

κd − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

−iϕ2 +
√
γ2e

iϕ2 )e−iφ2+

κc − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

iϕ2 +
√
γ2e

−iϕ2 )e−iφ2−

 . (B22)
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Figure 21. a1+/a1+ radiative coupling

The matrix element in red accounts for the diffractive coupling between a1+ and a1− (optical field transfer from a1+ to a1−) at
the 2nd Brillouin zone boundary induced by the corrugation of grating 1 (factor κ1) and by the corrugation of grating 2 (factor
κ2, weighted by the parameter β1). The coefficients e±iϕ correspond to the 2nd-order diffraction phase-shift at the 2nd Brillouin
zone boundary between the two gratings due to the lateral offset δ.

ω1 + v1k − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

−iϕ2 +
√
β1γ2e

iϕ2 )e−iφ1+

κ1e
iϕ + β1κ2e

−iϕ − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )e−iφ1−

κd − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

−iϕ2 +
√
γ2e

iϕ2 )e−iφ2+

κc − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

iϕ2 +
√
γ2e

−iϕ2 )e−iφ2−

 . (B23)

The matrix element in red expresses the optical field transfer from a1+ to a1−, mediated by the 1st order diffraction processes
at the Γ point occurring between the guided waves a1+ and a1−, via the radiation continuum. This transfer takes place in two
successive steps, as illustrated in the figure below. The 1st step is identical to the previous case; for the 2nd step, insertion of the
radiated light in the backward direction is accounted for in the different phase parameters.

Figure 22. a1+/a1− radiative coupling


ω1 + v1k − i(

√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

−iϕ2 +
√
β1γ2e

iϕ2 )e−iφ1+

κ1e
iϕ + β1κ2e

−iϕ − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )e−iφ1−

κd − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

−iϕ2 +
√
γ2e

iϕ2 )e−iφ2+

κc − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

iϕ2 +
√
γ2e

−iϕ2 )e−iφ2−

 . (B24)

The matrix element in red expresses the optical field transfer from a1+ to a2+, mediated by the 1st order diffraction processes
at the Γ point occurring between the guided waves a1+ and a2+, via the radiation continuum. This transfer takes place in three
successive steps, as illustrated in the figure below. The 1st step is identical to the previous cases; the 2nd step consists in the
radiative flying of plane waves from grating 1 to grating 2, resulting in the phase shift ψ ; the 3rd step corresponds to light
insertion in grating 2 in the forward direction.


ω1 + v1k − i(

√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

−iϕ2 +
√
β1γ2e

iϕ2 )e−iφ1+

κ1e
iϕ + β1κ2e

−iϕ − i(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )e−iφ1−

κd − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

−iϕ2 +
√
γ2e

iϕ2 )e−iφ2+

κc − ieiψ(
√
γ1e

iϕ2 +
√
β1γ2e

−iϕ2 )eiφ1+(
√
β2γ1e

iϕ2 +
√
γ2e

−iϕ2 )e−iφ2−

 . (B25)
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Figure 23. a1+/a2+ radiative coupling

The matrix element in red expresses the optical field transfer from a1+ to a2−, mediated by the 1st order diffraction processes
at the Γ point occurring between the guided waves a1+ and a2−, via the radiation continuum. This transfer takes place also in
three steps and is similar to the previous case; the only difference concerns the 3rd step, where light insertion in grating 2 occurs
along in the backward direction, which is accounted for with the various phase parameters.

Appendix C: Fully symmetrical structures

1. Eigenvalues

Eigenvalues can be obtained from diagonalization of the Hamiltonian given in section III A and expressed in the base formed
by vectors (a1+, a1−, a2+, a2−). The Hamiltonian can be rewritten in a new base formed by even and odd (along the transverse
direction), forward and backward vectors (ae+, ae−, ao+, ao−) with ae± = 1√

2
(a1± + a2±) and ao± = 1√

2
(a1± − a2±). Since

the eigenmodes are also even and odd (the coupled grating being symmetrical transversally), this writing of equations results in
a new Hamitonien which is a priori both more physically readable and mathematically tractable. The new 4×4 Hamiltonien is as
below,

H =


ω0 + vk + κd − iG(1 + eiψ) K + κc − iG(1 + eiψ) 0 0
K + κc − iG(1 + eiψ) ω0 − vk + κd − iG(1 + eiψ) 0 0

0 0 ω0 + vk − κd − iG(1− eiψ) K − κc − iG(1− eiψ)
0 0 K − κc − iG(1− eiψ) ω0 − vk − κd − iG(1− eiψ)

 ,

(C1)
and can be rewritten as :

H =

(
He 0
0 Ho

)
, (C2)

where He, Ho are 2×2 Hamiltonians whose diagonalization provides, separately, the couples of even and odd eigenvalues. It can
be easily shown that for both couples of even and odd eigenvalues, one eigenvalue is systematically dark (called lateral BIC in
the main text) at the Γ point (k = 0), while the other is bright in general except when ψ = π(0)mod2π, for the even (odd) mode
(in the transverse direction). The systematic observation of a lateral BIC at the Γ point features structures with lateral symmetry
as commented in the main text.

2. Expansion of complex eigenvalues in the vicinity of the Γ point

Results of the expansion of complex eigenvalues of even modes (Eq. (4) with η = 1) are given below:
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• Bright branch of the dispersion characteristics:

ω = ωR + κd +K + κc + 2G sinψ0 − 2iG(1 + cosψ0) + C
k2

2
. (C3)

C = CR + iCI is the complex curvature (second derivative versus k) of the complex eigenvalue.

CR =
d2ωR
dk2

=

v2

|K+κc−U |2 (K + κc +G sinψ0)− cosψ0
τrad

τwg
Crad

1− cosψ0
τrad

τwg

, (C4)

CI =
d2ωI
dk2

=
v2

|K + κc − U |2
G(1 + cosψ0)− sinψ0

τrad
τwg

(
Crad −

d2ωR
dk2

)
, (C5)

with U = iG(1 + eiψ0) , ψ0 = ψ(k = 0) and where τwg = 1
2G and τrad =

Lopt

c , are respectively the average lifetime of
photons in the wave-guided state before being emitted into the continuum, and in the radiated state during a one way trip
between the two gratings. Crad =

( c
n )2

ωR0
, is named the radiated curvature: it is identical to the curvature of the dispersion

characteristic of a Fabry Perot cavity, with n intra-cavity optical index and with perfect metallic reflectors, at the Γ point
around the resonance frequency ωR0.

• Dark branch (with lateral BIC at the Γ point) of the dispersion characteristics:

ω = ωR + iωi ∼= ω0 + κd −K − κc + C
k2

2
, (C6)

CR =
d2ωR
dk2

=
−v2

|K + κc − U |2
(K + κc +G sinψ0), (C7)

CI =
d2ωI
dk2

=
−v2

|K + κc − U |2
G(1 + cosψ0). (C8)

As explained in section III C 1 and expressed by Eqs. (C3), (C6) and (C7), the real eigenvalues of the bright and the dark branches
are degenerated at the Γ point when K + κc +G sinψ0 = 0, and the real dark branch is flat (zero real curvature).

3. Imaginary dispersion characteristic around the wave vector kBIC of a simple transverse BIC; BIC merging processes: double
transverse BIC from merging of 2 simple transverse BICs and triple BIC from merging of two simple transverse BICs and a lateral

BIC

Expression of the imaginary dispersion characteristic around the wave-vector k = kBIC can be derived from expansion of
Eqs. (4) and (7). It is given by the relation below, for the even mode:

ωI = −G
2

(
1± K + κc√

v2k2BIC + (K + κc)2

)
L2

opt

(2p+1)π
kBIC

n2

(
1± ωRBICv

2

c2

n2

√
v2k2BIC+(K+κc)2

)
1 +

L2
opt

(2p+1)π
ωRBIC

c2 G

(
1± K+κc√

v2k2BIC+(K+κc)2

)

2

(k − kBIC)
2
, (C9)

with:

Lopt

√(ωRBIC
c

)2
−
(
kBIC
n

)2

= (2p+ 1)π. (C10)

The sign + (-) corresponds to the air (dielectric) branch. If K>0 the air (dielectric) branch is bright (dark) at the Γ point, and the
other way around if K<0. The second derivative, or the curvature, of the imaginary dispersion characteristic is written as:

d2ωI
dk2

|(k=kBIC)
∼= −G

2

(
1± K + κc√

v2k2BIC + (K + κc)2

)
L2

opt

(2p+1)π
kBIC

n2

(
1± ωRBICv

2

c2

n2

√
v2k2BIC+(K+κc)2

)
1 +

L2
opt

(2p+1)π
ωRBIC

c2 G

(
1± K+κc√

v2k2BIC+(K+κc)2

)

2

. (C11)

When the transverse BIC approaches the Γ point, kBIC tends to zero and ωRBIC tends to ωR0 , with ωR0

c Lopt = (2p+1)π ; the
curvature is then simply written as below (for example when the bright branch is air like, that is for K>0):
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• For the bright branch:

d2ωI
dk2

∣∣∣∣
k=kBIC

∼= −2G


Lopt

n2 ωR0
c

(
1 + ωR0v

2

c2

n2

(K + κc)

)
1 +

2Lopt

c G


2

k2BIC . (C12)

The curvature varies like k2BIC : this behaviour is a manifestation of the merging of two ordinary transverse BICs (belong-
ing to the bright branch and occurring at ±|kBIC | vectors), when kBIC approaches 0. We call this particular transverse
BIC occurring at the Γ point, double transverse BIC, which exhibits a flat imaginary dispersion characteristic. As a matter
of fact, the k2BIC dependence of the curvature expresses that the imaginary dispersion characteristic is like k4 around the
Γ point.

• For the dark branch:

d2ωI
dk2

∣∣∣∣
k=kBIC

∼= −G
2

[
Loptv

n2 ωR0

c (K + κc)

(
1− ωR0v

2

c2

n2

(K + κc)

)]2
k4BIC . (C13)

The curvature varies like k4BIC : this behaviour is a manifestation of the merging of two ordinary transverse BICs (belonging
to the dark branch and occurring at ±|kBIC | vectors) with the lateral BIC (systematically occurring at the Γ point of a dark
branch), when kBIC approaches 0. We call this particular transverse BIC, triple transverse BIC, which exhibits a very flat
imaginary dispersion characteristic. As a matter of fact, the k4BIC dependence of the curvature expresses that the imaginary
dispersion characteristic is like k6 around the Γ point.

4. Double Exceptional point

A double exceptional point is formed when conditions for full degeneracy of the complex eigenvalues of the dark and bright
branches is achieved [27] (see section III C 1). In the case of the even branches, Eq. (4) leads to the following eigenvalues:

ω = ωR + iωi = ω0 + κd − iG(1 + eiψ)±
√
v2k2 + (K + κc − iG(1 + eiψ))

2
. (C14)

Degeneracy of the complex eigenvalues occurs when :

v2k2EP +
(
K + κc − iG(1 + eiψ(kEP ))

)2
= 0, (C15)

where k = kEP is the wave-vector at the exceptional points. It results:

kEP = ±G (1 + cosψ(kEP ))

v
, (C16)

with the condition:

K + κc +G sinψ(kEP ) = 0, (C17)

being to be held in addition. Note that the previous condition can be met provided that 0 ≤ |K +κc| ≤ G. This can be adjusted,
in practice, by an appropriate setting of the filling factor of the grating structure. ωR(kEP ), ωI(kEP ) and kEP can be derived
from Eqs. (4), (C16) and (C17).

Finally, it is reminded (see Eq. (7)):

ψ(kEP ) =

√[
ω(kEP )

c

]2
−
(
kEP
n

)2

Lopt, (C18)

which is an additional condition for the double exceptional to be achieved. This can be adjusted in practice by an appropriate
setting of Lopt, that is of the thickness of the grating structure. Interestingly, for a given structure showing a double exceptional
point, the real eigenvalues of the dark branch at the Γ point (lateral BIC) and at the exceptional points coincide. Indeed, for the
lateral BIC:

ωR(k = 0) = ω0 + κd −K − κc = ω0 + κd +G sinψ(kEP ) = ωR(kEP ). (C19)

Finally, for wave-vector k exceedind kEP , the real dispersion characteristics of the dark and bright branches are linear (±vk)
and both branches equally share the loss rate, while, at the Γ point, the bright branch takes the full part of the losses.



32

5. Double transverse BIC with flat real dispersion characteristic

It is reminded that the second derivative d2ωR

dk2 or curvatureCR of the real dispersion characteristic at the Γ point can be written
as (see Eq. (11)):

CR =
1
2G

v2

K+κc
+

Lopt

c

( c
n )

2

ωR0

1
2G +

Lopt

c

=
τwg × Cwg + τrad × Crad

τwg + τrad
, (C20)

where Cwg = v2

K+κc
and Crad =

( c
n )

2

ωR0
are the guided and radiated curvatures respectively. The radiated curvature is strictly

positive, while the guided curvature may be positive or negative, as the parameter K+κc. These two cases have been illustrated
in figure 5, where the bright branch was shown to be either air like (positive curvature) or dielectric like (negative curvature),
depending on the sign of K + κc + G sinψ0, where ψ0 = ψ(k = 0). In the current discussion, the bright branch turns to be a
transverse BIC at the Γ point, therefore ψ0 = π and K + κc +G sinψ0 ≡ K + κc. For K + κc < 0, or Cwg < 0, it is possible
in principle to meet the condition CR = 0. Given that v ∼= c

n , and that G and |K + κc| are in practice lower than ωR0 = 2πc
λ ,

the condition for a zero real curvature implies that Lopt is significantly larger than λ. In other words, the radiated curvature Crad
is rather small as compared to the guided curvature Cwg , and the former has to be over-weighted by a large τrad (that is large
Lopt) with respect to the later in order to result in a total curvature CR = 0.

6. Design rules of a Dirac point at a triple BIC

Two conditions have to be met simultaneously for the formation of a Dirac point at a triple BIC: first, the condition for
degeneracy at the Γ point of the frequency of the lateral BIC with the real part of the bright eigenfrequency at the Γ point,
which occurs when K + κc + G sinψ0 = 0 ; second, the condition for the bright mode to turn into a double transverse BIC,
when ψ0 = π(mod2π) (see section III C 2). For a given index contrast between the gratings and the surrounding medium, the
high index material filling factor (FF) and the effective optical thickness of the coupled grating structure are the two available
“joysticks” to be handled simultaneously to achieve those two conditions. The degeneracy condition, which corresponds to
the cancellation of the overall diffractive coupling processes between wave-guided resonances, can be viewed as the physical
counterpart of the full transmission condition which occurs in a half wavelength Bragg mirror stack; this condition is met when
the optical thicknesses of the high / low index layers are an integer of λ

2 . For example this is simply achieved for a high index
FF = nlow

nlow+nhigh
. For the wave-guided coupled grating structure, this condition is met for a different value of FF; for example,

FF < nlow

nlow+nhigh
when the two gratings are in contact. This is due to the fact that the phase change occurring at the reflection

/ transmission of the guided wave impinging the high / low index interface of the grating is different from 0 or π (mod2π),
unlike the case of plane waves in a Bragg mirror. For a practical design, it is advisable to start with the value of FF which
applies to a Bragg mirror stack (for example 0.25, if nhigh = 3 and nlow = 1) and then adjust it, to compensate for the phase
change difference and therefore, approach the condition requested for degeneracy between the lateral BIC and the bright mode
frequency. Then, in order to convert the bright mode into a transverse double BIC, the effective optical thickness of the coupled
grating structure must be adjusted: this can be achieved by adjusting the thickness H of each grating and / or the distance D
between them. A few iterations of those successive adjustments of FF and h, D may be necessary to get close to the formation
of the elusive perfect Dirac point at a triple BIC.

Appendix D: Eigenvalues in structures with broken lateral symmetry

Eigenvalues can be obtained from diagonalization of the Hamiltonian given in II A and expressed in the base formed by
base vectors (a1+, a1−, a2+, a2−). The Hamiltonian can rewritten in a new base formed by even and odd (along the transverse
direction), forward and backward base vectors (ae+, ae−, ao+, ao−), in the same way as for fully symmetrical structures (see
section C 1), given that the symmetry along the transverse direction is maintained. The new 4×4 Hamiltonien is as below:

H =


ω0 + vk + κd − iG(1 + eiψ) K + κc − iG(1 + eiψ)e−iφ 0 0
K + κc − iG(1 + eiψ)eiφ ω0 − vk − iG(1 + eiψ) 0 0

0 0 ω0 + vk − κd − iG(1− eiψ) K − κc − iG(1− eiψ)e−iφ

0 0 K − κc − iG(1− eiψ)eiφ ω0 − vk − κd − iG(1− eiψ)

 ,

(D1)
and can be rewritten as :

H =

(
He 0
0 Ho

)
, (D2)
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where He, Ho are 2×2 Hamiltonians whose diagonalization provides, separately, the couples of even and odd eigenvalues. The
two He, Ho are fully bright, and do not result in any dark branch showing a lateral BIC at the Γ point, unlike the case of fully
symmetrical structures. This is a signature of the broken lateral symmetry, which expresses it-self by the phase φ ̸= 0 (modπ).

Appendix E: Quasi transverse BICs at the Γ point in transverse symmetry broken structures: the case of negligible near-field
coupling between the gratings

In section V A, we show that, at Γ point, 2 dark and 2 bright modes are obtained. We conclude in section V C that transverse
BIC cannot be formed at the Γ point in transverse symmetry broken structures as a result of the finite phase φ. However, if the
near field evanescent coupling is considered as negligible when the two gratings are far apart, then, in Eq. (23), K+

∼= 0 and the
2x2 hamiltonian for the bright modes at the Γ point is given by:

H =

(
ω1 +K12 − iG12 −i

√
G12G21e

i(ψ−φ)

−i
√
G12G21e

i(ψ+φ) ω2 +K21 − iG21

)
. (E1)

It clearly results that the impact of the phase φ is also negligible when it comes to diagonalize the 2×2 Hamiltonian of the
bright modes. Therefore, the two corresponding eigenvalues can be made real when the phase ψ is set at 0 (mod π). This is
indeed possible provided that ω1 = ω2. Then the 2 bright modes of the Hamiltonian turn into 2 quasi-BICS, but are not true
BICS.

Appendix F: "Fishbone" structure

1. Aligned and half-period misalignment structures

The Hamiltonien given in section VI A, is rewritten along the more compact version below:

H =

A+ vk B2 C2 D
B1 A− vk D C1

C1 D A+ vk B1

D C2 B2 A− vk

 . (F1)

Note that for aligned grating structures (ϕ = 0 (mod2π)) or with half period lateral off-set (ϕ = π (mod2π)), B1 = B2 and
C1 = C2, which means that the compact expressions of the Hamiltonian are formally identical. Therefore for this two limit
cases, the properties of the eigenvalues are also formally identical. For half-period lateral off-set, we obtain the two couple of
complex eigenvalues below:

Fundamental modes:

ω = ωR + iωi = ω0 + κd − iG(1− eiψ)±
√
v2k2 + (K + κc + i|G|(1− eiψ))

2
, (F2)

Excited modes:

ω = ωR + iωi = ω0 − κd − iG(1 + eiψ)±
√
v2k2 + (K − κc + i|G|(1 + eiψ))

2
, (F3)

with: K = −κ(1 + β), G = γ(1−
√
β)2.

2. Structures with arbitrary misalignment: expansion of complex eigenvalues in the vicinity of the Γ point

In general, complex eigenvalues ω are obtained from the diagonalization of the Hamiltonian given by Eq. 28. The correspond-
ing secular equation can be written in the compact form:

|H − ω14| =
∣∣∣∣(HB+ HV

HV HB−

)
− ω14

∣∣∣∣ , (F4)

where HB± and HV are 2x2 matrices. At the Γ point, where HV = 0, the eigenvalues are the solution of 2 independent
equations:
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|HB± − ω12| = 0. (F5)

Complex in general, the eigenvalues become real if ψ = 0 or π and are the signatures of transverse BICs (see section VI C).
From expansion of Eq. (F4), it is possible to derive an analytical expression of the curvature CR of the dispersion characteristics
at the Γ point. Considering a transverse BIC at the Γ point in the vicinity of the eigenvalue numbered "3", corresponding with
Eq. (31) (section VI C), which is appropriate for the production of flat BIC, we get:

CR =

1
(1+α)|G|

v2

Keff
+

Lopt

c

( c
n )

2

ωR0

1
(1+α)|G| +

Lopt

c

, (F6)

where:

α =
ℜ(κd+K

G )
κd+K
G

, (F7)

1

Keff
= 2ℜ

(
(|κd +K| − 2i|G| − 2κc)|κd +K|+ κ2d − 2iκdℜ(G)− |K|2 − 2iℜ(KG∗)

|κd +K|(κd −K − 2iG)(κd −K∗ − 2iG∗)− (|κd +K| − 2κc − 2i|G|2)

)
. (F8)
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