
Neuromorphic foveation applied to semantic segmentation
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Abstract

Foveation can be defined as the organic action of di-
recting the gaze towards a visual region of interest, to se-
lectively acquire relevant information. With the recent ad-
vent of event cameras, we believe that taking advantage of
this visual neuroscience mechanism would greatly improve
the efficiency of event-data processing. Indeed, applying
foveation to event data would allow to comprehend the vi-
sual scene while significantly reducing the amount of raw
data to handle. In this respect, we present in this work the
evolution of the performance of semantic segmentation with
respect to the amount of event data used, to demonstrate the
stakes of foveation.

1. Introduction
Event cameras (or silicon retinas) represent a new kind

of sensors that measure pixel-wise changes in brightness
and output asynchronous events accordingly [8]. This novel
technology allows for an energy-efficient recording and
storage of data evolving over time and space. Indeed each
event is recorded punctually and asynchronously with no
redundancy; as opposed to traditional frame-based cam-
eras, where each pixel outputs data in all frames, in a syn-
chronous manner.

Spiking neural networks (SNN) are artificial neural net-
works which mimic the dynamics of biological neuronal cir-
cuits by receiving and processing information in the form of
spike trains. They are particularly well suited to handle the
atypical kind of data output from event cameras, since each
event can be assimilated to an activation spike between two
spiking neurons.

Foveation is the biological action allowed by the struc-
ture of the eye [2], driven by the visual attention [4]. When
the gaze is directed towards a region of interest (RoI), the
center of the perceptual field is caught by the fovea, a small
and central spot in the retina where the vision is optimal in
bright light. The further away we get from the fovea, the
lesser information is processed by the eye.

We believe that developing a mechanism approaching
foveation would greatly improve event data processing, go-

ing beyond its significant energy-efficiency. Indeed, this
would allow to maintain a high accuracy regarding relevant
information, while significantly reducing the amount of raw
data to handle. Since the energy consumption of neuro-
morphic architectures such as SpiNNaker or Intel Loihi is
directly linked to the number of spikes/events processed,
reducing this number is an efficient way of reducing the
consumption, which is central for embedded applications.
Furthermore, this approach consistency is supported by the
fact that silicon retinas aim by definition to reproduce the
biological retina behaviour.

To demonstrate the interest of applying foveation to
event data, we propose to study the respective evolutions
of the amount of event data processed by a segmentation al-
gorithm and its accuracy when foveation is applied. In order
to simulate the foveation, the event data will be processed at
a higher or lower resolution, depending on the relevance of
the spatial regions in the image at different coordinates. Our
proposed model goes beyond biology by allowing multiple
RoI of arbitrary size and shape. This approach is part of
the work conducted in the context of APROVIS3D1 project,
and is ultimately to be applied to the use case of coastline
tracking by a UAV. Thus the dataset is chosen in order to
approach this use case, as well as the segmentation task.

2. Foveation methodology
2.1. Saliency detection

The detection of RoI to foveate on is a little-explored is-
sue regarding event-data. In this work, we propose to use
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Figure 1. Spiking neural network model used to detect saliency by
event density, adapted from [6].
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part of the SNN presented in [6]: this saliency detector inte-
grates the events produced by each pixel at a low resolution
and outputs a set of coordinates for one or multiple RoI. In
this case, our RoI would be a region where the amount of
events received over a certain amount of time is more im-
portant than elsewhere over the whole scene.

This whole mechanism relies solely on intrinsic SNN
dynamics and dynamic adaptation rules applied to synaptic
weights and population thresholds. This is a crucial feature
as it leads to minimising the latency since it does not require
the conversion of spiking events into a frame. The saliency
detection is not specialised for any specific context or any
specific shape, which allows for a good generalisability of
the network. The proposed architecture, shown in Fig. 1,
is designed to be lightweight enough to enable running in
real-time.

Input layer The input layer translates sensor relative
changes in the illumination (or events) into spikes. The
spikes produced by the input layer are sent to the saliency
detector via an excitatory downscaling connection. This
corresponds to a convolutional layer with a kernel size
S × S, a stride S, without padding. The input neurons are
separated into non-overlapping square regions of size S×S.
Each neuron in the input layer’s subregions is connected to
one corresponding neuron in the saliency detector layer.

Saliency detector The saliency detection aggregates the
active regions into distinct segments using a soft Winner-
Takes-All (WTA) by laterally inhibiting the neurons in the
same layer: each neuron activation leads to the inhibition
of the others, without autapses (self-connections). Since a
strong WTA leads to the activation of only one neuron in the
layer and multiple RoI are to be detected by the network, the
soft WTA weight has been set experimentally to 0.02.

In the case of the saliency detector, a specific exponential
WTA is implemented according to the radial basis function
Eq. 1 in order to allow RoI of arbitrary sizes:

WWTA = max(
ed

w × h
,wmax) (1)

where d corresponds to the Euclidean distance in number
of neurons between the active and target neuron subject to
inhibition, and w and h to the width and height of the layer.
The weight WWTA has an upper bound of wmax = 50.

Finally, the adaptive detection of saliency in this layer is
enabled by a dynamic weight adaptation rule between the
input layer and the saliency detector, inspired by Hebb’s
rule: ”cells that fire together wire together” [7]. This rule
is implemented by increasing or decreasing the weights of
synapses that have recently fired.

Figure 2. Binary foveation of events using the corresponding high
and low resolution (spatially downscaled by factor) and based on
a known region of interest, delimited by the MIN and MAX points.

2.2. Reconstitution of foveated data

In this work, we consider the foveation process akin to
the combination of a sample’s events in high resolution and
low resolution using a mask, as presented by the Fig. 2. This
binary combination discriminates the fovea (events in high
resolution – blue region in Fig. 2 ) from the retinal periphery
(low resolution; i.e. spatially downscaled – green region in
Fig. 2 ). The RoI (in red in Fig. 2) detected by the saliency
detector mentioned earlier is thus assimilated to the fovea.

Let (xmin, ymin) and (xmax, ymax) be the coordinates
of the delimiting points of the area of foveation detected by
the saliency detector (as seen on Fig. 2),

Fovea = {(x, y)|x ∈ [xmin, xmax], y ∈ [(ymin, ymax]}
Periphery = {(x, y)|x /∈ [xmin, xmax], y /∈ [(ymin, ymax]}

(2)

where Fovea and Periphery correspond to the coor-
dinates of the set of salient and non-salient events respec-
tively, in different resolutions.

2.3. Event data reduction

Event data reduction is not trivial, as explained in [5].
Many different approaches can be used to produce the spa-
tial downscaling depicted in Fig. 2. We decided to use the
log-luminance reconstruction using event count method de-
scribed in [5]. In a nutshell, it relies on assimilating event
spatial downscaling to averaging the luminance captured by
a subset of pixels in the original sensor.



(a) Events in the sample in high resolution (left), low resolution (middle) and after foveation (right).

(b) Segments and performance values identified by Ev-SegNet in the sample in high resolution (left), low resolution (middle) and after foveation (right).

Accuracy = 86.06%
MIoU = 50

Accuracy = 78.92%
MIoU = 35.08

Accuracy = 84.75%
MIoU = 46.48

Figure 3. Top. Visual representation of the events in the sample rec1487417411 export 1467 after various processes.
Bottom. Visual representation of the different segments identified by Ev-SegNet in the same sample.

It is to be noted that in order to process high and low
resolution events using the same frame of reference, an
expansion was applied to the spatially reduced data so
that a reduced pixel physically corresponds to the size of
factor × factor original pixels.

3. Experimental validation

To validate our proposed model, we select the task of se-
mantic segmentation, which is is a computer vision task in
which specific regions of an image are labelled according
to its semantic contents, a key task for scene understand-
ing. It has been extensively studied using artificial neural
networks, more specifically, Convolutional Neural Network
(CNN) model with either frames or events as input.

This section describes the dataset and the semantic seg-
mentation model used to perform such an experiment, as
well as the comparative results.

3.1. Event-based dataset

The DAVIS Driving Dataset 2017 (DDD17) [3] contains
40 different driving sequences of event data captured by an
event camera. However, since the original dataset provides
only both grayscale images and event data without semantic
segmentation labels, we used the segmentation labels pro-
vided in [1] that uses 20 different sequence intervals taken
from 6 of the original DDD17 sequences. Furthermore,

as only multi-channel representation of the events (normal-
ized sum, mean and standard deviation for each polarity)
are made available, we extracted the original events from
DDD17 with the traditional < x, y, p, t > structure using
DDD20 tools2 and selected the ones corresponding to the
frames that have a ground truth. The resulting dataset is
split into a training dataset consisting of 15,950 frames and
a testing one consisting of 3,890 frames.

As presented in the Fig. 3a, the event data’s proper-
ties were compared for sample in high resolution (original
dataset), low resolution (spatially downscaled with factor 4)
and foveated (binary combination of the previous two).

3.2. Semantic segmentation model

In our work, we used the model built by [1] for outper-
forming all existing studies in this kind of task using event
cameras. This model is inspired from current state-of-the-
art semantic segmentation CNNs, slightly adapted to use
the event data encoding. It consists of an encoder-decoder
architecture: an encoder represented by Xception model in
which all the training is concentrated, and a light decoder
connected to the encoder via skip connections to help deep
neural architecture to avoid the vanishing gradient problem.
The use of an auxiliary loss increases convergence speed.

The model takes as input 6 channels representing the

2https://github.com/SensorsINI/ddd20-utils



A B

Figure 4. Semantic segmentation accuracy according to the number of events in the dataset after processing (left) and its evolution according
to the percentage of total events in the dataset after processing (right) for the event data in high resolution (in blue), low resolution (in green)
and after foveation (in red).

count, mean and standard deviation of the normalized
timestamps of events happening at each pixel, included in
the selected frames described in the section 3.1 within an
interval of 50ms for the positive and negative polarities. Fi-
nally, the training is performed via backpropagation in or-
der to minimise the soft-max cross-entropy loss measured
by summing the error between the estimated pixels’ classes
and the true ones.

3.3. Results

Figure 4 presents a comparison between the different
versions of the dataset, i.e. the DDD17 dataset in high
and low resolutions and after foveation, according to the
accuracy and the MIoU (Mean Intersection over Union) of
the semantic segmentation performed by Ev-SegNet, which
equations are described in [1].

To validate our initial hypothesis, the foveation would
have to produce a number of events significantly closer
to the low resolution’s while allowing for a semantic seg-
mentation performance closer to the high resolution’s. In
other terms, the foveated results should be above the dot-
ted grey line on Fig. 4a. We do observe a striking de-
crease in the number of events between pre- (high resolu-
tion) and post-processing (low resolution and foveation) of
the dataset; the spatial downscaling keeps 5% of the origi-
nal events while the foveation includes 30% of events. Sim-
ilarly, the foveation’s accuracy and MIoU are remarkably
close to the high resolution’s performance. Those two ob-
servations combined do validate our core thesis.

Furthermore, it is interesting to note that when compar-
ing the proportional decrease of the number of events in the
dataset post-process in Fig.4b, while all three types of data
show the same behaviour, the foveated data outperforms the
high resolution data from an 80% decrease and downwards.
This is explained by the fact that the majority of events kept
in the foveated dataset provides relevant information to the
semantic segmentation model, while a significant part of the
events in the original dataset is not as useful.

4. Conclusion
In this work, we demonstrate the stakes of foveation ap-

plied to event data for semantic segmentation. Such a strat-
egy does concurrently preserve the accuracy of event data
processing and greatly reduce the amount of data needed
for the task. Further research will validate the proposed ap-
proach with several levels of resolution – not only 2, and for
other tasks e.g. classification.
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