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Abstract

Large or very large spatial (and spatio-temporal) datasets have become common place in
many environmental and climate studies. These data are often collected in non-Euclidean
spaces (such as the planet Earth) and they often present non-stationary anisotropies. This paper
proposes a generic approach to model Gaussian Random Fields (GRFs) on compact Riemannian
manifolds that bridges the gap between existing works on non-stationary GRFs and random fields
on manifolds. This approach can be applied to any smooth compact manifolds, and in particular
to any compact surface. By defining a Riemannian metric that accounts for the preferential
directions of correlation, our approach yields an interpretation of the “local anisotropies” as
resulting from “local” deformations of the domain. We provide scalable algorithms for the
estimation of the parameters and for optimal prediction by kriging and simulation able to tackle
very large grids. Stationary and non-stationary illustrations are provided.

Keywords – G aussian Process; Laplace-Beltrami operator; non-stationarity; anisotropy; finite elements

1 Introduction
Large or very large spatial (and spatio-temporal) datasets have become common place in many envi-
ronmental and climate studies. Various approaches have been proposed by the statistical community
to tackle the “big N ” challenge in ways that properly acknowledge the spatial and spatio-temporal
dependence structures usually observed in these datasets. Recently, several competitions have been
organized to compare methods and algorithms in this context (Heaton et al., 2019, Huang et al., 2021)
which provide an excellent overview of state-of-the-art methods for analyzing large spatial datasets.
Most algorithms rely on approximation methods of Gaussian Processes, also known as Gaussian
Random Fields (GRFs). In their conclusion, the organizers of the first competition note that “spa-
tial data may exhibit anisotropy, non-stationarity, large and small range spatial dependence as well”.
Despite its long history, modeling non-stationary spatial datasets remains a challenge. Sampson and
Guttorp (1992) proposed a space deformation approach further developed for instance in Perrin and
Senoussi (2000) and Fouedjio et al. (2015). The main difficulty with this approach is to estimate a
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valid, global, deformation of the domain, which in practice is not guaranteed to exist. Paciorek and
Schervish (2006) introduced a class of nonstationary covariance functions based on the kernel con-
volution approach of Higdon et al. (1999), later generalized in Fouedjio et al. (2016). Our approach
rather builds on the so-called “SPDE approach” introduced in the seminal work (Lindgren et al.,
2011), which relates GRFs characterized with Matérn covariance functions to stationary solutions
of a specific Stochastic Partial Differential Equation (SPDE). This approach can be extended to the
non-stationary case by allowing spatially varying coefficients of the SPDE, see for instance Fuglstad
et al. (2015a;b) among other possible references. Another challenge often faced when anaylzing
environmental or climate data is to work on non-Euclidean domains. In particular, methods for
analyzing data on spheres has received a lot of attention, see Marinucci and Peccati (2011) for a
review and Rayner et al. (2020) for a recent application using the SPDE approach dealing with
extremely large datasets. Methods developed for spheres depend usually on specific properties, such
as expansion into the spherical harmonics (Emery and Porcu, 2019, Lang and Schwab, 2015, Lan-
tuéjoul et al., 2019) or the use of arc distances to define valid covariance models (Gneiting, 2013,
Huang et al., 2011).

This paper aims at bridging the gap between existing works on non-stationary GRFs and ran-
dom fields on manifolds. Specifically, we propose a generic approach to model GRFs on compact
Riemannian manifolds and we provide scalable algorithms for their optimal prediction by kriging
and simulation. Our approach is based on two main ingredients. First, random fields are defined
through expansions in the eigenfunctions of the Laplace–Beltrami operator on the Riemannian man-
ifold which are, in some cases, solutions to some particular SPDE. Then, we build finite element
approximation of these GRFs. This construction allows to perform optimal prediction, simulation
(including conditional) and estimation of the parameters using scalable algorithms.

For this purpose, we define a Riemannian metric that accounts for the preferential directions of
correlation of the non-stationary GRF. This method yields an interpretation of the “local anisotropies”
as resulting from “local” deformations of the domain, in striking contrast to both the space deforma-
tion and the kernel convolution approaches. The resulting fields can be seen as a direct generalization
of the construction for non-stationary random fields proposed in Fuglstad et al. (2015a).

Our approach can be applied to any smooth compact manifold, and in particular to any compact
surface or hypersurface. It shares clear similarities with the work of Borovitskiy et al. (2020), but in
contrast, is not restricted to Whittle–Matérn fields since in our approach the GRF is characterized
by its spectral density, whose inverse is restricted to belong to the family of positive polynomials.
Besides, our approach does not rely on the explicit computation of the eigenfunctions and eigenvalues
of the Laplace–Beltrami operator, and can be seen as a providing a theoretical motivation to the
method developed in Borovitskiy et al. (2021) to deal with Gaussian processes on graphs.

The flexibility of our approach does not result in increased computational costs. Indeed, we
show how prediction and conditional simulations can be performed through a so-called “matrix-free”
approach. This approach, contrary to classical geostatistical algorithms, does not require to build
and store possibly large covariance matrices, but instead relies only on products between some sparse
matrices and vectors. This in turn ensures the scalability of this method, thus paving the way to
efficient non-stationary geostatistics for large datasets. We illustrate our approach with 2D and 3D
synthetic examples and grids with more that 107 nodes for the 3D cases.

The organization of the paper is the following. The GRF model is presented in Section 2, along
with its finite element approximation and covariance function. Kriging and simulation algorithms
are provided in Section 3. Section 4 shows how the parameters can be estimated using maximum
likelihood. All methods are summarized as Algorithms. Stationary and non-stationary illustrations
are then provided in Section 5. We conclude with some final words in Section 6. Proofs and technical
details are deferred to the Appendix. Throughout this paper, vectors and matrices will be denoted
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in bold fonts. AT is the transpose matrix of the matrix A. Diag is the operator that transforms a
vector of length n into a n × n matrix whose diagonal elements are those of the vector and whose
off-diagonal elements are 0. Ip is the p × p identity matrix. |A| is the determinant of the square
matrix A and ∥ · ∥ denotes the Euclidean norm.

2 Random fields on Riemannian manifolds

2.1 Definition and finite element approximation
A generic approach to define and characterize GRFs on Riemannian manifolds has been proposed
in Borovitskiy et al. (2020) and in Lang and Pereira (2021) and is now briefly recalled. Let D
be a smooth compact manifold of dimension d equipped with a Riemannian metric g, and let
f0 : R+ → R+ be a function such that |f0(λ)| = Oλ→∞(λ−β), with β > d/2. A centered GRF Z is
constructed on the resulting Riemannian manifold (D, g) through the expansion

Z =
∑
k∈N

f
1/2
0 (λk)wkek , (1)

where f
1/2
0 : R+ → R is a function such that

(
f
1/2
0

)2

= f0 on R+, {wk}k∈N is a sequence of
independent standard Gaussian variables, {λk}k∈N denote the set of eigenvalues of the Laplace–
Beltrami operator −∆ on (D, g), and {ek}1≤k≤∞ denote the associated eigenfunctions. In order to
get a feeling of what Eq. (1) represents, remember that on Rd the eigenfunctions of the Laplacian
are all the members of the uncountable family of functions {e−i⟨ω,x⟩ : ω ∈ Rd}. In this case, the
Whittle-Matérn random-fields are solution to the SPDE (κ2 −∆)α/2Z = W where W is the white
noise process on Rd and the associated spectral density is f0 = (κ2 + ∥ω∥)−α.

Going back the our definition of GRFs on compact manifolds, the eigenvalues and eigenfunc-
tions of the Laplace–Beltrami operator are not known in general. A first approach, proposed by
Borovitskiy et al. (2020) consists to compute them numerically by solving (approximately) the cor-
responding eigenvalue problems. Instead, we approximate Z using a finite element approach as in
Lindgren et al. (2011) and Lang and Pereira (2021), as this method will naturally yield scalable
algorithms for prediction and sampling tasks. First, the manifold D is triangulated using n nodes
s1, . . . , sn ∈ D and a family of compact support approximation functions {ψi}1≤i≤n is defined over
D, where each ψi is the piecewise linear function equal to 1 at the node si and 0 at all the other
nodes. Then, Z is approximated by a linear combination Z defined as

Z =

n∑
i=1

ziψi, (2)

where for any i ∈ {1, . . . , n}, zi = Z(si) is the interpolation weight associated with ψi.
The weights Z = (z1, . . . , zn)

T are chosen so that Z can also be written using the same expansion
as the one defining the original field Z in (1), but replacing now the eigenfunctions {ek}k∈N and
eigenvalues {λk}k∈N of −∆ by those of its Galerkin approximation (see Appendix D for more details).
This particular choice yields an explicit formula to compute these weights, see Proposition 2.1 below.
We first introduce C and F , the mass and stiffness matrices respectively defined by

[C]ij = (ψi, ψj), [F ]ij = (∇ψi,∇ψj), 1 ≤ i, j ≤ n, (3)

where (·, ·) denotes the L2 inner product on the Riemannian manifold (cf. Appendix C). Note that
since each basis function ψi (1 ≤ i ≤ n) is zero for every node of the triangulation except one, the
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resulting matrices C and F are sparse. Let then
√
C ∈ Rn×n be a matrix such that

√
C(
√
C)T = C,

and let S be the matrix defined by

S = (
√
C)−1F (

√
C)−T . (4)

Proposition 2.1. Let Z be the vector of weights as in Eq. (2). Then, the vector Z is a centered
Gaussian vector with covariance matrix Σ given by

Σ = (
√
C)−T f0(S)(

√
C)−1, (5)

where f0(S) denotes the matrix function defined as

f0(S) = V Diag
(
f0(λ1), . . . , f0(λn)

)
V T ,

for matrices S = V Diag(λ1, . . . , λn)V
T with V −1 = V T .

This result is shown in Pereira (2019) and Lang and Pereira (2021). In the latter reference,
a convergence result of the approximation of Z as the mesh size of the triangulation decreases is
provided, thus further justifying this approach.

The matrix square-root
√
C can be computed using matrix functions or through a Cholesky

decomposition. In practice however,
√
C is replaced by the so-called mass lumping approximation

defined as the diagonal matrix with entries:

[
√
C]ii =

√
(ψi, 1), 1 ≤ i ≤ n. (6)

To ease the notations, but at the cost of a slight abuse of notation, the mass lumping approximation
will also be denoted

√
C in the remainder of this text. As shown in Lindgren et al. (2011), this

approximation comes with negligible effect on the covariance of the resulting random field. It allows
to readily have access to the inverse of the square-root matrix

√
C and yields

[S]ij =
(ψi, ψj)√

(ψi, 1)
√

(ψj , 1)
, 1 ≤ i, j ≤ n, (7)

which ensures that the matrix S is also sparse.
The covariance matrix Σ in Eq. (5) involves a matrix function defined above through the eigen-

decomposition of S, which is notoriously computationally expensive. To avoid this, two particular
cases can be considered. If the function f0 is approximated by a polynomial, the resulting matrix
function becomes a matrix polynomial, which can be computed without involving eigendecomposi-
tions. This is the rationale behind the Galerkin–Chebyshev approach proposed in Lang and Pereira
(2021), where the function f0 is replaced by its Chebyshev polynomial approximation over an interval
containing the eigenvalues of S.

We propose here an alternative approach in the spirit of Lindgren et al. (2011) and Rue and
Held (2005). We assume that f0 is the inverse of a polynomial P0 taking positive values over R+,
i.e. f0 = 1/P0. Then the resulting precision matrix Q of the weights can be expressed as

Q = Σ−1 = (
√
C)P0(S)(

√
C)T , (8)

which again involves matrix polynomial instead of a matrix function. Computing the matrix Q can
then be done by summing iterates of the matrix S, resulting in a matrix which sparsity depends on
the degree of P0: the higher the degree of P0, the less sparse Q is. This approach, which we refer to
as a “matrix free” approach will be adopted in the algorithms presented in Section 3 for prediction
and simulation.
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2.2 Second-order characterization
2.2.1 Stationary and approximately stationary covariance functions

Let us consider the GRF Z defined by Eq. (1) on some compact Riemannian manifold (D, g). It is
straightforward to show that its covariance function CZ can be written as:

CZ(x1, x2) =
∑
k∈N

f0(λk)ek(x1)ek(x2), x1, x2 ∈ D. (9)

In the particular case where (D, g) is an Euclidean domain equipped with the usual metric, Solin
and Särkkä (2019) show that CZ approximates the covariance of a random field on D with radial
spectral density f0. They also provide a uniform bound on the error between the actual covariance
function of Z and the covariance function associated with f0 which shows that the approximation
improves as we move further away from the boundary of D. Hence, in this case, Z approximates an
isotropic GRF with covariance C0 given by

CZ(x1, x2) ≈ C0(∥x1 − x2∥), x1, x2 ∈ D, (10)

where C0 is the inverse Fourier transform of w 7→ f0(∥w∥).
More generally, expansions similar to (9) have been used to characterize the covariance of random

fields on (Riemannian) manifolds. For instance, Lang and Schwab (2015) use it to describe covari-
ance functions of random fields on the sphere (endowed with its usual metric), and show an explicit
link between the regularity of the resulting field and the decay of the sequence {f0(λk)}k∈N. On
general compact Riemannian manifolds, Borovitskiy et al. (2020) characterize their “Matérn Gaus-
sian processes in the sense of Whittle” through covariance functions of the form (9), by taking f0 to
be the spectral density of the usual Matérn covariance function (i.e. as defined for isotropic random
fields on Rd). Hence, the fields Z defined by (1) with covariance function given by (9) can be seen
as the counterpart, on the Riemannian manifold (D, g), of the random fields with radial spectral
density f0 on Rd and covariance function given by the inverse Fourier transform of f0. Examples of
sampled GRFs with Matérn covariance on different domains are presented in Figure 1.

2.2.2 Non-stationary covariances

The general construction of random fields on Riemannian manifold presented in the previous section
can be used to define non-stationary models of GRFs, and in particular fields that exhibit local
anisotropies. Such fields are defined on Euclidean domains of dimension d ∈ {2, 3} as follows: around
each point of the domain, there is a preferential direction along which the range of highly correlated
values is maximal, whereas it is minimal in the orthogonal direction(s). The angles defining the
preferential directions are called anisotropy angles and the size of the ranges are called anisotropy
ranges. These anisotropy parameters can be graphically represented by an ellipse/ellipsoid whose
axes length and direction are respectively given by the anisotropy ranges and angles.

Following the approach described in Pereira (2019), a GRF with local anisotropies on some
bounded Euclidean domain D can be built by defining a GRF on a specific Riemannian manifold:
anisotropy angles and ranges can be used to define a metric tensor at each point of D. In other
words, at each p ∈ D, the metric is chosen so that it locally “deforms” D into a local domain where
the anisotropy reduces to isotropy thanks to the composition of a rotation and a scaling that would
turn an ellipse/ellipsoid into a circle/sphere (see Figure 2). This transformation results in a metric
defined as

gp(u,v) =
(
D(p)−1R(p)−1u

)T (
D(p)−1R(p)−1v

)
, u,v ∈ Rd, (11)
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Figure 1: Example of GFRs with Matérn covariance function on the sphere and on surfaces shaped
like a cow, a paraboloid and a duck.

where D(p) is the diagonal matrix whose entries are the anisotropy ranges at p and R(p) is the
rotation matrix defined from the anisotropy angles at p.

To get the covariance properties of the field in the original domain D equipped with the met-
ric (11), we can first apply the deformation and then use (10), to obtain

CZ(p, p+ h) ≈ C0(gp(p, p+ h)) = C0(∥D(p)−1R(p)−1h∥), (12)

where h ∈ Rd is some infinitesimal displacement vector around p. It is then straightforward to check
that such a covariance locally reproduces the desired anisotropy properties around p (see Chilès and
Delfiner (2012) for details). An example of the type of non-stationary fields that can be sampled
using this method is presented in Figure 3.

In conclusion, given a compact Euclidean domain D and a field of anisotropy parameters on
D, defining non-stationary random fields with the corresponding anisotropy properties can be done
by applying the approach described in Section 2.1 to a tailored Riemannian manifold (namely D
equipped with the metric (11)). Note that similar ideas could be applied to define random fields with
varying covariance structure on more general surfaces if one can define coherent fields of anisotropy
parameters on such surfaces.
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Figure 2: Deformation turning an entropy ellipse (with range parameters (ρ1, ρ2) and angle θ) into
a circle.

Figure 3: Example of anisotropy parameters (left) and corresponding non-stationary field (right)
on the unit square.

3 Prediction on Riemannian manifolds
We now show how the construction presented in Section 2 provides efficient prediction algorithms
in a quite general setting, which includes non-stationary covariances, non-Euclidean support and
non-Matérn covariance functions. Given some spatial domain D, we assume that we observe some
real-valued variable Y at p ≥ 1 locations x1, . . . , xp ∈ D. These observations are modeled as

Y (xi) = Z(xi) + τϵi, 1 ≤ i ≤ p

where ϵ1, . . . , ϵp are independent standard Gaussian variables, τ > 0, and Z denotes some GRF on
D acting as a latent variable. Hence, they can be seen as observations of the latent field Z affected
by some independent centered Gaussian noise with variance τ2.

We aim at making the Best Linear Unbiased Prediction (BLUP) of the variable Z at q locations
xp+1, . . . , xp+q ∈ D. Under a Gaussian assumption, recall that the BLUP is equal to the conditional
expectation (Tong, 2012), i.e. the optimal prediction in a L2 sense. In the geostatistical literature,
this prediction is referred to as kriging (Chilès and Delfiner, 2012). In most geostatistical approaches,
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the GRF is either characterized by a covariance function or by a precision matrix. Here, in contrast,
the GRF is defined on a triangulation of D and it is characterized by a positive polynomial P0 as
per Eq. (8). To derive the kriging algorithm we first suppose that this polynomial is known. We
then show how τ2 and the coefficients of P0 can be estimated from a single realization of the vector
of observations Y = (Y (x1), . . . , Y (xp))

T .

3.1 A “matrix free” kriging algorithm
We start with some triangulation of D with n nodes s1, . . . , sn ∈ D, and Z is approximated by its
finite element approximation Z associated to this triangulation as shown in Section 2. Following
the interpolation rule in Eq. (2), the values of the field Z at the observed locations x1, . . . , xp can
be expressed as a linear combination of the values taken at the triangulation nodes s1, . . . , sn. The
vector of observations Y can thus be written as

Y = MDZ + τϵ (13)

where Z = (Z(s1), . . . , Z(sn))
T , ϵ = (ϵ1, . . . , ϵp)

T and MD ∈ Rp×n is the so-called design matrix
containing the interpolation weights defined by

[MD]ij = ψj(xi), 1 ≤ i ≤ p, 1 ≤ j ≤ n. (14)

The next proposition provides an analytic expression for the kriging predictors Z∗(xp+1) at some
given target location xp+i ∈ D (1 ≤ i ≤ q). It is proven in Appendix A.

Proposition 3.1. The conditional distribution of Z given Y is that of a Gaussian vector with mean
E[Z|Y ] and covariance matrix Cov[Z|Y ] given by

E[Z|Y ] = ΣMT
D (MDΣMT

D + τ2Ip)
−1Y = (τ2Q+MT

DMD)
−1MT

DY , (15)

and
Cov[Z|Y ] = Σ−ΣMT

D (MDΣMT
D + τ2Ip)

−1MDΣ = τ2(τ2Q+MT
DMD)

−1, (16)

where Σ is the covariance matrix of Z, Q = Σ−1 is its precision matrix, and τ2 and MD are defined
in Eq. (13). Then, the vector of kriging predictors Z∗ = (Z∗(xp+1), . . . , Z

∗(xp+q))
T can be written

as
Z∗ = MTE[Z|Y ], (17)

where MT is the target design matrix defined by

[MT]ij = ψj(xp+i), 1 ≤ i ≤ q, 1 ≤ j ≤ n. (18)

We have assumed that the function f0 characterizing the field Z is the inverse of P0, a positive
polynomial on R+. This implies in particular that the precision matrix Q in (15) can be expressed
as in Eq. (8). Assuming that P0 is known, the kriging predictors Z∗ in (17) can thus be computed
using Algorithm 1.

Note that all the matrices
√
C, S, MD and MT are sparse, and that the matrix Q is also sparse

when P0 has a low degree. A classical approach for solving the linear system in Algorithm 1 consists
in first building and storing the matrix A = τ2Q +MT

DMD, and then using a method for solving
sparse linear systems. For instance, one could use so-called sparse direct solvers. Such solvers start
by factorizing A into sparse triangular factors (using LU or Cholesky decompositions) and then
solving the resulting triangular systems.
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Algorithm 1: Kriging prediction.

Require: Matrices
√
C, S, MD and MT, as defined in Eqs. (6), (7), (14) and (18).

Require: Polynomial P0.
Require: Parameter τ > 0.
Require: Vector of observations Y .
1: Solve for X the linear system

AX = MT
DY (19)

where
A = τ2Q+MT

DMD = τ2(
√
C)P0(S)(

√
C)T +MT

DMD (20)

2: Return Z∗ := MTX.

When these direct approaches are not possible due to size of the problem, an alternative approach
using iterative solvers must be used (Nocedal and Wright, 2006). Such solvers only rely on products
between the matrix A and vectors, and therefore can be used to approximately solve the linear
system in Algorithm 1 without effectively requiring to build and store A: only a routine performing
the product between A and vectors is needed. Note that such products would only require products
between the sparse matrices

√
C, S and MD and vectors (cf. Algorithm 2). This approach yields

a so-called “matrix-free” approach to kriging in the sense that it does not require to explicitly build
and store the precision matrix Q of the field.

Algorithm 2: Product between a matrix (αDP (B)DT +MTM) and a vector.
Require: Matrices B,D ∈ Rn×n and M ∈ Rp×n

Require: Polynomial P (X) =

K∑
k=0

ckX
k for some K ∈ N0, c0, . . . , cK ∈ R

Require: Parameter α ∈ R
Require: Vector v ∈ Rn

1: Compute x := MTMv =
(
(Mv)TM

)T
2: Compute w := DTv = (vTD)T

3: Compute y := cKw
4: for k = K − 1, . . . , 0 do
5: Compute y ← ckw + Sy
6: end for
7: Return αDy + x

3.2 Conditional simulations
Generating samples from the conditional distribution of Z (or rather of its approximation Z) given
Y is now a straightforward task. Since the distribution of Z is entirely specified through the
distributions of its weights Z, this amounts to sample from the conditional distribution of Z given
Y , which will be denoted πZ|Y . Recall from Proposition 3.1 that πZ|Y is a multivariate Gaussian
distribution with mean E[Z|Y ] and covariance matrix Cov[Z|Y ] given by Eqs. (15) and (16). Hence,
sampling from the conditional distribution πZ|Y is straightforward, as show in in Algorithm 3.
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Algorithm 3: Conditional simulation of the vector Z given the observations Y .
Require: Covariance matrix Cov[Z|Y ] defined in Eq. (16).
Require: Conditional mean E[Z|Y ] defined in Eq. (15).
1: Sample a centered Gaussian vector X with covariance matrix Cov[Z|Y ].
2: X ←X + E[Z|Y ].
3: Return X.

The conditional mean E[Z|Y ] required for Algorithm 3 is computed using the same methods as
those described in Section 3 to compute the kriging predictors.

Since an explicit formula is available for Cov[Z|Y ] in Eq. (16), sampling the Gaussian vectors
of the first step in Algorithm 3 could be directly done by finding a factor L such that Cov[Z|Y ] =
LLT and then returning the product LW where W is a vector of independent standard Gaussian
variables. Possibles candidates for L include the Cholesky decomposition of Cov[Z|Y ], but also
the matrix function h(Cov[Z|Y ]) where h is the square-root function, and the matrix function
h̃(τ2Q + MT

DMD) where h̃ is the inverse square-root function. In practice, and as before, both
matrix functions could be approximated by matrix polynomials and the “matrix-free” algorithms
presented above could be used.

Another method to sample centered Gaussian vectors with covariance matrix Cov[Z|Y ] consists
in recalling that Z−E[Z|Y ] is such a vector, and that the expression of Cov[Z|Y ] does not explicitly
depend on the vectors Z and Y . Hence, sampling such a vector can be done according to Algorithm 4
shown below. Let W be a vector of independent standard Gaussian variables. Then, computing the
vector Z ′ needed in the first step of Algorithm 4 can be done by either:

• Computing the product BW where B is a square-root of Σ (eg. the Cholesky factor of Σ or
the matrix (

√
C)−T (1/

√
P0)(S)).

• Solving for X the linear system B̃X = W , where B̃ is a square-root of Q (eg. the Cholesky
factor of Q or the matrix (

√
C)
√
P0(S)).

In practice, the matrix functions appearing above are once again polynomially approximated. More
details on the step 1 of algorithm 4 can be found in Pereira and Desassis (2019).

Algorithm 4: Sampling a centered Gaussian vectors with covariance matrix Cov[Z|Y ].
Require: Covariance matrix Σ in Eq. (5) or precision matrix in Eq. (8).
Require: Matrix MD and parameter τ defining the observations Y in Eq. (13).
1: Sample a centered Gaussian vector Z ′ with covariance matrix Σ or precision matrix Q.
2: Sample a vector ϵ′ with independent standard Gaussian entries.
3: Compute Y ′ := MDZ

′ + τϵ′.
4: Compute E[Z ′|Y ′] by replacing Y by Y ′ in Eq. (15).
5: Return Z ′ − E[Z ′|Y ′].

4 Estimation of the parameters
In order to apply the kriging and simulation procedures presented above, one needs to know the
polynomial P0 characterizing the field Z, as well as the parameter τ2 defining the variance of the
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Gaussian noise. Usually, these parameters are not known, and they must be estimated from the
observations Y = (Y (x1), . . . , Y (xp))

T . We now show how a maximum likelihood approach can be
efficiently implemented. Let us denote θ the vector of parameters containing the coefficients of P0

and the variance τ2. Note then that, following Eq. (13), the vector Y is a centered Gaussian vector
with covariance matrix

ΣY (θ) = MDQ(θ)−1MT
D + τ2Ip, (21)

where Q(θ) = (
√
C)P0(S)(

√
C)T . The log-likelihood of Y is thus

L(θ) = −1

2

(
p log 2π − log |QY (θ)|+ Y TQY (θ)Y

)
where QY (θ) = ΣY (θ)−1. Considering the matrix A = A(θ) defined in (20), we can write

Y TQY (θ)Y = τ−2
(
Y TY − Y TMDA(θ)−1MT

DY
)
. (22)

and
log |QY (θ)| = log |Q(θ)|+ (n− p) log τ2 − log |A(θ)|

= log |P0(S)|+ 2 log |
√
C|+ (n− p) log τ2 − log |A(θ)|.

(23)

The precise computation of the log-likelihood deserves some comments. The quadratic form (22) is
computed using the methods introduced to solve the linear system, as shown in Algorithm 1 and
in Eq. (19). Evaluating the log-determinants in Eq. (23) could be done using a Cholesky (or LU)
factorization of the matrices Q(θ) and A(θ) and then summing the log of the diagonal elements of
the resulting triangular factors. However, one can also use a “matrix-free” approach to compute an
approximation of these log-determinants. This approach, detailed in the rest of this section, is a
generalization to matrix functions of the results in Han et al. (2015). It is based on the following
result.

Proposition 4.1. Let B be a diagonalizable matrix and h : R → (0,∞). The log-determinant of
the matrix function h(B) satisfies the relation

log |h(B)| = Trace(log h(B)) = E[W T log h(B)W ],

where W is a vector whose entries are independent zero-mean unit-variance random variables, and
log h(B) is the matrix function defined from the function log h.

Proof. By definition of matrix functions, and denoting by λ1, . . . , λn the eigenvalues of B, we have

Trace(log h(B)) = Trace(Diag(log h(λ1), . . . , log h(λn))) =

n∑
i=1

log h(λi) = log

n∏
i=1

h(λi) = log |h(B)|.

The second equality is then a direct consequence of the well-known Hutchinson trace estimator
(Hutchinson, 1989).

The matrix function log h(B) can in practice be approximated by a matrix polynomial Plog h(B)
where Plog h denotes a polynomial approximation of log h over an interval containing the eigenval-
ues of B (and defined using for instance Chebyshev polynomial approximation). Then, we can
approximate log |h(B)| as

log |h(B)| ≈ 1

M

M∑
m=1

W T
mPlog h(B)Wm (24)
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where W1, . . . ,WM denote M independent samples of W (defined for instance from a Gaussian or
Rademacher distribution). Similarly to Algorithm 2, each quadratic form in Eq. (24) is computed
in an iterative way while only requiring products between the matrix B and vectors. This approach
can be used to compute the log-determinant (23) by noting that both log |P0(S)| and log |A(θ)| can
be written in the form log h(B) with B = S and h = P0 for the former, and B = A(θ) and h to
be the identity map for the latter. The whole procedure to compute log |QY (θ)| is summarized in
Algorithm 5. Note in particular that this algorithms requires to know the intervals containing the
eigenvalues of S and those of A(θ). Details on the computation of these intervals can be found
in Appendix B.A discussion about the “matrix-free” approach to the computation of log ∥h(B)∥ is
deferred to Section 6.

Algorithm 5: Computation of log |QY (θ)| defined in Eq. (23)

Require: Matrices
√
C,S ∈ Rn×n and MD ∈ Rp×n as defined in Eqs. (6), (7) and (14)

Require: Vector θ containing the coefficients of P0 and the variance parameter τ2
Require: Number of samples M
1: Compute the coefficients of a polynomial approximation PlogP0 of the function λ 7→ logP0(λ)

over an interval containing the eigenvalues of S
2: Compute the coefficients of a polynomial approximation Plog of the function λ 7→ log λ over an

interval containing the eigenvalues of the matrix A(θ) defined in Eq. (20)
3: Set Q1 = Q2 := 0
4: for m=1,. . . ,M do
5: Sample a vector W with independent identically distributed entries with mean 0 and

variance 1
6: Compute u := PlogP0

(S)W using Algorithm 2
7: Set Q1 ← Q1 +W Tu
8: Compute v := Plog(A(θ))W using Algorithm 2
9: Set Q2 ← Q2 +W Tv

10: end for
11: Compute L = (Q1 −Q2)/M + (n− p) log τ2 + 2

∑n
i=1 log[

√
C]ii

12: return L

Since we now can evaluate the log-likelihood for any vector of parameters, we can plug Algo-
rithm 5 into any optimization algorithm that only requires evaluations of an objective function to
maximize it. Examples of such algorithms include the Nelder-Mead algorithm, and any gradient-
descent algorithm for which the gradients would be numerically approximated by finite differences
(Nocedal and Wright, 2006).

5 Illustration
The proposed algorithms are illustrated on synthetic very large data sets. Our aim is to show that
our approach compares very well with the GMRF approximation in Lindgren et al. (2011) on very
large grids, even in cases that are favorable to the GMRF approximation.

5.1 Simulation and kriging
We first consider the case of 3D standardized GRF with varying anisotropies in the horizontal plane
and an exponential covariance, which we recall is the solution to the Whittle SPDE (κ2−∆)Z =W
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Figure 4: Left: 3D simulation of a GRF with varying anisotropies. Right: its kriging using 105

randomly located samples from the simulation on the left.

in 3D (Lindgren et al., 2011). It is sampled by using a Chebyshev polynomial approximation of
P

−1/2
0 of degree 268 (see e.g Pereira and Desassis, 2019, for details). We chose a mesh built from 6

tetrahedrons in each cell of a regular grid with lags suitably chosen to fit with the ranges of the GRF.
The resulting size of the discretized vector Z is about 1.5 107. On this extremely large grid, the
simulation takes only 30 seconds on a laptop running at 1.9 Ghz on 8 cores. Most of the time is spent
for the matrix-vector products implied by the polynomial approximation as shown in Algorithm 2.

A sub-sampling of this simulation is done to obtain 105 randomly located observations which
are used to perform kriging. Since interpolation by kriging is smoother than a simulation, a coarser
mesh can be used. The size of the resulting kriging system is about 7 106. A measurement error
with a variance τ2 = 0.01 is added to the model. Conjugate gradient without preconditioning is
used to solve the system of Eq. (19) in Algorithm 1. The algorithm converges in 1098 iterations
for a computing time around 400 seconds. Results are displayed in Figure 4. Note that in most
applications, the variance τ2 is greater than 1% of the variance. In these cases, the system of
Eq. (19) is better conditioned, leading to a faster convergence of the conjugate gradient. Kriging is
done here in a non-stationary context, with a stationary mesh which is thus far from optimality in
most locations. If the simulation was stationary, the mesh could be tailored to the specific model at
hand. The grid could be oriented according to the anisotropy tensor and the lag in each direction
could be chosen according to the associated directional range of the model. As a result, a given
accuracy would be obtained with a lower degree of the Chebyshev polynomial and system Eq. (19)
would be better conditioned, thus leading to faster computations. In our experience, stationary
simulations and kriging are usually 10 times faster than non-stationary ones, all other settings being
equal.

5.2 Estimation of the parameters of a GMRF
In this example, the coefficients of a polynomial P0 characterizing an isotropic GRMF and the
measurement error τ2 are estimated by the approach described in Section 4. The coefficients of the
true P0 are given in Table 1. It does not correspond to a Matérn type. 1.5 104 synthetic observations
are sampled from the model at random locations of a square of size 40 and a Gaussian noise with
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Figure 5: Left: Realization of the GMRF on the square. Right: Sampling of 1.5 104 noisy
observations from the simulation on the left.

Degree 0 1 2 3
True 1 0.75 0.75 1

Estimated 0.51 0.44 -88 1.39
Initial 0.251 1.25 1.5 0.25

Table 1: Coefficients of the polynomials (true, estimated, and initial).

variance τ2 = 0.01 is added (see Figure 5).
To ensure that P0 takes strictly positive values over R+ during the estimation, the problem is

re-parameterized by using two arbitrary polynomials P1 and P2 as follows:

P0(x) = P 2
1 (x) + xP 2

2 (x) (25)

Indeed, all the positive polynomials over R+ can be written according to Eq. (25). A fixed
positive value ε is added to the RHS of Eq. (25) to ensure strict positivity of P0. In this study, ε
is set to 10−3. The components of θ are the coefficients of P1 and P2. The likelihood is maximized
with the Nelder-Mead algorithm. To compute the log-determinant by the Hutchinson estimators,
the same Gaussian vectors are used for all the iterations. First only one vector is used in order to
find an acceptable solution. Then the algorithm is relaunched and 10 random vectors are used until
convergence.

The initial coefficients of P0 (resulting from those of P1 and P2) are given in Table 1 with the
estimated and initial values. The initial value for τ2 was set to 0.2 and its estimation is 0.103. At
first glance, the estimation results does not seem very accurate. However, the associated covariance
functions, computed by Fast-Fourier-Transform (FFT) and displayed on Figure 6 lead to a more
positive conclusion. Indeed, the estimated covariance is very close to the true one, especially near
the origin. Nevertheless, the likelihood seems to have several modes and the results are sensitive
to the choice of the initial values. τ2 is generally well estimated but the estimated covariance of
the underlying GMRF is not always so close to the true one. Despite this optimization problem,
the matrix free approach allows to approximate the likelihood in order to estimate the shape of the
covariance, even with a moderate number of random vectors for the Hutchinson estimator.
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Figure 6: Covariances obtained from P0 by FFT (true model, estimated and initial).

6 Discussion and Conclusion
We have proposed a generic approach for defining GRFs on compact Riemannian manifolds. It
combines two ingredients of modern geostatistics, as pioneered in Lindgren et al. (2011): the defini-
tion of GRFs through the expansions in the eigenfunctions of the Laplace–Beltrami operator on the
Riemannian manifold and the finite element approximation of these GRFs. This approach is quite
general. Not limited to spheres, it can be applied to construct valid GRFs on any smooth compact
manifold – and in particular to any compact surface. Moreover, since the GRF is characterized by its
spectral density, it is not limited to Whittle-Matérn random fields. The proposed Riemannian met-
ric offers a straightforward interpretation of local anisotropies. Our approach is thus also perfectly
suited to the analysis of data in Euclidean domains with non-stationary range and non-stationary
anisotropies.

For this quite general class of GRFs, we have provided efficient algorithms that do not require
to build and store possibly very large matrices. Instead, our “matrix-free” approach is grounded on
algorithms only requiring efficient routines for computing the product between very sparse matrices
and vectors, as shown in Algorithm 2. This ensures the scalability of this method, thus paving the
way to efficient non-stationary geostatistics for large datasets. We have shown on synthetic examples
that our approach is able to handle grids with millions of nodes (up to 107) in only few minutes.

The main bottleneck is the computation of the log-determinant of the matrix function h(B) in
Proposition 4.1. When possible, the Cholesky decomposition of B is best. This is the case for
matrices whose size is in the range of 104 or smaller. The “matrix-free” approach described above
scales very well with the size of B. It has been successfully applied in the context of seismic filtering
(Pereira, 2019, Pereira et al., 2020) and it is now part of industrial codes able to filter very large
noisy seismic datasets (in the range 106 to 107 in few minutes). Even though being scalable, our
algorithms could be accelerated in some situations. Algorithm 5 requires a Monte-Carlo loop relating
to the Hutchinson estimator Eq. (24) and iterated products as described in Algorithm 2 which can be
long if the degree of the polynomial is high. Further research is needed in order to better assess the
precision of the approximation (24) in view of optimizing the computation of the log-determinant.
Inspired by the recent advances in Machine Learning and Deep Learning, another line of research is
how to maximize the log-likelihood using stochastic gradient algorithms.

We believe that the “matrix-free ” approach is thus a very promising tool for the analysis of envi-
ronmental dataset that will be tested in future work, including in a spatio-temporal setting. Other
directions for future research include 3D extensions and the modeling of non-stationary anisotropies
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on spheres and on manifolds in general.

Acknowledgements
The authors acknowledge the support of the Mines Paris / INRAE chair “Geolearning”.

Competing Interests
The authors have no competing interests to declare.

References
Borovitskiy, V., Azangulov, I., Terenin, A., Mostowsky, P., Deisenroth, M., and Durrande, N. (2021).

Matérn gaussian processes on graphs. In Banerjee, A. and Fukumizu, K., editors, Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceed-
ings of Machine Learning Research, pages 2593–2601. PMLR.

Borovitskiy, V., Terenin, A., Mostowsky, P., et al. (2020). Matérn gaussian processes on riemannian
manifolds. Advances in Neural Information Processing Systems, 33:12426–12437.

Chilès, J.-P. and Delfiner, P. (2012). Geostatistics : Modeling Spatial uncertainty. 2nd Edition.
Wiley Series In Probability and Statistics.

Emery, X. and Porcu, E. (2019). Simulating isotropic vector-valued gaussian random fields on the
sphere through finite harmonics approximations. Stochastic Environmental Research and Risk
Assessment.

Fouedjio, F., Desassis, N., and Rivoirard, J. (2016). A generalized convolution model and estimation
for non-stationary random functions. Spatial Statistics, 16:35–52.

Fouedjio, F., Desassis, N., and Romary, T. (2015). Estimation of space deformation model for
non-stationary random functions. Spatial statistics, 13:45–61.

Fuglstad, G.-A., Lindgren, F., Simpson, D., and Rue, H. (2015a). Exploring a new class of non-
stationary spatial gaussian random fields with varying local anisotropy. Statistica Sinica, pages
115–133.

Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2015b). Does non-stationary spatial data
always require non-stationary random fields? Spatial Statistics, 14:505–531.

Gershgorin, S. (1931). Uber die abgrenzung der eigenwerte einer matrix. lzv. Akad. Nauk. USSR.
Otd. Fiz-Mat. Nauk, 7:749–754.

Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli,
19(4):1327–1349.

Han, I., Malioutov, D., and Shin, J. (2015). Large-scale log-determinant computation through
stochastic chebyshev expansions. In International Conference on Machine Learning, pages 908–
917. PMLR.

16



Heaton, M. J., Datta, A., Finley, A. O., Furrer, R., Guinness, J., Guhaniyogi, R., Gerber, F.,
Gramacy, R. B., Hammerling, D., Katzfuss, M., et al. (2019). A case study competition among
methods for analyzing large spatial data. Journal of Agricultural, Biological and Environmental
Statistics, 24(3):398–425.

Higdon, D., Swall, J., and Kern, J. (1999). Non-stationary spatial modeling. Bayesian statistics,
6(1):761–768.

Huang, C., Zhang, H., and Robeson, S. M. (2011). On the validity of commonly used covariance
and variogram functions on the sphere. Mathematical Geosciences, 43(6):721–733.

Huang, H., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2021). Competition
on spatial statistics for large datasets. Journal of Agricultural, Biological and Environmental
Statistics, 26(4):580–595.

Hutchinson, M. F. (1989). A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076.

Jost, J. (2008). Riemannian geometry and geometric analysis, volume 42005. Springer.

Lang, A. and Pereira, M. (2021). Galerkin–chebyshev approximation of gaussian random fields on
compact riemannian manifolds. arXiv preprint arXiv:2107.02667.

Lang, A. and Schwab, C. (2015). Isotropic gaussian random fields on the sphere: regularity, fast simu-
lation and stochastic partial differential equations. The Annals of Applied Probability, 25(6):3047–
3094.

Lantuéjoul, C., Freulon, X., and Renard, D. (2019). Spectral simulation of isotropic gaussian random
fields on a sphere. Mathematical Geosciences.

Lee, J. M. (2013). Smooth manifolds. In Introduction to smooth manifolds, pages 1–31. Springer.

Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between gaussian fields and
gaussian markov random fields: the stochastic partial differential equation approach. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–498.

Marinucci, D. and Peccati, G. (2011). Random fields on the sphere: representation, limit theorems
and cosmological applications, volume 389. Cambridge University Press.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business Media.

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary
covariance functions. Environmetrics: The official journal of the International Environmetrics
Society, 17(5):483–506.

Pereira, M. (2019). Generalized random fields defined on Riemannian manfolds: theory and practice.
PhD thesis, MINES ParisTech, PSL Univeristy.

Pereira, M. and Desassis, N. (2019). Efficient simulation of gaussian markov random fields by
chebyshev polynomial approximation. Spatial Statistics, 31:100359.

Pereira, M., Desassis, N., Magneron, C., and Palmer, N. (2020). A matrix-free approach to geosta-
tistical filtering. arXiv preprint arXiv:2004.02799.

17



Perrin, O. and Senoussi, R. (2000). Reducing non-stationary random fields to stationarity and
isotropy using a space deformation. Statistics & probability letters, 48(1):23–32.

Rayner, N. A., Auchmann, R., Bessembinder, J., Brönnimann, S., Brugnara, Y., Capponi, F.,
Carrea, L., Dodd, E. M., Ghent, D., Good, E., et al. (2020). The eustace project: delivering
global, daily information on surface air temperature. Bulletin of the American Meteorological
Society, 101(11):E1924–E1947.

Rue, H. and Held, L. (2005). Gaussian Markov random fields: theory and applications. Chapman
and Hall/CRC.

Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covari-
ance structure. Journal of the American Statistical Association, 87(417):108–119.

Solin, A. and Särkkä, S. (2019). Hilbert space methods for reduced-rank gaussian process regression.
Statistics and Computing.

Tong, Y. L. (2012). The multivariate normal distribution. Springer Science & Business Media.

A Proof of Proposition 3.1
Proof. Consider the vector X given by

X =

(
Z
Y

)
=

(
In 0np

MD τIp

)(
Z
ϵ

)
Note that X is a centered Gaussian vector with covariance matrix

Cov[X] =

(
In 0np

MD τIp

)(
Σ 0nn

0pp Ip

)(
In 0np

MD τIp

)T

=

(
Σ ΣMT

D

MDΣ MDΣMT
D + τ2Ip

)
. (26)

Since X is multivariate Gaussian it follows that the conditional distribution of Z given Y is a
Gaussian vector with mean E[Z|Y ] and covariance matrix Cov[Z|Y ] (Tong, 2012, Theorem 3.3.4)
given by

E[Z|Y ] = ΣMT
D (MDΣMT

D + τ2Ip)
−1Y ,

Cov[Z|Y ] = Σ−ΣMT
D (MDΣMT

D + τ2Ip)
−1MDΣ.

Then, Eqs. (15) and (16) follow from computing Cov[X]−1 from Eq. (26) and using the fact that
Cov[X]Cov[X]−1 = Ip+n.

Finally, recall that since we are dealing with Gaussian vectors, the vector of kriging predictors
Z∗ coincides with the conditional expectation of the vector ZT = (Z(xp+1), . . . , Z(xp+q))

T , given
the observations Y . Hence, by linearity of the expectation and definition of MT, we have

Z∗ = E[ZT|Y ] = E[MTZ|Y ] = MTE[Z|Y ].
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B Intervals of eigenvalues
We here show how intervals containing all eigenvalues of the matrices S and A respectively defined in
Eq. (4) and Eq. (20) can be computed. Since the matrix S is positive definite, an interval containing
its eigenvalues is obtained by considering [0, λmax(S)], where λmax(S) is an upper-bound of the
eigenvalues of S. This upper-bound can be obtained by taking λmax(S) =

√
Trace(STS) or by

relying on Gershgorin circle theorem (Gershgorin, 1931), which we now recall.

Proposition B.1. The eigenvalues of a symmetric matrix B ∈ Rn×n with entries Bij are contained
in the interval

[ min
1≤i≤n

(Bii −Ri), max
1≤i≤n

(Bii +Ri)]

where Ri =
∑

j ̸=i |Bij |, 1 ≤ i ≤ n.

Regarding the matrix A = τ2Q+MT
DMD, lower and upper bounds of its eigenvalues are given

in the next proposition.

Proposition B.2. Let λmin(A) (resp. λmax(A)) denote some lower (resp. upper) bound of the
eigenvalues of the matrix A. Then,

λmin(A) = τ2
(

min
1≤i≤n

[
√
C]2ii

)(
inf

λ∈[0,λmax(S)]
P0(λ)

)
,

λmax(A) = τ2
(

max
1≤i≤n

[
√
C]ii

2

)(
sup

λ∈[0,λmax(S)]

P0(λ)

)
+

(
max
1≤i≤n

p∑
k=1

[MD]ki

)
,

Proof. To ease the notation, let B = MT
DMD. Note that we can take

λmin(A) = τ2λmin(Q) + λmin(B), λmax(A) = τ2λmax(Q) + λmax(B),

where λmin(·) (resp. λmax(·)) denotes some lower (resp. upper) bound of the eigenvalues of a matrix.
On the one hand, since the matrix

√
C is diagonal, we can take λmin(Q) = min1≤i≤n[

√
C]2iiλmin(P0(S))

and λmax(Q) = max1≤i≤n[
√
C]2iiλmax(P0(S)). Recalling then the definition of matrix functions, it

is clear that the eigenvalues of P0(S) are lower (resp. upper) bounded by the infimum (resp. supre-
mum) of P0 over an interval containing the eigenvalues of S, eg. [0, λmax(S)].

Finally, noting that B is positive semi-definite, we can take λmin(B) = 0. Then, Proposition B.1
and the non-negativity of the entries of B allow us to get λmax(B) = max1≤i≤n(Bii +Ri) where

Bii +Ri = Bii +
∑
j ̸=i

Bij =

n∑
j=1

Bij =

n∑
j=1

p∑
k=1

[MD]ki[MD]kj =

p∑
k=1

[MD]ki

n∑
j=1

[MD]kj

Noting then that the rows of MD sum to 1 (since they correspond to linear interpolation weights),
we have Bii +Ri =

∑p
k=1[MD]ki, which ends the proof.

C Integration on Riemannian manifolds
We recall usual formulas related to the computation of integrals defined over Riemannian manifolds.
We refer the reader to Jost (2008), Lee (2013) for further. Let (D, g) be a compact Riemannian
manifold of dimension d. Let (U, ϕ) denote a coordinate chart of D, i.e. U is an open subset of
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D and ϕ is a homeomorphism mapping U to an open subset of Rd. Recall that the integral of a
function f : D → R over U is defined as the quantity∫

U

fdVg =

∫
ϕ(U)

f ◦ ϕ−1(x)
√
|g|(ϕ−1(x))dx

where |g|(ϕ−1(x)) is the determinant of the metric tensor of g at ϕ−1(x) ∈ U , expressed in the
coordinate chart (U, ϕ). The integral of f over D is then obtained by gluing together (using a
partition of unity) local integrals over a collection of coordinate charts that cover D.

In particular, assuming now that we have a triangulation of D, the integral of f over D can
be obtained by summing local integrals over each triangle T of the triangulation. In this case, the
diffeomorphism ϕ associated to T is the map that sends T to the standard simplex of Rd.

Let L2(D) denote the set of square-integrable functions of (D, g). L2(D) is a Hilbert space
when equipped with the inner product (·, ·) defined by (f, g) =

∫
D fgdVg. Note that for any

differentiable functions f1 and f2 we denote by (∇f1,∇f2) the integral over D of the function
h : p 7→ gp(∇f1(p),∇f2(p)).

And in turn, given a coordinate chart (U, ϕ) of D, the integral of h over U reduces to∫
U

hdVg =

∫
ϕ(U)

∇Rd(f1 ◦ ϕ−1)(x)TG(ϕ−1(x))−1∇Rd(f2 ◦ ϕ−1)(x)
√
|g|(ϕ−1(x))dx

where G(·) denotes the metric tensor at given point of D and expressed in the coordinate chart
(U, ϕ), and ∇Rd denotes the usual gradient of functions of Rd.

D Galerkin approximation
Let ψ1, . . . , ψn denote n linearly independent functions from D to R and let Vn denote their linear
span. The Galerkin approximation −∆n of the Laplace–Beltrami operator −∆ is the endomorphism
mapping any f ∈ Vn to the element −∆nf ∈ Vn satisfying for any u ∈ Vn, (−∆nf, u) = (−∆f, u).
This endomorphism is diagonalizable, and shares the same eigenvalues as the scaled stiffness matrix
S defined in Eq. (4) (Lang and Pereira, 2021).
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