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Abstract. In this paper the Single Particle Model is used to describe the
behavior of a Li-ion battery. The main goal is to design a feedback input

current in order to regulate the State of Charge (SOC) to a prescribed reference

trajectory. In order to do that, we use the boundary ion concentration as
output. First, we measure it directly and then we assume the existence of

an appropriate estimator, which has been established in the literature using

voltage measurements. By applying backstepping and Lyapunov tools, we
are able to build observers and to design output feedback controllers giving a

positive answer to the SOC tracking problem. We provide convergence proofs

and perform some numerical simulations to illustrate our theoretical results.

1. Introduction.

1.1. General goals. Today batteries are being developed to power a crescent and
wide range of applications as laptops, smartphones, watches, electric vehicles, med-
icals devices and many others. Consequently, batteries are certainly in the middle
of the technological development [1]. In this direction, li-ion batteries are gaining
more and more attention due to its very good properties, compared to alternative
battery technologies. For example, li-ion batteries provide one of the best energy-
weight ratios and have a low self discharge when not in use [4].

An intelligent battery control system can ensure longevity and performance of
battery, but such a type of improvements relies in an exhaustive understanding of
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energy storage. Thus, the modeling of li-on batteries has a key rol in the design of
battery management systems.

The literature on modeling of li-ion batteries is quite extensive. However, we can
distinguished two groups of models. The first group is formed by equivalent circuit
models (ECMs), which employ circuits elements to imitate the input-output de-
meanor of a battery. The second group is formed by electrochemical models, which
take into account electrochemical principles. Although electrochemical modeling
approach has proved to have a better prediction capability compared to equiva-
lent circuit models [4], the mathematical structure provides a huge challenge. The
electro-chemicals models arise many open questions in control. For instance, in [17]
the author provides, in a brief way, a survey about the main challenges in battery
management in which electro-chemical models are involved. For example, the prob-
lem to estimate the State of Charge, which indicates the stored energy at certain
time and its time-evolution is also useful to determinate the health of the battery.
Thus, control theory of electro-chemical models needs important efforts from the
control community.

This paper aims at contributing in that direction. We are interested in studying
the problem of tracking of the State of Charge in a battery modelled by an electro-
chemical model. In other words, given a reference State of Charge profile, we want
to find the appropriate input current in order to get the real State of Charge near to
the given reference. The model used along this article is called the Single Particle
Model. For more details about its obtention, please see [17, 4, 26].

The design of tracking controls has gained more and more attention. For instance,
the growing demands on product quality and production efficiency, which require to
turn away from the pure stabilization of an operating point towards tracking task as
can be seen in some industrial applications, see for instance [13, 21, 5]. In that line, a
potential application of the tracking of the State of Charge might be related with the
dynamic pricing. For instance, for electrical vehicles, this means that the charging
provider, which can be a distribution system operator or an operator/aggregator
of charging stations, dynamically adapts the prices, which have to be payed by the
final user for charging their electrical vehicles, see [12]. So the question of how to
adapt the usage of the battery in order the operate at minimum cost could be solved
via to track an optimal State of Charge profile.

1.2. Model and properties. As we mentioned before, in this article we use the
Single Particle Model (SPM), which is a reduction of the more general model due to
Doyle-Fuller-Newman (DFN). The SPM considers each electrode as a single spher-
ical particle and neglects the electrolyte dynamics, i.e., this model considers that
lithium concentration in electrolyte phase remains constant. In the following we
describe the SPM.
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Let us consider a spherical diffusion equation to describe the lithium concentra-
tion behavior cj(r, t) in solid phase. Thus, we obtain

cjt (r, t) = Dj
[

2
r c
j
r(r, t) + cjrr(r, t)

]
, (r, t) ∈ Qj ,

cjr(0, t) = 0, cjr(Rj , t) = −jρjI(t), t ∈ (0,∞),

cj(r, 0) = cj0(r), r ∈ (0, Rj),

(1)

dT

dt
(t) = φ1(Tamb − T (t)) + φ2I(t)V (t), (2)

V (t) =
RT (t)

αF

∑
j∈{+,−}

sinh−1 (−jωj(t)) + jU j
(
cjs(t)

)
−RfI(t), (3)

where j ∈ {+,−} indicates positive or negative electrode, Dj is the diffusivity,
Qj = (0, Rj)× (0,∞) is the domain and Rj is the particle radius, ρj = 1

DjFajALj
,

φ1, φ2 are known parameters, T (t) is temperature on the battery, I(t) is the input
current and V (t) is the output voltage. The function ωj(t) is given by

ωj(t) =
I(t)

µj

√
cjs(t)

(
cjmax − cjs(t)

) (4)

where cjs(t) = cj(Rj , t) is the surface concentration (or boundary concentration),
cjmax is the maximum ion concentration in the electrode j, µj = 2ajALj

√
ce are

known parameters and U j are equilibrium potentials of each electrode material.
We detail all variables and parameters in Table 1.

Table 1. Model variables and electrochemical parameters

Model states, inputs and outputs

c± Lithium concentration in solid phase [mol/m3]

cs(t) Lithium concentration at solid particle surface[mol/m2]

ce Lithium concentration in electrolyte phase [mol/m3]
T Temperature [K]

I Applied current, [A/m2]

V Output Voltage [V ]

Electrochemical model parameters

D± Diffusivity [m2/s]

R± Particle radius in solid phase [m]

F Faraday Constant [C/mol]
R Universal gas constant [J/mol ·K]

α Charge transfer coefficient [−]

c±max Maximum concentration of solid material [mol/m3]

U± Open circuit potential of solid material [V ]
Rf Solid interphase films resistance [Ω ·m2]

L± Length of region [m]
A Area [m2]
φ1 Heat transfer coefficient [1/s]

φ2 Inverse of heat capacity [J/K]−1

ε± Volume fraction of solid phase [−]
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The following definition establishes what we understand by State of Charge in a
battery modeled by (1)-(3).

Definition 1.1. Let c(r, t) the Li-ion concentration in the negative electrode, then
the battery State of Charge (SOC) is given by

SOC(t) =
3

R3
−c
−
max

∫ R−

0

c(r, t)r2 dr. (5)

For the sake of simplicity, we define the following adimensional variables,

r̄j =
r

Rj
, t̄j =

Dj

R2
j

t, j ∈ {+,−}. (6)

We take out the bars and j index on the space and time coordinates to keep
the notation simple. This normalization produces the following partial differential
equation (PDE)

cjt = 2
r c
j
r(r, t) + cjrr(r, t), (r, t) ∈ Q̄,

cjr(0, t) = 0, cjr(1, t) = −jρ̃jI(t), t ∈ (0,∞),

cj(r, 0) = cj0(r), r ∈ (0, 1),

(7)

where Q̄ = (0, 1) × (0,∞), j ∈ {+,−} and ρ̃j = Rjρj . In order to precise the

notation used, the initial condition cj0(r) of the system (7) is the initial condition
of the system (1) scaled to the domain r ∈ (0, 1).

After this normalization the State of Charge becomes

SOC(t) =
3

c−max

∫ 1

0

c−(r, t)r2 dr. (8)

Henceforth we omit the index minus − in the notation for concentration state or
parameters related to the negative electrode.

1.3. Problem statement and main results. We are interested in studying the
problem of tracking the SOC to a reference trajectory denoted SOCref (t). This
problem has already been studied in a different context, as regulation problem for
Parabolic PDE. See, on the one hand, [28] and [25], where the authors deal with
the regulation problem with an internal P or PI control. On the other hand, in
[22, 7, 8], the authors solve a tracking problem through a control acting on the
boundary.

In this work we deal with the regulation problem. To do that, we aim to apply
the main idea of the certainty equivalence principle or separation principle, which
refers to the fact that plug-in a convergent estimator in a stable closed-loop system
does not change the stability. At this point, it is important to mention that, for
the case of infinite-dimensional systems, the certainty equivalence principle may
not apply as we know for the case of finite-dimensional systems. Early references
recognize this difference. For example, one of the first contributions regarding the
design of a finite-dimensional observer-based controller for PDEs was reported in [6].
In that paper, it is proved that under a number of suitable assumptions, a form of
separation principle holds. In the same direction, in [2], referring to a Distributed
Parameter System the author affirms that “There is no guarantee that a finite-
dimensional controller can always produce closed-loop exponential stability with a
given DPS.” In that article it is proved, in the case of bounded input and bounded
output, the stability of the resulting closed-loop system which was assessed for
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controllers with dimension large enough, but without providing an explicit criterion
for the selection of the dimension parameter. Later, in [9] explicit conditions on the
order of the finite-dimensional observer-based controller were reported. Another
example is [24], where it is stated a certainty equivalence principle for a class of
unstable-parabolic equations, more precisely

ut = uxx + λu

for a large unknown parameter λ. In that paper, the authors provide a very specific

update law
˙̂
λ, for the observer λ̂, thus under that restrictive conditions the separa-

tion principle holds. Summarizing, in all these articles the stability of closed-loop
systems were proven under very specific assumptions according to the particular
cases in study. Thus, the stability of a closed-loop system must be proved.

We begin the controller design by dealing with the most simple case. We assume
that we are able to measure the full state c(r, t) of (7), then we design an output
feedback control which achieves the regulation. After that, using the backstepping
method, see for example [11, 27], we design an output feedback depending on the
measure of the boundary concentration c(1, t). The next step in our design consists
of replacing the boundary measure c(1, t) by a convergent observer, namely ϕ(t).

As far as we know, in the literature this separation principle is used without
proof. In [20] the authors propose an adaptive scheme to obtain ϕ(t) based on the
continuous Newton method. The proof of convergence of the scheme and of the
closed-loop system is omitted. The authors of [18] state an exponential convergent
scheme to obtain ϕ, but the proof of convergence of the system in closed loop is
omitted.

In order to state the separation principle, we assume that this estimator ϕ(t)
satisfies the following assumption.

Assumption 1. There exist a function ϕ : [0,∞) → R and positive constants L
and µ such that

|ϕ(t)− c(1, t)| ≤ Le−µt, ∀t ≥ 0,

where c(r, t) is the solution to (7).

Let us define, for some p1(r, λ) and p0(λ) (given later by the backstepping
method), the following copy of the plant

∂tĉϕ = 2
r∂r ĉϕ + ∂rr ĉϕ + p1(r, λ)(ϕ(t)− ĉϕ(1, t)),

∂r ĉϕ(0, t) = 0, ∂r ĉϕ(1, t) = ρ̃I(t) + p0(λ)(ϕ(t)− ĉϕ(1, t)),

ĉϕ(r, 0) = ĉϕ0(r).

(9)

Our first result consists in the exponential stability of the observer error c̃(r, t) =
c(r, t)− ĉϕ(r, t), which is stated in Theorem 1.2. This constitutes the main contribu-
tion of our work, which presents rigorous proofs of our statements on convergence.

Theorem 1.2. Consider ϕ : [0,∞)→ R and constants L > 0 and µ > 0 satisfying
Assumption 1, the initial condition c̃0 = c0(r) − ĉϕ0(r) and the gains p0(λ) and
p1(r, λ) given by

p0(λ) =
λ

2
(10)

and

p1(r, λ) =

(
λ

(r2 − 1)
+
λ

2

)
J2

(√
λ(r2 − 1)

)
− λ

2
J0

(√
λ(r2 − 1)

)
, (11)
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where J0 and J2 are the zero and second order Bessel functions of first kind respec-
tively.

Therefore there exists λsup > 2 +
√

6 such that for all λ ∈ [2 +
√

6, λsup) the
function τ(λ) defined by

τ(λ) =
π2

2
− 2

λ
‖p1(·, λ)‖2L2

r(0,1) (12)

is positive. Moreover, depending on µ, the L2
r norm of the observer error c̃(r, t)

satisfies one of the following cases:

1. If µ > τ(λ)
2 for all λ ∈ [2 +

√
6, λsup), then

‖c̃(·, t)‖2L2
r
≤
(

2‖c̃0‖2L2
r

+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

)
e−τ(λ)t, ∀t ≥ 0,∀λ ∈ [2 +

√
6, λsup).

(13)

2. If µ = τ(λ̄)
2 , for some λ̄ ∈ [2 +

√
6, λsup), then

‖c̃(·, t)‖2L2
r
≤
(

2‖c̃0‖2L2
r

+
L2(λ̄3 + 4λ̄)

2
t

)
e−τ(λ̄)t, ∀t ≥ 0. (14)

Remark 1. In the Theorem 1.2 as well as in its proof, see Section 4.2, we consider
[2 +

√
6, λsup) as the biggest interval in which τ(λ) > 0 for all λ ∈ [2 +

√
6, λsup).

The followings results are a direct consequence of Theorem 1.2 and describe the
performance of observer ĉϕ(r, t).

Corollary 1. Let λ∗ = 2 +
√

6. Depending on µ we have the following

1. if 2µ > τ(λ∗), then the highest decay rate of ‖c̃(·, t)‖2L2
r

is τ(λ∗) and the

transient state is bounded. Moreover, it holds

‖c̃(·, t)‖2L2
r
≤ 2‖c̃0‖2L2

r
+
L2(λ∗3 + 4λ∗)

2|τ(λ∗)− 2µ|
, ∀t ≥ 0, (15)

2. if 2µ ≤ τ(λ∗), then the decay ratio of ‖c̃(·, t)‖2L2
r

is 2µ and the transient state

is bounded. Moreover, it holds

‖c̃(·, t)‖2L2
r
≤ L2(λ̄3 + 4λ̄)

2τ(λ̄)
exp

{
4‖c̃0‖2L2

r
τ(λ̄)

L2(λ̄3 + 4λ̄)
− 1

}
, ∀t ≥ 0, (16)

where λ̄ is solution to equation 2µ = τ(λ̄).

Let us define the following

N1(λ) = 2‖c̃0‖2L2
r

+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|
.

Corollary 2. Let λ∗ = 2+
√

6 and [λ∗, λsup] the interval given by the Theorem 1.2.
If 2µ > τ(λ∗), then

‖c̃(·, t)‖2L2
r
≤ 2‖c̃0‖2L2

r
+
L2(λ̄3 + 4λ̄)

2|τ(λ̄)− 2µ|
, ∀t ≥ 0, (17)

where λ̄ = arg min
λ∈[λ∗,λsup]

N1(λ) and the decay ratio is given by τ(λ̄).

From the previous exponential stability result for c̃ stated in Theorem 1.2, we
are able to prove the following result.
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Theorem 1.3. Consider ϕ : [0,∞)→ R and constants L > 0 and µ > 0 satisfying
Assumption 1, gains p0(λ) and p1(r, λ) given by (10) and (11) respectively. There

exists λsup > 2 +
√

6 such that for λ ∈ [2 +
√

6, λsup) we define the input current

I(t) =
cmax

3ρ̃

(
˙SOCref (t) + γ

(
SOCref (t)− ŜOCϕ(t)

))
, (18)

where

ŜOCϕ(t) =
3

cmax

∫ 1

0

ĉϕ(r, t)r2 dr,

γ > 0 is a design parameter and ĉϕ(r, t) is the solution to (9). This feedback control
I(t) forces the system to satisfy

|SOCref (t)− SOC(t)| → 0, t→∞ (19)

with an exponential rate, depending on the parameters.

1.4. Organization and notation. The remaining part of this paper is organized
as follows. In Section 2 we design an input I(t) which depends on full state mea-
surements of the concentration. In Section 3 we improve the previous design of I(t)
by considering partial state measurements of the concentration on the boundary.
Section 4 is finally dedicated to the design of the current input I(t) used in Theorem
1.3. Being precise, in Section 4.2 and Section 4.6 we provide the proof of Theorem
1.2 and Theorem 1.3 respectively. In Section 5 we illustrate the results by some
numerical simulations. Section 6 collects concluding remarks. In Appendix 7, we
give a proof to some intermediate results used along this article.

In order to clarify part of the notation used along this article to study the systems
(7) and (9) we introduce the following notation:

‖f‖L2
r(0,1) =

(∫ 1

0

f2(r)r2 dr

)1/2

, (20)

‖f‖H1
r (0,1) = ‖f‖L2

r(0,1) + ‖fr‖L2
r(0,1), (21)

‖f‖H2
r (0,1) = ‖f‖L2

r(0,1) + ‖fr‖L2
r(0,1) + ‖frr‖L2

r(0,1). (22)

2. Regulation from full state measurements. The main goal of this work is to
design an input current which allows to regulate the State of Charge of a battery.
The following proposition gives a starting point for the design for the input current.

Proposition 1. Consider system (7), the State of Charge SOC(t) defined by the
equation (8) and the reference trajectory SOCref (t). Let the input current be

I(t) =
cmax
3ρ̃

(
˙SOCref (t) + γ (SOCref (t)− SOC(t))

)
, (23)

where γ > 0 is a constant design parameter. Then, there exists a constant C > 0
such that for all t > 0

|SOCref (t)− SOC(t)| ≤ Ce−γt. (24)

Proof. See Section 7.1 in the Appendix.

Notice that this input I(t) depends on full state measurements of the concentra-
tion c(r, t) (see definition of SOC given by (8)). However, in most cases we have no
access to the full state of the system. Thus, it is more realistic to design an output
feedback which only depends on some partial measure of the state. This is the goal
of next section.
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3. Regulation from partial state measurements. We design a feedback con-
trol which depends on a partial measurement of the state given by the boundary
concentration. To do that, we employ the Backstepping method (see for instance
[11, 18, 19, 20]).

3.1. State observer. We define the anode state observer structure, which consists
in a copy of (7) plus a boundary state error injection, as follows

ĉt(r, t) = 2
r ĉr + ĉrr + p1(r, λ)c̃(1, t), (r, t) ∈ Q̄,

ĉr(0, t) = 0, ĉr(1, t) = ρ̃I(t) + p0(λ)c̃(1, t), t ∈ (0,∞),

ĉ(r, 0) = ĉ0(r), r ∈ (0, 1),

(25)

where c̃(1, t) = c(1, t)− ĉ(1, t), λ is a design parameter and p0(λ), p1(r, λ) are tuning
gains to be chosen later.

Remark 2. The observer ĉ(r, t) requires the measure of c(1, t). The gains p0(λ)
and p1(r, λ) have to be determinated in the way of ensure the convergence of the
observer to the real state.

The estimation error c̃(r, t) = c(r, t)− ĉ(r, t) follows the dynamics
c̃t(r, t) = 2

r c̃r + c̃rr − p1(r, λ)c̃(1, t), (r, t) ∈ Q̄,
c̃r(0, t) = 0, c̃r(1, t) + p0(λ)c̃(1, t) = 0, t ∈ (0,∞),

c̃(r, 0) = c̃0(r), r ∈ (0, 1),

(26)

with c̃0(r) = c0 − ĉ0. We search for a kernel p(r, s) such that the following trans-
formation

c̃(r, t) = z̃(r, t)−
∫ 1

r

p(r, s)z̃(s) ds (27)

is well-defined and where z̃ is the solution to the following well-posed target system
z̃t = 2

r z̃r + z̃rr − λz̃, (r, t) ∈ Q̄,
z̃r(0, t) = 0, z̃r(1, t) = 0, t ∈ (0,∞),

z̃(r, 0) = z̃0(r), r ∈ (0, 1).

(28)

Remark 3. The choice of the target system is a crucial part of the Backstepping
method. The main idea behind this method consists in deducing the exponential
stability property of the error system from of that property for the target system.

For the sake of completeness, we include the next result for the heat equation
ensuring the well-posedness and the exponential stability in H1

r (0, 1) norm of the
target system (28).

Proposition 2. Let λ > 0. For all initial condition z̃0 ∈ H1
r (0, 1), there exists an

unique z̃ ∈ C([0,∞);H1
r (0, 1))∩C1([0,∞);L2

r(0, 1)) solution to (28). Moreover, we
get the estimation

‖z̃(·, t)‖2H1
r (0,1) ≤ e

−2λt‖z̃0‖2H1
r (0,1), ∀t ≥ 0. (29)

Proof. See Section 7.2 in the Appendix.
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Let us use the integral transformation (27) and the systems (26) and (28). After
some calculations, see for instance [11, Chapter 4], we get the following system for
the kernel p(r, s){

prr + 2
rpr + 2

(
p
s

)
s
− pss = −λp(r, s), (r, s) ∈ T,

p(r, r) = −λ2 r, p(r, 0) = 0, r ∈ (0, 1),
(30)

where T = {(r, s) ∈ R2 : 0 ≤ r ≤ s ≤ 1}.
The gain equations for the anode observer (25) are defined by (10) and

p1(r, λ) = 2p(r, 1)− ps(r, 1), ∀r ∈ (0, 1), (31)

where p(r, s) is the solution to (30).
The well-posedness of the kernel equation (30) was studied in [27]. The following

lemma explains how to solve the kernel equation and then, from the definition (31),
how to get the gain observer p1(r, λ).

Lemma 3.1. Let λ > 0 in the target system (28). The solution to (30) is given by

p(r, s) = −λs
J1

(√
λ(r2 − s2)

)
(√

λ(r2 − s2)
) , (32)

where J1 is the first order Bessel function of first kind. Moreover the gain p1(r, λ)
is given by (11)

Proof. See Section 7.3 in the Appendix.

Now, we prove the exponential decay in H1
r (0, 1) norm of the error (26) We define

the following operator

Λ : H1
r (0, 1) −→ H1

r (0, 1)

c̃ 7−→ Λ(c̃) = c̃+

∫ 1

r

l(r, s)c̃(s) ds.

The operator Λ is the inverse transformation of (27) and is well defined, linear and
continuous. To see that, it is important to notice that the l-kernel associated to λ
is minus the p-kernel associated to −λ, as explained in [11, Chapter 4].

The next proposition allows to infer the exponential stability property of the
error system (26) from the target system (28).

Proposition 3. For all λ > 0. There exists a constant M > 1 such that the error
system (26), with the gains p0(λ) and p1(r, λ) defined by the equations (10) and
(11) respectively, satisfies

‖c̃(·, t)‖H1
r (0,1) ≤Me−λt‖c̃0‖H1

r (0,1). (33)

Proof. The map Λ is a linear continuous operator with a continuity constant greater
than one. Indeed, this follows from the fact that the first term in (27) is the identity.
Also Λ is invertible. Thus, the same properties hold for Λ−1 (thanks to the Open
Map Theorem, see Corollary 2.7 in [3]). Using the exponential stability of the target
system we have the following inequality, for all t ≥ 0,

‖c̃(·, t)‖H1
r (0,1) ≤Me−λt‖c̃0‖H1

r (0,1), (34)

where c̃0 is the initial condition of the system (26).
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3.2. State of Charge Estimator. From (8), an appropriate estimator for the
State of Charge is

ŜOC(t) =
3

cmax

∫ 1

0

ĉ(r, t)r2 dr, (35)

where ĉ(r, t) is solution to the observer system (25). This estimator of the State of
Charge was used in [19, 20, 18].

Proposition 4. Consider the State of Charge estimator defined by (35). If λ > 0,
then

|SOC(t)− ŜOC(t)| ≤
√

3M

cmax
e−λt‖c̃0‖H1

r
, ∀t ≥ 0. (36)

Proof. We consider the estimation error for State of Charge

SOC(t)− ŜOC(t) =
3

cmax

∫ 1

0

c̃(r, t)r2 dr. (37)

Now, by Cauchy-Schwartz inequality and Proposition 3, we obtain the following
inequality, for all t ≥ 0,

|SOC(t)− ŜOC(t)| ≤
√

3M

cmax
e−λt‖c̃0‖H1

r
, (38)

that proves Proposition 4

Remark 4. Notice that ŜOC(t) is an observer of SOC(t) which depends only on

a partial measurement of the full state c(r, t). Being precise, ŜOC(t) just depends
on the boundary concentration c(1, t).

3.3. Regulation of the SOC. In the following we prove that the feedback control

(23) works even if we replace SOC(t) by ŜOC(t).

Theorem 3.2. Consider the system (7), λ > 0 and ŜOC(t) defined by (35). If the
input current I(t) is selected as following

I(t) =
cmax

3ρ̃

(
˙SOCref (t) + γ

(
SOCref (t)− ŜOC(t)

))
(39)

where γ > 0 is a design parameter. Then there exist three cases depending on γ

1. If γ < 2λ, then

(SOCref (t)− SOC(t))
2 ≤(

(SOCref (0)− SOC(0))
2

+
3γM2‖c̃0‖2H1

r

2c2max|γ − 2λ|

)
e−γt, ∀t ≥ 0. (40)

2. If γ = 2λ, then

(SOCref (t)− SOC(t))
2 ≤(

(SOCref (0)− SOC(0))
2

+
3γM2‖c̃0‖2H1

r

2c2max

t

)
e−γt, ∀t ≥ 0. (41)

3. If γ > 2λ, then

(SOCref (t)− SOC(t))
2 ≤(

(SOCref (0)− SOC(0))
2

+
3γM2‖c̃0‖2H1

r

2c2max(γ − 2λ)

)
e−2λt, t ≥ 0. (42)
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Proof. See Section 7.4 in the Appendix.

Remark 5. We have proved that the input current given by (39) achieves a reg-
ulation of the State of Charge of the system using only the partial measurement
c(1, t). Moreover, this regulation has an exponential convergence ratio. This is an
improvement taking account the previous design proposed in Section 2. However,
this design might be still being considered unrealistic, in the sense to require an
online measure of the boundary concentration. In order to avoid this assumption,
in the next section we propose a design which uses a convergent estimator of the
boundary concentration c(1, t).

4. Regulation from a convergent estimator and proofs of the main results.
Along this section we focus on the design of a regulator which solves the problem
of the tracking of SOC using a convergent estimator of the boundary concentration
c(1, t). We provide a proof of the main results of this work namely, Theorem 1.2,
Corollaries 1 and 2 and Theorem 1.3 successively.

4.1. Observer design for the ion concentration. In this subsection, we do
not assume that we measure c(1, t) (the real surface concentration in the negative
electrode). We use instead an estimator ϕ(t). As we mentioned in Section 1.3, we
assume the Assumption 1 on ϕ(t).

We define a new observer equation in which we have replaced the surface con-
centration c(1, t) by the estimation ϕ(t) and we get

∂tĉϕ(r, t) = 2
r∂r ĉϕ + ∂rr ĉϕ + p1(r, λ)(ϕ(t)− ĉϕ(1, t)),

∂r ĉϕ(0, t) = 0, ∂r ĉϕ(1, t) = ρ̃I(t) + p0(λ)(ϕ(t)− ĉϕ(1, t)),

ĉϕ(r, 0) = ĉϕ0(r),

(43)

where the gains p1(r, λ) and p0(λ) are still defined by (31) and (10), respectively.
In the following subsection we give conditions for the convergence of the observer
error c̃(r, t) = c(r, t)− ĉϕ(r, t).

We define the surface concentration estimation error by η(t) = ϕ(t) − c(1, t).
Using the state equations (7) and the observer equations (43) we obtain the following
system for the error.

c̃t(r, t)− 2
r c̃r − c̃rr + p1(r, λ)c̃(1, t) = −p1(r, λ)η(t),

c̃r(0, t) = 0, c̃r(1, t) + p0(λ)c̃(1, t) = −p0(λ)η(t),

c̃(r, 0) = c̃0(r).

(44)

Remark 6. The system (44) can be seen as the system (26) with the perturbation
terms p1(r, λ)η(t) in the domain and p0(λ)η(t) on the boundary, respectively.

4.2. Proof of Theorem 1.2. Here we prove Theorem 1.2 which gives the condi-
tions for the convergence of the observer error. Consider c̃(r, t) = u(r, t) + v(r, t),
where u is solution of the following system

ut − 2
rur − urr + p1(r, λ)u(1, t) = 0,

ur(0, t) = 0, ur(1, t) + p0(λ)u(1, t) = −p0(λ)η(t),

u(r, 0) = c̃0(r),

(45)
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and v is solution of the following system
vt − 2

rvr − vrr + p1(r, λ)v(1, t) = −p1(r, λ)η(t),

vr(0, t) = 0, vr(1, t) + p0(λ)v(1, t) = 0,

v(r, 0) = 0.

(46)

The main idea is to prove the exponential decay of the norm for u and v. We
begin by multiplying the first line of (45) by u(r, t)r2 and then we integrate over
r ∈ (0, 1). Using the boundary conditions in (45), we obtain, for all t ≥ 0,

1

2

d

dt

∫ 1

0

u2r2 dr +

∫ 1

0

u2
rr

2 dr + p0(λ)u2(1) =

− p0(λ)u(1)η(t)− u(1)

∫ 1

0

p1(r, λ)ur2 dr. (47)

On the righthand side of the above equality, we apply the Cauchy-Schwartz
inequality and two times the Young inequality. Consequently, we obtain, for all
δ > 0, β > 0 and t ≥ 0,

1

2

d

dt
‖u‖2L2

r
+ ‖ur‖2L2

r
+ p0(λ)u2(1) ≤(

δp0(λ)

2
+
β

2

)
u2(1) +

1

2δ
p0(λ)η2(t) +

1

2β
‖p1(r, λ)‖2L2

r
‖u‖2L2

r
. (48)

Recall the following version of the Poincaré inequality for the lefthand side of
(48) ∫ 1

0

w2r2 dr ≤ 4

π2
w2(1) +

4

π2

∫ 1

0

w2
rr

2 dr. (49)

Then, for all δ > 0, β > 0 and t ≥ 0, we get

1

2

d

dt
‖u‖2L2

r
+
π2

4
‖u‖2L2

r
+ (p0(λ)− 1)u2(1) ≤(

δp0(λ)

2
+
β

2

)
u2(1) +

1

2δ
p0(λ)η2(t) +

1

2β
‖p1(r, λ)‖2L2

r
‖u‖2L2

r
. (50)

Rearranging terms in previous inequality we get, for all δ > 0, β > 0 and t ≥ 0,

d

dt
‖u‖2L2

r
+

(
π2

2
− 1

β
‖p1(r, λ)‖2L2

r

)
‖u‖2L2

r
+

(2p0(λ)− 2− δp0(λ)− β)u2(1) ≤ 1

δ
p0(λ)η2(t). (51)

We recall the definition of the gain p0(λ) = λ
2 , given by (10) as we stated on

Theorem 1.2. Let us set δ = 2
λ2 and β = λ

2 . Then, from the previous inequality, we
obtain for all t ≥ 0,

d

dt
‖u‖2L2

r
+

(
π2

2
− 2

λ
‖p1(r, λ)‖2L2

r

)
‖u‖2L2

r
+

(
λ

2
− 2− 1

λ

)
u2(1) ≤ λ3

4
η2(t). (52)

We define the following function which will be helpful to study (52),

τ(λ) =
π2

2
− 2

λ
‖p1(·, λ)‖2L2

r
, (53)
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where p1(r, λ) is given by (11).
It is possible to find an interval J such that τ(λ) > 0 and λ

2 − 2− 1
λ ≥ 0, for all

λ ∈ J . Indeed, on the one hand λ
2 − 2 − 1

λ ≥ 0, for all λ ≥ 2 +
√

6. On the other

hand we check that τ(2 +
√

6) > 0 and since τ is a continuous function, there exists
such interval.

Let us consider J as the biggest interval of the form [2 +
√

6, λsup) such that
τ(λ) > 0, for all λ ∈ J . See Figure 1 for an example.

2 4 6 8 10
λ

-1

1

2

3

4

5

τ(λ)

τ λ)

λ*=2+ 6

Figure 1. The continuous function τ is positive in [2 +
√

6, λsup).

Under those conditions over parameter λ we obtain from (52), for all t ≥ 0,

d

dt
‖u‖2L2

r
+ τ(λ)‖u‖2L2

r
+ ≤ λ3

4
η2(t). (54)

Multiplying (54) by eτ(λ)t we get

d

dt

(
‖u‖2L2

r
eτ(λ)t

)
≤ λ3

4
η2(t)eτ(λ)t

We recall Assumption 1 on the estimator ϕ(t). Taking account this, and the
above inequality, we get, for all t ≥ 0

d

dt

(
‖u‖2L2

r
eτ(λ)t

)
≤ λ3L2

4
e(τ(λ)−2µ)t. (55)

We distinguish two cases:

1. Assume µ > τ(λ)
2 , for all λ ∈ [2 +

√
6, λsup).

Integrating inequality (55) over (0, t), we get for all t ≥ 0

‖u‖2L2
r
eτ(λ)t ≤ ‖u0‖2L2

r
+

L2λ3

4(τ(λ)− 2µ)

(
e(τ(λ)−2µ)t − 1

)
≤ ‖u0‖2L2

r
+

L2λ3

4|τ(λ)− 2µ|
.

This implies that, for all t ≥ 0,

‖u‖2L2
r
≤
(
‖u0‖2L2

r
+

L2λ3

4|τ(λ)− 2µ|

)
e−τ(λ)t. (56)

2. Assume µ = τ(λ̄)
2 , for some λ̄ ∈ [2 +

√
6, λsup).
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From (55), integrating over (0, t), it holds, for all t ≥ 0

‖u‖2L2
r
eτ(λ̄)t ≤ ‖u0‖2L2

r
+
L2λ̄3

4
t.

Therefore, for all t ≥ 0

‖u‖2L2
r
≤
(
‖u0‖2L2

r
+
L2λ̄3

4
t

)
e−τ(λ̄)t. (57)

Now is turn to get an estimate of the L2
r norm of v. Similar as before, let

us consider the first line in (46). Multiplying by v(r, t)r2 and then perform an
integration by parts in r ∈ (0, 1), and using the boundary conditions in (46), we get
for all t ≥ 0

1

2

d

dt
‖v‖2L2

r
+ ‖vr‖2L2

r
+ p0(λ)v2(1) =

− v(1)

∫ 1

0

p1(r, λ)vr2 dr − η(t)

∫ 1

0

p1(r, λ)vr2 dr. (58)

As before, on the righthand side of (58), we use the Cauchy-Schwartz inequality
and two times the Young inequality, with the definition of p0(λ) given by (10), to
get, for all t ≥ 0

1

2

d

dt
‖v‖2L2

r
+ ‖vr‖2L2

r
+
λ

2
v2(1) ≤ λ

2
v2(1) +

λ

2
η2(t) +

1

λ
‖p1(r, λ)‖2L2

r
‖v‖2L2

r
. (59)

Applying the Poincaré inequality on the lefthand side of (59) and rearranging terms
we obtain, for all t ≥ 0

d

dt
‖v‖2L2

r
+ τ(λ)‖v‖2L2

r
≤ λη2(t). (60)

Multiplying the above inequality by eτ(λ)t and taking account the Assumption 1
over the estimator ϕ it holds, for all t ≥ 0

d

dt

(
eτ(λ)t‖v‖2L2

r

)
≤ L2λe(τ(λ)−2µ)t. (61)

As before, we distinguish two cases. We omit the computations in reason of its
similarities with the computations to obtain the L2

r norm estimation for u.

If µ > τ(λ)
2 for all λ ∈ [2 +

√
6, λsup). Then it holds

‖v‖2L2
r
≤ L2λ

|τ(λ)− 2µ|
e−τ(λ)t, ∀t ≥ 0. (62)

If µ = τ(λ̄)
2 , for some λ̄ ∈ [2 +

√
6, λsup). Then we obtain

‖v‖2L2
r
≤ L2λ̄te−τ(λ̄)t, ∀t ≥ 0. (63)

We recall in that v(r, 0) = 0.
Finally, collecting inequalities, (56), (57), (62) and (63) and using ‖c‖2L2

r
=

‖u + v‖2L2
r
≤ 2(‖u‖2L2

r
+ ‖v‖2L2

r
), we obtain inequalities (13) and (14). The proof

of Theorem 1.2 is completed. �

Remark 7. Note that, if 2µ < τ(λ), for all λ ∈ [2 +
√

6, λsup) this implies that
µ = 0, which is a contradiction with the Assumption 1.
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4.3. Proof of Corollary 1. Let λ∗ = 2 +
√

6.
Note that the function τ is a decreasing continuous function on [λ∗, λsup). So its

maximum is attained at τ(λ∗).
Let 2µ > τ(λ∗) then 2µ ≥ τ(λ), for all λ ∈ [λ∗, λsup), so in virtue of Theorem

1.2 it holds

‖c̃(·, t)‖2L2
r
≤
(

2‖c̃0‖2L2
r

+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

)
e−τ(λ)t, ∀t ≥ 0,∀λ ∈ [λ∗, λsup). (64)

From the above inequality it is easy see that the fastest decayment for ‖c̃(·, t)‖2L2
r

is achieved if τ(λ) = τ(λ∗) and since that e−τ(λ∗)t < 1, for all t ≥ 0, we obtain an
estimation of the transient state of ‖c̃(·, t)‖2L2

r
given by

‖c̃(·, t)‖2L2
r
≤ 2‖c̃0‖2L2

r
+
L2(λ∗3 + 4λ∗)

2|τ(λ∗)− 2µ|
, ∀t ≥ 0. (65)

If 2µ ≤ τ(λ∗), by the monotonicity of τ on the interval [λ∗, λsup) there exists λ̄
such that 2µ = τ(λ̄). Now, the Theorem 1.2, it holds that

‖c̃(·, t)‖2L2
r
≤
(

2‖c̃0‖2L2
r

+
L2(λ̄3 + 4λ̄)

2
t

)
e−τ(λ̄)t, ∀t ≥ 0. (66)

The decay rate is given by τ(λ̄) = 2µ.

Let us consider λ̄ fix and we define Nλ̄(t) =
(

2‖c̃0‖2L2
r

+ L2(λ̄3+4λ̄)
2 t

)
e−τ(λ̄)t. It

is not difficult to see that Nλ̄(t) reaches its maximum at t∗ = 1
τ(λ̄)
−

4‖c̃0‖2L2
r

L2(λ̄3+4λ̄)
. It

follows with e−τ(λ̄)t∗ < 1, that

‖c̃(·, t)‖2L2
r
≤ L2(λ̄3 + 4λ̄)

2τ(λ̄)
exp

{
4‖c̃0‖2L2

r
τ(λ̄)

L2(λ̄3 + 4λ̄)
− 1

}
, ∀t ≥ 0. (67)

The proof of Corollary 1 is complete. �

4.4. Proof of Corollary 2. Since that 2µ > τ(λ), by Theorem 1.2, it holds

‖c̃(·, t)‖2L2
r
≤
(

2‖c̃0‖2L2
r

+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

)
e−τ(λ)t, ∀t ≥ 0,∀λ ∈ [λ∗, λsup). (68)

On the other hand, τ(λ) − µ 6= 0, for all λ ∈ [λ∗, λsup] then N1(λ) is a continuous
function defined on a compact interval, in consequence there exists λ̄ such that,
N1(λ) ≥ N1(λ̄), for all λ ∈ [λ∗, λsup].

Let λ̄ such that minimizes N1(λ), then it holds

‖c̃(·, t)‖2L2
r
≤
(

2‖c̃0‖2L2
r

+
L2(λ̄3 + 4λ̄)

2|τ(λ̄)− 2µ|

)
e−τ(λ̄)t, ∀t ≥ 0. (69)

From (69), we see that decay rate is τ(λ̄) and taking account that e−τ(λ̄)t < 1, for
all t ≥ 0 we conclude (17).

The proof of Corollary 2 is complete.�
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4.5. State of Charge Estimation. We define a new estimator to the State of
Charge by

ŜOCϕ(t) =
3

cmax

∫ 1

0

ĉϕ(r, t)r2 dr, t ≥ 0, (70)

where ĉϕ is the solution to (43). The following proposition gives conditions on

ŜOCϕ(t) to ensure the asymptotic convergence to the State of Charge, SOC(t).

Proposition 5. Consider ϕ, L > 0 and µ > 0 satisfying Assumption 1. Let τ(λ)

defined by (12). Under these assumptions there exists λsup > 2 +
√

6 such that

τ(λ) > 0, for all λ ∈ [2 +
√

6, λsup) and there exist two cases depending on µ such
that

1. if µ > τ(λ)
2 , for all λ ∈ [2 +

√
6, λsup), then

|SOC(t)− ŜOCϕ(t)| ≤
√

3

cmax

(
2‖c̃0‖2L2

r
+
L2

2

λ3 + 4λ

|τ(λ)− 2µ|

) 1
2

e−
τ(λ)

2 t, ∀t ≥ 0,

(71)

2. if µ = τ(λ̄)
2 for some λ̄ ∈ [2 +

√
6, λsup], then

|SOC(t)− ŜOCϕ(t)| ≤
√

3

cmax

(
2‖c̃0‖2L2

r
+
L2

2
(λ̄3 + 4λ̄)t

) 1
2

e−
τ(λ̄)

2 t, ∀t ≥ 0. (72)

Proof. Note that

SOC(t)− ŜOCϕ(t) =
3

cmax

∫ 1

0

(c(r, t)− ĉϕ(r, t))r2 dr, ∀t ≥ 0, (73)

where c(r, t) is the real concentration in the anode and ĉϕ is the solution of (43).
Then, using the Cauchy-Schwartz inequality on the righthand side and Theorem 1.2,
we conclude inequalities (71) and (72) respectively and prove the statement.

4.6. Proof of Theorem 1.3. As in the Section 3.3, we look for the input current
I(t) which allows the regulation of the SOC(t) to a given reference trajectory. We

use here the convergence of the estimator ŜOCϕ(t) depending on ϕ(t) instead of
the surface anode concentration c(1, t).

Consider the quadratic error tracking κ(t) = 1
2 (SOCref (t)− SOC(t))

2
. Then,

taking the time derivative we get for all t ≥ 0.

κ̇(t) + γκ(t) ≤ γ

2
(SOC(t)− SOCϕ(t))

2
(74)

On the other hand, from the proof of the Proposition 5 it holds for all t ≥ 0,

|SOC(t)− SOCϕ(t)| ≤
√

3

cmax
‖c̃(·, t)‖L2

r
. (75)

Plugin (75) into (74), we obtain for all t ≥ 0

κ̇(t) + γκ(t) ≤ 3γ

2c2max

‖c̃(·, t)‖2L2
r
. (76)

Now, in virtue of Theorem 1.2, we have several cases.
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1. Let us consider µ > τ(λ)
2 , for all λ ∈ [2 +

√
6, λsup). Then, (76) becomes,

κ̇(t) + γκ(t) ≤ 3γ

2c2max

(
2‖c̃0‖2L2

r
+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

)
e−τ(λ), t ≥ 0. (77)

Multiplying (77) by eγt, we obtain for all t ≥ 0.

d

dt

(
κ(t)eγt

)
≤ 3γ

2c2max

(
2‖c̃0‖2L2

r
+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

)
e(γ−τ(λ))t (78)

Depending on γ, it holds for all t ≥ 0 one of the followings cases:
(a) if τ(λ) < 2µ ≤ γ, for all λ ∈ [2 +

√
6, λsup), then

κ(t) ≤
(
κ(0) +

3γ

2c2max(γ − τ(λ))

(
2‖c̃0‖2L2

r
+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

))
e−τ(λ)t. (79)

(b) if τ(λ) < γ < 2µ, for all λ ∈ [2 +
√

6, λsup), then

κ(t) ≤
(
κ(0) +

3γ

2c2max(γ − τ(λ))

(
2‖c̃0‖2L2

r
+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

))
e−τ(λ)t. (80)

(c) if γ = τ(λ̄) < 2µ for some λ̄ ∈ [2 +
√

6, λsup), then

κ(t) ≤
(
κ(0) +

3γ

2c2max

(
‖c̃0‖2L2

r
+
L2(λ3 + 4λ)

2|τ(λ)− 2µ|

)
t

)
e−γt. (81)

2. Let us consider µ = τ(λ̄)
2 , for some λ̄ ∈ [2 +

√
6, λsup). Then (76) becomes

κ̇(t) + γκ(t) ≤ 3γ

2c2max

(
2‖c̃0‖2L2

r
+
L2(λ̄3 + 4λ̄)

2
t

)
e−τ(λ̄)t, ∀t ≥ 0. (82)

Multiplying by eγt we obtain for all t ≥ 0

d

dt

(
κeγt

)
≤ 3γ

2c2max

(
2‖c̃0‖2L2

r
+
L2(λ̄3 + 4λ̄)

2
t

)
e(γ−τ(λ̄))t. (83)

Depending on γ, it holds for all t ≥ 0 one of the following cases:
(a) if 2µ = τ(λ̄) < γ,

κ(t) ≤

(
κ(0) +

3γ

2c2max

(
L2(λ̄3 + 4λ̄)

2(γ − τ(λ̄))2
+

2‖c̃0‖2L2
r

(γ − τ(λ̄))
+
L2(λ̄3 + 4λ̄)

2(γ − τ(λ̄))
t

))
e−τ(λ̄)t. (84)

(b) if 2µ = τ(λ̄) = γ, then

κ(t) ≤
(
κ(0) +

3γ

2c2max

(
2‖c̃0‖2L2

r
t+

L2(λ̄3 + 4λ̄)

4
t2
))

e−γt, ∀t ≥ 0. (85)

(c) if γ < 2µ = τ(λ̄), then

κ(t) ≤

(
κ(0) +

3γ

2c2max

(
L2(λ̄3 + 4λ̄)

2(γ − τ(λ̄))2
+

2‖c̃0‖2L2
r

|γ − τ(λ̄)|
+
L2(λ̄3 + 4λ̄)

2|γ − τ(λ̄)|

))
e−γt. (86)

The proof of Theorem 1.3 is completed.�

Remark 8. We have proved that the input current I(t) given by (18), forces the
system 7 to track the signal SOCref with an exponential decay rate.

Following ideas of the proof of the Corollaries 1 and 2, see sections 4.3 and 4.4
respectively, we would get similar results as Corollaries 1 and 2 in the context of
Theorem 1.3.
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5. Simulations. In this section we present some simulations to illustrate the pre-
vious results, namely Theorem 3.2 and 1.3. The model parameters used in this
work have been taken from the online repository [16] (please also see the related
paper [18]). We perform some simulations in two cases. Section 5.1 uses bound-
ary measurements as output while the case where we dispose of the estimator ϕ is
simulated in Section 5.2.

In both types of simulations the definition of p0(λ), p1(r, λ), and ŜOC(t) are
given by (10), (11) and (35), respectively. Moreover, we set the initial conditions of
system in closed loop with an error of 50% with respect to the original value. The
values for the remain parameters are shown in Table 2.

Table 2. Parameter simulations

Parameters Values

c(r, 0) 1.5c0
ĉ(r, 0) 1.5c0
cmax 2.5 · 104

λ 5

γ 70

Concerning discretization, we have used central difference method in the spatial
variable to get the corresponding ODE system, which is solved with the MatLab
routine ode23tb. Notice that the system (7) has a singularity at r = 0. Therefore, in
order to obtain the corresponding ODE, we have done the following approximation.
Consider the limit

ct(0, t) = lim
r→0

(
2

r
cr(r, t) + crr(r, t)

)
. (87)

Then, by the L’Hôpital’s rule and the boundary condition at r = 0 of (7) we get
that

lim
r→0

cr(r, t)

r
= crr(0, t).

Thus, we have that

ct(0, t) ≈ 3crr(0, t). (88)

In a similar way, we get the following approximation at r = 0

ĉt(0, t) ≈ 3ĉrr(0, t) + p1(0)(c(1, t)− ĉ(1, t)). (89)

5.1. Tracking using output. First, we generate numerical data for the illustra-
tion of Theorem 3.2. We set a reference current input Iref (t) and constant initial
condition c0 = 1.2901 ·104. We simulate to obtain a SOC signal which is used as the
reference SOCref (t) in our simulations. Then, we simulate the closed-loop system
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(7), (25) and (39), which is



ct(r, t) = 2
r
cr(r, t) + crr(r, t),

cr(0, t) = 0, cr(1, t) = ˙SOCref (t) + γ
(
SOCref (t)− 3

cmax

∫ 1

0
ĉ(r, t)r2dr

)
,

c(r, 0) = c0(r),

ĉt(r, t) = 2
r
ĉr + ĉrr + p1(r, λ)(c(1, t)− ĉ(1, t)),

ĉr(0, t) = 0,

ĉr(1, t) = ˙SOCref (t) + γ
(
SOCref (t)− 3

cmax

∫ 1

0
ĉ(r, t)r2dr

)
+p0(λ)(c(1, t)− ĉ(1, t)),
ĉ(r, 0) = ĉ0(r).

(90)

We have done the previous strategy for two different situations. First we take
a constant signal Iref (t) = 0.5C as the input current used to generate the state of
charge reference SOCref (t). We see in Figure 2 the input Iref (t) = 0.5C (on the left)
and a good performance of the SOC(t) tracking trajectory (on the right). Then we
do the same simulations in the case of a square signal Iref (t) = 4.5square( 64

900π t)C.
The results can be seen in Figure 3. These simulations illustrate an exponential
rate for the tracking.
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Figure 2. (Left) The input Iref (t) = 0.5C. (Right) We compare
SOC(t) for the controlled system with the reference SOCref (t),
generated by Iref (t).

5.2. Tracking using output estimator. As above, we generate a synthetic state
of charge SOCref (t) from a known Iref (t) and then we simulate the controlled
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Figure 3. (Left) The input Iref (t) = 4.5 square( 64
900π t)C.

(Right) We compare SOC(t) for the controlled system with the
reference SOCref (t), generated by Iref (t).

system (7), (18) and (43), that is

ct(r, t) = 2
r
cr(r, t) + crr(r, t),

cr(0, t) = 0, cr(1, t) = ˙SOCref (t) + γ
(
SOCref (t)− 3

cmax

∫ 1

0
ĉϕ(r, t)r2dr

)
,

c(r, 0) = c0(r),

∂tĉϕ(r, t) = 2
r
∂r ĉϕ + ∂rr ĉϕ + p1(r, λ)(ϕ(t)− ĉϕ(1, t)),

ĉϕ(0, t) = 0, ∂r ĉϕ(1, t) = ˙SOCref (t) + γ
(
SOCref (t)− 3

cmax

∫ 1

0
ĉϕ(r, t)r2dr

)
+p0(λ)(ϕ(t)− ĉϕ(1, t)),

ĉϕ(r, 0) = ĉϕ0(r).

(91)

Note that instead of c(1, t), in this simulation, we have used an artificial estimator
ϕ(t) of the boundary concentration c(1, t), namely ϕ(t) = c(1, t) + Me−µt, with
M > 0 and µ > 0. This ϕ(t) satisfies the Assumption 1. To run out the simulations
we have used the parameters values given by the Table 2 and set up M = cmax and
µ = 70 to characterize the estimator ϕ(t).

As in Section 5.1 we run simulations in two cases. First for Iref (t) = 0.5C and
then for Iref (t) = 4.5square( 64

900π t)C. The results of the tracking of SOC(t) to the
reference SOCref (t) are presented in Figure 4 confirming the good performance of
our controllers. As predicted by Theorem 1.3, in simulations the convergence seems
to be of exponential type.

6. Conclusions. In this paper the tracking problem of the State of Charge (SOC)
to a given reference trajectory has been solved. The Single Particle Model ([4, 23,
17]), which belongs to the class of Electrochemical models describing the dynamic
of lithium ions concentration has been used. This tracking problem consisted in de-
signing a current input for the battery such that the SOC converges to a prescribed
trajectory as time goes to infinity.

The approach to solve the tracking problem consisted, in a first stage, in de-
signing an input feedback I(t) which depends on the full ion concentration in the
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Figure 4. (a) We compare SOC(t) for the controlled system with
the reference SOCref (t) generated by Iref (t) = 0.5C (Left) and
Iref (t) = 4.5square( 64

900π t)C (Right).

anode. The exponential convergence to zero of the tracking error has been proven.
Moreover, an observer has been designed to avoid the online measurement of the full
anode concentration. The proof was based on the backstepping method, yielding
an exponential decay rate of the reference reference error for the SOC.

An implicit difficult of this approach is that the ion concentration observer de-
pends on an online boundary measurement of the lithium ion concentration. Even
if only the boundary is measured, it is very difficult to get proper measurements.
To avoid this difficult an observer has been designed for the ion concentration de-
pending on an estimator of surface concentration satisfying Assumption 1. Some
numerical simulations illustrated the obtained results.

Possible future extensions naturally appear. We could consider models including
the dynamics of the ions in electrolyte phase or a distributed temperature. Con-
cerning the controller, a nice extension would be to consider saturated inputs.

7. Appendix.

7.1. Proof of Proposition 1. Consider a given reference trajectory SOCref (t).
We look for an input I(t) to regulate the SOC(t) of the system (7) to SOCref (t).
To do that we define

κ(t) =
1

2
(SOCref (t)− SOC(t))

2
. (92)

Now, taking the time derivative over κ(t) and using the system (7) we get

κ̇(t) = (SOCref (t)− SOC(t))

(
˙SOCref (t)−

∫ 1

0

ctr
2 dr

)
, (93)

= (SOCref (t)− SOC(t))

(
˙SOCref (t)− 3ρ̃

cmax
I(t)

)
. (94)

Then, if we select the current as

I(t) =
cmax

3ρ̃

(
˙SOCref (t) + γ (SOCref (t)− SOC(t))

)
, (95)
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where γ > 0 is a constant design parameter, then we obtain

κ̇(t) = −γ (SOCref (t)− SOC(t))
2
, (96)

= −2γκ(t). (97)

Last equation implies that κ(t) = κ(0)e−2γt and in particular

lim
t→∞

κ(t) = 0. (98)

In conclusion we have that |SOCref (t)− SOC(t)| → 0 when t→∞. �

7.2. Proof of Proposition 2. Consider the linear operator A : D(A) ⊂ L2
r(0, 1)→

L2
r(0, 1) defined by Az̃ := − 1

r2
∂
∂r (r2z̃r) and D(A) = {z̃ ∈ H2

r (0, 1) : z̃r(0) = z̃r(1) =
0}. It is easy to check that A is maximal monotone. Thus, by the Hille-Yosida
theorem (see Theorem 7.4 in [3, Chapter 7]), if z0 ∈ D(A), then equation (28) has
a unique solution z̃ ∈ C([0,∞);D(A)) ∩ C1([0,∞);L2

r(0, 1)).
Now, we perform some energy estimations. For the moment we assume z0 ∈ D(A)

and then we easily obtain that the solutions to (28) satisfy

1

2

d

dt
‖z̃‖2L2

r(0,1) = −λ
∫ 1

0

z̃2r2 dr −
∫ 1

0

z̃2
rr

2 dr ≤ −λ‖z̃‖2L2
r(0,1) (99)

and

1

2

d

dt
‖z̃r‖2L2

r(0,1) = −λ
∫ 1

0

z̃2
rr

2dr −
∫ 1

0

(z̃rrr + 2z̃r)
2 dr. (100)

Consequently, we get the inequality

d

dt

(
‖z̃‖2L2

r(0,1) + ‖z̃r‖2L2
r(0,1)

)
≤ −2λ

(
‖z̃‖2L2

r(0,1) + ‖z̃r‖2L2
r(0,1)

)
− 2‖z̃rrr + 2z̃r‖2L2(0,1).(101)

and applying the Gronwall’s lemma we get

‖z̃(·, t)‖2L2
r(0,1) + ‖z̃r(·, t)‖2L2

r(0,1) ≤ e
−2λt

(
‖z̃(·, 0)‖2L2

r(0,1) + ‖z̃r(·, 0)‖2L2
r(0,1)

)
(102)

given (29). This inequality also allows to use a density argument to conclude that
(28) has a unique solution z̃ ∈ C([0,∞);H1

r (0, 1)) ∩ C1([0,∞);L2
r(0, 1)) if z̃0 ∈

H1
r (0, 1). �

7.3. Proof of Lemma 3.1. Consider the following function

p̌(r, s) =
r

s
p(r, s). (103)

After some calculations we get that

pr(r, s) = − s

r2
p̌+

s

r2
p̌r, (104)

prr(r, s) = −2s

r3
p̌− s

r2
p̌r −

s

r2
p̌r +

s

r
p̌rr, (105)

ps(r, s) =
1

r
p̌+

s

r
p̌s, (106)

pss(r, s) =
1

r
p̌s +

1

r
p̌s +

s

r
p̌s, (107)

then, using (30) and equations (104)-(107), we get the following equation and bound-
ary conditions for p̌(r, s){

p̌rr(r, s)− p̌ss(r, s) = −λp̌(r, s), (r, s) ∈ T,
p̌(r, 0) = 0, p̌(r, r) = −λ2 r, r ∈ (0, 1).

(108)
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Using the Successive Approximations Method we solve the equation (108), see [11,
Chapter 4], and we obtain that

p̌(r, s) = −λr
J1

(√
λ(r2 − s2)

)
(√

λ(r2 − s2)
) , (109)

where J1 is the first order Bessel function of first kind. Then the kernel p(r, s) is
given by (32). Equation (11) follows from (32). This concludes the proof of Lemma
3.1.�

Remark 9. From the kernel transformation (103) and boundary condition of (30)
we observe that the boundary condition p̌(r, 0) remains free. The selection of
p̌(r, 0) = 0 ensures a well-posed equation (108) and an explicit solution.

7.4. Proof of Theorem 3.2. Consider the quadratic tracking error

κ(t) =
1

2
(SOCref (t)− SOC(t))

2
,

and take the time derivative. Thus, we obtain

κ̇(t) = (SOCref (t)− SOC(t))

(
˙SOCref (t)− 3ρ̃

cmax
I(t)

)
= −γ (SOCref (t)− SOC(t))

(
SOCref (t)− ŜOC(t)

)
= −γ (SOCref (t)− SOC(t))

(
SOCref (t)− SOC(t) + SOC(t)− ŜOC(t)

)
= −γ (SOCref (t)− SOC(t))2 − γ (SOCref (t)− SOC(t))

(
SOC(t)− ŜOC(t)

)
.

Moreover, by the Young inequality, for all t ≥ 0,∣∣∣−γ (SOCref (t)− SOC(t))
(
SOC(t)− ŜOC(t)

)∣∣∣ ≤
γ

2
(SOCref (t)− SOC(t))2 +

γ

2

(
SOC(t)− ŜOC(t)

)2

. (110)

Then we obtain that for all t ≥ 0,

κ̇(t) ≤ −γκ(t) +
γ

2

(
SOC(t)− ŜOC(t)

)2

. (111)

By Proposition 4, we obtain that for all t ≥ 0,

κ̇(t) + γκ(t) ≤ 3γM2

2c2max

‖c̃0‖2H1
r
e−2λt. (112)

Multiplying by eγt we get

d

dt

(
κ(t)eγt

)
≤ 3γM2

2c2max

‖c̃0‖2H1
r
e(γ−2λ)t (113)

From the above inequality we distinguish three cases depending on the value of γ.

1. Let γ < 2λ. Integrating (113) over (0, t) we get

κ(t)eγt − κ(0) ≤ 3γM2

2c2max

‖c̃0‖2H1
r

(λ− 2γ)
(e(γ−2λ)t − 1). (114)
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We ignore the negative terms in the righthand side of the previous inequality
to get, for all t ≥ 0

κ(t) ≤

(
κ2(0) +

3γM2

2c2max

‖c̃0‖2H1
r

|γ − 2λ|

)
e−γt. (115)

2. Let γ = 2λ. We integrating (113) over (0, t), we get for all t ≥ 0

κ(t) ≤
(
κ2(0) +

3γM2

2c2max

‖c̃0‖2H1
r
t

)
e−γt. (116)

3. Let γ > 2λ. Similar as before, we integrate (113) over (0, t) to get for all t ≥ 0

κ(t) ≤ κ2(0)e−γt +
3γM2

2c2max

‖c̃0‖2H1
r

(γ − 2λ)
e−2λt. (117)

Finally we collect the inequalities (115), (116) and (117) to conclude. The proof of
Theorem 3.2 is complete. �
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