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Abstract—Tone mapping operators (TMO) are functions that map high dynamic range (HDR) images to a standard dynamic

range (SDR), while aiming to preserve the perceptual cues of a scene that govern its visual quality. Despite the increasing number of
studies on quality assessment of tone mapped images, current subjective quality datasets have relatively small numbers of images and
subjective opinions. Moreover, existing challenges in transferring laboratory experiments to crowdsourcing platforms put a barrier for
collecting large-scale datasets through crowdsourcing. In this work, we address these challenges and propose the RealVision-TMO
(RV-TMO), a large-scale tone mapped image quality dataset. RV-TMO contains 250 unique HDR images, their tone mapped versions
obtained using four TMOs and pairwise comparison results from seventy unique observers for each pair. To the best of our knowledge,
this is the largest dataset available in the literature for quality evaluation of TMOs by the number of tone mapped images and number of
annotations. Furthermore, we provide a content selection strategy to identify interesting and challenging HDR images. We also
propose a novel methodology for observer screening in pairwise experiments. Our work does not only provide annotated data to
benchmark existing objective quality metrics, but also paves the path to building new metrics for tone mapping quality evaluation.

Index Terms—image quality evaluation, pairwise comparison, tone mapping operators, crowdsourcing

1 INTRODUCTION

IGH dynamic range images have gained popularity over the

last decade, owing to the advancement in image acquisition
and display technologies. Modern image sensors with additional
techniques, such as exposure bracketing and fusion, allow us
to capture high dynamic range (HDR) images with ease. HDR
contents provide a more accurate and aesthetic representation of
the real world by utilizing a wider range of color and luminance.
HDR capable displays have also become widely available in the
consumer market. Despite this growing interest, most images
are still consumed as low dynamic range (LDR) media, which
are represented by eight bits per pixel per channel. Converting
HDR contents into pleasing LDR representations often requires
employing a tone mapping operator (TMO) or remastering the
content by a professional artist. Due to the subjective nature of the
tone mapping task, results may vary greatly between TMOs and
professional artists.

Quality assessment of tone mapped images is of considerable
interest as a result of the increased adoption of HDR technologies
and the inevitable need for TMOs. Although quite costly and
time consuming, subjective studies are considered as the most
reliable way for tone mapped image quality assessment (IQA).
Moreover, they provide the necessary data to benchmark objective
quality metrics and develop new ones. Various publicly available
tone mapped IQA datasets can be found in the literature [1], [2],
[3], [4], [5]. However, several of these databases contain low
numbers of images and of subjective annotations. A summary of
the available datasets is provided in Table 1. Previously, Kundu
et al. [2] proposed the largest publicly available dataset till date

also containing tone mapped IQA. Although the dataset contains
a relatively high number of HDR images, as stated by the authors,
the aim of their study was not to evaluate TMO performances nor
benchmarking tone mapped IQA metrics. Therefore, by design,
most of the tone mapped images are generated from different HDR
images making it impossible to compare TMO performances.

Similar to [2], other crowdsourced IQA studies can be found.
The last decade brought a surge in the popularity of crowd-
sourcing platforms like Prolific [6] and Amazon Mechanical Turk
(AMT) [7]. They indeed allow researchers to conduct large-scale
subjective experiments within a short amount of time, and with
reduced cost and effort. Additionally, they provide a large and
varied demography thanks to their wide participant pools. Despite
the fact that crowdsourcing platforms bring many advantages,
uncontrolled experimental conditions may lead to noisy data. A re-
cent study [8] showed that, with proper experimental design, such
challenges can be overcome and tone mapped IQA experiments
can be conducted on crowdsourcing platforms, more specifically
over Prolific [6]. Results indicated that the differences between
subjective annotations acquired from laboratory and crowdsourc-
ing experiments are negligible. Moreover, the same level of
certainty in subjective annotations acquired from a laboratory
experiment can be achieved via crowdsourcing.

As suggested in [8], pair comparison (PC) methodology is a
favorable design choice for crowdsourced tone mapped IQA. PC
design simplifies the task for observers by asking for a binary
preference between two images, therefore eliminating observer’s
bias based on the understanding of scales in rating tasks. It is also



argued to be more suitable for real-world use cases [9]. One major
shortcoming of the PC methodology is the lack of well-established
observer screening tools in the literature, mainly due to the binary
nature of the subjective annotations collected via PC experiments.

Another important aspect of a large-scale tone mapped IQA
dataset is linked to content selection. A proper content selection
strategy should ensure a diverse and well represented dataset. In
PC tone mapped IQA experiments, stimuli are in the form of a
tone mapped image pair. Certain pairs may be more ambiguous
than others, e.g., for a given pair [A, B], some of the observers
may prefer image A whereas others may prefer image B. Therefore,
a diverse dataset with PC methodology should contain pairs with
varying ambiguity. Having a dataset with only obvious pairs brings
negligible benefit to benchmarking and metric development. Cur-
rent content selection strategies aim to diversify images in datasets
with features such as spatial information [10], colorfulness [10],
etc. Although these may ensure a diverse dataset in terms of
image characteristics, they have no implication on the ambiguity
distribution of the image pairs in a PC experiment.

To address these challenges and limitations, we conducted
a large-scale crowdsourced subjective experiment to assess the
aesthetic quality of tone mapped images. Our contributions are as
follows:

. To address the lack of large-scale datasets for TMO evalu-
ation, we present the RealVision-TMO (RV-TMO)" dataset
containing 250 HDR images, each tone mapped with four
different state-of-the-art TMOs, as well as their respective
subjective annotations using a full-PC methodology. 1500
unique image pairs, each evaluated by seventy unique
observers over Prolific crowdsourcing platform, and a total
pool of 3500 unique observers attending the experiment
make this the largest publicly available dataset for quality
assessment of tone mapped images, to the best of our
knowledge.

. To address the lack of content selection strategies en-
suring pairs with varying ambiguity in PC experiments,
we developed a content selection strategy that provides
representative HDR images and tone mapped image pairs
with varying ambiguity. The proposed strategy provides
a challenging dataset that can be used to benchmark
objective IQA models and develop new objective quality
metrics.

. To address the lack of well-established observer screening
tools in PC experiments, we propose a novel approach to
analyze the collected subjective pairwise preferences in
order to assess observer reliability and reject observers
with undesired behaviors.

. Finally, we analyze the performance of existing state-
of-the-art IQA metrics for tone mapped images on the
collected dataset. Furthermore, we provide recommenda-
tions and tools towards objective tone mapped IQA metric
development and benchmarking.

2 RELATED WORK

Crowdsourcing is relatively new in the quality of experience (QoE)
domain. Indeed, even though crowdsourcing platforms provide
researchers with a wider audience, faster turnover, and reduced
costs, they also bring additional challenges which differ from

1. The dataset is available at ftp:/ftp.polytech.univ-nantes.fr/RV-TMO

TABLE 1
An overview of tone mapped image quality datasets available in the
literature. Note that the dataset proposed by Kundu et al. [2] also
contains images processed with multi-exposure fusion (MEF)
algorithms and photographic effects which were excluded from the
summary made in this table.

Method SRC T™MO owl - Obs. Total
images  per stim  annotations

RV-TMO PC 250 4 1000 70 105000
Krasula et al. [1] PC 20 9 180 20 -
Yeganeh et al. [3]  Ranking 15 8 120 20 -
Kuang et al. [4] PC 10 8 80 30 8400
Ledda et al. [5] PC 23 6 138 48 15660
Kundu et al. [2] SSCQS 605 4 747 110 75000

traditional laboratory experiments. Qualinet whitepaper [11] dis-
cusses these benefits and challenges from the QoE point of view.
An early example of subjective IQA on crowdsourcing shows
promise by comparing crowdsourcing and laboratory experiment
results [12]. Recent works raise concerns on the effects of QoE
tasks on crowdsourcing subjective experiments [13]. LIVE In the
Wild [14] IQA dataset consists of over 350000 opinion scores on
1162 images. More than 8000 unique participants attended the
subjective study to evaluate the quality of images containing a
wide set of distortions.

Several tone mapped IQA datasets collected in controlled
laboratory environments are publicly available in the literature.
A comprehensive review of existing works can be found in [15],
and a summary of tone mapped IQA datasets is presented in
Table 1. Columns in the table represent the methodology used
by each experiment, number of source content (SRC), number of
TMOs applied, total number of tone mapped images, number of
unique observers per stimulus, and total number of annotations,
respectively. Krasula et al. [1] conducted two separate subjective
experiments to measure the effects of having the reference HDR
scene on observer preferences. The experiment was conducted
in a controlled laboratory environment with twenty HDR images
(ten real world, and ten synthetic scenes), tone mapped with nine
different TMOs. Twenty naive observers participated in the exper-
iment. In an earlier study [3], Yeganeh et al. conducted another
subjective experiment in a controlled laboratory environment to
evaluate the objective IQA performances on fifteen HDR images,
each one tone mapped with eight different TMOs. Each stimulus
is rated by around twenty observers. The dataset from Kuang et
al. [4] contains eighty tone mapped images generated from ten
HDR images with eight TMOs in a PC experiment conducted in a
laboratory with thirty participants. The dataset by Ledda et al. [5]
also uses the PC design with twenty-three SRC and six TMOs.
Forty-eight unique participants evaluated the image pairs in two
sessions under a controlled environment, resulting in 15660 total
annotations. As observed, most of the existing datasets collected
in controlled laboratory environment suffer from a relatively low
number of HDR images.

To the best of our knowledge, only one work on subjective
quality evaluation of tone mapped images has been carried out
using crowdsourcing. In their work, Kundu et al. [2] conducted
a subjective experiment on the AMT platform with more than
5000 observers on 605 HDR images. In Table 1, we only included
the TMO part of this dataset since the full dataset does not only
contain tone mapped images, but also HDR images processed
with multi-exposure fusion (MEF) and visual effect algorithms.
As shown in the table, despite having 605 HDR images in the



dataset, there are only 747 tone mapped images. The aim of the
study, as expressed by the authors, was not to evaluate the TMO
performances. Therefore, most of the HDR content were tone
mapped using only one TMO.

3 CONTENT GENERATION

We hypothesize that an HDR image can be characterized by sev-
eral image features. Therefore, it is essential to compile a dataset of
HDR images that cover a significant portion of the image features
space. Furthermore, it will help us identify whether certain TMOs
enhance certain aesthetic attributes, thereby influencing subjective
preference. In the following subsections, we present our proposed
strategies to generate meaningful image data.

In our search for available high-resolution HDR images in
the literature, two large datasets stood out; Fairchild et al’s HDR
Photographic Survey [16] and Artusi et al. [17]. Both datasets
contain images of high to very high spatial resolutions.

Our search uncovered that 1080p full HD (FHD) displays are
the most common commercially available and accessible form of
displays. Considering our subjective experiment is crowdsourced,
we have aimed to create content that is accessible to participants.
Furthermore, to ensure that the display devices do not interpolate
image content and display the content without any scaling, we
decided to use a 480p spatial resolution, such that a 1080 x 1920
pixel display can present two tone mapped images side by side
in landscape mode with a gray space in between. To utilize as
much information from the HDR images, and for consistency of
operations, we adopted a method of systematically scaling and
cropping the full resolution images to a 480p resolution. This
allows to not only create a dataset tailored to be used for future
learning-based approaches, but it also increases the number of
images by natural augmentation.

3.1 Scale and Crop

Fairchild and Artusi datasets respectively contain 105 and 124
images, for a total of 229 high-resolution HDR images. Our
content selection strategy involves a process of iterative down-
scaling of the original image by a factor of 2, 4, and 8; and
successive uses of sliding-window with 100 px shifts to generate
480p px crops at each iteration.

Figure 1 illustrates our scale-crop strategy, where each scale
corresponds to the factor by which the spatial resolution was
scaled down from the HDR image original size. It can be ob-
served that higher scales provide meaningful crops more often
and may help reduce homogeneous, redundant, or less spatially
informative crops. At each scale, we applied a sliding window
crop of resolution 480 X 640 with a stride of 100 px. Following
our strategy over 229 full-resolution HDR images, we computed
167100 candidate crops of 480p resolution. Next, we identified
certain image features from each crop and assigned a score based
on the extracted features to help with further filtering.

3.2 Feature Extraction

We extracted a set of six perceptual and objective features from the
HDR images. We hypothesize that a combination of these features
is a good indicator of whether an HDR crop can provide valuable
and interesting information necessary for tone mapping evaluation.
Each feature objectively provides some information about the crop
to classify it as an informative *good’ crop. Our crop selection
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strategy aims to widen the distribution of such good crops in the
aforementioned six-dimensional feature space.

. ADR (r): Absolute Dynamic Range of the HDR crop. The
ADR helps us identify crops with exposure variations and
helps to filter out mostly homogeneous crops.

. SD (o0): Standard Deviation of the luminance of the HDR
crop. The standard deviation value for the crop can help
identify wether a certain patch belongs to a homogeneous
region (like a blank patch of sky).

. MLE (m): Multi-Level Entropy of the saliency map of the
crop. We use minimum barrier saliency detection [18] to
generate a saliency map for each crop. To approximate the
information provided by the saliency map, we compute a
multilevel entropy (Depth = 4) for each crop [19]. This
provides an intuition whether the crops are informative or
have salient objects.

. Scale priority (s): The scale of the crop (i.e., 2, 4, or 8). As
discussed previously, the quality of the crop significantly
depends on the scale of the crop. Higher scale crops have
the chance to include more spatial information due to the
scale-crop technique. Although we generate crops for each
scale, we provide simple weights to prioritize the scales.

. Objective mean score (O): The mean TMQI [3] score
across three tone mapped versions of the crop. Each crop
is tone mapped by three state-of-the-art classical TMOs,
i.e., KimKautzTMO [20], KrawczykTMO [21] and Rein-
hardTMO [22]. Our aim, on top of compiling a dataset, is
to identify a correlation between subjective and objective
assessment of tone mapped images. Mean objective scores
help identify crops where the tone mapped versions have
acceptable visual quality according to the objective IQA
metric.

. Objective disagreement score (AO): A score representing
the difference of tone mapping objective quality across the
three aforementioned TMOs. Disagreement scores high-
light challenging crops that are difficult to tone map, lead-
ing to variation among TMQI scores of the tone mapped
crops. In other words, it helps identify HDR crops which
generate tone mapped image pairs with varying ambiguity.

Each attribute provides certain understanding about how inter-
esting and informative a crop is. They aim to differentiate between
redundant crops, or ones without valuable spatial information, and
crops with salient features or variable dynamic range. Following
the parameter fusion strategy of Krasula et al. [23], we decided
to compute an affine combination of our features to get Crop
Scores. However, we realised that each feature except scale has
a different range of possible values. Consequently, we computed
the histogram for each feature and we scaled them such that the
feature values lied within the range of their 1 and 99* percentile,
followed by normalisation to the range [0, 1]. Normalized attribute
values contribute to the crop scores. Hence, for each crop, we get
a crop score:

S=i+0A+AAO—rh+f+&, (1)
where ] represents the clipped and normalized feature values for
each crop. The scale s is weighted so that higher scale crops are
prioritized. For MLE, a negative sign is introduced as we prefer

a lower MLE score. This affine combination is empirical; it is
not an exhaustive approach to compute crop scores. However,



Fig. 1. Scale and Crop Strategy shows 66 Museum image taken from Fairchild’s HDR dataset [16]. The objective behind the strategy is natural
augmentation of images for the dataset. The strategy creates three versions of each image, scaling the original size down by a factor of 2,4 and 8
respectively. Consequently, for each version, a sliding-window crop of size 480 x 640px is created with a horizontal and vertical stride of 100px.

the combination of attributes plays a vital role in prioritizing
certain crops over others. In our experiment, we found that the
crop scoring technique helps distinguish between interesting and
non-informative crops.

It is important to note that, while computing the scores, we
consider the tone mapping quality of only three TMOs and their
disagreements. As a reminder, the choice of the three TMOs was
based on a previous comparative study evaluating tone mapping
quality across different use cases [24]. KimKautzTMO [20],
KrawczykTMO [21], and ReinhardTMO [22] were validated by
different research works and shown to produce better overall
tone mapping quality in several experiments. Hence, the attribute
scores corresponding to the three TMOs were considered in our
strategy. We do not consider SemTMO because of two reasons.
Primarily, the other three TMOs are established and widely re-
searched upon in literature in comparison to SemTMO, which
follows a novel semantic-based approach. Furthermore, unlike
the other three TMOs, SemTMO is not well optimized for real-
time tone mapping and presents a significant time complexity to
tone map 167100 candidate crops. Therefore, we decided to rely
on the three established TMOs to determine the agreement and
disagreement of quality while computing scores for each crop.

3.3 Overlapping crops

We observe that crops collected from the same spatial neighbor-
hood of an HDR image using our sliding window strategy get
similar scores. To reduce the redundancy of overlapping regions
among candidate crops, we first apply a threshold of spatial overlap
percentage. Consequently, we prioritize based on the score and
the scale of the crop which allows to remove redundant candidate
crops across all scales for an HDR image. We empirically set the
spatial overlap threshold at 60%. Figure 2 presents an example
image with four crops. Crop 1 is the reference, while crops 2, 3,
and 4 are generated with 80%, 60%, and 40% overlap, respectively.
As observed, crop 2 is very similar to the reference crop in
the example. Including both of these crops in the dataset brings

negligible benefit. On the contrary, crops 2 and 3 provide relatively
different images in comparison to the reference.

As an example, when we encounter two crops with an overlap
greater than the threshold, if they belong to the same scale, the
crop with the higher score is chosen. If they belong to different
scales, the candidate with the higher score is preferred unless
candidates belong to scales 2 and 8, where a candidate with scale
8 is preferred over scale 2, irrespective of score difference. The
reason behind such preference is the more information and natural
framing that a higher-scale crop provides. Figure 1 shows that, for
a same region, a higher scale crop incorporates more information
in the scene due to its scale. Consequently, a higher-scale crop has
a higher potential to be more interesting and challenging because
of the extra information.

3.4 Clustering based on TMQI scores

Redundancy removal from the 167100 candidate crops leaves us
with 19540 crops. We observe that, although spatial redundancy
were removed, crops vary in terms of how challenging or informa-
tive they are, as suggested by crop scores computed for each crop.
The crop scores do not have a fixed bound, but a higher value
suggests a more interesting crop. In our case, we find that crop
scores lie in [0.02,3.85]. We empirically put a threshold of 1.5
to the score, and select all candidate crops above this threshold.
This step provides 9730 candidate crops that are deemed to be
interesting, challenging, and informative.

Consequently, we cluster the selected crops on the basis of
their objective IQA scores (TMQI [3] scores of each crop, tone
mapped by three TMOs, i.e., KimKautzTMO [20], Krawczyk
[21], and ReinhardTMO [22]). Each crop can be represented
in a three-dimensional space, with their three IQA scores as
coordinates. The objective of the task is to identify crops that
provide variety in their objective assessment. We observe cases
where all three tone mapped versions of an HDR crop are rated
highly by TMQI. Conversely, in some other cases, TMQI suggests
that one tone mapped crop is significantly better or worse than the
others. We group our selected candidates into five clusters—one
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Fig. 2. Sample crops with overlap ratio of 40%, 60%, and 80%. Empir-
ically, we chose to accept crops with less than 60% overlap, as higher
overlaps may result in similar, redundant images.

where all three tone mapped crops have high scores, one where
all have poor scores, and three other clusters where one tone
mapped crop is better than the other two. Finally, we randomly
select fifty crops from each cluster to produce a large dataset of
250 SRC HDR crops. Our selection procedure aims to maximize
the distribution of crops in the aforementioned feature space.
The clustering approach aims to have a diverse ambiguity on the
resulting tone mapped image pairs.

3.5 Validation of Content Selection Strategy

The content selection strategy aims to identify HDR crops that can
provide image pairs with varying ambiguity. We hypothesize that,
by clustering the candidate HDR crops on a three-dimensional
space where each axis represents the TMQI scores of a tone
mapped image, we can select a subset of HDR crops that will
generate pairs with a wide variety of ambiguity. Collecting a
dataset with obvious pairs (i.e., where a majority of observers
chooses image A over image B in a pair [A, B]) does not bring
any value into benchmarking tone mapped IQA metrics, nor for
the development of new metrics.

With this in mind, validating our approach is a straightforward
procedure after collecting pairwise preferences. Figure 3 depicts
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Fig. 3. Histogram of pairwise preference percentages for all 1500 pairs in
our dataset. The vertical axis represents the number of pairs that belong
to each bin in the histogram, while the horizontal axis represents the
percentage of observer preferences for each pair. The vertical magenta
line divides the pairs into two groups, where pairs on the left side show
statistically significant differences.

Which image do you prefer?

Fig. 4. Sample test screen from the experiment displaying the stimulus
presented to observers. Observers are provided with a pair of tone
mapped images and asked to choose the one they prefer.

the distribution of pairwise preferences in terms of percentages
(for a detailed explanation of how to acquire pairwise preferences,
please refer to Section 5.1). The vertical axis represents the
number of pairs for each bar. The horizontal axis represents the
pairwise preference percentages. More specifically, 100% repre-
sents the pairs for which every observer preferred the same image,
whereas 50% represents the pairs where half of the observers
prefer one tone mapped image while the other half prefers the
other. In other words, the ambiguity of the pairs increases from
left to right on the horizontal axis. We can observe that a balanced
distribution of ambiguity exists in the dataset despite being not
perfectly uniform. The dataset provides some obvious pairs (i.e.,
where a majority of observers chooses the same image in a pair),
as well as ambiguous pairs. This validates the initial motivation
behind using clustering in TMQI metric score space. By pro-
viding pairs with varying ambiguity, we aim to provide a more
challenging dataset for benchmarking existing tone mapped IQA
metrics, as well as a more representative dataset for developing
new metrics.

The approximate threshold for statistically significant differ-
ence (for a detailed explanation of the statistically significant
difference, please refer to Section 5.1) is plotted as a vertical
line on the plot. Pairs on the right-hand side of the threshold line
show no statistically significant difference in terms of subjective
preference. Due to the high number of unique observations per
pair, the majority of the dataset presents a statistically significant
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Fig. 5. Playlist #42 containing 20 tone mapped images over 5 unique
SRCs. Each row shows the tone mapped images which are tone
mapped by the TMOs indicated on the left. Additionally the playlist
contains 3 pairs of ‘golden unit’ stimuli as described in Figure 6.

difference in pairwise preferences.

4 SUBJECTIVE EXPERIMENT DESIGN

In the following subsections, we describe in details the experimen-
tal design, generated dataset, information about participants, and
crowdsourcing platform, as well as the strategies adopted to reject
outliers and spammers.

4.1

Subjective quality evaluation of tone mapped images can be con-
ducted with either full-reference or no-reference methodologies.
While full-reference comparison reveals information regarding the
test image’s fidelity to the HDR image, no-reference scenario
reveals the overall aesthetic quality preferred by the observer [25].
In this experiment, we aim to collect aesthetic preferences among
tone mapped images. Therefore, a no-reference experiment design
is more suitable. A sample test screen can be seen in Figure 4.

Experiment Setup & Procedure

4.2 Stimuli & Dataset

The stimuli presented to observers contain two tone mapped
images where observers need to submit their preference among
the two. The dataset compiled for the subjective study consists of
250 SRCs tone mapped using four TMOs, thus a total of 1000 tone
mapped images. This results in 1500 stimuli where observers are
asked to submit their preference in a pairwise fashion. For ease
of experiments, we divided the dataset into fifty playlists of five
SRCs each. Consequently, each playlist had thirty tone mapped
image pairs to compare and three golden unit pairs (explained in
Section 4.4). The four TMOs used consist of three classical TMOs
deliberated by the literature, i.e., KimKautzTMO [20], Krawczyk
[21], and ReinhardTMO [22], and a fairly recent semantic-aware
operator, SemanticTMO [26].

Kim et al. [20] proposed a global TMO based on the log-
luminance adaptation of the human visual cortex. As a local
approach, Krawczyk et al. [21] introduced a TMO based on a
probabilistic model of lightness perception. They decomposed an
HDR image into areas of consistent luminance (lightness frame-
work), and mapped each framework by adjusting the perceived
‘white’ point. Reinhard et al. [22] proposed a TMO considering

Fig. 6. Pair of images in each column were used as golden units. Golden
units are stimuli for which the preference outcome is known beforehand.
For each of the three pairs (column-wise), we expect images at the
bottom to be preferred since images at the top are over exposed.
Expected answers were confirmed by an in-lab study [8] prior to the
dataset creation.

the photographic practices based on eminent photographer Ansel
Adams. Finally, we used SemanticTMO by Goswami et al. [26],
which addresses tone mapping as a semantic-aware operation tak-
ing semantic labels and a corresponding specific target luminance
into consideration.

4.3 Experiment Platform & Participants

We used the Prolific platform to recruit observers and to conduct
the subjective experiment [6]. Contrary to other alternatives such
as AMT and Microworkers, which try to make crowdsourcing
platforms more accessible while compromising on ethical con-
cerns and overall quality, Prolific focuses on the researchers’ needs
with a platform that maintains standards of recruitment similar
to a laboratory experiment [27]. Participants are well informed
that they are being recruited for a research study, and recruitment
standards are set to benefit both researchers and participants [28].
Therefore, Prolific eliminates ethical concerns and significantly
increases the collected data reliability.

In a previous study [8], it was shown that, through a PC
experiment design for tone mapped IQA, the difference between
subjective annotations acquired from a laboratory experiment and
from an identical crowdsourced study on Prolific is negligible. The
authors also recommend to have, for each pair, a minimum of fifty
to sixty unique observations in crowdsourcing in order to reach the
same level of certainty acquired through a laboratory experiment
with thirty-five observers. Following these recommendations, we
recruited 3500 unique participants where each participant eval-
uated thirty-three pairs. This allows us to have around seventy
unique observations for each pair in our dataset. The majority of
participants gave consent to share their demographic information.
We have 2311 male participants with a mean age of 28.75 years
and a standard deviation of 9.47. Similarly, we have 1154 female
participants with a mean age of 31.54 years and a standard
deviation of 10.83.

4.4 Rejection Strategies

The following subsections outline the strategies adopted to filter
unreliable observer annotations and motivations behind them.
Consequently, we report the number of rejected spammers based
on each method.

Golden Unit: Golden unit is a filtering technique where a
stimulus is presented for comparison with the preference known



-
V1
Q

-
N
R

Probability of Occurence
o ©
52 52
I I
I N
I O
| N N
I I R
1]

12-21 21-12
Left-Right Vote Distribution

6-27 27-6 33-0

Fig. 7. Probability of occurrence of left-right voting distribution across 33
image pairs. m-n voting distribution denotes the observer prefers the left
image m and the right image n times out of 33 comparisons. The x-axis
provides the voting distributions and the y-axis provides the percentage
of occurrence. Dashed lines represent the limit for rejection.

before the subjective experiment. Participants who provide prefer-
ences different from the prior are considered to be spammers. The
reason for such behavior can be attributed to a lack of attention,
or simply a random selection on the observer’s part.

To select a set of golden units, we conducted a pilot subjective
experiment in a controlled laboratory environment. As a result,
we collected three pairs of tone mapped images where 100% of
the participants provided the same preference. Figure 6 presents
these golden unit pairs used in the experiment with their known
prior preference. Preference towards strongly overexposed images,
displayed in the top row, is considered as an indicator of unreliable
behavior. Three golden units are included in all the fifty playlists of
our experiments. The order of stimuli in each playlist is shuffled to
prevent any bias towards the display order. Forty-nine participants
out of 3500 failed the golden unit check at least once and therefore
were rejected and new participants were recruited.

Vote Position Pattern: Previous studies suggest another be-
havior that can be observed in pairwise comparison experiments
to filter unreliability. We can check for positional bias in terms
of participants submitting preference for an image at the same
position continually during the experiment. Since image positions
are shuffled for each participant, we can calculate the probability
that an observer votes for a fixed position. Figure 7 shows the
probability distribution for each possible left-right vote share over
thirty-three pairs. Orange dashed lines show the threshold for
rejection. It can be observed that either position receiving less
than six votes is statistically highly unlikely, with a probability
of occurring once in 10000 participants. Therefore, among 3500
participants, we rejected thirteen participants who voted less than
Six times on one position.

Voting Speed: Spammers on online platforms tend to optimize
their effort by finishing more tasks and hence minimizing the time
spent on each task. We used the timestamp of observer votes to
identify participants with unusually fast completion time, which
indicates a possible spammer-like behavior, lack of attention, and
probable noisy data. We observed an average time spent per pair
of 4.08 seconds over the whole experiment. We identify 56 out of
3500 participants who completed the task with a median time
of one second per pair, which is far from an expected speed.
Consequently, their pairwise preferences are considered to be
unreliable and not included in the final results.

Rogers-Tanimoto Dissimilarity: Behavioral analysis may re-

TABLE 2
Each cell in the table denotes the percentage of pairs (among 250
total) for which the TMO on the row is significantly better than the TMO
on the column.

KimKautz | Krawczyk | Reinhard | SemTMO
KimKautz - 60% 42% 62%
Krawczyk 19% - 19% 52%
Reinhard 24% 56% - 62%
SemTMO 19% 30% 20% -

veal certain spammer profiles but it is not enough to identify all
types of unreliable behaviors. After filtering unreliable observers
with behavioral methods, statistical measures can be utilized to
further improve the reliability of collected data. The literature
lacks a well-established methodology to statistically measure the
individual observer reliability for PC experiments. We propose a
novel methodology based on Rogers-Tanimoto (RT) dissimilarity.
Details of the approach are given in Section 5.2. It is shown
that the efficiency of RT dissimilarity in measuring inter-observer
agreement decreases with the increasing percentage of spammers
among observers. Therefore, observers who are rejected with
behavioral analysis are omitted from RT dissimilarity analysis.

5 ANALYSIS OF SUBJECTIVE PREFERENCES
5.1 TMO Performances

In this section, we analyze the collected subjective preferences to
evaluate the performance of tone mapping operators in compar-
ison to each other. As previously described, 250 SRCs are tone
mapped with four different TMOs, and each tone mapped image is
compared in a pairwise fashion. Therefore, we can compare each
TMO with the other ones for all compiled HDR contents. Figure 8
presents the result of this evaluation. Each row in the plot contains
250 data points which represent an SRC. It displays the preference
in terms of percentage of observers. Points on the x-axis closer
to one side of the y-axis indicate a higher preference towards
corresponding TMOs on the y-axis. Additionally, the statistical
significance of pairwise preferences is color-coded, as labeled on
the figure. We use Barnard’s Exact Test to estimate the statistical
significance of the difference between pairwise preferences.

As Figure 8 indicates, KimKautzTMO has a higher perfor-
mance compared to the other TMOs evaluated in our experiment.
Reinhard performs the second best, while Krawczyk is slightly
better than SemTMO, as the third-best performer. Additionally,
the number of pairs where one TMO is better/worse than another
is calculated for a quantitative evaluation. Results are presented
in Table 2. Each cell in the table indicates the percentage of
pairs which has a statistically significant preference towards the
TMO on the row in comparison to the TMO on the corresponding
column. Note that the sum of percentages between two TMOs is
not equal to 100% due to pairs with a statistically non-significant
difference (points with yellow color in Figure 8).

5.2

The inter-observer agreement is an important indicator of reliabil-
ity. Although several methodologies have been proposed for inter-
observer agreement and outlier detection in rating experiments
[29], [30], there are not many well-established methodologies for
ranking experiments. Ak et al. [13] showed that inter-observer
agreement in pairwise comparison experiments can be measured
based on Rogers-Tanimoto (RT) dissimilarity measure. A similar

Inter-Observer Agreement
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Fig. 8. Distribution of number of participant preferences for each pairwise comparison. Each data point represents a unique image pair in the
dataset. Black lines indicate the mean values of the preference percentages represented on the horizontal axis. Each data point is color coded
based on the statistical significance test, i.e. significantly better/worse or no significant difference.

variation to such metric, known as Jaccard index [31], has been
developed by Paul Jaccard. We use the Scipy implementation [32]
of RT dissimilarity measure which is defined as follows:

2% (vy)

0T L 2% () @)

where v, is the number of pairs for which two participants
disagree on their pairwise preference, i.e., one selects the left
image over the right one while another observer selects the right
image over the left one, whereas v, is the number of pairs where
both participants agree on their preference. In addition to the
above equation, a weight vector with the same size can be used
to prioritize certain elements. More specifically, we generate the
weights by the following equation to emphasize the effect of pairs
with higher agreement on dissimilarity calculation:

_ |pij - pjil
- n

w, 3
where n is the number of observers who ranked the pair of
images {i,j}. p;; is the number of observers who prefer image
i over image j in pair comparison. Similarly, p;; is the number
of observers who prefer image j over image i in pair comparison.
This allows us to generate weights that are closer to 1 as more
observers agree on the preference among image pair {i,j}, and
closer to 0 as the ambiguity of the pair increases.

Figure 9 shows the distribution of mean RT dissimilarities.
Each point is a unique observer, and their RT dissimilarities are
measured with every other observer in the corresponding playlist
and averaged. Since the ambiguity of image pairs is different in
each playlist, this might affect the agreement among observers.
Therefore, each playlist is represented in a separate column on
the figure. Based on the synthetic spammer profiles described in
[13], we created an expected spammer RT dissimilarity range for
each playlist. For a given playlist, each observer’s RT dissimilarity
distributions are then compared. Observers who have 90% overlap
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Fig. 9. Mean RT dissimilarity values of observers. Lower values of RT
dissimilarity indicates a higher agreement. Observers are grouped on
horizontal axis by their corresponding playlists

with an expected spammer RT dissimilarity range are rejected.
In total, ninety-six observers, represented in magenta color, are
rejected; while valid observers are represented in teal color.

6 PERFORMANCE EVALUATION OF OBJECTIVE
QUALITY METRICS

6.1 Evaluation Criteria

Traditionally, the performance of objective quality metrics has
relied on ground truth MOS which are obtained through subjective
experiments using rating methodology. Correlation between the
MOS and predicted quality scores are computed to evaluate the
performance of objective quality metrics. Methods which map
pairwise preferences into a continuous scale have been proposed in
the literature. Zerman et al. [33] showed that there is a strong linear
relation between pairwise preferences and MOS. However, cross-
content evaluation is required to reduce the content dependency
of mapped pairwise preferences. Cross-content evaluation of tone
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mapped images does not provide any information in terms of
TMO performances. Therefore, cross-content image pairs are not
considered in our subjective experiment. This prevents mapping
pairwise preferences onto a global continuous scale.

Krasula et al. [9] proposed an evaluation model which does not
rely on mapping collected preferences onto a common scale. It also
enables merging multiple datasets while allowing to determine the
statistical significance of performance differences. In Krasula’s
model, the performance evaluation of objective quality metrics
is conducted for two different aspects. Firstly, the area under
the curve (AUC) value is used to determine how well a quality
metric can distinguish between significantly different and similar
pairs. Secondly, objective metrics are evaluated in terms of AUC
and percentage of correct recognition of the qualitatively better
image from a pair. Examples of an ideal distribution of metric
score differences for each scenario are shown in Figure 10. This
allows for an evaluation strategy that is closer to use cases in real
applications. Interested readers are recommended to refer to the
original paper [9] for more details.

6.2 Selected IQA Metrics

Several metrics dedicated to tone mapped image quality and
aesthetic image quality assessment tasks have been collected for
evaluation.

TMQI is a full-reference image quality metric to assess the
quality of tone mapped images [3]. Structural and naturalness
measures are combined to evaluate the quality of a tone mapped
image with respect to the HDR image. It is the state-of-the-art
quality metric for tone mapped image quality assessment.

NIQMC is a no-reference image quality metric developed to
assess the quality of contrast distorted images [34]. It combines
local and global features to generate a quality score. Although
it is not specifically developed for tone mapped image quality
assessment, it has a high correlation with subjective opinions in
aesthetic evaluation tasks.

BTMAQI is a no-reference image quality metric to assess the
quality of tone mapped image by combining eleven features re-
lated to information entropy, statistical naturalness, and structural
preservation [35].

FFTMI is a full-reference tone mapped image quality metric
[23]. It relies on structural similarity, feature naturalness, and
feature similarity between the HDR and tone mapped images.

[ Different Pairs [N Similar Pairs
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Fig. 11. Histograms of each metric for different vs. similar analysis is
presented. AUC values are reported on top right corner of each plot.
Blue colour denotes distribution of different pairs while pink denotes
similar pairs. FFTMI produces the most desirable distribution.

6.3 Pre-processing Subjective Scores

As briefly described in Section 6.1, Krasula’s method relies on the
statistical significance of the differences between a pair of images.
Therefore, we need to determine the statistical significance of the
pairwise preference differences for each image pair. Furthermore,
significantly different pairs are divided into two different groups
as better and worse. This two-step evaluation strategy is highly
comparable to real-life applications.

There are several ways to determine the statistical significance
of the differences between different distributions [36], [37]. It has
been shown that Barnard’s exact test is more powerful than alter-
native statistical tests on 2 X 2 contingency tables [38]. Therefore,
in this work, we use Barnard’s exact test, since pair comparison
results are represented by 2 X 2 matrices.

Since each pair was approximately ranked by seventy ob-
servers, we use the observers’ pairwise preferences to generate the
2 X2 contingency tables. Then, we use Barnard’s test to determine
the significance of the differences. 1154 pairs among the total
1500 are found to be significant with 95% confidence. Significantly
different pairs are further divided into two groups as better (736
pairs), and worse (418 pairs). Better pairs indicate pairs where the
left image is better than the right one, and conversely worse pairs
indicate pairs where the right image is better than the left one.
Although any pair can easily be categorized as better or worse by
swapping their image positions, we used the initial positions while
initialising the dataset.

6.4 Objective IQA Metrics Evaluation Results

We present the results of the objective quality metric evaluations
in two steps: whether objective metrics can tell an image pair has
a qualitative difference (different vs. similar), and if affirmative,
which image has a higher quality (better vs. worse).

6.4.1 Different vs. Similar Analysis

The first analysis in Krasula’s method [9] aims to determine how
good the objective quality metrics are in distinguishing pairs
with and without statistically significant difference. Ideally, the
difference between predicted quality scores should be higher for
image pairs with a statistically significant difference. Krasula
method’s uses the receiver operating characteristic (ROC) analysis
[39] to determine the metrics different-similar classification per-
formances. The performance of each metric is later represented
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Fig. 12. Histograms of metrics for better vs. worse analysis. AUC values
are reported on top right corner of each plot. Blue colour denotes
distribution of better pairs while pink denotes worse pairs. Again, FFTMI
performs better than the other three metrics.

as the AUC, where higher AUC values indicate a greater per-
formance. To measure the statistical significance between metric
performances, Krasula’s method relies on a procedure proposed by
Hanley and McNeil [40]. It calculates a critical ratio c,, between
the AUC of objective quality metrics, and statistical significance is
estimated as the cumulative distribution function of c,,. Interested
readers are recommended to refer to the original paper [9] for more
details.

Result of the different vs. similar analysis can be visualized
on a histogram of metric score differences. Ideally, different
pairs should be distributed away from O metric score difference,
while similar pairs should be concentrated around 0 metric score
difference. Figure 11 presents the results of the histogram of metric
score difference for different and similar pairs. For each plot,
blue color represents different pairs while pink color represents
similar pairs. By analyzing the histograms, we can observe that
FFTMI provides the most desirable distribution among the four,
although far from ideal. Note that metric score differences increase
from left to right for each plot. AUC values for each metric
are reported on the top right corner of the plots. By comparing
AUC values, we can observe that TMQI, NIQMC, and BTMQI
provide similar and low performance on classifying different and
similar pairs. Although FFTMI performs better than the other three
metrics, there is still room for improvement. Statistical test results
suggest that FFTMI significantly outperforms the other metrics in
different vs. similar classification scenarios. It is also observed that
performance differences between TMQI, NIQMC, and BTMQI are
not statistically significant.

6.4.2 Better vs. Worse Analysis

After measuring the performance of metrics on identifying differ-
ent and similar pairs, we aim to determine whether the metrics
are able the recognize the image with higher preference in a pair.
We divide different pairs into two groups as better and worse.
The metric scores distribution can be visualized similarly to the
previous analysis, with AUC values to quantify the performance
differences among evaluated metrics. To statistically compare the
metric performances in terms of AUC, we rely on the same
methodology described in Section 6.4.1. Additionally, a more
straightforward way of evaluation is to measure the percentage of
correct classifications of better and worse pairs for each metric.
In other words, we can check how many times an objective
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quality metric correctly recognizes the higher quality tone mapped
image for each pair in the dataset. To statistically compare the
correct classification performance of the metrics, the Krasula
method relies on Fisher’s exact test [37]. Interested readers are
recommended to refer to the original paper [9] for more details
about the evaluation procedure.

Figure 12 presents the histogram of metric score differences
along with the AUC values. We can observe from the AUC
values that FFTMI performs significantly better than the others.
Distribution of the FFTMI score differences for better and worse
pairs are closer to the desired distribution in comparison to the
distribution of other metrics’ score differences. We can see that
the metric score differences for worse pairs are mostly located
on negative values, while better pairs are on the positive side.
TMQI, NIQMC, and BTMQI fail to provide a similar distinction
between better and worse pairs as numerically represented by the
AUC values. In terms of the percentages of correct classification
of better and worse groups, we observe a similar outcome. Per-
centages of correct classifications are 58%, 61%, 56%, and 72%
for TMQI, NIQMC, BTMQI, and FFTMI respectively. Statistical
analysis with Fisher’s exact test suggests that FFTMI performs
significantly better than the other three metrics. NIQMC also
performs significantly better than TMQI and BTMQI, whereas
there is no statistically significant difference between TMQI and
BTMQI performances.

7 DIScUSSION & CONCLUSION

As discussed previously, it is easier and more natural for partici-
pants to compare the quality of two images than to assign a quality
score to each image individually. Despite the advantages of pair-
wise comparison over rating tasks, metric development often relies
on MOS scores. A method has been proposed to acquire MOS
from pairwise preferences [33]. The authors conducted a series of
experiments to acquire MOS scores from pairwise preferences and
suggest including cross-content comparisons into the experiment
to properly scale each image into a global quality scale. However,
it is not useful to include cross-content comparisons in many use
cases such as ours.

To develop objective IQA models directly on pairwise prefer-
ences, alternative objective functions might be incorporated into
training. Prashnani et al. used a modified Bradley Terry (BT) [41]
model as an objective function to train a deep learning model
on probabilistic pairwise preference data [42]. During training,
the model predicts quality scores for each image and pairwise
preference probabilities are calculated from the predicted scores
with modified BT. After training, the model is able to predict
quality scores for individual image (in comparison to a pristine
reference image).

To the best of our knowledge, current tone mapped IQA
metrics are often developed with handcrafted features as can be
seen in the evaluated metrics. Despite the advancement of learning
based algorithms, due to lack of publicly available datasets, there
are not well established tone mapped IQA metrics in the literature.
In comparison to previous works, as presented in Table 1, we
propose the largest publicly available dataset and allowing research
community to build upon. We believe that, by providing the largest
publicly available tone mapped IQA dataset (RV-TMO), we open
a new route for researchers to develop tone mapped IQA metrics.
Thanks to the proposed content selection strategy, we ensured



a well distributed ambiguity in tone mapped image pairs which
learning-based algorithms can benefit from.

We conducted a large-scale experiment on tone mapped im-
age quality evaluation via crowdsourcing. To the best of our
knowledge, this is the largest publicly available TMO evaluation
dataset: 250 unique HDR images used to generate 1000 tone
mapped images which provide 1500 pair comparisons. 3500
observers participated in the subjective experiment where each
pair was evaluated by approximately seventy unique observers.
Four state-of-the-art TMO performances were evaluated, where
KimKautzTMO [20] was preferred most often. ReinhardTMO [22]
performed the second best while KrawczykTMO [21] came in
third place, performing slightly better than the SemTMO [26] in
fourth.

Moreover, we developed a content selection strategy to select
representative and challenging HDR crops from high-resolution
HDR images. We further developed an objective quality metric
based clustering method to balance the ambiguity of the pairs
in the experiment. It is crucial to have such balance to develop
new metrics, specifically for machine learning-based models. To
the best of our knowledge, there is a lack of a well-established
methodology for observer reliability for pairwise experiments. In
addition to behavioral tools used for the observer analysis, we
proposed a novel approach to statistically evaluate the observer
reliability for pairwise experiments.

Finally, we provide a benchmark for well-known tone mapped
image quality metrics based on Krasula’s method [9]. We dis-
cussed how to utilize collected data to develop novel objective
quality metrics, and how to benchmark existing metrics. Collected
pairwise preferences, tone mapped images used in the experiment,
HDR images used for tone mapping, and scripts are made publicly
available to aid further research.
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