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In structural engineering, the search for computational models capable of making realistic predictions capturing varied physical phenomena while maintaining simplicity and reliability has gained wide attention of the scientific community. Some outcomes of this effort are the finite element model updating techniques, which consists of using inverse analysis to find realistic values for the set of input parameters. The Modified Constitutive Relation Error (MCRE) has proved to be efficient for model updating in many engineering applications. The central idea of this technique is to formulate parameter identification as a well-posed optimization problem. In general, for each new MCRE application, new formulations need to be deduced and implemented. Despite the specifics of each case, there are standard features that can be abstracted and placed in a single framework. In the present work, we abstract and materialize those features into a new computational framework using Cast3M (an open-source high-level toolbox for finite elements computation).

Using typical examples from structural engineering, we test the framework's efficiency and highlight its limitations. The results show that the proposed open-source code allows the identification of physical parameters for finite element models, such as stiffness, as long as physical and geometric linearity conditions remain valid. In addition, elastic inter-element interfaces can be included without significant changes. The benefits of the present study are twofold: (i) source codes are made available and can be used as learning support, in particular for newcomers, and (ii), it can be used as a starting point for new developments in the field of MCRE-based approaches.

Introduction

Modelling and simulation of structural systems are crucial activities in modern engineering and science for several reasons. For instance, at the design stage, engineers can answer particular questions about structures that

have not yet come into existence. In the construction phase, these activities allow engineers to plan and execute each step to optimize costs and gain productivity. In the service phase, the same activities provide information on the instantaneous functioning of the system and thus make the decisionmaking process feasible. In scientific investigations, it has become common to use modelling techniques to study new phenomena in different areas of knowledge [START_REF] Calder | Computational modelling for decision-making: where, why, what, who and how[END_REF]. Modelling and simulation activities have gained such prominence along the last century that they are currently attributed the title of the third pillar of science, alongside theory and experimentation [START_REF] Farge | Numerical experimentation: A third way to study nature[END_REF].

Among the various specialities present in modelling activities, one is of particular interest for the present work, namely, the verification. This speciality is dedicated to checking if the results predicted by the models correspond to observations. Ideally, the closer to reality, the more reliable the model becomes. However, in usual-life situations, accurately predicting the behaviour of structural systems is not self-evident. A new technique, called model updating or parameter identification, has emerged over the past few decades in the quest for better predictions. This technique determines which set of input parameters is most appropriate so that the corresponding model approaches reference measures in a particular scenario. The advantage is once these parameters are identified, structural predictions may perform better in scenarios other than those used to make the identification.

The literature presents various techniques capable of updating finite element models [START_REF] Friswell | Finite element model updating in structural dynamics[END_REF][START_REF] Zárate | Finite element model updating: Multiple alternatives[END_REF]. These techniques may be understood according to two classes: in the direct techniques, the model parameters are identified relying primarily on linear algebra principles [START_REF] Yang | A new direct method for updating structural models based on measured modal data[END_REF][START_REF] Girardi | Finite element model updating for structural applications[END_REF]; on the other hand, in the indirect or parametric techniques, the model parameters are identified using consistent mechanical quantities [START_REF] Brownjohn | Assessment of highway bridge upgrading by dynamic testing and finite-element model updating[END_REF][START_REF] Mottershead | The sensitivity method in finite element model updating: A tutorial[END_REF]. The latter is best indicated when the input parameter of interest represents a physical quantity, such as stiffness or mass. The technique employed in the present study relies on the formalism of the Constitutive Relation Error (CRE) theory and belongs to the class of indirect methods.

The CRE formulation was initially proposed to estimate errors in finite dimension spaces [START_REF] Ladeveze | Error estimate procedure in the finite element method and applications[END_REF]. Soon after, its augmented version, namely the MCRE (Modified Constitutive Relation Error), was successfully applied in finite element model updating [START_REF] Ladevèze | Updating of finite element models using vibration tests[END_REF]. Since then, MCRE-based techniques have been refined and expanded to different engineering fields, including, but not limited to, mechanical engineering [START_REF] Ladevèze | The constitutive relation error method: A general verification tool[END_REF], acoustics [START_REF] Decouvreur | Updating 2d acoustic models with the constitutive relation error method[END_REF], automotive industry [START_REF] Decouvreur | Updating 3d acoustic models with the constitutive relation error method: A two-stage approach for absorbing material characterization[END_REF],

aerospace structures [START_REF] Barthe | Validation and updating of industrial models based on the constitutive relation error[END_REF][START_REF] Charbonnel | A robust cre-based approach for model updating using in situ measurements[END_REF], topology optimization [START_REF] Sanders | An error-in-constitutive equations strategy for topology optimization for frequency-domain dynamics[END_REF] and civil engineering [START_REF] Djatouti | Coupling a goaloriented inverse method and proper generalized decomposition for fast and robust prediction of quantities of interest in building thermal problems[END_REF][START_REF] Hu | Extended constitutive relation error-based approach: The role of mass in damage detection[END_REF][START_REF] Oliveira | Wall-slab joint parameter identification of a reinforced concrete structure using possibly corrupted modal data[END_REF][START_REF] Oliveira | Constitutive relation error formalism applied to the solution of inverse problems using the bem[END_REF]. It is worth mentioning that inherent uncertainties can also be considered in model updating [START_REF] Jin | Model updating based on mixed-integer nonlinear programming under model-form uncertainty in finite element model[END_REF][START_REF] Diaz | Robust energy-based model updating framework for random processes in dynamics: application to shaking-table experiments[END_REF][START_REF] Oliveira | Numerical study based on the constitutive relation error for identifying semi-rigid joint parameters between planar structural elements[END_REF].

In modern research involving computational mechanics, the open/collaborative coding approach has increasingly gained ground in academia and industry. The joint effort of several collaborators worldwide has ensured the development of multiobjective numerical platforms such as MFEM [START_REF] Anderson | Mfem: a modular finite element methods library[END_REF],

FEniCS [START_REF] Alnaes | The fenics project version 1.5[END_REF], FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF], deal.II [START_REF] Arndt | The deal. ii library, version 9.3[END_REF], Cast3M [START_REF] Verpeaux | A modern approach of large computer codes for structural analysis[END_REF][START_REF]CEA, Cast3m website[END_REF], OpenFOAM Cast3M, which is a general-purpose code for solving partial differential equations using the finite element method. Cast3M is distinguished from other finite element toolboxes by its intuitive lexicon and syntax, providing users with a fast learning tool. This toolbox is developed and made available by the French Atomic Energy Commission (CEA) , used in industry, research, and education [START_REF] Guerin | Cast3m modelling of dynamic experiments on pwr high burn-up fuel rods equivalent fuel rod modelling approach validation[END_REF][START_REF] Bary | Analytical and 3d numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces[END_REF][START_REF] Richard | Castlab: an object-oriented finite element toolbox within the matlab environment for educational and research purposes in computational solid mechanics[END_REF][START_REF] Chougrani | Parts internal structure definition using non-uniform patterned lattice optimization for mass reduction in additive manufacturing[END_REF].

The proposed framework can be helpful to users at different levels. Newcomers to the finite element model updating field may find helpful information in the resulting sources codes once they are fully provided with considerable commented sections. They may be used in extended studies in structural analysis where engineers may be assigned to do extensions such as multiple load-cases, distinct cost functions and structural parameters. Further possibilities include using the codes as a starting point for more complex FE 

Formulating the identification problem

The reference problem on the MCRE formalism

Let a structure be represented by Ω ⊂ R 3 , with boundary, ∂Ω. The structural outer surface is divided into three parts. Parts one and two are regions where the interaction between the structure and the environment occurs: kinematic constraints u on a part ∂ 1 Ω and traction forces q on ∂ 2 Ω.

The third part, Γ, is the region among sub-domains of the structure so that

∂ 1 Ω ∪ ∂ 2 Ω ∪ Γ = ∂Ω.
The situation is illustrated in Figure 1. Assuming that the entire domain follows the principles of mechanics, we are interested in identifying the structural elastic properties.

The first key aspect in formulations that follow the CRE prerogatives is separating governing equations into two sets: the reliable set includes all equations that must be strictly respected, and the unreliable set includes only the equations susceptible to be doubtful. The division of these sets is not unique, and it is up to the analyst to make the most appropriate choice for the case to be dealt with. In the present study, the following separations are made.

Reliable equations set:

Kinematic boundary conditions.

u ∂ 1 Ω = u (1) 
Dynamic equilibrium.

Ω ρü • u * dΩ i + Ω σ : ε * dΩ = Ω b • u * dΩ i + + ∂ 2 Ω σn • u * i d∂Ω (2) 
Force boundary conditions.

σn

∂ 2 Ω = q (3) 
2. Unreliable equations set:

Constitutive relation.

f (σ, ε(u)) = σ -C(θ) : ε (4) 
Collected measures. r(u, ũ) = uũ [START_REF] Yang | A new direct method for updating structural models based on measured modal data[END_REF] with C the Hookean stiffness operator specified by the material properties stored at θ, u is the displacement vector, σ the stress tensor, ε is the infinitesimal strain tensor, ρ the mass density, ũ represents the collected measures.

The unreliable quantities are the constitutive relation since they may not be representative enough of the real behaviour, and the measurements because they carry errors with them. Then, the identification problem can be formulated by comparing the results predicted by the model and the experimental data. The reliable set is used to build the kinematic and static admissible spaces:

U = {u ∈ H 1 (Ω) : u ∂ 1 Ω = u} (6) 
D = {σ ∈ H div (Ω) : Equation (2) holds, σn ∂ 2 Ω = q} (7) 
The second key aspect in CRE-based formulations is to relate the unreliable quantities so that they are verified as well as possible. One alternative is by minimizing a functional comprising the terms considered uncertain. Here, this functional is written as follows:

J(u, σ, θ) = Ω (σ -C(θ)ε) : C -1 (σ -C(θ)ε)dΩ + r 2(1 -r) ||u -ũ|| (8) 
The role played by the parameter r ∈ (0, 1) is twofold. It makes the scale order compatibility between the quantities involved and controls the importance given to the experimental measures within the functional.

Then, the parameter identification problem is written as:

Find (u, σ, θ) that minimizes J(u, σ, θ) Such that (u, σ) ∈ U × D (9) 
Rather than express the entire problem at once, it is convenient to write it down into two steps as follows:

min u,σ,θ J(u, σ, θ) ⇐⇒ min θ min u,σ J(u, σ, θ) (10) 
In practice, this choice simplifies the formulation that can be solved in two sequential steps. First, the pair of admissible fields optimally fit the fixedparameter set θ is obtained. Then, an identification process is performed based on these admissible fields.

Obtaining mechanical admissible fields

For a given θ, the mechanical admissible fields are obtained by:

min J 1 (u, σ) + J 2 (u) s.t. u ∈ U and σ ∈ D (11) 
where,

J 1 (u, σ) = 1 2 Ω (σ -Cε) : C -1 (σ -Cε)dΩ (12) 
J 2 (u) = r 2(1 -r) ||u -ũ|| (13) 
The functional J 1 expresses the disparity of the stiffness properties, whereas J 2 represents a deviation from the experimental measures. The minimization of J = J 1 + J 2 allows verifying the unreliable equations as best as possible.

Thus, all the available data are used to build the desired mechanical fields.

Identifying the optimal parameters

To each θ, it is necessary to associate a non-negative scalar that represents its quality level. Here, we use the same functional J, with the particularity that its value is calculated from the fields previously obtained (Equation ( 11)). In other terms:

F (θ) = J(u(θ), σ(θ)) (14) 
With this definition, the lower the value of F , the better θ becomes.

Then, the identification problem consists in finding the best parameters θ * for the model by minimizing the cost function F :

θ * = argmin θ F (θ) (15) 

Algebraic description of the problem

The equations will be solved using the displacement-based finite element method (FEM) in this study. This choice does not represent any difficulty because the admissible stress field can be associated with an admissible displacement field, as follows:

σ(v) = Cε(v) (16) 
Considering the FEM formalism, the set of displacements fields can be written as:

u(x) = N(x)U, v(x) = N(x)V ( 17 
)
where N(x) is the shape functions matrix, U and V are unknown nodal displacements associated to u and v. Then, equation ( 12) can be written as:

J 1 (U, V) = 1 2 (V -U) T P(V -U) ( 18 
)
where P is the stiffness matrix corresponding to the region to be identified, including interfaces considered to be elastic. Let Π be a projector operator to assure the spatial correspondence between U and Ũ. Then, the experimental counterpart ||u -ũ|| can be defined in a quadratic form such as:

J 2 (U, Ũ) = r 2(1 -r) ( ΠU -Ũ) T G u ( ΠU -Ũ) ( 19 
)
where G u carries the stiffness terms related to the nodes where the measurements have been taken.

The identification is based on the free-vibration modes of the structure.

These modes can be estimated under the assumption of sinusoidal time functions: u(x, t) = U (x)sin(ωt), v(x, t) = V (x)sin(ωt). In this cases, equation

(2) becomes:

KV -ω 2 MU = F ( 20 
)
where ω is the structural vibration frequency and F is the external excitation force. For free-vibration problems, F = 0.

The search for admissible mechanical fields can be written as a constrained optimization problem. Introducing the Lagrange multipliers, λ, the quantity to be minimized is defined as:

L(V, U, λ) = 1 2 (V -U) T P(V -U) + r 2(1 -r) ( ΠU -Ũ) T G u ( ΠU -Ũ) + λ T (KV -ω 2 MU) (21) 
For a fixed θ, the stationarity is achieved when:

∂L ∂U = P(U -V) + r (1 -r) ΠT G u ( ΠU -Ũ) -ω 2 Mλ = 0 ( 22 
)
∂L ∂V = P(U -V) -Kλ ( 23 
)
∂L ∂λ = KV -ω 2 MU = 0 ( 24 
)
These equations can be written as a linear system:

[A]X = Y (25)
where,

[A] =    P r (1 -r) ΠT G u Π -ω 2 M P 0 -K -K K -ω 2 M 0    (26) X =    U -V U λ    (27) Y =    ΠT G u Ũ 0 0    (28)
The same function was used to define both the admissible field search and the identification problem. This implies the direct access to the gradient of function ( 14), as follows:

F (θ) = L(U(θ), V(θ), λ(θ), θ) (29) 
From the stationarity of L, it comes:

∂F ∂θ = ∂L ∂U =0 ∂U ∂θ + ∂L ∂V =0 ∂V ∂θ + ∂L ∂λ =0 ∂λ ∂θ + ∂L ∂θ (30) 
∂F ∂θ = ∂L ∂θ = 1 2 (V -U) T ∂P ∂θ (V -U) + λ T ∂K ∂θ V (31) 
This expression can be used to construct minimum search algorithms based on gradients.

3. Proposing the algorithm to solve the problem

Initiate model

In this step, the initial information that usually defines a finite element model should be provided, such as the geometric support of the structure, the finite element discretization (mesh) and the set of boundary conditions.

It is also necessary to provide the set of measures that will be used as a reference for the identification process. Such measures are usually obtained in two ways: through previous numerical simulations of the structure in a reference state (synthetic measurements) or direct measurements on physical structures in controlled locations, laboratories, or exposed to the environment (experimental measurements).

Distinct objective functions can be defined as a function of the reference quantities (e.g. [START_REF] Diaz | Robust energy-based model updating framework for random processes in dynamics: application to shaking-table experiments[END_REF][START_REF] Marchand | Parameter identification and model updating in the context of nonlinear mechanical behaviors using a unified formulation of the modified constitutive relation error concept[END_REF]). In the present work, the reference quantities are the vibration modes of the structure obtained synthetically using a dedicated FEM module (more details in Section 4).

Initiate parameter set

This step consists in choosing the initial values for the set of parameters that will be identified. Since the identification process is based on a Newtontype gradient method, the initial values influence the amount of iterations that will be necessary to obtain convergence. To improve efficiency, the analyst can benefit from previous information that one has about the structure, such as parameters obtained from preceding simulations, estimates based on empirical knowledge, statistics data and even engineering heuristics. It is worth noting that the correct value of the parameter will be provided by the algorithm at the end of the identification process. For this reason, at this stage, the analyst may privilege obtaining reasonable orders of magnitude for the initial values instead of precise estimates.

The choice of the parameters to be identified depends on the studied scenario. For example, it is known that in a given structure, zones of eventual damage are accompanied by local losses of stiffness. Thus, a correlation between these two characteristics can be established for model identification purposes. In the present study, the stiffness (linear or angular) is chosen as the parameter to be identified. This choice does not imply loss of generality since CRE theory allows much more general choices for different constitutive models [START_REF] Decouvreur | Updating 3d acoustic models with the constitutive relation error method: A two-stage approach for absorbing material characterization[END_REF][START_REF] Gouttebroze | Multiple model updating using the finite element method over a polynomial algebra[END_REF].

Calculate admissible fields

From a known set of material parameters, the corresponding admissible nodal fields (U, V, λ) are determined by solving equation ( 25). This linear system is three times the size of the classic finite element problem. This can limit problems with a high number of degrees of freedom, particularly in three-dimensional industrial models. However, it should be noted that, for identification purposes, a reduced number of finite elements can be used efficiently. There is also the possibility of model reduction, using modal projections, among other techniques, that reduce the order of the linear system to be solved. Here, for the sake of simplicity in coding, it is used the full version of equation ( 25).

Calculate global MCRE

The global MCRE is obtained from equations ( 18) and ( 19) such as:

J(U, V, Ũ) = J 1 (U, V) + J 2 (U, Ũ) (32) 
The result is a scalar quantity necessary for the convergence test.

Convergence criterion

There are two convergence tests immediately available. The first one assumes convergence is achieved whenever:

J(U, V, Ũ) < ξ 1 (33) 
The second assumes convergence is achieved when no improvement is observed for a limited number of consecutive iterations (5 in our tests), that is:

||J i (U, V, Ũ) -J i-1 (U, V, Ũ)||< ξ 2 (34) 
where ξ 1 and ξ 2 are small positive values. The most appropriate choice may depend on the case handled by the analyst.

Calculate CRE field

In practical applications, for the sake of efficiency, it may be beneficial not to update all stiffness parameters simultaneously. When the region to be identified is not known a priori, a simple strategy can be drawn based on equation [START_REF] Hu | Extended constitutive relation error-based approach: The role of mass in damage detection[END_REF]. It carries the information about how well the material parameters of the model correspond to reality. So, the structure can be divided into sub-regions, and the quantity of J 1 for each of them can be obtained.

Using relative comparisons, regions with higher modelling errors will indicate higher values of J 1 , and therefore they should have their parameters updated first. Suppose that n sub-regions were defined for the calculation of J 1 . In this case, the indicator β is written as:

β j = J 1 (U, V) j n j=1 J(U, V) j (35) 
The higher the value of this indicator, the greater the participation of the corresponding region in the global error, and consequently, it should receive priority for updating. This strategy can be automated to work adaptively.

Update material parameters

The regions selected in the previous step will have their material parameters updated. From a set of known values θ i , one attempts to determine an improved set θ i+1 . There are different ways available for this purpose, such as Newton or BFGS method. Here, we use a simple steepest gradient, such that;

Compute ∇θ from equation (31)

Compute s solving min

s F (θ -s∇θ) (37) 
∆θ i+1 = -s∇θ (38) 
θ i+1 = θ i + ∆θ i+1 (39) 
The flowchart in Figure 2 shows how these tasks are arranged. This framework can be implemented using any FEM purpose language. Here, Gibiane version 2020 was chosen for all applications [START_REF]CEA, Cast3m website[END_REF]. 

Cast3M implementation

Four modules were designed to facilitate the application and expansion of the proposed framework. These modules, specified through independent Gibiane files, contain information related to geometry, models and materials, reference measures, and model updating core processing. For each application, these files must be filled in with the correspondent information and then executed separately in order to produce their outputs. The communication between the different modules is done via writing and reading commands (SAUV, REST), as shown in Figure 3. The regions of the model that will be updated and those that will not must be adequately identified. As an illustration, consider a structure consisting of three pillars, three metres long each, aligned along the z-direction. Suppose we want to update only two of the three pillars (L1, L2). In this case, Figure 4 shows how the geometry file would be filled. Dedicated procedures and other external subroutines calls can be used inside this module for more complex geometries.

Material and Model

In this module, it is necessary to inform the constitutive models and the kinematic hypotheses involved (beam, plate, shell, etc.), as well as the necessary characteristics of each one. As previously stated, only geometrically linear elastic models should be considered.

other numerical simulations. It is worth mentioning that the analyst should be careful about the boundary conditions because they directly influence the physical parameter to be identified, in particular within a low-frequency spectrum.

In the case of the pillar model, assuming a sinusoidal shape for the first vibration mode and a frequency of 0.83Hz, Figure 6 In the case the reference modes come from experiments, the data must be organized in the form CHPOINT before being stored in the reference table.

Model Updating Processing

The three previous modules serve to organize the information in a structured manner so that the processing module can be carried out appropriately.

The present module corresponds to the implementation of the tasks shown in Figure 2, which requires the use of two three auxiliary procedures, which are described below.

Procedure: CALCMCRE

This procedure takes as input the reference measures, geometry, model and material properties and calculates the admissible nodal fields (Equation ( 25)).

Procedure: CALCGRAD

This procedure takes the admissible fields and current material properties as input and provides the calculation of the gradient of the quantities to be updated (Equation ( 31)).

Procedure: BLOQDIR

This procedure is used to impose the boundary conditions on the admissible fields before the linear system solution in CALCMCRE. Here we have opted for the penalization method so that the standard algorithm for solving systems of equations, available in Cast3M, can be used directly. However, other ways, such as Lagrange multipliers, are possible. In this case, attention should be paid to possible conflicts in managing internal software indexes.

Numerical examples

In this Section, typical examples from the engineering field illustrate how the framework discussed in the previous sections is helpful. The corresponding source codes were implemented in Gibiane language (Version 2020) and can be found on the publisher's website.

Revealing poorly modelled regions

One of the valuable features of the proposed framework is the ability to indicate poorly modelled regions, regions in which the values of material properties (such as stiffness) are far from their reference values. To illustrate this ability, we use the Mottershead beam [START_REF] Friswell | Finite element model updating in structural dynamics[END_REF] with the following reference parameters: L = 0.7m, EI = 4560N m 2 , ρ = 2860kg/m 3 , k r = 1.0 × 10 5 N m/rad (angular stiffness) and k t = 4.0 × 10 7 N/m (translational stiffness). The discrete model was divided into eleven regions, being ten elementary regions, each containing three finite elements, and an interface region where the boundary conditions are specified. The scenario is depicted in Figure 7. Comparing the relative contribution of each region, it is possible to notice that region 7 has a β index around 0.97 for the first three modes of vibration. This information can be used to produce a more efficient identification algorithm because instead of identifying parameters of the structure as a whole, this procedure can be carried out by sub-zones, following the highest β values until global convergence is achieved.

Then, the test is repeated twice more. Firstly, the damage (50% of stiffness) is included in region 3. Then, the damage is additionally present in regions 1, 5 and 9. Figures 9 and10 show the new distribution of β for each case. We observe that the prominence in the relative contribution corresponds precisely where the defects are. However, note that the β levels do not remain the same for the different vibration modes. For instance, according to Figure 9, region 3 affects the first vibration mode much more than region 7. This information can be useful in designing real-life experiments, as it is possible to know in advance which mode of vibration must be mobilized to update the parameters of a particular region of the structure.

These tests show that the framework has a capacity to distinguish between well and poorly modelled zones in the constitutive relation error sense. 

Uni-parametric identification (beam-plate structure)

The typology of the present application is recurrent in the literature, being very useful in studying structural elements and their connections [START_REF] Hu | Extended constitutive relation error-based approach: The role of mass in damage detection[END_REF].

Here, we are interested in identifying Young's modulus of the slabs in a threestorey building structure. Each slab is 4 m × 4 m area and 0.15 m thickness.

The cross-section is 40 cm×40 cm for pillars and 20 cm×50 cm for the beams.

The material properties of pillars and beams are: Young modulus 32 GP a, Poisson's ratio 0.2 and mass density 2500 kg/m 3 . The material properties are assumed the same for all slabs, making the problem a uni-parametric identification. The inter-floor distance is 3 m. In Figure 11, it is shown a three-dimensional view of the building and also the finite element model used. The first three vibration modes used as reference are shown in Figure 12.

They were obtained via forward analysis, assuming that slabs have the same material parameters as the columns and beams. This test permits observing that, in the absence of noise, the framework can find the correct value of the parameter sought even when the initial estimate is far from the reference. This property is desirable in numerical applications, as it helps to maintain good stability and convergence characteristics.

Multi-parametric identification (shell structure)

In this last application, one is interested in the behaviour of the framework when several parameters must be identified at the same time. For this end, it is proposed the identification of multiple stiffness parameters of a cooling tower. For sake of simplicity, only the shell structure is considered (adapted from [START_REF] Yu | Collapse mechanism of reinforced concrete superlarge cooling towers subjected to strong winds[END_REF]). Similarly to the first application, the tower is subdivided into five regions with their own material and geometric characteristics. The schematic scenario is illustrated in Figure 14 The parameters chosen to be identified are the Young moduli of regions 2, 3, 4 and 5. The initial values setting are: θ 0 = {16, 48, 16, 16} GP a. The convergence history for the four chosen parameters can be seen in Figure 16.

It is possible to notice that the convergence rate for each parameter is not the same. As the input data does not suffer any type of noise, all parameters could be identified correctly. In real-world scenarios, parameters with a low convergence rate can be drastically affected by uncertainties, and therefore filtering techniques may be helpful and can be coupled in the framework without major changes.

The value of the parameters is calculated based on the gradient method.

However, the convergence curve shows that second-order algorithms such as BFGS can improve performance, which can also be implemented in the present framework. What is pertinent to note from this test is that the framework, in the absence of measurement noise, is able to identify target parameters with high precision, even if they have low convergence rates or have vague initial estimates.

Concluding remarks

The present study dealt with the finite element model identification technique based on Modified Constitutive Relation Error. This technique was used to design an open-source framework that identifies physical parameters, such as stiffness, in typical structural engineering situations. The framework was tested in representative scenarios of engineering practice in the absence of noise, and in all cases studied, it was able to identify the parameters sought accurately.

The results presented in this paper are far from exhaustive, and we do not have this intention either. We prefer to limit ourselves to proposing to The framework was developed in a modular way and is, therefore, able to accommodate new functions and behaviours without significant changes. An immediate extension would be the insertion of the effects of uncertainties or physical nonlinearities. It is also possible to extend the present framework to contemplate the cases of experiment design, in which the position and quantity of sensors can be obtained even before starting the tests.

We believe that the present framework can be helpful to the model updating community, both for a deeper study of the formulation properties and for its expansion.
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 30 , among others. Despite the remarkable advances in this field, opensource MCRE-based computer frameworks are still rare. The consequence is that each time a user wants to use an MCRE-based technique, a new code must be created starting from scratch. To address this need, in the present work, we propose an abstraction of the essential elements related to usual MCRE techniques and materialize them in an open-source framework. The input data is formed by a finite set of eigenfrequencies and corresponding modal shapes. The constitutive material is assumed linear-elastic. All implementations are carried out into
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 1 Figure 1: Solid associated to identification process. For this case, Ω 1 ∪ Ω 2 = Ω and ∂ 1 Ω ∪ ∂ 2 Ω ∪ Γ = ∂Ω.
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 2 Figure 2: Task sequence for solving the identification problem.
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 14 Figure 4: Illustration: three-pillar geometry definition.
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 6 Figure 6: Illustration: defining the first reference mode and frequency for the three pillar model.
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 7 Figure 7: Beam geometry and boundary conditions.

Figure 8 :

 8 Figure 8: Contribution of each structural region to compose the global CRE, considering the first three mode shapes. Compared to the other regions, the prominence of the contribution shown by region seven indicates that it is poorly modelled.
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 9 Figure 9: Contribution of each region of the structure to compose the global CRE, considering the first three modes. The prominence showed by regions 3, and 7 indicate they are being poorly modelled compared to the others.

Figure 10 :

 10 Figure 10: Contribution of each region of the structure to compose the global CRE, considering the first three modes. The prominence is shown by regions 1, 3, 5, 7 and 9; corresponding to the zones where damage is located.

Figure 11 :

 11 Figure 11: Building structure. (a) Three-dimensional representation. (b) Structural model composed of beams and plates.

Figure 12 :

 12 Figure 12: Building reference vibration modes: (a) Mode I, 4.34 Hz, (b) Mode II, 6.31 Hz, (c) Mode III, 14.24 Hz.

Figure 13 :

 13 Figure 13: Identification of slabs stiffness. The searched parameter is identified when the MCRE value tends to zero.

  . The regions high are H 1 = 14.43 m, H 2 = 14.43 m, H 3 = 157.50 m, H 4 = 43.80 m and H 5 = 6.80 m. The thickness of each region is t 1 = 1.50 m, t 2 = 1.50 m, t 3 = 1.50 m, t 4 = 1.40 m and t 5 = 1.0 m. The diameters are φ 1 = 176.56 m, φ 2 = 165.80 m, φ 3 = 156.04 m, φ 4 = 107.30 m, φ 5 = 113.26 m and φ 6 = 114.18 m. The base is prevented from moving in each of the three Cartesian directions.
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 1415 Figure 14: Cooling tower model (adapted from [37]).

Figure 16 :

 16 Figure 16: Cooling tower stiffness identification. The searched parameter corresponding to each region is identified when the MCRE value tends to zero.

  the community of scientists and engineers an open-source code that can be used for educational and research purposes. Newcomers to the finite element model updating field can use the proposed framework to gain insights into the domain. Also, they can use the provided codes as starting points for other specific activities. Researchers may use the framework either to change it according to their needs or as a black-box subroutine for complementary codes.
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As in the case of geometry, each region that will be updated, and those that will not, must be adequately identified. In the example of the three pillars, the proper way to fill out this file is the way indicated in Figure 5. 

Reference Measures

In this module, information on the reference measures (frequencies and mode shapes) should be provided. They can be obtained from experiments or