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Abstract

In structural engineering, the search for computational models capable of
making realistic predictions capturing varied physical phenomena while main-
taining simplicity and reliability has gained wide attention of the scientific
community. Some outcomes of this effort are the finite element model updat-
ing techniques, which consists of using inverse analysis to find realistic values
for the set of input parameters. The Modified Constitutive Relation Error
(MCRE) has proved to be efficient for model updating in many engineering
applications. The central idea of this technique is to formulate parameter
identification as a well-posed optimization problem. In general, for each new
MCRE application, new formulations need to be deduced and implemented.
Despite the specifics of each case, there are standard features that can be ab-
stracted and placed in a single framework. In the present work, we abstract
and materialize those features into a new computational framework using
Cast3M (an open-source high-level toolbox for finite elements computation).
Using typical examples from structural engineering, we test the framework’s
efficiency and highlight its limitations. The results show that the proposed
open-source code allows the identification of physical parameters for finite
element models, such as stiffness, as long as physical and geometric linearity
conditions remain valid. In addition, elastic inter-element interfaces can be
included without significant changes. The benefits of the present study are
twofold: (i) source codes are made available and can be used as learning
support, in particular for newcomers, and (ii), it can be used as a starting
point for new developments in the field of MCRE-based approaches.
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1. Introduction1

Modelling and simulation of structural systems are crucial activities in2

modern engineering and science for several reasons. For instance, at the de-3

sign stage, engineers can answer particular questions about structures that4

have not yet come into existence. In the construction phase, these activities5

allow engineers to plan and execute each step to optimize costs and gain6

productivity. In the service phase, the same activities provide information7

on the instantaneous functioning of the system and thus make the decision-8

making process feasible. In scientific investigations, it has become common9

to use modelling techniques to study new phenomena in different areas of10

knowledge [1]. Modelling and simulation activities have gained such promi-11

nence along the last century that they are currently attributed the title of12

the third pillar of science, alongside theory and experimentation [2].13

Among the various specialities present in modelling activities, one is of14

particular interest for the present work, namely, the verification. This special-15

ity is dedicated to checking if the results predicted by the models correspond16

to observations. Ideally, the closer to reality, the more reliable the model be-17

comes. However, in usual-life situations, accurately predicting the behaviour18

of structural systems is not self-evident. A new technique, called model up-19

dating or parameter identification, has emerged over the past few decades20

in the quest for better predictions. This technique determines which set of21

input parameters is most appropriate so that the corresponding model ap-22

proaches reference measures in a particular scenario. The advantage is once23

these parameters are identified, structural predictions may perform better in24

scenarios other than those used to make the identification.25

The literature presents various techniques capable of updating finite ele-26

ment models [3, 4]. These techniques may be understood according to two27

classes: in the direct techniques, the model parameters are identified rely-28

ing primarily on linear algebra principles [5, 6]; on the other hand, in the29

indirect or parametric techniques, the model parameters are identified using30

consistent mechanical quantities [7, 8]. The latter is best indicated when the31

input parameter of interest represents a physical quantity, such as stiffness or32

mass. The technique employed in the present study relies on the formalism33
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of the Constitutive Relation Error (CRE) theory and belongs to the class of34

indirect methods.35

The CRE formulation was initially proposed to estimate errors in finite36

dimension spaces [9]. Soon after, its augmented version, namely the MCRE37

(Modified Constitutive Relation Error), was successfully applied in finite el-38

ement model updating [10]. Since then, MCRE-based techniques have been39

refined and expanded to different engineering fields, including, but not lim-40

ited to, mechanical engineering [11], acoustics [12], automotive industry [13],41

aerospace structures [14, 15], topology optimization [16] and civil engineering42

[17, 18, 19, 20]. It is worth mentioning that inherent uncertainties can also43

be considered in model updating [21, 22, 23].44

In modern research involving computational mechanics, the open/collab-45

orative coding approach has increasingly gained ground in academia and46

industry. The joint effort of several collaborators worldwide has ensured47

the development of multiobjective numerical platforms such as MFEM [24],48

FEniCS [25], FreeFem++ [26], deal.II [27], Cast3M [28, 29], OpenFOAM49

[30], among others. Despite the remarkable advances in this field, open-50

source MCRE-based computer frameworks are still rare. The consequence is51

that each time a user wants to use an MCRE-based technique, a new code52

must be created starting from scratch.53

To address this need, in the present work, we propose an abstraction54

of the essential elements related to usual MCRE techniques and materialize55

them in an open-source framework. The input data is formed by a finite56

set of eigenfrequencies and corresponding modal shapes. The constitutive57

material is assumed linear-elastic. All implementations are carried out into58

Cast3M, which is a general-purpose code for solving partial differential equa-59

tions using the finite element method. Cast3M is distinguished from other60

finite element toolboxes by its intuitive lexicon and syntax, providing users61

with a fast learning tool. This toolbox is developed and made available by62

the French Atomic Energy Commission (CEA) , used in industry, research,63

and education [31, 32, 33, 34].64

The proposed framework can be helpful to users at different levels. New-65

comers to the finite element model updating field may find helpful informa-66

tion in the resulting sources codes once they are fully provided with consider-67

able commented sections. They may be used in extended studies in structural68

analysis where engineers may be assigned to do extensions such as multiple69

load-cases, distinct cost functions and structural parameters. Further pos-70

sibilities include using the codes as a starting point for more complex FE71
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Figure 1: Solid associated to identification process. For this case, Ω1 ∪ Ω2 = Ω and
∂1Ω ∪ ∂2Ω ∪ Γ = ∂Ω.

model updating scenarios. Experienced users may go further, extending to72

the domain of structural health monitoring and even design of experiments.73

2. Formulating the identification problem74

2.1. The reference problem on the MCRE formalism75

Let a structure be represented by Ω ⊂ R3, with boundary, ∂Ω. The76

structural outer surface is divided into three parts. Parts one and two are77

regions where the interaction between the structure and the environment78

occurs: kinematic constraints u on a part ∂1Ω and traction forces q on ∂2Ω.79

The third part, Γ, is the region among sub-domains of the structure so that80

∂1Ω∪ ∂2Ω∪Γ = ∂Ω. The situation is illustrated in Figure 1. Assuming that81

the entire domain follows the principles of mechanics, we are interested in82

identifying the structural elastic properties.83

The first key aspect in formulations that follow the CRE prerogatives84

is separating governing equations into two sets: the reliable set includes all85

equations that must be strictly respected, and the unreliable set includes86

only the equations susceptible to be doubtful. The division of these sets is87

not unique, and it is up to the analyst to make the most appropriate choice88

for the case to be dealt with. In the present study, the following separations89

are made.90
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1. Reliable equations set:91

� Kinematic boundary conditions.

u
∣∣∣
∂1Ω

= u (1)

� Dynamic equilibrium.∫
Ω

ρü · u∗dΩi+

∫
Ω

σ : ε∗dΩ =

∫
Ω

b · u∗dΩi+

+

∫
∂2Ω

σn · u∗
i d∂Ω

(2)

� Force boundary conditions.

σn
∣∣∣
∂2Ω

= q (3)

2. Unreliable equations set:92

� Constitutive relation.

f(σ, ε(u)) = σ − C(θ) : ε (4)

� Collected measures.
r(u, ũ) = u− ũ (5)

with C the Hookean stiffness operator specified by the material properties93

stored at θ, u is the displacement vector, σ the stress tensor, ε is the infinites-94

imal strain tensor, ρ the mass density, ũ represents the collected measures.95

The unreliable quantities are the constitutive relation since they may not be96

representative enough of the real behaviour, and the measurements because97

they carry errors with them. Then, the identification problem can be formu-98

lated by comparing the results predicted by the model and the experimental99

data. The reliable set is used to build the kinematic and static admissible100

spaces:101

U = {u ∈ H1(Ω) : u
∣∣∣
∂1Ω

= u} (6)

D = {σ ∈ Hdiv(Ω) : Equation (2) holds,σn
∣∣∣
∂2Ω

= q} (7)
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The second key aspect in CRE-based formulations is to relate the unreli-102

able quantities so that they are verified as well as possible. One alternative is103

by minimizing a functional comprising the terms considered uncertain. Here,104

this functional is written as follows:105

J(u,σ, θ) =

∫
Ω

(σ − C(θ)ε) : C−1(σ − C(θ)ε)dΩ

+
r

2(1− r)
||u− ũ||

(8)

The role played by the parameter r ∈ (0, 1) is twofold. It makes the106

scale order compatibility between the quantities involved and controls the107

importance given to the experimental measures within the functional.108

Then, the parameter identification problem is written as:109

Find (u,σ, θ) that minimizes J(u,σ, θ)

Such that (u,σ) ∈ U ×D
(9)

Rather than express the entire problem at once, it is convenient to write110

it down into two steps as follows:111

min
u,σ,θ

J(u,σ, θ)⇐⇒ min
θ

min
u,σ

J(u,σ, θ) (10)

In practice, this choice simplifies the formulation that can be solved in two112

sequential steps. First, the pair of admissible fields optimally fit the fixed-113

parameter set θ is obtained. Then, an identification process is performed114

based on these admissible fields.115

2.2. Obtaining mechanical admissible fields116

For a given θ, the mechanical admissible fields are obtained by:117

min J1(u,σ) + J2(u)

s.t. u ∈ U and σ ∈ D
(11)

where,

J1(u,σ) =
1

2

∫
Ω

(σ − Cε) : C−1(σ − Cε)dΩ (12)
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J2(u) =
r

2(1− r)
||u− ũ|| (13)

The functional J1 expresses the disparity of the stiffness properties, whereas118

J2 represents a deviation from the experimental measures. The minimization119

of J = J1 + J2 allows verifying the unreliable equations as best as possible.120

Thus, all the available data are used to build the desired mechanical fields.121

2.3. Identifying the optimal parameters122

To each θ, it is necessary to associate a non-negative scalar that represents123

its quality level. Here, we use the same functional J , with the particularity124

that its value is calculated from the fields previously obtained (Equation125

(11)). In other terms:126

F (θ) = J(u(θ),σ(θ)) (14)

With this definition, the lower the value of F , the better θ becomes.127

Then, the identification problem consists in finding the best parameters θ∗128

for the model by minimizing the cost function F :129

θ∗ = argmin
θ

F (θ) (15)

2.4. Algebraic description of the problem130

The equations will be solved using the displacement-based finite element131

method (FEM) in this study. This choice does not represent any difficulty132

because the admissible stress field can be associated with an admissible dis-133

placement field, as follows:134

σ(v) = Cε(v) (16)

Considering the FEM formalism, the set of displacements fields can be135

written as:136

u(x) = N(x)U, v(x) = N(x)V (17)

where N(x) is the shape functions matrix, U and V are unknown nodal137

displacements associated to u and v. Then, equation (12) can be written as:138

J1(U,V) =
1

2
(V − U)TP(V − U) (18)
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where P is the stiffness matrix corresponding to the region to be identified,139

including interfaces considered to be elastic. Let Π̃ be a projector operator to140

assure the spatial correspondence between U and Ũ. Then, the experimental141

counterpart ||u− ũ|| can be defined in a quadratic form such as:142

J2(U, Ũ) =
r

2(1− r)
(Π̃U− Ũ)TGu(Π̃U− Ũ) (19)

where Gu carries the stiffness terms related to the nodes where the measure-143

ments have been taken.144

The identification is based on the free-vibration modes of the structure.145

These modes can be estimated under the assumption of sinusoidal time func-146

tions: u(x, t) = U(x)sin(ωt), v(x, t) = V (x)sin(ωt). In this cases, equation147

(2) becomes:148

KV − ω2MU = F (20)

where ω is the structural vibration frequency and F is the external excitation149

force. For free-vibration problems, F = 0.150

The search for admissible mechanical fields can be written as a con-151

strained optimization problem. Introducing the Lagrange multipliers, λ, the152

quantity to be minimized is defined as:153

L(V,U, λ) =
1

2
(V − U)TP(V − U)

+
r

2(1− r)
(Π̃U− Ũ)TGu(Π̃U− Ũ) + λT (KV − ω2MU)

(21)

For a fixed θ, the stationarity is achieved when:

∂L

∂U
= P(U− V) +

r

(1− r)
Π̃TGu(Π̃U− Ũ)− ω2Mλ = 0 (22)

∂L

∂V
= P(U− V)−Kλ (23)

∂L

∂λ
= KV − ω2MU = 0 (24)

These equations can be written as a linear system:154

[A]X = Y (25)
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where,155

[A] =

 P
r

(1− r)
Π̃TGuΠ̃ −ω2M

P 0 −K
−K K− ω2M 0

 (26)

X =


U− V

U
λ

 (27)

Y =

Π̃TGuŨ
0
0

 (28)

The same function was used to define both the admissible field search and156

the identification problem. This implies the direct access to the gradient of157

function (14), as follows:158

F (θ) = L(U(θ),V(θ), λ(θ), θ) (29)

From the stationarity of L, it comes:

∂F

∂θ
=

∂L

∂U︸︷︷︸
=0

∂U

∂θ
+
∂L

∂V︸︷︷︸
=0

∂V

∂θ
+
∂L

∂λ︸︷︷︸
=0

∂λ

∂θ
+
∂L

∂θ
(30)

∂F

∂θ
=
∂L

∂θ
=

1

2
(V − U)T

∂P

∂θ
(V − U) + λT

∂K

∂θ
V (31)

This expression can be used to construct minimum search algorithms159

based on gradients.160

3. Proposing the algorithm to solve the problem161

3.1. Initiate model162

In this step, the initial information that usually defines a finite element163

model should be provided, such as the geometric support of the structure,164

the finite element discretization (mesh) and the set of boundary conditions.165

It is also necessary to provide the set of measures that will be used as a166

reference for the identification process. Such measures are usually obtained167

in two ways: through previous numerical simulations of the structure in a168
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reference state (synthetic measurements) or direct measurements on physical169

structures in controlled locations, laboratories, or exposed to the environment170

(experimental measurements).171

Distinct objective functions can be defined as a function of the reference172

quantities (e.g. [22, 35]). In the present work, the reference quantities are173

the vibration modes of the structure obtained synthetically using a dedicated174

FEM module (more details in Section 4).175

3.2. Initiate parameter set176

This step consists in choosing the initial values for the set of parameters177

that will be identified. Since the identification process is based on a Newton-178

type gradient method, the initial values influence the amount of iterations179

that will be necessary to obtain convergence. To improve efficiency, the ana-180

lyst can benefit from previous information that one has about the structure,181

such as parameters obtained from preceding simulations, estimates based on182

empirical knowledge, statistics data and even engineering heuristics. It is183

worth noting that the correct value of the parameter will be provided by the184

algorithm at the end of the identification process. For this reason, at this185

stage, the analyst may privilege obtaining reasonable orders of magnitude186

for the initial values instead of precise estimates.187

The choice of the parameters to be identified depends on the studied188

scenario. For example, it is known that in a given structure, zones of eventual189

damage are accompanied by local losses of stiffness. Thus, a correlation190

between these two characteristics can be established for model identification191

purposes. In the present study, the stiffness (linear or angular) is chosen as192

the parameter to be identified. This choice does not imply loss of generality193

since CRE theory allows much more general choices for different constitutive194

models [13, 36].195

3.3. Calculate admissible fields196

From a known set of material parameters, the corresponding admissible197

nodal fields (U,V, λ) are determined by solving equation (25). This linear198

system is three times the size of the classic finite element problem. This199

can limit problems with a high number of degrees of freedom, particularly200

in three-dimensional industrial models. However, it should be noted that,201

for identification purposes, a reduced number of finite elements can be used202

efficiently. There is also the possibility of model reduction, using modal pro-203

jections, among other techniques, that reduce the order of the linear system204
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to be solved. Here, for the sake of simplicity in coding, it is used the full205

version of equation (25).206

3.4. Calculate global MCRE207

The global MCRE is obtained from equations (18) and (19) such as:208

J(U,V, Ũ) = J1(U,V) + J2(U, Ũ) (32)

The result is a scalar quantity necessary for the convergence test.209

3.5. Convergence criterion210

There are two convergence tests immediately available. The first one211

assumes convergence is achieved whenever:212

J(U,V, Ũ) < ξ1 (33)

The second assumes convergence is achieved when no improvement is213

observed for a limited number of consecutive iterations (5 in our tests), that214

is:215

||Ji(U,V, Ũ)− Ji−1(U,V, Ũ)||< ξ2 (34)

where ξ1 and ξ2 are small positive values. The most appropriate choice may216

depend on the case handled by the analyst.217

3.6. Calculate CRE field218

In practical applications, for the sake of efficiency, it may be beneficial219

not to update all stiffness parameters simultaneously. When the region to220

be identified is not known a priori, a simple strategy can be drawn based221

on equation (18). It carries the information about how well the material pa-222

rameters of the model correspond to reality. So, the structure can be divided223

into sub-regions, and the quantity of J1 for each of them can be obtained.224

Using relative comparisons, regions with higher modelling errors will indicate225

higher values of J1, and therefore they should have their parameters updated226

first. Suppose that n sub-regions were defined for the calculation of J1. In227

this case, the indicator β is written as:228

βj =
J1(U,V)j∑n
j=1 J(U,V)j

(35)
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The higher the value of this indicator, the greater the participation of the229

corresponding region in the global error, and consequently, it should receive230

priority for updating. This strategy can be automated to work adaptively.231

3.7. Update material parameters232

The regions selected in the previous step will have their material param-233

eters updated. From a set of known values θi, one attempts to determine an234

improved set θi+1. There are different ways available for this purpose, such235

as Newton or BFGS method. Here, we use a simple steepest gradient, such236

that;237

Compute ∇θ from equation (31) (36)

Compute s solving min
s
F (θ − s∇θ) (37)

∆θi+1 = −s∇θ (38)

θi+1 = θi + ∆θi+1 (39)

The flowchart in Figure 2 shows how these tasks are arranged. This238

framework can be implemented using any FEM purpose language. Here,239

Gibiane version 2020 was chosen for all applications [29].240
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Figure 2: Task sequence for solving the identification problem.

4. Cast3M implementation241

Four modules were designed to facilitate the application and expansion242

of the proposed framework. These modules, specified through independent243

Gibiane files, contain information related to geometry, models and materials,244

reference measures, and model updating core processing. For each applica-245

tion, these files must be filled in with the correspondent information and then246

executed separately in order to produce their outputs. The communication247

between the different modules is done via writing and reading commands248

(SAUV, REST), as shown in Figure 3.249
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Figure 3: Communication diagram.

4.1. Geometry250

In this module, all information about the geometry of the finite element251

model to be updated must be provided. All the options available for reticular,252

planar and volumic elements remain valid.253
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*********************************************

* Defining the spatial dimension and the

* the root finite elements library

’OPTI’ ’DIME’ 3 ’ELEM’ ’CUB8’ ;

*********************************************

* Number of elements allocated to each pillar

NEL = 6;

* Geometric nodes

P1 = 0.0000 0.0000 0.0000;

P2 = 0.0000 0.0000 3.0000;

P3 = 0.0000 0.0000 6.0000;

P4 = 0.0000 0.0000 9.0000;

* Creating pillars

L1 = ’DROI’ NEL P1 P2;

L2 = ’DROI’ NEL P2 P3;

L3 = ’DROI’ NEL P3 P4;

* Creating the set of pillars to be updated

PI_UPD = L1 ’ET’ L2;

* Pillars not to be updated

PI_N_UPD = L3;

*

*********************************************

Figure 4: Illustration: three-pillar geometry definition.

The regions of the model that will be updated and those that will not must254

be adequately identified. As an illustration, consider a structure consisting of255

three pillars, three metres long each, aligned along the z-direction. Suppose256

we want to update only two of the three pillars (L1, L2). In this case, Figure 4257

shows how the geometry file would be filled. Dedicated procedures and other258

external subroutines calls can be used inside this module for more complex259

geometries.260

4.2. Material and Model261

In this module, it is necessary to inform the constitutive models and the262

kinematic hypotheses involved (beam, plate, shell, etc.), as well as the nec-263

essary characteristics of each one. As previously stated, only geometrically264

linear elastic models should be considered.265
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As in the case of geometry, each region that will be updated, and those266

that will not, must be adequately identified. In the example of the three267

pillars, the proper way to fill out this file is the way indicated in Figure 5.268

*********************************************

*Material properties

MOD1 = 3.2E10;

PES1 = 2500;

COE1 = 0.2;

*Cross section properties

PILSEC = 0.16;

OY = 1. 0. 0.;

IN_OY = 2.1E-3;

IN_OZ = 2.1E-3;

IN_TOR= 4.0E-3;

* Model and material instances to be updated

MOD1 = ’MODEL’ PI_UPD ’MECANIQUE’

’ELASTIQUE’ ’POUT’;

MAT1 = ’MATE’ MOD1 ’YOUN’ MOD1 ’NU’ COE1

’RHO’ PES1;

CAR1 = ’CARA’ MOD1 ’SECT’ PILSEC ’INRY’ IN_OY

’INRZ’ IN_OZ ’TORS’ IN_TOR ’VECT’ OY;

MAT1 = MAT1 ’ET’ CAR1;

* Model and material instances unchanged

MOD2 = ’MODEL’ PI_N_UPD ’MECANIQUE’

’ELASTIQUE’ ’POUT’;

MAT2 = ’MATE’ MOD2 ’YOUN’ MOD1 ’NU’ COE1

’RHO’ PES1;

CAR2 = ’CARA’ MOD2 ’SECT’ PILSEC ’INRY’ IN_OY

’INRZ’ IN_OZ ’TORS’ IN_TOR ’VECT’ OY;

MAT2 = MAT2 ’ET’ CAR2;

*

*********************************************

Figure 5: Illustration: three pillar model and material definition.

4.3. Reference Measures269

In this module, information on the reference measures (frequencies and270

mode shapes) should be provided. They can be obtained from experiments or271

16



other numerical simulations. It is worth mentioning that the analyst should272

be careful about the boundary conditions because they directly influence273

the physical parameter to be identified, in particular within a low-frequency274

spectrum.275

In the case of the pillar model, assuming a sinusoidal shape for the first276

vibration mode and a frequency of 0.83Hz, Figure 6 illustrates how the277

measures could be manually set up. The reference measures are always stored278

in TABLE format, even if it contains only one input.279

*********************************************

*Reference modes

*

STR = L1 ’ET’ L2 ’ET’ L3;

C1 = ’COOR’ STR 3;

C2 = ’SIN ’ ((C1/9.)*(180./3.14));

U1 = ’CHAN’ C2 ’COMP’ ’UX’;

U2 = 0.*(’CHAN’ C2 ’COMP’ ’UY’);

U3 = 0.*(’CHAN’ C2 ’COMP’ ’UZ’);

U = U1 ’ET’ U2 ’ET’ U3;

*

FREQREF = TABLE;

MODEREF = TABLE;

*

FREQREF . 1 = 0.83 ;

MODEREF . 1 = U;

*

RES1 = ’TABLE’;

RES1 . ’NB_OF_REFERENCE_MODES’ = 1;

RES1 . ’REFERENCE_FREQUENCIES’ = FREQREF;

RES1 . ’REFERENCE_MODE’ = MODEREF;

*

*********************************************

Figure 6: Illustration: defining the first reference mode and frequency for the three pillar
model.

In the case the reference modes come from experiments, the data must be280

organized in the form CHPOINT before being stored in the reference table.281
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4.4. Model Updating Processing282

The three previous modules serve to organize the information in a struc-283

tured manner so that the processing module can be carried out appropriately.284

The present module corresponds to the implementation of the tasks shown285

in Figure 2, which requires the use of two three auxiliary procedures, which286

are described below.287

4.4.1. Procedure: CALCMCRE288

This procedure takes as input the reference measures, geometry, model289

and material properties and calculates the admissible nodal fields (Equation290

(25)).291

4.4.2. Procedure: CALCGRAD292

This procedure takes the admissible fields and current material properties293

as input and provides the calculation of the gradient of the quantities to be294

updated (Equation (31)).295

4.4.3. Procedure: BLOQDIR296

This procedure is used to impose the boundary conditions on the admis-297

sible fields before the linear system solution in CALCMCRE. Here we have298

opted for the penalization method so that the standard algorithm for solving299

systems of equations, available in Cast3M, can be used directly. However,300

other ways, such as Lagrange multipliers, are possible. In this case, attention301

should be paid to possible conflicts in managing internal software indexes.302

5. Numerical examples303

In this Section, typical examples from the engineering field illustrate how304

the framework discussed in the previous sections is helpful. The correspond-305

ing source codes were implemented in Gibiane language (Version 2020) and306

can be found on the publisher’s website.307

5.1. Revealing poorly modelled regions308

One of the valuable features of the proposed framework is the ability to309

indicate poorly modelled regions, regions in which the values of material prop-310

erties (such as stiffness) are far from their reference values. To illustrate this311

ability, we use the Mottershead beam [3] with the following reference param-312

eters: L = 0.7m, EI = 4560Nm2, ρ = 2860kg/m3, kr = 1.0 × 105Nm/rad313
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(angular stiffness) and kt = 4.0 × 107N/m (translational stiffness). The314

discrete model was divided into eleven regions, being ten elementary re-315

gions, each containing three finite elements, and an interface region where316

the boundary conditions are specified. The scenario is depicted in Figure 7.317

Figure 7: Beam geometry and boundary conditions.

The test consists in introducing a defect in region seven by reducing the318

Young modulus to 50%. Then, we solve equation (25) for obtaining the319

corresponding admissible fields used to calculate the indicator index from320

equation (35) for each region of the beam. Then, we solve equation (25) for321

obtaining the corresponding admissible fields used to calculate the indicator322

index from equation (35) for each region of the beam. The result is shown323

in Figure 8.324
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Figure 8: Contribution of each structural region to compose the global CRE, consider-
ing the first three mode shapes. Compared to the other regions, the prominence of the
contribution shown by region seven indicates that it is poorly modelled.

Comparing the relative contribution of each region, it is possible to notice325

that region 7 has a β index around 0.97 for the first three modes of vibration.326

This information can be used to produce a more efficient identification algo-327

rithm because instead of identifying parameters of the structure as a whole,328

this procedure can be carried out by sub-zones, following the highest β values329

until global convergence is achieved.330

Then, the test is repeated twice more. Firstly, the damage (50% of stiff-331

ness) is included in region 3. Then, the damage is additionally present in332

regions 1, 5 and 9. Figures 9 and 10 show the new distribution of β for333

each case. We observe that the prominence in the relative contribution cor-334

responds precisely where the defects are. However, note that the β levels335

do not remain the same for the different vibration modes. For instance, ac-336

cording to Figure 9, region 3 affects the first vibration mode much more than337

region 7. This information can be useful in designing real-life experiments, as338

it is possible to know in advance which mode of vibration must be mobilized339

to update the parameters of a particular region of the structure.340

These tests show that the framework has a capacity to distinguish between341

well and poorly modelled zones in the constitutive relation error sense.342
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Figure 9: Contribution of each region of the structure to compose the global CRE, con-
sidering the first three modes. The prominence showed by regions 3, and 7 indicate they
are being poorly modelled compared to the others.
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Figure 10: Contribution of each region of the structure to compose the global CRE,
considering the first three modes. The prominence is shown by regions 1, 3, 5, 7 and 9;
corresponding to the zones where damage is located.

5.2. Uni-parametric identification (beam-plate structure)343

The typology of the present application is recurrent in the literature,344

being very useful in studying structural elements and their connections [18].345

Here, we are interested in identifying Young’s modulus of the slabs in a three-346

storey building structure. Each slab is 4m× 4m area and 0.15m thickness.347

The cross-section is 40 cm×40 cm for pillars and 20 cm×50 cm for the beams.348

The material properties of pillars and beams are: Young modulus 32GPa,349

Poisson’s ratio 0.2 and mass density 2500 kg/m3. The material properties350

are assumed the same for all slabs, making the problem a uni-parametric351

identification. The inter-floor distance is 3m. In Figure 11, it is shown352

a three-dimensional view of the building and also the finite element model353

used.354
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(a) (b)

Figure 11: Building structure. (a) Three-dimensional representation. (b) Structural model
composed of beams and plates.

The first three vibration modes used as reference are shown in Figure 12.355

They were obtained via forward analysis, assuming that slabs have the same356

material parameters as the columns and beams.357
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(a) (b) (c)

Figure 12: Building reference vibration modes: (a) Mode I, 4.34Hz, (b) Mode II, 6.31Hz,
(c) Mode III, 14.24Hz.

Setting the initial parameter value (θ0) to 3.2GPa, it is possible to follow358

the framework from Figure 2. The evolution of the MCRE as a function359

of θ/θref can be seen in Figure 13. The logarithmic scale used to express360

the MCRE value shows the rapid convergence in the vicinity of the refer-361

ence value. When the algorithm finds the appropriate parameter value, the362

MCRE value tends to zero. This characteristic is preserved in cases such the363

present, where the reference modes are obtained numerically. In real-world364

problems, the zero value is rarely attainable due to the numerous sources of365

uncertainties associated with the measurements taken, the models employed366

and their respective solution techniques. Despite this, the trend of rapid lo-367

cal decrease in the MCRE values remains a good indicator for finding values368

of unknown parameters (θ).369
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Figure 13: Identification of slabs stiffness. The searched parameter is identified when the
MCRE value tends to zero.

This test permits observing that, in the absence of noise, the framework370

can find the correct value of the parameter sought even when the initial371

estimate is far from the reference. This property is desirable in numerical372

applications, as it helps to maintain good stability and convergence charac-373

teristics.374

5.3. Multi-parametric identification (shell structure)375

In this last application, one is interested in the behaviour of the framework376

when several parameters must be identified at the same time. For this end,377

it is proposed the identification of multiple stiffness parameters of a cooling378

tower. For sake of simplicity, only the shell structure is considered (adapted379

from [37]). Similarly to the first application, the tower is subdivided into five380

regions with their own material and geometric characteristics. The schematic381

scenario is illustrated in Figure 14. The regions high are H1 = 14.43m, H2 =382

14.43m, H3 = 157.50m, H4 = 43.80m and H5 = 6.80m. The thickness of383

each region is t1 = 1.50m, t2 = 1.50m, t3 = 1.50m, t4 = 1.40m and384

t5 = 1.0m. The diameters are φ1 = 176.56m, φ2 = 165.80m, φ3 = 156.04m,385

φ4 = 107.30m, φ5 = 113.26m and φ6 = 114.18m. The base is prevented386

from moving in each of the three Cartesian directions.387
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Figure 14: Cooling tower model (adapted from [37]).

The first three vibration modes used as a reference can be seen in Fig-388

ure 15. They were obtained through forward analysis using the following389

parameters, which are the same among all regions: Young modulus 32GPa,390

Poisson’s ratio 0.2 and mass density 2500 kg/m3.391
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(a) (b) (c)

Figure 15: Cooling tower reference vibration modes: (a) Mode I, 0.90Hz, (b) Mode II,
0.95Hz, (c) Mode III, 1.20Hz.

The parameters chosen to be identified are the Young moduli of regions392

2, 3, 4 and 5. The initial values setting are: θ0 = {16, 48, 16, 16}GPa. The393

convergence history for the four chosen parameters can be seen in Figure 16.394

It is possible to notice that the convergence rate for each parameter is not395

the same. As the input data does not suffer any type of noise, all parameters396

could be identified correctly. In real-world scenarios, parameters with a low397

convergence rate can be drastically affected by uncertainties, and therefore398

filtering techniques may be helpful and can be coupled in the framework399

without major changes.400

The value of the parameters is calculated based on the gradient method.401

However, the convergence curve shows that second-order algorithms such402

as BFGS can improve performance, which can also be implemented in the403

present framework.404
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Figure 16: Cooling tower stiffness identification. The searched parameter corresponding
to each region is identified when the MCRE value tends to zero.

What is pertinent to note from this test is that the framework, in the405

absence of measurement noise, is able to identify target parameters with406

high precision, even if they have low convergence rates or have vague initial407

estimates.408

Concluding remarks409

The present study dealt with the finite element model identification tech-410

nique based on Modified Constitutive Relation Error. This technique was411

used to design an open-source framework that identifies physical parameters,412

such as stiffness, in typical structural engineering situations. The framework413

was tested in representative scenarios of engineering practice in the absence414

of noise, and in all cases studied, it was able to identify the parameters sought415

accurately.416

The results presented in this paper are far from exhaustive, and we do417

not have this intention either. We prefer to limit ourselves to proposing to418

the community of scientists and engineers an open-source code that can be419

used for educational and research purposes. Newcomers to the finite element420

model updating field can use the proposed framework to gain insights into the421
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domain. Also, they can use the provided codes as starting points for other422

specific activities. Researchers may use the framework either to change it423

according to their needs or as a black-box subroutine for complementary424

codes.425

The framework was developed in a modular way and is, therefore, able to426

accommodate new functions and behaviours without significant changes. An427

immediate extension would be the insertion of the effects of uncertainties or428

physical nonlinearities. It is also possible to extend the present framework429

to contemplate the cases of experiment design, in which the position and430

quantity of sensors can be obtained even before starting the tests.431

We believe that the present framework can be helpful to the model up-432

dating community, both for a deeper study of the formulation properties and433

for its expansion.434
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