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A set of complex numbers Λ = {λ n , µ n } ∞ n=1 with multiple terms {λ n , µ n } ∞ n=1 := {λ 1 , λ 1 , . . . , λ 1 µ1-times , λ 2 , λ 2 , . . . , λ 2 µ2-times , . . . , λ k , λ k , . . . , λ k µ k -times , . . . } is said to belong to the ABC class if it satisfies three conditions: (A)

Λ is an interpolating variety for the space of entire functions of exponential type zero. Assuming that Λ ∈ ABC, we characterize in the spirit of the Müntz-Szász theorem, the closed span of its associated exponential system

Related to E Λ , we explore the properties of its unique biorthogonal sequence

in L 2 (γ, β). We prove that the closed spans of r Λ and E Λ in L 2 (γ, β) are equal. In addition, every function f in this closure admits the Fourier-type series representation

almost everywhere on (γ, β), with the series converging uniformly on closed subintervals of (γ, β), and extended analytically in some sector of the complex plane. Furthermore, we obtain a sharp upper bound for the norm of each r n,k by showing that for every ϵ > 0 there is a positive constant m ϵ , independent of n and k, but depending on Λ and (β -γ), so that

∀ n ∈ N, and k = 0, 1, . . . , µ n -1.

The above results, allow us to conclude that given a set of numbers {d n,k } satisfying d n,k = O(e aℜλn ) for a < β, there exists a unique Fourier-type series f ∈ L 2 (γ, β), such that f is a solution to the Moment problem

Finally, we characterize the solution space of a differential equation of infinite order, studied by L.

Carleson.

We point out that our results depend heavily on finding a sharp lower bound for the Distance between an element of E Λ and the closed span of the remaining elements in L p (γ, β). The crucial tool employed is a certain entire function introduced by Luxemburg and Korevaar.

1 Introduction and the Main Results

Motivation

The classical Müntz-Szász theorem answers the following question posed by S. N. Bernstein. "Find necessary and sufficient conditions on a strictly increasing sequence {λ n } ∞ n=1 of positive real numbers diverging to infinity, so that the span of the system {1} ∪ {x λn } ∞ n=1 is dense in the space of continuous functions C[0, 1]."

Müntz and Szász proved that

span({1} ∪ {x λn } ∞ n=1 ) = C[0, 1] if and only if ∞ n=1 1 λ n = ∞.
This result was extended later on by J. A. Clarkson, P. Erdős, L. Schwartz, W. A. J. Luxemburg, J. Korevaar, P. Borwein, T. Erdelyi, and W. B. Johnson (see [START_REF] Clarkson | Approximation by polynomials[END_REF][START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF][START_REF] Borwein | Polynomials and polynomial inequalities[END_REF][START_REF] Borwein | Generalizations of Müntz Theorem via a Remez-type inequality for Müntz spaces[END_REF][START_REF] Erdélyi | The Full Müntz Theorem in L p (0, 1) for 0 < p < ∞[END_REF][START_REF] Erdélyi | The Full Clarkson-Erdős-Schwartz Theorem on the closure of non-dense Müntz spaces[END_REF][START_REF] Erdélyi | The Full Müntz Theorem revisited[END_REF]). In their papers one finds that the above condition is still both necessary and sufficient when one replaces the interval [0, 1] by an interval [a, b] away from the origin with 0 < a < b < ∞ or even by a compact set K ⊂ [0, ∞) of positive Lebesgue measure. The results also hold for the L p (a, b) and L p (K) spaces, p ≥ 1. For further reading, one may also consult the works in [START_REF] Redheffer | Completeness of Sets of Complex Exponentials[END_REF][START_REF] Dzhrbashyan | A characterization of closed linear spans of two families of incomplete systems of analytic functions[END_REF][START_REF] Khabibullin | Zero subsequences for Bernstein spaces and completeness of exponential systems in spaces of functions on an interval[END_REF], the survey articles [START_REF] Pinkus | Density in Approximation Theory[END_REF][START_REF] Almira | Müntz Type I[END_REF] as well as the book [START_REF] Borwein | Polynomials and polynomial inequalities[END_REF]. Moreover, we remark that there is an ongoing research on Müntz-Szász type problems (see [START_REF] Lefèvre | Müntz spaces and special Bloch type inequalities[END_REF][START_REF] Jaming | Müntz-Szász type theorems for the density of the span of powers of functions[END_REF]).

If ∞ n=1 1/λ n < ∞ then span({1} ∪ {x λn } ∞ n=1
) is a proper subspace of C[0, 1] and this raises the question of describing the closure. The first to deal with this problem were Clarkson and Erdős in [START_REF] Clarkson | Approximation by polynomials[END_REF] as well as L. Schwartz in his Ph.D Thesis, who proved that if the λ n are positive integers, then any function f belonging to span({1}∪{x λn } ∞ n=1 ) in C[0, 1], is extended to an analytic function throughout the interior of the unit disk D={z : |z| < 1}, admitting a power series representation of the form

f (z) = ∞ n=0
a n z λn , which converges uniformly on compact subsets of D.

The above result bears the name "Clarkson-Erdős-Schwartz Phenomenon". Several generalizations were given later on [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF][START_REF] Dzhrbashyan | A characterization of closed linear spans of two families of incomplete systems of analytic functions[END_REF][START_REF] Borwein | Generalizations of Müntz Theorem via a Remez-type inequality for Müntz spaces[END_REF][START_REF] Erdélyi | The Full Müntz Theorem in L p (0, 1) for 0 < p < ∞[END_REF][START_REF] Erdélyi | The Full Clarkson-Erdős-Schwartz Theorem on the closure of non-dense Müntz spaces[END_REF][START_REF] Erdélyi | The Full Müntz Theorem revisited[END_REF] where the terms of the sequence {λ n } ∞ n=1 were permitted to be positive real numbers or even complex numbers. We mention here a result by Luxemburg with the series converging uniformly on compact subsets of (a, b). Now, by a change of variables the system {x λn } ∞ n=1 becomes an exponential system {e -λnx } ∞ n=1 . In several cases, the non-dense span of such a system or even of more general ones of the form {x k e -λnx : n ∈ N, k = 0, 1, 2, . . . , m} m ∈ N, in the space L 2 (0, T ), has led mathematicians to obtain a lower bound for the distance between an element x k e -λnx of the system and the closed span of the remaining ones in L 2 (0, T ). This in turn yields a sharp upper bound for the norm of the elements of a family biorthogonal to exponential systems in L 2 (0, T ), as for example in the following result.

Theorem B. [4, Theorem 1.2] Let {λ n } ∞ n=1 be a sequence of distinct complex numbers satisfying the condition (1.1) and let m ∈ N. Fix some T > 0: then there exists a biorthogonal family {r n,k : n ∈ N, k = 0, 1, . . . , m} ⊂ L 2 (0, T ) to the exponential system {x k e -λnx : n ∈ N, k = 0, 1, 2, . . . , m} in L 2 (0, T ) and belonging to its closed span, such that for every ϵ > 0 there is a constant m ϵ > 0, independent of n ∈ N and k = 0, 1, . . . , m-1, but depending on T , so that ||r n,k || L 2 (0,T ) ≤ m ϵ e ϵℜλn , ∀ n ∈ N, k = 0, 1, . . . , m -1.

(1.

2)

It is well known that upper bounds as above yield solutions f to Moment Problems of type

T 0 f (t) • t k e -λnt dt = d n,k ∀ n ∈ N k = 0, 1, 2, . . . , m,
and these proved to be crucial in Control Theory for Partial Differential Equations, starting with the pioneering work of Fattorini and Russell [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] and followed by a vast amount of work done after that.

We mention here several papers of the last decade on the above topics [36, 37, 4, 53, 54, 55, 5, 8, 48, 19, 18, 20, 21, 6, 

Motivated by all these, our main goals in this article are to obtain substantial generalizations of Theorems A and B as well as to derive solutions f to Moment Problems, with f not only belonging in L 2 (0, T ) but also extended analytically in some sector of the complex plane. In addition, we will characterize the solution space of a differential equation of infinite order studied in the past by L.

Carleson [START_REF] Carleson | On infinite differential equations with constant coefficients, I[END_REF].

We will describe in detail our various goals in the upcoming subsections and state our results as well. But first, let us introduce some notations and definitions.

Notation

For p ≥ 1 and real numbers γ and β with γ < β, let L p (γ, β) be the Banach space of complex-valued measurable functions defined on the bounded interval (γ, β) on the real line such that {µ n } ∞ n=1 is a sequence of positive integers, not necessarily bounded, that is µ n ̸ = O(1) is possible.

Each term λ n in Λ is repeated exactly µ n times. If µ n = 1 for all n ∈ N we simply write Λ = {λ n } ∞ n=1 . We associate to Λ the exponential system E Λ := {x k e λnx : n ∈ N, k = 0, 1, 2, . . . , µ n -1}.

We denote by span(E Λ ) the set of all finite linear combinations of elements from E Λ , that is the set of all exponential polynomials of the form

P (x) = m n=1 µn-1 k=0 c m,n,k x k e λnx , c m,n,k ∈ C.
We say that a function f : (γ, β) → C belongs to the closed span of the system E Λ in L p (γ, β), if for every ϵ > 0 there is an exponential polynomial P so that ||f -P || L p (γ,β) < ϵ.

We also say that a family of functions

r Λ := {r n,k : n ∈ N, k = 0, 1, . . . , µ n -1} ⊂ L 2 (γ, β) (1.3)
is a biorthogonal sequence to the exponential system E Λ in L 2 (γ, β) if

β γ r n,k (x)x l e λ j x dx =     
1, j = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -1}.

And finally, we denote by A 0 |z| the space of entire functions of exponential type zero. An entire function F belongs to A 0 |z| , if for every ϵ > 0 there is a positive constant M ϵ , depending only on ϵ and F , such that |F (z)| ≤ M ϵ e ϵ|z| for all z ∈ C.

The ABC class

We remark that our various results in this article hold under the assumption that Λ belongs to a certain class denoted by ABC. If η = 0 then Θ 0,β will be the half-plane ℜz < β.

Now, regarding condition (C), the topic of such interpolating varieties was investigated thoroughly in [START_REF] Berenstein | Geometric characterization of interpolating varieties for the (FN)-space A 0 p of entire functions[END_REF]. We will recall the definitions and results of that paper in Section 2 accompanied by several examples. We point out that in [68, Lemmas 3.1 and 3.2] we found a connection between interpolating varieties for A 0 |z| and the Krivosheev characteristic S Λ (see [START_REF] Krivosheev | A fundamental for invariant subspaces in convex domains[END_REF]Section 3]), a notion very similar in nature, but more general, to the Bernstein Condensation Index (see [START_REF] Ammar-Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF]Definition 3.1] and [START_REF] Ammar-Khodja | Quantitative Fattorini-Hautus test and minimal null control time for parabolic problems[END_REF]Definition 1.1]). Given a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 , S Λ measures in some sense how close the λ n 's are to each other, whereas the condensation index measures the closeness too but it is for Λ having simple terms λ n . We note that recently, this index has played an important role in papers dealing with Control Theory for PDE's [START_REF] Ammar-Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF][START_REF] Ammar-Khodja | Quantitative Fattorini-Hautus test and minimal null control time for parabolic problems[END_REF].

Let us present for now just two examples of Λ ∈ ABC, where the multiplicities µ n can be bounded as in Example 1.1, or might diverge to infinity as in Example 1.2.

Example 1.1. Let Λ = {λ n , k} ∞ n=1
where k is a positive integer and {λ n } ∞ n=1 is a sequence of distinct complex numbers satisfying the condition (1.1).

Example 1.2. Let Λ = {λ n , µ n } ∞ n=1 be so that sup n∈N | arg λ n | < π/2, inf n∈N |λ n+1 | |λ n | > 1, and 
µ n = O(|λ n | α ) 0 ≤ α < 1. (e.g, Λ = {3 n , 2 n } ∞ n=1 )

Our Goals

Assuming that a multiplicity sequence Λ belongs to the ABC class, our goals are as follows:

Generalize Theorem A by characterizing the closed span of the system E Λ in the L p (γ, β) space in terms of a Fourier-type series called Taylor-Dirichlet series (see Theorems 1.2, 1.3, and 1.4).

Generalize Theorem B by proving that there exists a family of functions r Λ (1.3) biorthogonal to the system E Λ in L 2 (γ, β), such that the closed span of r Λ is not just a subspace of the closed span of E Λ in L 2 (γ, β), but in fact the two closures are equal. Moreover, we obtain sharp upper bounds as in (1.2) for the norm of the elements of r Λ as well as Fourier-type series representations for them (see Theorem 1.5).

Given a sequence of non-zero complex numbers {d n,k : n ∈ N, k = 0, 1, 2, . . . , µ n -1} subject to the condition d n,k = O(e aℜλn ) for a < β, we find a solution f ∈ L 2 (γ, β) to the Moment Problem

β γ f (t) • t k e λnt dt = d n,k , ∀ n ∈ N and k = 0, 1, . . . , µ n -1, (1.7) 
(see Theorem 1.6). In fact the solution extends analytically in the sector Θ η,β (1.6).

And finally, we characterize the solution space of a differential equation of infinite order on a bounded interval (γ, β) (see Theorem 1.7), studied by L. Carleson and A. F. Leontev.

The Fundamental Result

In order to achieve our goals, we need Theorem 1.1, proved in Section 4, which we call Our Fundamental Result. Given a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 in the ABC class, for every fixed n ∈ N and k = 0, 1, . . . , µ n -1, we denote by E Λ n,k the exponential system E Λ excluding the element p n,k (x) := x k e λnx , that is

E Λ n,k := E Λ \ p n,k .
We then denote by D γ,β,p,n,k the Distance between p n,k and the closed span of

E Λ n,k in L p (γ, β), D γ,β,p,n,k := inf g∈span(E Λ n,k ) ||p n,k -g|| L p (γ,β) .
We will derive the very important lower bound (1.8) for D γ,β,p,n,k .

Theorem 1.1. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class and consider a bounded interval (γ, β). For every ϵ > 0 there is a constant u ϵ > 0, independent of p ≥ 1, n ∈ N and k = 0, 1, . . . , µ n -1, but depending on Λ and (β -γ), so that D γ,β,p,n,k ≥ u ϵ e (β-ϵ)ℜλn .

(1.8)

1.6 First goal: characterizing the Closed Span of the system E Λ in L p (γ, β) 

g(z) = ∞ n=1 µn-1 k=0 c n,k z k e λnz , c n,k ∈ C, (1.9) 
converging uniformly on compact subsets of Θ η,β , so that

f (x) = g(x)
almost everywhere on (γ, β).

The coefficients c n,k satisfy the upper bound

∀ ϵ > 0 ∃ m ϵ > 0 : |c n,k | ≤ m ϵ e (-β+ϵ)ℜλn , ∀ n ∈ N and ∀ k = 0, 1, . . . , µ n -1. (1.10) Remark 1.2.
In [START_REF] Zikkos | The closed span of an exponential system in the Banach spaces L p (γ, β) and C[γ, β][END_REF], the above result was proved under the assumption that Λ belonged to a certain class denoted by U η , a smaller class compared to ABC.

Remark 1.3. For p ≥ 2, the c n,k coefficients are in fact equal to the inner product ⟨f, r n,k ⟩ (see (1.12)) where {r n,k } is a family biorthogonal to E Λ in L 2 (γ, β).

Theorem 1.2 is then supplemented by its converse which reads as follows.

Theorem 1.3. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class. Suppose that the series

f (z) = ∞ n=1 µn-1 k=0 c n,k z k e λnz , c n,k ∈ C, is an analytic function in the sector Θ η,β (1.6) and f ∈ L p (γ, β) for some p ≥ 1. Then f ∈ span(E Λ ) in L p (γ, β).
Combining our two results, both proved in Section 6, gives the following Clarkson-Erdős-Schwartz Phenomenon for the closed span of the system E Λ in L p (γ, β).

Theorem 1.4. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class and let f ∈ L p (γ, β). Then f belongs to the closed span of E Λ in L p (γ, β) if and only if there is a Taylor-Dirichlet series g(z) (1.9) analytic in the open sector Θ η,β (1.6), converging uniformly on compacta, so that f (x) = g(x) almost everywhere on (γ, β).

Second goal: properties of a Biorthogonal Family r

Λ to E Λ in L 2 (γ, β)
Our goal here is to generalize Theorem B (see Theorem 1.5). Given Λ ∈ ABC, not only the sharp upper bound (1.11) is derived for the norms of the elements r n,k of a biorthogonal family r Λ to E Λ , but a Fourier-type series representation (1.13) is obtained for these elements as well. We also show that the closed spans of r Λ and E Λ in L 2 (γ, β) are equal.

Theorem 1.5. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class. Given a bounded interval (γ, β), there exists a family of functions

r Λ = {r n,k : n ∈ N, k = 0, 1, . . . , µ n -1} ⊂ L 2 (γ, β)
so that it is the unique biorthogonal sequence to E Λ in L 2 (γ, β) which belongs to the closed span of the system E Λ in L 2 (γ, β), with r Λ having the following properties:

(I) For every ϵ > 0 there is a constant m ϵ > 0, independent of n ∈ N and k = 0, 1, . . . , µ n -1, but depending on Λ and (β -γ), so that

||r n,k || L 2 (γ,β) ≤ m ϵ e (-β+ϵ)ℜλn , ∀ n ∈ N, k = 0, 1, . . . , µ n -1. (1.11) (II) The closed span of r Λ in L 2 (γ, β)
is not merely a subspace of the closed span of the exponential system E Λ in L 2 (γ, β), but the two are equal, that is,

span(r Λ ) = span(E Λ ) in L 2 (γ, β).
(III) For p ≥ 2 and each f in the closed span of the system E Λ in L p (γ, β), there exists an analytic function g in the sector Θ η,β (1.6), so that

f (x) = g(x)
for almost all x ∈ (γ, β), with g admitting the Taylor-Dirichlet series representation

g(z) = ∞ n=1 µn-1 k=0 ⟨f, r n,k ⟩ • z k e λnz , (1.12) 
converging uniformly on compact subsets of Θ η,β .

(IV ) Each r n,k ∈ r Λ , admits the Taylor-Dirichlet series representation

r n,k (x) = ∞ j=1   µ j -1 l=0 ⟨r n,k , r j,l ⟩ • x l   e λ j x
, almost everywhere on (γ, β)

(1.13)
with the series extending analytically in the sector Θ η,β and converging uniformly on its compact subsets. Hence, the elements of the family r Λ are connected to the elements of the exponential system E Λ via the Gram matrix whose entries are the inner products ⟨r n,k , r j,l ⟩ (see Appendix, Section A).

The proof of the above result occupies Section 7.

Corollary 1.1. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class. Fix a bounded interval (γ, β), and consider the biorthogonal family r Λ to the system E Λ in L 2 (γ, β). Let H(C, Λ) be the subspace of entire functions that admit a Taylor-Dirichlet series representation in the complex plane. Clearly if f ∈ H(C, Λ), then all its derivatives f (k) ∈ H(C, Λ) for k = 1, 2, . . . as well. Then for every non-negative integer k, one has

f (k) (z) = ∞ n=1 µn-1 k=0 ⟨f (k) , r n,k ⟩ • z k e λnz , ∀ z ∈ C.

Third goal: a Moment Problem

As a consequence of our previous results, we find an analytic solution to the Moment Problem (1.7) and we do hope that researchers in control theory for PDE's will find it both interesting and useful.

Theorem 1.6. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class. Consider a bounded interval (γ, β) and let {d n,k : n ∈ N, k = 0, 1, . . . , µ n -1} be a doubly-indexed sequence of non-zero complex numbers such that for some a ∈ [-∞, β) we have

lim sup n→∞ log A n ℜλ n = a < β where A n = max{|d n,k | : k = 0, 1, . . . , µ n -1}. (1.14)
Then there exists a unique function f in the closed span of the system E Λ in L 2 (γ, β) so that

β γ f (t) • t k e λnt dt = d n,k , ∀ n ∈ N and k = 0, 1, 2, . . . , µ n -1. (1.15)
The solution f extends analytically in the sector Θ η,β (1.6) as a Taylor-Dirichlet series

∞ n=1 µn-1 k=0 ⟨f, r n,k ⟩ • z k e λnz
converging uniformly on compacta. Moreover, it is the only such series in L 2 (γ, β) which is a solution of (1.15).

We provide two proofs in Section 8 and in both we utilize the r Λ family of Theorem 1.5. The first proof is classical in character in the sense that the solution is given in terms of an infinite series

∞ n=1 µn-1 k=0 d n,k r n,k (t) 
with the series converging in L 2 (γ, β). The second proof uses notions from Nonharmonic Fourier Series such as Bessel sequences and Riesz-Fischer sequences.

Corollary 1.2. Let {λ n } ∞ n=1 be a sequence of positive real numbers diverging to infinity so that ∞ n=1 1/λ n < ∞ and λ n+1 -λ n > c > 0 for all n ∈ N. Consider a positive integer m and a positive real number T . Let {d n,k : n ∈ N, k = 0, 1, . . . , m -1} be a doubly-indexed sequence of non-zero complex numbers such that lim sup

n→∞ log A n λ n < 0 where A n = max{|d n,k | : k = 0, 1, . . . , m -1}.
Then there exists a unique Taylor-Dirichlet series

f (z) = ∞ n=1 m-1 k=0 c n,k z k e -λnz
analytic in the right half-plane {z : ℜz > 0}, with f ∈ L 2 (0, T ), so that

T 0 f (t) • t k e -λnt f (t) dt = d n,k , ∀ n ∈ N and k = 0, 1, 2, . . . , m -1.
1.9 Fourth goal: the solution space of a differential equation of infinite order on a bounded interval

Our fourth and final topic deals with a differential equation of infinite order on a bounded interval (γ, β) studied by Carleson [START_REF] Carleson | On infinite differential equations with constant coefficients, I[END_REF] as well as by Leont' ev [START_REF] Leont'ev | Equations of infinite order with analytic solutions[END_REF]. Let us first describe this problem and then present our result which is a complete characterization of the solution space of the differential equation in case Λ belongs to the class ABC.

A Carleson differential equation

Suppose that a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 satisfies conditions A (1.4) and B (1.5). We associate to Λ the entire functions of exponential type zero

F (z) = ∞ n=1 1 - z λ n µn and G(z) = ∞ n=1 1 + z |λ n | µn .
(1.16)

We also consider their Taylor series expansions about zero

F (z) = ∞ n=0 F (n) (0) n! z n and G(z) = ∞ n=0 G (n) (0) n! z n .
Remark 1.4. We note that G (n) (0) is positive for all n ≥ 0.

Carleson [START_REF] Carleson | On infinite differential equations with constant coefficients, I[END_REF] and Leont' ev [START_REF] Leont'ev | Equations of infinite order with analytic solutions[END_REF] introduced the following class of functions.

Definition 1.2. Let Λ={λ n , µ n } ∞ n=1 be a multiplicity sequence that satisfies conditions A (1.4) and B (1.5). Let (γ, β) be an open bounded interval on the real line. A function f (x) belongs to the class

C(γ, β, {G n }), where G n = G (n) (0) n! , if f is infinitely differentiable on (γ, β) and the series ∞ n=0 G (n) (0) n! • |f (n) (x)|
converges uniformly in (γ + ϵ, β -ϵ) for every ϵ > 0.

For f ∈ C(γ, β, {G n }), they investigated the infinite order differential equation:

F (D)f (x) = 0 ∀ x ∈ (γ, β) (1.17) 
where

D = d dx and F (D)f (x) := ∞ n=0 F (n) (0) n! • f (n) (x).
A description of their result follows: since F is an entire function of exponential type zero, and sup n∈N | arg λ n | < π/2, then there are rays l 1 and l 2 in the right half-plane ℜz > 0, emerging from the Origin, so that for any ϵ > 0 one has |F (z)| > e -ϵ|z| finally for all z on the two rays. A similar bound holds on a sequence of circles {|z| = r m } ∞ m=1 with r m diverging to infinity. Denote by D m the region in the complex plane bounded by the two rays and the circle |z| = r m . Carleson [START_REF] Carleson | On infinite differential equations with constant coefficients, I[END_REF]Theorem 4] and Leont' ev [START_REF] Leont'ev | Equations of infinite order with analytic solutions[END_REF]Theorem 2] proved that every solution f of (1.17) extends analytically in the sector Θ η,β (1.6) and f admits a series representation with groupings:

f (z) = lim m→∞ f m (z), f m (z) := λn∈Dm µn-1 k=0 c n,k z k e λnz ∀ z ∈ Θ η,β , (1.18) 
with uniform convergence on compact subsets of the sector and with the coefficients c n,k derived in some special way.

Our result: removing the groupings

Assuming that Λ belongs to the ABC class, we will prove in Section 9 that every solution of (1.17) extends analytically as a Taylor-Dirichelt series, thus the above groupings can be dropped.

Theorem 1.7. Let Λ ∈ ABC class and consider an interval (γ, β).

(A) Suppose that a function f ∈ C(γ, β, {G n }) is a solution of the equation (1.17). Then f extends analytically in the sector Θ η,β as a Taylor-Dirichlet series

f (z) = ∞ n=1 µn-1 k=0 c n,k z k e λnz ,
converging uniformly on compact subsets of the sector.

(B) Let f be a Taylor-Dirichlet series as above, analytic in the sector Θ η,β . Then f ∈ C(γ, β, {G n }) and f is a solution of the equation (1.17).

Remark 1.5. We will show by a counterexample, that if Λ satisfies only conditions A (1.4) and B (1.5), then the groupings in (1.18) cannot in general be removed.

1.10 The Main tool for the Fundamental result and Distances in L p (-∞, β)

As mentioned earlier, our goals are achieved based on the Fundamental Result, Theorem 1.1, which is on the lower bound (1.8) for the distance in L p (γ, β) between an element of the system E Λ and the closed span of the remaining elements. We note that from (1.8) it is straight forward to derive a lower bound for distances in L p (-∞, β) as well (see (1.20)). We introduce below the tool needed for Theorem 1.1 and make comparisons with the classical approach where a Blaschke product for a half-plane is used instead.

Our Main Tool

Our Fundamental Result is proved by employing an entire function G introduced in the past by Luxemburg and Korevaar [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF]. They obtained the following result which appears also in [START_REF] Sedletskii | Analytic Fourier Transforms and exponential approximations I[END_REF]Theorem 3.3.3] and restated here as follows.

Theorem C. [52, Theorem 5.2]) 1

Suppose that a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 satisfies condition A (1.4). For fixed -∞ < γ < β < ∞, let σ = (β + γ)/2, and τ = (β -γ)/2. Then, by properly choosing a decreasing sequence

{ϵ n > 0} ∞ n=1 so that ∞ n=1 ϵ n = τ , G(z) := e -iσz ∞ n=1 1 + z 2 λ 2 n µn ∞ n=1 cos(ϵ n z) is an entire function of exponential type, G(x) ∈ L 2 (R) ∩ L 1 (R) and 
G(z) = 1 √ 2π β γ e -izt h(t) dt, h ∈ C[γ, β]
where h is a continuous function on [γ, β], vanishing outside this interval.

Assuming now that Λ belongs to the ABC class, we will extend Theorem C by proving in Theorem 3.1 that for every fixed ϵ > 0 there is a system of disjoint disks {P n,ϵ } ∞ n=1 with respective circles ∂P n,ϵ , and a constant M ϵ independent of n but depending on τ , such that

|G(z)| ≥ M ϵ e (-ϵ+β)ℜλn , ∀ z ∈ ∂P n,ϵ , n = 1, 2, . . . . (1.19) 
Together with some auxiliary results this lower bound will eventually yield the distance bound (1.8).

1 If one reads carefully [52, Sections 4 and 5], the authors consider a sequence of complex numbers {wn} ∞ n=1 satisfying ∞ n=1 1/|wn| < ∞. This allows for the sequence to have terms with multiplicities involved. We note that in the statement of [52, Theorem 5.2] the same condition applies. It's only in [START_REF] Luxemburg | Entire functions and Müntz-Szász type approximation[END_REF]Sections 7 and 8] where the λn are chosen to be distinct, and in particular satisfying (1.1), where the authors describe the closed span of the system {x λn } ∞ n=1 .

1.10.2 Distances in L p (-∞, 0)

Now, one may use (1.8) to derive the lower bound (1.20) for the distance between p n,k (x) = x k e λnx and the closed span of E Λ n,k = E Λ \ p n,k in L p (-∞, 0), with the distance denoted by

D -∞,0,p,n,k := inf g∈span(E Λ n,k ) ||p n,k -g|| L p (-∞,0)
and

L p (-∞, 0) := f : 0 -∞ |f (x)| p dx < ∞ , ||f || L p (-∞,0) = 0 -∞ |f (x)| p dx 1 p , p ≥ 1. 
Letting g ∈ span(E Λ n,k ) in L p (-∞, 0) and choosing any real number γ < 0, then clearly one has

||p n,k -g|| L p (-∞,0) ≥ ||p n,k -g|| L p (γ,0) ≥ D γ,0,p,n,k .
It then follows readily from (1.8) that for every ϵ > 0, there is a positive constant u ϵ independent of p ≥ 1, n ∈ N and k = 0, 1, . . . , µ n -1, but depending on Λ, so that

D -∞,0,p,n,k ≥ u ϵ e -ϵℜλn . (1.20) 
We point out that in the Appendix (Section C), we derive (1.20) by another method, employing the meromorphic function

f (z) = 1 (4 + z) 2 • ∞ n=1 1 -z/λ n 1 + z/(λ n + 4) µn ,
Λ belongs to the class ABC.

(1.21)

Remark 1.6. We find it necessary to mention this alternative tool because the authors of several papers dealing with Control Theory for PDE's where the Method of Moments is the key for proving various results, use a similar meromorphic function (Blaschke product) as above. Their initial goal is to derive a lower bound for distances in L 2 (-∞, 0) and then based on ideas of L. Schwartz they obtain a lower bound for distances in L 2 (-T, 0) for 0 < T < ∞. The interested readers may consult the monograph by E. Zuazua [69, Theorem 2.6.6] as well as [START_REF] Ammar-Khodja | The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials[END_REF]Corollary 4.6] and [START_REF] Ammar-Khodja | Quantitative Fattorini-Hautus test and minimal null control time for parabolic problems[END_REF]Lemma A.1] on this matter. However, in our opinion, using the entire function G of Theorem C is more effective because we can estimate the distances in L p (γ, β) directly without first estimating the distances in L p (-∞, 0). But this is our own subjective argument.

Organization of this article

In Section 2 we recall definitions and results from [START_REF] Berenstein | Geometric characterization of interpolating varieties for the (FN)-space A 0 p of entire functions[END_REF] regarding interpolating varieties for the space of entire functions of exponential type zero. We also present many examples and prove some new results regarding these varieties. Moreover, we make a connection between interpolating varieties and the condensation index of a sequence Λ in case it has simple terms λ n (Lemma 2.3).

In Section 3 we extend the Luxemburg-Korevaar result (Theorem C) by obtaining the lower bound (1.19).

Section 4 is devoted to the proof of our Fundamental Result.

The region of holomorphy of Taylor-Dirichlet series is discussed in Section 5.

In Section 6 we prove Theorems 1.2 and 1.3 which are on characterizing the closed span of the exponential system E Λ in the space L p (γ, β).

Section 7 is devoted in proving Theorem 1.5 which is on the existence and properties of a biorthogonal sequence r Λ to the system

E Λ in L 2 (γ, β).
In Section 8 we present two proofs of Theorem 1.6 dealing with the Moment Problem.

In Section 9 we prove Theorem 1.7, on the solution space of the Carleson equation.

And finally in Section 10, based on our Fundamental result, an old result by G. Valiron, and a Bernstein-type inequality by A. Brudnyi [17, Theorem 1.5], we prove the amusing and remarkable result that if Λ ∈ ABC and satisfies some additional condition, then the pointwise convergence of a Taylor-Dirichlet series on (γ, β) yields uniform convergence on closed subintervals of (γ, β).

Consequently, we revisit Theorems 1.3 and 1.7, and we obtain Theorem 10.1.

Interpolating varieties for A 0 |z| and the ABC class

In this section we first recall the results of [START_REF] Berenstein | Geometric characterization of interpolating varieties for the (FN)-space A 0 p of entire functions[END_REF] derived on interpolating varieties for the space of entire functions of exponential type zero A 0 |z| . We then give examples of multiplicity sequences Λ = {λ n , µ n } ∞ n=1 which are such interpolating varieties and belong to the class ABC as well. We also find a necessary gap condition for interpolation between the λ n 's (see Lemma 2.1). Then, for infinite products which vanish either on the set ±Λ or on ±iΛ, we derive a lower bound on a system of circles (see Lemma 2.2). Lastly, we state and prove Lemma 2.3 which is on the condensation index of a sequence.

Interpolating varieties for the space A 0

|z| Following Berenstein et al. [START_REF] Berenstein | Geometric characterization of interpolating varieties for the (FN)-space A 0 p of entire functions[END_REF], we say that a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 is an interpolating variety for the space A 0 |z| if for an arbitrary doubly-indexed sequence a = {a n,k : n ∈ N, k = 0, 1, . . . , µ n -1}, such that

∀ϵ > 0, sup n∈N µn-1 k=0 |a n,k |e -ϵ|λn| < ∞, there exists some function f ∈ A 0 |z| such that f (k) (λ n ) k! = a n,k .

Necessary and Sufficient Conditions

The authors in [START_REF] Berenstein | Geometric characterization of interpolating varieties for the (FN)-space A 0 p of entire functions[END_REF] obtained the following geometric and analytic conditions which were both necessary and sufficient in order for Λ to be an interpolating variety for A 0 |z| . T he Analytic Condition, [11, Theorem 4.1]: A multiplicity sequence Λ is an interpolating variety for the space A 0 |z| if and only if there exists an entire function f ∈ A 0 |z| such that Λ is a subset of the zero set of f , and for every ϵ > 0 there is a positive constant u ϵ , independent of n ∈ N, such that

|f (µn) (λ n )| µ n ! ≥ u ϵ e -ϵ|λn| ∀ n ∈ N.
T he Geometric Conditions, [11, Theorem 3.1]: Consider a multiplicity sequence Λ and the counting functions of Λ about 0 and a point z 0 , given respectively by

n Λ (t) := |λn|≤t µ n and n Λ (t, z 0 ) := |λn-z 0 |≤t µ n . Let N (r, Λ) := r 0 n Λ (t) -n Λ (0) t dt + n Λ (0) log r,
and

N (r, z 0 , Λ) := r 0 n Λ (t, z 0 ) -n Λ (0, z 0 ) t dt + n Λ (0, z 0 ) log r.
Then Λ is an interpolating variety for the space A 0 |z| if and only if

(I) N (r, Λ) = o(r) as r → ∞ and (II) N (|λ n |, λ n , Λ) = o(|λ n |) as n → ∞.

A necessary condition for Interpolation

Observe that

N (|λ n |, λ n , Λ) = |λn| 0 n Λ (t, λ n ) -n Λ (0, λ n ) t dt + n Λ (0, λ n ) log |λ n | = 0<|λn-λ k |≤|λn| µ k log λ n λ n -λ k + µ n log |λ n |. (2.1)
In particular

N (|λ n |, λ n , Λ) = 0<|λn-λ k |≤|λn| log λ n λ n -λ k + log |λ n | if µ n = 1 ∀ n ∈ N. (2.2)
It follows from (2.1) and Geometric Condition (II), that if Λ is an interpolating variety, then

µ n log |λ n | |λ n | → 0 as n → ∞. (2.3) 
Remark 2.1. Therefore (2.3) is Necessary for Interpolation.

A particular sufficient condition for Interpolation

The following result is a sufficient condition for interpolation and provides us with a large class of examples of such varieties (see Example v later on).

Lemma A. [68, Remark 2.3 and Lemma 3.2]

Suppose that a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 satisfies the following three condtions:

(1) Λ has density zero, that is |λn|≤t µn t → 0 as t → ∞. (2) Relation (2.

3) holds,

(3) There is some δ ∈ (0, 1/10) such that for every fixed k ∈ N the inequality

|λ n -λ k | ≤ δ|λ k | is true only for n = k.
Then Λ is an interpolating variety for the space A 0 |z| .

Examples of Λ in the ABC class

Next, we present examples where some Λ's are interpolating varieties for the space A 0 |z| while some others are not. In all the examples given, conditions A (1.4) and B (1.5) hold. Therefore, those Λ's which are interpolating varieties, belong to the ABC class as well. We point out however that conditions A (1.4) and B (1.5) are neither sufficient nor necessary for interpolation.

Case 1, µ n = 1 for all n ∈ N:

(Example i) : It follows from [START_REF] Vidras | On a theorem of Pólya and Levinson[END_REF] (see also [START_REF] Berenstein | Geometric characterization of interpolating varieties for the (FN)-space A 0 p of entire functions[END_REF]Theorem 5

.1]) that if a sequence {λ n } ∞ n=1 satisfies condition (1.1) then Λ = {λ n , 1} ∞
n=1 is an interpolating variety. In particular, this is the case when

{λ n } ∞ n=1 is a sequence of distinct positive real numbers such that ∞ n=1 1/λ n < ∞ with uniformly separated terms, that is lim inf n∈N (λ n+1 -λ n ) > 0. Remark 2.2. But what happens if lim inf n∈N (λ n+1 -λ n ) = 0?
In Examples ii and iii, Λ might or might not be an interpolating variety.

(Example ii) : From (2.2) and the Geometric Conditions (I) and (II), one can show that if

λ 2n-1 = n 2 and λ 2n = n 2 + e -n , then Λ = {λ n } ∞ n=1 is an interpolating variety. (Example iii) : On the other hand, if λ 2n-1 = n 2 and λ 2n = n 2 + e -n 2 , it then follows from (2.2) and Geometric Condition (II), that Λ = {λ n } ∞ n=1 is not an interpolating variety. Case 2, µ n = O(1): If a sequence {λ n } ∞
n=1 with distinct terms is an interpolating variety, it then follows from the Geometric Conditions and (2.1) that the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 with sup n∈N µ n < ∞ is an interpolating variety as well.

(Example iv) : Let a sequence {λ n } ∞ n=1 satisfy the condition (1.1). Then Λ = {λ n , µ n } ∞ n=1 with sup n∈N µ n < ∞ is an interpolating variety. Case 3, sup n∈N µ n = ∞: (Example v) : Let Λ = {λ n , µ n } ∞ n=1 be so that sup n∈N | arg λ n | ≤ η < π/2, inf n∈N |λ n+1 | |λ n | ≥ q > 1 and µ n = O(|λ n | α ) 0 ≤ α < 1.
Then Λ is an interpolating variety. For example, let

Λ = {(k + 1) n , k n } ∞ n=1 where k ≥ 2 is a positive integer, such as Λ = {3 n , 2 n } ∞ n=1 , Λ = {4 n , 3 n } ∞ n=1 e.t.
c. In order to justify this, we will show that Conditions (1), ( 2) and (3) of Lemma A hold.

First observe that Condition (2) is obvious.

Next we show that Condition (1) holds, that is Λ has density zero. From above we get

|λ n | ≥ q n-1 |λ 1 | and there is M > 0 so that µ n ≤ M |λ n | α for all n ∈ N . Thus ∞ n=1 µ n |λ n | ≤ ∞ n=1 M |λ n | 1-α ≤ ∞ n=1 M (q n-1 ) 1-α |λ 1 | 1-α = M |λ 1 | 1-α ∞ n=1 1 (q 1-α ) n-1 < ∞ since q > 1 and 1 -α > 0.
The convergence implies that Λ has density zero.

Finally we have to show that Condition (3) is true also. For every fixed k ∈ N we will obtain a lower bound for |λ n -λ k | when n ̸ = k. We keep in mind the lacunary relation |λ n+1 | ≥ q|λ n | and we consider two cases:

(a) |λ k+j -λ k | for all j ∈ N (b) |λ k-j -λ k | for all j ∈ {1, 2, . . . , k -1}. For (a) we get |λ k+j -λ k | ≥ |λ k+j | -|λ k | ≥ (q j -1)|λ k | ≥ (q -1)|λ k |
and for (b) we get

|λ k-j -λ k | ≥ |λ k | -|λ k-j | ≥ |λ k | - |λ k | q j = 1 - 1 q j |λ k | ≥ q -1 q |λ k |.
Using the above lower bounds, we see that if we choose 0 < δ < min q-1 q , 1 10 , then for every fixed

k ∈ N the inequality |λ n -λ k | ≤ δ|λ k | is true only for n = k. Thus Condition (3) of the Lemma A is satisfied. (Example vi) : Let Λ = {λ n , µ n } ∞
n=1 be so that

λ n = n 2 • 10 n and µ n = 10 n . and let Λ ′ = {λ ′ n , µ ′ n } ∞ n=1 be so that λ ′ n = n 2 • 10 n 2 and µ ′ n = 10 n 2 . It is interesting to note that ∞ n=1 µ n /λ n = ∞ n=1 µ ′ n /λ ′ n . Now, Λ is an interpolating variety (see [68, Example 3.2]). Observe that in contrast to (Example v), this time µ n ̸ = O(λ α n ) for any 0 ≤ α < 1.
On the other hand, Λ ′ is not interpolating variety since (2.3) does not hold.

A necessary gap condition for interpolation

In Examples ii, iii we saw that if lim inf n∈N |λ n+1 -λ n | = 0, then Λ might or might not be an interpolating variety. Now, if Λ is such a variety, how close can the frequencies be to each other? In the following result we provide a lower bound for the distance between two frequencies. Lemma 2.1. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 be an interpolating variety for the space A 0 |z| . Then, for every ϵ > 0 there is a positive constant m ϵ , independent of n ∈ N, so that

∀ n ∈ N, inf k̸ =n |λ n -λ k | ≥ m ϵ exp - ϵ|λ n | µ n . (2.4)
Proof. Suppose that the gap relation (2.4) is false. Then there is some positive constant ρ and a subsequence {λ n j } ∞ j=1 such that for each λ n j there is some λ m(j) so that

|λ n j -λ m(j) | ≤ exp - ρ|λ n j | µ n j < 1. Equivalently, -µ n j log |λ n j -λ m(j) | ≥ ρ|λ n j |. (2.5)
On the other hand, from (2.1) and Geometric Condition (II), we have

1 |λ m(j) | 0<|λ m(j) -λ k |≤|λ m(j) | µ k log λ m(j) λ m(j) -λ k → 0, j → ∞.
Hence for the same ρ as above, there is j(ρ) ∈ N so that

0<|λ m(j) -λ k |≤|λ m(j) | µ k log λ m(j) λ m(j) -λ k < ρ 2 |λ m(j) |, ∀ j ≥ j(ρ). Since 0 < |λ m(j) -λ n j | < 1 < |λ m(j)
|, it follows from the above relation that

µ n j log λ m(j) λ m(j) -λ n j < ρ 2 |λ m(j) | ∀ j ≥ j(ρ).
We rewrite this as

-µ n j log |λ m(j) -λ n j | + µ n j log |λ m(j) | < ρ 2 |λ m(j) | ∀ j ≥ j(ρ).
Combining with (2.5) gives

ρ|λ n j | ≤ -µ n j log |λ n j -λ m(j) | < ρ 2 |λ m(j) | < ρ 2 (|λ n j | + 1).
But then one has

ρ 2 |λ n j | ≤ ρ 2 ,
which is false since |λ n j | → ∞ as j → ∞. Hence the gap relation (2.4) is indeed true.

Therefore we can state the following.

Remark 2.3. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 be an interpolating variety for the space A 0 |z| . Then for every ϵ > 0 there exists a positive constant m ϵ , independent of n ∈ N, so that each one of the three sets

∞ n=1 D n,ϵ , ∞ n=1 C n,ϵ ,
and

∞ n=1 P n,ϵ ,
is a union of disjoint open disks, where for all n ∈ N we have

D n,ϵ := z : |z -λ n | < m ϵ 2 exp - ϵ|λ n | µ n , C n,ϵ := z : |z -λ n | < m ϵ 6 exp - ϵ|λ n | µ n , P n,ϵ := z : |z -iλ n | < m ϵ 6 exp - ϵ|λ n | µ n .
Observe that C n,ϵ ⊂ D n,ϵ and the ratio of their radii is 1:3.

Infinite products vanishing on ±Λ or on ±iΛ

For every fixed ϵ > 0, let ∂D n,ϵ , ∂C n,ϵ , and ∂P n,ϵ be their respective circles of the disks D n,ϵ , C n,ϵ , and P n,ϵ for n = 1, 2, . . . . In Lemma 2.2 we will derive sharp lower bounds on the circles ∂C n,ϵ and ∂P n,ϵ , for the modulus of infinite products vanishing on ±Λ or on ±iΛ. To do that, we will need the following Carathéodory inequality (see [47, page 19 Theorem 9] and [14, page 3 Theorem 1.3.2]).

Theorem D. If the function f is holomorphic in the disk |z| ≤ R and has no zeros in this disk, and if f (0) = 1, then its modulus in the disk |z| ≤ r < R satisfies the inequality

log |f (z)| ≥ - 2r R -r log max |z|=R |f (z)|.
In particular, if r = R/3 then

∀ z : |z| ≤ R/3, log |f (z)| ≥ -log max |z|=R |f (z)|.
Lemma 2.2. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 be an interpolating variety for the space

A 0 |z| . Suppose that sup n∈N | arg λ n | < π/2.
Consider the entire functions of exponential type zero

F (z) = ∞ n=1 1 - z 2 λ 2 n µn and L(z) = ∞ n=1 1 + z 2 λ 2 n µn .
For fixed ϵ > 0, consider the disks and circles of Remark 2.3. Then there are positive constants m ϵ,1 and m ϵ,2 , independent of n ∈ N, so that

|F (µn) (λ n )| µ n ! ≥ m ϵ,1 e -ϵ|λn| ∀ n ∈ N, (2.6 
)

|F (z)| ≥ m ϵ,2 e -ϵ|λn| ∀ z ∈ ∂C n,ϵ , n = 1, 2, . . . , (2.7 
)

|L(z)| ≥ m ϵ,2 e -ϵ|λn| ∀ z ∈ ∂P n,ϵ , n = 1, 2, . . . . (2.8) 
Proof. First we prove (2.6): since Λ is such a variety then it satisfies T he Geometric Conditions (I) and (II). If we let Λ

′ := {λ n , µ n } ∞ n=1 ∪ {-λ n , µ n } ∞ n=1 and since sup n∈N | arg λ n | < π/2
, then Λ ′ is also an interpolating variety for the space A 0 |z| . Hence by T he Analytic Condition there exists an entire function G ∈ A 0 |z| vanishing on Λ ′ so that for every ϵ > 0 there is a positive constant u ϵ , independent of n ∈ N, such that

|G (µn) (λ n )| µ n ! ≥ u ϵ e -ϵ|λn| ∀ n ∈ N.
(2.9)

Let Λ ′′ = {λ ′′ n , µ ′′ n } ∞ n=1 be the zero set of G and write Λ ′′ = Λ ′ ∪ Ω where Ω := {w n , k n } ∞ n=1
is the set of the rest of the non-zero zeros of G, if there are any. Suppose also that G vanishes at z = 0 exactly m times, for some m ≥ 0. Now, since G ∈ A 0 |z| then its zero set has density zero, that is lim t→∞ 

∞ n=1 µ ′′ n |λ ′′ n | < ∞, hence ∞ n=1 k n |w n | < ∞ also,
or (II) G has order 1 and type 0, which means that (a)

∞ n=1 µ ′′ n |λ ′′ n | = ∞, (b) 
∞ n=1 µ ′′ n |λ ′′ n | 1+ϵ < ∞ ∀ ϵ > 0, and (c) 
∞ n=1 µ ′′ n λ ′′ n = α ∈ C hence ∞ n=1 k n w n = α since Λ ′ is even.
By the Hadamard Factorization Theorem it then follows that

G(z) = cF (z)W (z), c ∈ C \ {0} (2.10)
where if (I) is true then

W (z) = z m ∞ n=1 1 - z w n kn ,
and if (II) holds then

W (z) = z m e -αz ∞ n=1 1 - z w n kn e zkn/wn .
In both cases W ∈ A 0 |z| hence for every ϵ > 0 there is some U ϵ > 0 so that

|W (z)| ≤ U ϵ e ϵ|z| ∀ z ∈ C, thus |W (λ n )| ≤ U ϵ e ϵ|λn| ∀ n ∈ N. (2.11)
Now, from (2.10) we get

|F (µn) (λ n )| µ n ! = |G (µn) (λ n )| µ n ! • 1 |cW (λ n )| .
Then combining (2.11) with (2.9) yields (2.6).

Next we prove (2.7): for each n ∈ N define

F n (z) := F (z) (z -λ n ) µn • µ n ! F (µn) (λ n ) .
(2.12)

We then get

F n (λ n ) = 1.
For the fixed ϵ > 0, consider the two disks D n,ϵ and C n,ϵ as in Remark 2.3 and observe that F n has no zeros on these two disks and neither on their respective circles ∂D n,ϵ , ∂C n,ϵ . Since the radius of

C n,ϵ is 1/3 of the one of D n,ϵ and F n (λ n ) = 1, from Theorem D we get ∀ z ∈ C n,ϵ , log |F n (z)| ≥ -log max z∈∂Dn,ϵ |F n (z)|. (2.13)
So let us now estimate F n from above on the circle ∂D n,ϵ . Since F ∈ A 0 |z| then for the above fixed ϵ > 0 there is some t ϵ > 0 so that |F (z)| ≤ t ϵ e ϵ|z| for all z ∈ C. Then, based on the size of the radius of D n,ϵ and relations (2.6) and (2.12), we get

∀ z ∈ ∂D n,ϵ , |F n (z)| ≤ t ϵ e ϵ|λn| • 2 m ϵ e ϵ|λn|/µn µn • e ϵ|λn| m ϵ,1 = t ϵ e ϵ|λn| • 2 m ϵ µn e ϵ|λn| • e ϵ|λn| m ϵ,1 .
Combining this with the relation µ n /λ n → 0 as n → ∞, shows that there is some r ϵ > 0, independent of n ∈ N, so that max

z∈∂Dn,ϵ |F n (z)| ≤ r ϵ e 4ϵ|λn| .
Therefore from (2.13) we get min z∈∂Cn,ϵ

|F n (z)| ≥ e -4ϵ|λn| r ϵ . (2.14)
Then rewrite (2.12) as

F (z) = F n (z)(z -λ n ) µn F (µn) (λ n ) µ n ! .
Combining relations (2.14) and (2.6) with the length of the radius of C n,ϵ , yield relation (2.7).

Finally, by rotation we get (2.8) for the function L(z) and our proof is now complete.

On the condensation index of a sequence Λ

We now want to add a small remark which connects the topic of interpolating varieties for the space

A 0 |z| , with the condensation index c(Λ) of a sequence Λ = {λ n } ∞ n=1 . Suppose that Λ = {λ n } ∞
n=1 has distinct non-zero complex numbers that satisfies conditions A (1.4) and B (1.5). The condensation index c(Λ) is defined as

c(Λ) := lim sup n→∞ -log |F ′ (λ n )| |λ n | , F (z) = ∞ n=1 1 - z 2 λ 2 n . (2.15)
We prove below the following.

Lemma 2.3. Consider a sequence Λ = {λ n } ∞ n=1 of distinct non-zero complex numbers such that ∞ n=1 1/|λ n | < ∞ and sup n∈N | arg λ n | < π/2.
Then its condensation index c(Λ) is equal to zero if and only if Λ is an interpolating variety for the space A 0 |z| .

Proof. Clearly the function F (z) in (2.15) as well as its derivative function F ′ (z) are entire functions of exponential type zero. Therefore for every ϵ > 0 there is a positive constant m ϵ so that

|F ′ (λ n )| < m ϵ e ϵ|λn| , ∀ n ∈ N. (2.16)
Now, if such a sequence Λ is an interpolating variety for the space A 0 |z| , it follows from Lemma 2.2 that for every ϵ > 0 there is a positive constant u ϵ so that

|F ′ (λ n )| > u ϵ e -ϵ|λn| , ∀ n ∈ N.
(2.17)

Combining (2.16) with (2.17) shows that c(Λ) = 0.

On the other hand if c(Λ) = 0, then (2.17) holds, hence by T he Analytic Condition, Λ is an interpolating variety for the space A 0 |z| .

A lower bound for the Luxemburg-Korevaar function G

We are now ready to extend Theorem C by deriving the lower bound (1.19).

Theorem 3.1. Let the multiplicity sequence

Λ = {λ n , µ n } ∞ n=1 belong to the ABC class and let -∞ < γ < β < ∞. Let also σ = (β + γ) 2 , τ = (β -γ) 2 , hence β = τ + σ.
Then, by properly choosing a decreasing sequence {ϵ n > 0} ∞ n=1 so that ∞ n=1 ϵ n = τ , the entire function

G(z) = e -iσz ∞ n=1 1 + z 2 λ 2 n µn ∞ n=1 cos(ϵ n z) belongs to L 2 (R) ∩ L 1 (R) such that G(z) = 1 √ 2π β γ e -izt g(t) dt (3.1) 
for some g ∈ C[γ, β] with g vanishing outside the interval [γ, β]. Moreover, for every fixed ϵ > 0, let P n,ϵ for n = 1, 2, . . . be the disks as in Remark 2.3 and let ∂P n,ϵ be their respective circles. Then there is a positive constant M ϵ independent of n but depending on τ , such that relation (1.19) is true.

Proof. First write

G(z) = e -iσz • H(z) • L(z)
where

H(z) := ∞ n=1 cos(ϵ n z) and L(z) := ∞ n=1 1 + z 2 λ 2 n µn .
For 0 ≤ η < π/2 and χ > 0, consider the region

Ω η := z : π 2 -η ≤ arg z ≤ π 2 + η, |z| ≥ χ . (3.2)
In [66, Lemma 4.1], we proved that for every ϵ > 0 there is a positive constant M ϵ , depending on η and τ , so that

|H(z)| ≥ M ϵ e -ϵ|z| e τ •ℑz , ∀ z ∈ Ω η . (3.3) 
Since σ + τ = β, then for every ϵ > 0 there is a positive constant M ϵ , depending on η and τ , so that 4 The Distance between x k e λ n x and the closed span of

|H(z)| • |e -iσz | ≥ M ϵ e -ϵ|z| e τ •ℑz • e σ•ℑz = M ϵ e -ϵ|z| e β•ℑz , ∀ z ∈ Ω η . ( 3 
E Λ \ x k e λ n x in L p (γ, β): Proof of Theorem 1.1
This section is devoted to the proof of our Fundamental result. In what follows, we suppose that Λ ∈ ABC, (γ, β) is a fixed bounded interval, and G is the entire function of Theorem 3.1. We also note that since Λ ∈ ABC, then µ n /ℜλ n → 0, thus

∀ ϵ > 0, ∃ a positive constant m ϵ : µ n ≤ ϵℜλ n ≤ m ϵ e ϵℜλn , (4.1) 
a relation to be used several times in this paper. In addition, for a function f , by f (m) we mean the m th derivative function of f .

Auxiliary results

Lemma 4.1. There exist entire functions {G n,k (z) : n ∈ N, k = 0, 1, . . . , µ n -1} so that

G (l) n,k (iλ j ) =      1, j = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -1}. (4.2)
Moreover, from Remark 2.3 consider for fixed ϵ > 0 and all n ∈ N the disks P n,ϵ and their respective circles ∂P n,ϵ . Then there is a constant M ϵ,2 > 0, independent of n and k but depending on Λ and (β -γ), so that for every fixed n ∈ N and k ∈ {0, 1, . . . , µ n -1} we have

|G n,k (z)| ≤ |G(z)|M ϵ,2 e (-β+ϵ)ℜλn , ∀ z ∈ C \ P n,ϵ , (4.3) 
and

|G n,k (x)| ≤ |G(x)|M ϵ,2 e (-β+ϵ)ℜλn , ∀ x ∈ R. (4.4) 
Proof. We note that the idea of constructing the family {G n,k } comes from [62, page 4312].

Obviously 1 G(z)
is a meromorphic function and at each point z = iλ n it has a pole of order µ n . This pole is the center of the disk P n,ϵ . Now, let

A n,j := 1 2πi ∂Pn,ϵ (z -iλ n ) j-1 G(z) dz, j = 1, . . . , µ n .
From (1.19) and the small radius of the disk P n,ϵ , one deduces that for the fixed ϵ > 0 there is M ϵ,1 > 0, independent of n and j but depending on (β -γ), so that

|A n,j | ≤ M ϵ,1 e (-β+ϵ)ℜλn , ∀ n ∈ N, j = 1, . . . , µ n . (4.5) 
Let us also consider the punctured disk P * n,ϵ : it is the disk P n,ϵ excluding the point iλ n , that is

P * n,ϵ := z : 0 < |z -iλ n | < m ϵ 6 exp - ϵ|λ n | µ n .
With A n,j as above, we write down the Laurent series representation of 1/G in

P * n,ϵ , 1 G(z) = µn j=1 A n,j (z -iλ n ) j + p n (z), for all z ∈ P * n,ϵ (4.6) 
such that p n (z) is the regular part.

Next, for every positive integer n and every k ∈ {0, 1, 2, . . . , µ n -1} let

G n,k (z) := G(z) k! µn-k l=1 A n,k+l (z -iλ n ) l . (4.7)
Obviously each G n,k is an entire function. We show below that it satisfies (4.2) and then (4.3) -(4.4).

First suppose that k = 0, thus

G n,0 (z) = G(z) µn l=1 A n,l (z -iλ n ) l .
Then we get G (l) n,0 (iλ j ) = 0 for j ̸ = n and l = 0, 1, . . . , µ j -1. Also, from (4.6) and since G n,0 (z) is continuous at z = iλ n , then

G n,0 (z) = G(z) 1 G(z) -p n (z) = 1 -G(z)p n (z) ∀ z ∈ P n,ϵ . Hence, G n,0 (iλ n ) = 1 and G (l)
n,0 (iλ n ) = 0 for l ∈ {1, . . . , µ n -1}. Thus, G n,0 (z) satisfies (4.2). Next, suppose that k ∈ {1, 2, . . . , µ n -1}. Clearly from (4.7) we get G (l) n,k (iλ j ) = 0 for j ̸ = n and l = 0, 1, . . . , µ j -1. Then, from (4.6) and since G n,k (z) is continuous at z = iλ n , we rewrite G n,k (z) for all z in P n,ϵ as

G n,k (z) = G(z)(z -iλ n ) k k! µn l=k+1 A n,l (z -iλ n ) l = G(z)(z -iλ n ) k k!   1 G(z) -p n (z) - k j=1 A n,j (z -iλ n ) j   = (z -iλ n ) k k! - G(z)(z -iλ n ) k p n (z) k! - G(z) k! k j=1 A n,j (z -iλ n ) k-j . (4.8) 
From this relation we get

G (k) n,k (iλ n ) = 1 and G (l)
n,k (iλ n ) = 0 for l ∈ {0, 1, . . . , µ n -1} \ {k}. Thus, G n,k (z) satisfies (4.2) for k ̸ = 0 as well.

Next, by combining relations (4.1), (4.5), (4.7), and the small radius of P n,ϵ , yields the upper bound (4.3) for all z which lie outside the disk P n,ϵ . Finally, the upper bound (4.4) on R follows from (4.3) and the fact that the points iλ n do not lie on R since sup n∈N | arg λ n | < π/2.

Lemma 4.2. There exist continuous functions {g

n,k (t) : n ∈ N, k = 0, 1, . . . , µ n -1} on the interval [γ, β], with g n,k (t) = 0 outside [γ, β] so that 1 √ 2π β γ g n,k (t)(-it) l e λ j t dt =      1, j = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -1}.
(4.9)

Furthermore, for every ϵ > 0 there is a constant M ϵ,3 > 0 independent of n and k but depending on Λ and (β -γ), so that 

|g n,k (t)| ≤ M ϵ,3 e (-β+ϵ)ℜλn ∀ t ∈ [γ, β], n ∈ N, k ∈ {0, 1, . . . , µ n -1}. ( 4 
G n,k (z) = 1 √ 2π β γ e -izt g n,k (t) dt, for some g n,k ∈ C[γ, β] with g n,k (t) = 0 outside [γ, β]
. By differentiation one also has

G (l) n,k (z) = 1 √ 2π β γ (-it) l e -izt g n,k (t) dt.
It now follows from (4.2) that (4.9) is valid.

Moreover, since G n,k ∈ L 1 (R), by Fourier Inversion we have

g n,k (t) = 1 √ 2π ∞ -∞ e ixt G n,k (x) dx ∀ t ∈ [γ, β].
Finally, since G ∈ L 1 (R) then from (4.4) we get (4.10).

Proof of the Fundamental Result, Theorem 1.1

Fix some n ∈ N and k ∈ {0, 1, . . . , µ n -1} and let g n,k be the function as in Lemma 4.2. Consider also the exponential system

E Λ n,k = E Λ \ x k e λnx .
Since g n,k ∈ C[γ, β] then g n,k ∈ L q (γ, β) for all q ≥ 1 and it follows from (4.10) that for every ϵ > 0 there is some M ϵ,3 > 0, independent of n ∈ N, k = 0, 1, . . . , µ n -1, so that

||g n,k (t)|| L q (γ,β) = β γ |g n,k (t)| q dt 1/q ≤ M ϵ,3 • e (-β+ϵ)ℜλn • max{(β -γ), 1}. (4.11) Remark 4.1. This bound is independent of q ∈ [1, ∞).
Suppose now that f ∈ span(E Λ n,k ) in the space L p (γ, β) for some p > 1. Hence for every ϵ > 0 there is an exponential polynomial

P ϵ ∈ span(E Λ n,k ) such that ||f -P ϵ || L p (γ,β) < ϵ.
From (4.9) we have

β γ g n,k (t)P ϵ (t) dt = 0, thus β γ g n,k (t)f (t) dt = β γ g n,k (t) • (f (t) -P ϵ (t)) dt.
Let q be the conjugate of p, that is, 1/p + 1/q = 1. Then from the Hölder inequality we get

β γ g n,k (t) • (f (t) -P ϵ (t)) dt ≤ ||g n,k || L q (γ,β) • ϵ.
Since ϵ is arbitrary we conclude that

β γ g n,k (t)f (t) dt = 0.
Together with (4.9) gives

√ 2π (-i) k = β γ g n,k (t) • t k e λnt dt = β γ g n,k (t) t k e λnt -f (t) dt.
Letting p n,k (t) = t k e λnt , then from (4.11) and the Hölder inequality we get

√ 2π ≤ ||g n,k (t)|| L q (γ,β) • ||p n,k -f || L p (γ,β) ≤ M ϵ,3 • e (-β+ϵ)ℜλn • max{(β -γ), 1} • ||p n,k -f || L p (γ,β) .
Thus

||p n,k -f || L p (γ,β) ≥ √ 2π M ϵ,3 • max{(β -γ), 1}
• e (β-ϵ)ℜλn .

Since this is true for all f ∈ span(E Λ n,k ) in L p (γ, β), and letting

u ϵ = √ 2π M ϵ,3 • max{(β -γ), 1}
we get the Distance lower bound D γ,β,p,n,k ≥ u ϵ e (β-ϵ)ℜλn with u ϵ clearly independent of n, k, and also independent of p > 1 due to Remark 4.1.

Similarly one gets D γ,β,1,n,k ≥ u ϵ e (β-ϵ)ℜλn . The proof of Theorem 1.1 is now complete.

An important corollary

The following result is crucial for proving Theorem 1.2.

Corollary 4.1. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the class ABC and let (γ, β) be a bounded interval. Consider two exponential polynomials

P 1 (x) = M 1 n=1 µn-1 k=0 c n,k,1 x k e λnx , c n,k,1 ∈ C and P 2 (x) = M 2 n=1 µn-1 k=0 c n,k,2 x k e λnx , c n,k,2 ∈ C, such that M 2 ≥ M 1 .
Then, for every ϵ > 0 there is a constant m ϵ > 0 which depends only on Λ and (β -γ), and not on P 1 (x), P 2 (x), p ≥ 1, n ∈ N and k = 0, 1, . . . , µ n -1, so that Proof. Fix m ∈ {1, . . . , M 1 } and l ∈ {0, 1, . . . , µ m -1}. Let p m,l (x) = x l e λmx , E Λ m,l = E Λ \ p m,l , and write

||P 1 || L p (γ,β) = |c m,l,1 | • ||p m,l + Q m,l,1 || L p (γ,β) ,
where

Q m,l,1 (x) :=   µm-1 k=0,k̸ =l c m,k,1 c m,l,1 x k   e λmx + M 1 n=1,n̸ =m µn-1 k=0 c n,k,1 c m,l,1 x k e λnx .
Clearly Q m,l,1 belongs to the span of E Λ m,l , thus (I) follows from Theorem 1.1.

Next, (II) obviously holds if c n,k,1 = c n,k,2 for some n ∈ {1, 2, . . . , M 1 } and k ∈ {0, 1, . . . , µ n -1}. Suppose now that c m,l,1 ̸ = c m,l,2 for m ∈ {1, . . . , M 1 } and l ∈ {0, 1, . . . , µ m -1}. We then write

|P 1 (x) -P 2 (x)| = |c m,l,1 -c m,l,2 | • x l e λmx + Q m,l,1,2 (x)
where

Q m,l,1,2 (x) : =   µm-1 k=0,k̸ =l c m,k,1 -c m,k,2 c m,l,1 -c m,l,2 x k   e λmx + M 1 n=1,n̸ =m µn-1 k=0 c n,k,1 -c n,k,2 c m,l,1 -c m,l,2 x k e λnx - M 2 n=M 1 +1 µn-1 k=0 c n,k,2 c m,l,1 -c m,l,2
x k e λnx .

Hence

||P 1 -P 2 || L p (γ,β) = |c m,l,1 -c m,l,2 | • ||p m,l + Q m,l,1,2 || L p (γ,β) , p m,l (x) = x l e λmx .
Obviously Q m,l,1,2 belongs to the span of E Λ m,l , hence (II) follows from Theorem 1.1.

A result on the region of holomorphy of Taylor-Dirichlet series

In this section we state and prove a result on Taylor-Dirichlet series which as we have seen appear in the statement of our results in Introduction.

Suppose that a multiplicity sequence Λ = {λ n , µ n } ∞ n=1 , not necessarily in the ABC class, satisfies the following two conditions: Remark 5.1. We note however that it is possible for Taylor-Dirichlet series to converge pointwise on a set of points, call it ∆, which lies outside the region D. We will discuss more on this phenomenon in subsection 10.2.

And now our own contribution to the topic of Taylor-Dirichlet series. Such a series is either an entire function or an analytic function in a convex region D ⊃ Θ η,β . In the latter case the boundary of D is a natural boundary for g.

Proof. Firstly, suppose that the coefficients n,k satisfy the upper bound (1.10). We will show that g is analytic in Θ η,β by proving that g converges uniformly on its compact subsets.

Consider such a compact set K so that sup z∈K |z| = M > 1. Clearly we can shift Θ η,β to the left by α units for some α > 0, so that K remains in the interior of this shifted sector, call it Θ η,β,α :

Θ η,β,α := z : |ℑz| ≤ |ℜ(z -β + α)| 1 tan η , ℜz ≤ β -α .
Since Λ satisfies condition (1.5), then

|ℑλ n | ≤ (ℜλ n )•tan η. Also, since z ∈ Θ η,β,α then |ℜ(z -β +α)| = -ℜz + β -α.
Then for all z ∈ K one has

| exp{λ n z}| = exp {ℜλ n • ℜz -ℑλ n • ℑz} ≤ exp {ℜλ n • ℜz + |ℑλ n | • |ℑz|} ≤ exp ℜλ n • ℜz + (ℜλ n • tan η) • |ℜ(z -β + α)| • 1 tan η = exp{ℜλ n • [ℜz + |ℜ(z -β + α)|]} = exp{ℜλ n • (β -α)}.
Since the coefficients satisfy (1.10), combined with the above upper bound and (4.1), shows that for every ϵ > 0 there are m * ϵ > 0 and m ϵ > 0, so that for all z ∈ K we have

µn-1 k=0 |c n,k | • |z| k • |e λnz | ≤ µ n • m * ϵ • exp{(-β + ϵ) • ℜλ n } • M µn-1 • exp{(β -α) • ℜλ n } ≤ m ϵ • exp{ϵℜλ n } • exp{(-β + ϵ) • ℜλ n } • exp{ϵℜλ n } • exp{(β -α) • ℜλ n } = m ϵ • exp{(3ϵ -α) • ℜλ n }.
Let us now choose ϵ to be equal to α/4. Then one gets

∞ n=1 µn-1 k=0 |c n,k | • |z| k • |e λnz | ≤ ∞ n=1 m α/4 • e (-α/4)•ℜλn < ∞.
This means that g converges uniformly on the set K. The arbitrary choice of K shows that g is an analytic function in the sector Θ η,β .

Secondly, suppose that g is an analytic function in the sector Θ η,β , thus all real points ρ < β belong to the sector. We will show that the coefficients c n,k satisfy (1.10) by utilizing the results obtained by G. Valiron and E. Hille.

Since in our case Λ is an interpolating variety for the space A 0 |z| , then it has zero Density, in other words |λn|≤t µ n t → 0, t → ∞.

Therefore,

µ 1 + µ 2 + µ 3 + • • • + µ n |λ n | → 0, n → ∞.
Then it easily follows that both relations in (5.1) hold. Therefore if we compare the series g(z) with the series 6 The Closed Span of E Λ in L p (γ, β): Proof of Theorems 1.2 and 1.3

g * (z) = ∞ n=1 C n e λnz where C n = max{|c n,k | : k = 0,
In this section we characterize the closed span of the system E Λ in L p (γ, β) by proving Theorem 1.2 as well as its converse result Theorem 1.3.

Proof of Theorem 1.2

Suppose that f ∈ span(E Λ ) in L p (γ, β) for some p ≥ 1. Then there exists a sequence {P j (x)} ∞ j=1 in span(E Λ ), where

P j (x) = r(j) n=1 µn-1 k=0 c n,k,j x k e λnx
such that ||f -P j || L p (γ,β) → 0 as j → ∞. Without loss of generality, suppose that r(j) is unbounded, thus we may assume that r(j) is strictly increasing.

It follows from Corollary 4.1 that for every ϵ > 0 there is a positive constant m ϵ independent of {P j } ∞ j=1 , n ∈ N and k = 0, 1, . . . , µ n -1, so that |c n,k,j | ≤ m ϵ e (-β+ϵ)ℜλn ||P j || L p (γ,β) , n = 1, . . . , r(j) and k = 0, 1, . . . , µ n -1, (

and for i ≥ j, one has

|c n,k,j -c n,k,i | ≤ m ϵ e (-β+ϵ)ℜλn ||P j -P i || L p (γ,β) , n = 1, . . . , r(j) and k = 0, 1, . . . , µ n -1. (6.2)
Fixing n, k in (6.2) and since

||P j || L p (γ,β) → ||f || L p (γ,β) as j → ∞, shows that {c n,k,j } ∞
j=1 is a Cauchy sequence, hence converging to some complex number, call it c n,k . Furthermore, from (6.1) we get converges uniformly on compact subsets of the sector Θ η,β , therefore g is analytic in Θ η,β . Thus g converges uniformly on intervals of the form [γ, β -ρ] for any small ρ > 0.

|c n,k | ≤ m ϵ e (-β+ϵ)ℜλn ||f || L p (γ,β) , ∀ n ∈ N, ∀ k = 0, 1, . . . , µ n -1. ( 6 
We now claim that {P j ∞ j=1 also converges to g uniformly on such subintervals. Fix some small ρ > 0 and consider the interval [γ, β -ρ]. Choose also ϵ = ρ 6 , and T = max{1, |γ|, |β -ρ|}. (6.5)

For this ϵ > 0 it follows from (4.1) that there is a positive constant m ϵ , independent of n ∈ N, so that

|x| µn ≤ T µn ≤ m ϵ e ϵℜλn ∀ x ∈ [γ, β -ρ]. (6.6) 
Then, for all x ∈ [γ, β -ρ] we write 

|P j (x) -g(x)| ≤ |I(x)| + |II(x)| (6.
|c n,k,j -c n,k | ≤ m ϵ e (-β+ϵ)ℜλn ||P j -f || L p (γ,β) , ∀ n ∈ N, ∀ k = 0, 1, . . . , µ n -1. (6.8)
Thus from relations (6.3) and (6.8), we get

|I(x)| ≤ ||P j -f || L p (γ,β) • r(j) n=1 µn-1 k=0
m ϵ e (-β+ϵ)ℜλn |x| k e xℜλn (6.9)

and

|II(x)| ≤ ||f || L p (γ,β) • ∞ n=r(j)+1 µn-1 k=0 m ϵ e (-β+ϵ)ℜλn |x| k e xℜλn . (6.10) 
From (4.1), (6.6), and since ϵ = ρ/6, then for all x ∈ [γ, β -ρ] there exists an m * ϵ > 0, so that

∞ n=1 µn-1 k=0 e (-β+ϵ)ℜλn |x| k e xℜλn ≤ ∞ n=1 µ n • e (-β+ϵ)ℜλn • T µn • e xℜλn ≤ ∞ n=1 m * ϵ • e ϵℜλn • e (-β+ϵ)ℜλn • e ϵℜλn • e (β-ρ)ℜλn = ∞ n=1 m * ϵ • e (3ϵ-ρ)ℜλn = ∞ n=1 m * ϵ • e (-ρ 2 )ℜλn < ∞.
This result together with the fact that ||P j -f || L p (γ,β) → 0 as j → ∞ shows that the right hand-sides of the inequalities (6.9) and (6.10) converge to zero uniformly on [γ, β -ρ] as j → ∞. Finally, by substituting in (6.7) we see that {P j } ∞ j=1 converges to g uniformly on [γ, β -ρ] as well, thus our claim is verified. Therefore ||P j -g|| L p (γ,β-ρ) → 0 as j → ∞ for any small ρ > 0. But ||P j -f || L p (γ,β-ρ) → 0 as j → ∞ as well for any small ρ > 0 since ||P j -f || L p (γ,β) → 0 as j → ∞. These facts show that f (x) = g(x) almost everywhere on (γ, β -ρ). The arbitrary choice of ρ > 0, means that f (x) = g(x) almost everywhere on (γ, β).

And finally, the uniqueness of the Taylor-Dirichlet series follows from Lemma B.1 (see the Appendix). The proof of Theorem 1.2 is now complete.

The converse result: Proof of Theorem 1.3

The proof is a refinement of [START_REF] Zikkos | The closed span of an exponential system in the Banach spaces L p (γ, β) and C[γ, β][END_REF]Theorem 8.1] and it is inspired by the work of Korevaar [START_REF] Korevaar | A characterization of the submanifold , of C[a, b] spanned by the sequence {x n k }[END_REF]. First note that since f ∈ L p (γ, β) and f is continuous on (-∞, β), then f ∈ L p (c, β) for any c ∈ (-∞, β). Second, let {δ n } ∞ n=1 be an arbitrary sequence of positive real numbers so that δ n → 0 as n → ∞. The continuity of f implies that for all x ∈ [γ -1, β) we have f (x -δ n ) → f (x) as n → ∞. By applying Fatou's Lemma and changing variables we get Combining the above, we have Thus, for every ϵ > 0 there is δ > 0 such that

β γ |f (x)| p dx ≤ lim inf δn→0 β γ |f (x -δ n )| p dx ≤ lim sup δn→0 β γ |f (x -δ n )| p dx = lim sup
β γ |f (x)| p dx ≤ lim inf δn→0 β γ |f (x -δ n )| p dx ≤ lim sup δn→0 β γ |f (x -δ n )| p dx ≤ β γ |f (x)| p dx.

Clearly this means that lim

β γ |f (x) -f (x -δ)| p dx 1/p ≤ ϵ. (6.11)
Fix such an ϵ and its δ. We then have

f (x -δ) = ∞ n=1 µn-1 k=0 c n,k (x -δ) k e λn(x-δ) , (x -δ) < β = ∞ n=1   e -λnδ µn-1 k=0 c n,k   µn-1 j=k j! k!(j -k)! (-δ) j-k   x k   e λnx , x < β + δ.
Since the series of f (z) converges uniformly on compact subsets of the sector Θ η,β , then the series of f (z -δ) converges uniformly on compact subsets of the sector

Θ η,β+δ := z : ℑz ℜ(z -β -δ) ≤ 1 tan η , ℜz < β + δ ,
hence on the interval [γ, β] as well. Therefore, for the fixed ϵ, δ there is a positive integer m ϵ so that

f (x -δ) - mϵ n=1   e -λnδ µn-1 k=0 c n,k   µn-1 j=k j! k!(j -k)! (-δ) j-k   x k   e λnx < ϵ, ∀ x ∈ [γ, β].
This relation together with (6.11) and the Minkowksi inequality, yield that f ∈ span(E Λ ) in the space L p (γ, β).

7

The Biorthogonal Family r Λ E Λ : Proof of Theorem 1.5

In this section we prove Theorem 1.5 which is on the properties of a biorthogonal family r Λ to the system E Λ in L 2 (γ, β).

Constructing the Biorthogonal family and deriving the upper bound (1.11)

Consider a multiplicity sequence Λ in the ABC class. As before, let p n,k (x) = x k e λnx and E Λ n,k = E Λ \ p n,k . From Theorem 1.1 we know that for every ϵ > 0 there is a positive constant u ϵ which depends only on Λ and (β -γ), but not on n ∈ N and neither on k = 0, . . . , µ n -1, such that the distance D γ,β,2,n,k in L 2 (γ, β), satisfies

D γ,β,2,n,k ≥ u ϵ e (β-ϵ)ℜλn . (7.1)
Since L 2 (γ, β) is a Hilbert space, it then follows that there exists a unique element in span(E Λ n,k ) in L 2 (γ, β), that we denote by ϕ n,k , so that

||p n,k -ϕ n,k || L 2 (γ,β) = inf g∈span(E Λ n,k ) ||p n,k -g|| L 2 (γ,β) = D γ,β,2,n,k .
The function p n,k -ϕ n,k is orthogonal to all the elements of the closed span of

E Λ n,k in L 2 (γ, β), hence to ϕ n,k itself. Therefore ⟨p n,k -ϕ n,k , p n,k -ϕ n,k ⟩ = ⟨p n,k -ϕ n,k , p n,k ⟩. Hence (D γ,β,2,n,k ) 2 = ⟨p n,k -ϕ n,k , p n,k ⟩.
Next, we define

r n,k (x) := p n,k (x) -ϕ n,k (x) (D γ,β,2,n,k ) 2 .
It then follows that ⟨r n,k , p n,k ⟩ = 1 and r n,k is orthogonal to all the elements of the system E Λ n,k . Thus {r n,k : n ∈ N, k = 0, 1, . . . , µ n -1} is biorthogonal to the system

E Λ . Since ϕ n,k ∈ span(E Λ n,k ) in L 2 (γ, β) then r n,k ∈ span(E Λ ) in L 2 (γ, β). Remark 7.1. Clearly ||r n,k || L 2 (γ,β) = 1 D γ,β,2
,n,k , hence from (7.1) we obtain (1.11).

Uniqueness and Optimality

Next we show that {r n,k } is the unique biorthogonal sequence to the system E Λ , which belongs to its closed span in L 2 (γ, β). Indeed, if there is another such biorthogonal sequence, call it {q n,k }, then for all n ∈ N and k ∈ {0, 1, . . . , µ n -1} we have

⟨r n,k -q n,k , p m,l ⟩ = 0, ∀ m ∈ N and l = 0, 1, . . . , µ m -1, p m,l = x l e λmx .
But this in turn implies that r n,k -q n,k = 0 almost everywhere on (γ, β) since the system E Λ is complete in the closed span of E Λ in L 2 (γ, β).

We also claim that if {v n,k } is any other sequence biorthogonal to the system E Λ , then

||r n,k || L 2 (γ,β) ≤ ||v n,k || L 2 (γ,β) .
In other words, r Λ is optimal.

To justify this, choose an element v n,k and write v n,k = r n,k + (v n,k -r n,k ). Then ⟨v n,k -r n,k , p m,l ⟩ = 0 for all p m,l ∈ E Λ , thus ⟨v n,k -r n,k , f ⟩ = 0 for every f which belongs to the closed span of E Λ . Hence v n,k -r n,k belongs to the orthogonal complement of the closed span of E Λ in L 2 (γ, β). Obviously one has ⟨v n,k -r n,k , r n,k ⟩ = 0 and therefore

||v n,k || 2 L 2 (γ,β) = ||r n,k || 2 L 2 (γ,β) + ||v n,k -r n,k || 2 L 2 (γ,β) ≥ ||r n,k || 2 L 2 (γ,β) .
Relations (1.12) and (1.13)

Relations (1.12) and (1.13) follow directly from Lemma 7.1 since by Theorem 1.2 every function in the closed span of the system E Λ in L 2 (γ, β) extends analytically as a Taylor-Dirichlet series.

Lemma 7.1. Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class. Suppose that a Taylor-Dirichlet series

f (z) = ∞ m=1   µm-1 j=0 c m,j z j   e λmz is analytic in the sector Θ η,β (1.6) and f ∈ L 2 (γ, β). Then c n,k = ⟨f, r n,k ⟩ ∀ n ∈ N and k = 0, 1, 2, . . . , µ n -1. (7.2)
Proof. We have

⟨f, r n,k ⟩ = β γ f (x) • r n,k (x) dx = β γ r n,k (x) • ∞ m=1   µm-1 j=0 c m,j x j   e λmx dx = β γ r n,k (x) • n m=1   µm-1 j=0 c m,j x j   e λmx dx + β γ r n,k (x) • ∞ m=n+1   µm-1 j=0 c m,j x j   e λmx dx = c n,k + β γ r n,k (x) • ∞ m=n+1   µm-1 j=0 c m,j x j   e λmx dx, (7.3) 
with the last step valid due to the biorthogonality.

We show below that in L 2 (γ, β). Hence, for every ϵ > 0, there is a function f ϵ in the span of E Λ,n+1 so that ||Q nf ϵ || L 2 (γ,β) < ϵ. Due to the biorthogonality we have

β γ r n,k (x) • f ϵ (x) dx = 0.
Combining with the Cauchy-Schwartz inequality we get

β γ r n,k (x) • Q n (x) dx = β γ r n,k (x) • (Q n (x) -f ϵ (x)) dx ≤ ϵ • ||r n,k || L 2 (γ,β) .
The arbitrary choice of ϵ implies that (7.4) is true. Together with (7.3) shows that (7.2) holds.

Method I: A first proof to the Moment Problem

Choose ϵ > 0 such that ϵ = (β -a)/6. Then one has

∞ n=1 e (-β+a+3ϵ)ℜλn < ∞. (8.1)
Next, for every n ∈ N let

U n (t) := µn-1 k=0 d n,k r n,k (t), t ∈ (γ, β) * , (8.2) 
It then follows from relations (1.11), (1.14), (4.1), and (8.1), that for every ϵ > 0, there are positive constants M ϵ and M * ϵ , so that

∞ n=1 β γ |U n (t)| dt ≤ ∞ n=1 µn-1 k=0 |d n,k | β γ |r n,k (t)| dt ≤ ∞ n=1 µn-1 k=0 |d n,k | • ||r n,k (t)|| L 2 (γ,β) • (β -γ) ≤ ∞ n=1 µ n • M ϵ e (a+ϵ)ℜλn • e (-β+ϵ)ℜλn • (β -γ) ≤ ∞ n=1 M * ϵ e (-β+a+3ϵ)ℜλn < ∞.
By [START_REF] Rudin | Real and complex analysis[END_REF]Theorem 1.38] this implies that the infinite series

U (t) := ∞ n=1 U n (t) = ∞ n=1 µn-1 k=0 d n,k r n,k (t) , t ∈ (γ, β) *
converges pointwise almost everywhere on (γ, β) * and belongs to L 1 (γ, β).

In fact, U ∈ L 2 (γ, β) as well: by the Minkowski inequality, and once again using relations (1.11), (1.14), (4.1), and (8.1), we get

β γ |U (t)| 2 dt ≤ ∞ n=1 µn-1 k=0 |d n,k | • ||r n,k || L 2 (γ,β) 2 < ∞.
Needless to say that the function

h(t) := ∞ n=1 µn-1 k=0 |d n,k | • |r n,k (t)| ∀ t ∈ (γ, β) *
also converges pointwise almost every everywhere on (γ, β) and h ∈ L 1 (γ, β) ∩ L 2 (γ, β).

We also claim that U converges in L 2 (γ, β). Indeed, we have

|U (t) -M n=1 U n (t)| 2 ≤ h 2 (t) and |U (t) -M n=1 U n (t)| 2 → 0 as M → ∞ for almost all t ∈ (γ, β) * .
Then by the Lebesgue Convergence Theorem we have

||U - M n=1 U n || L 2 (γ,β) → 0 as M → ∞. (8.3) 
Next, since each U n is a finite sum of r n,k 's, then each U n belongs to the closed span of E Λ in L 2 (γ, β).

Together with (8.3) yields that U also belongs to the closed span of E Λ in L 2 (γ, β).

It remains to show that U a solution of the moment problem. If we fix some m ∈ N and some l = 0, 1, . . . , µ m -1, then M n=1 U n (t) • t l e λmt → U (t) • t l e λmt almost everywhere on (γ, β) as M → ∞. Also there is a positive constant T m,l which depends on m and l, so that

|t l e λmt • M n=1 U n (t)| ≤ T m,l • h(t), ∀ t ∈ (γ, β), ∀ M ∈ N.
Using again the Lebesgue Convergence Theorem gives lim

M →∞ β γ t l e λmt • M n=1 U n (t) dt = β γ U (t) • t l e λmt dt.
By the biorthogonality of the {r n,k } family to the system E Λ and (8.2), we finally get

β γ U (t) • t l e λmt dt = d m,l .
Thus U is a solution to the Moment Problem (1.15). The first proof is now complete.

Method II: A second proof to the Moment Problem via Nonharmonic Fourier Series

We shall make use of the following notions from Non-Harmonic Fourier Series.

Let H be a separable Hilbert space endowed with an inner product ⟨ • ⟩, and consider a sequence {f n } ∞ n=1 ⊂ H. We say that (see [65, p. 128 Definition]):

(i) {f n } ∞ n=1 is a Bessel sequence if there exists a constant B > 0 such that ∞ n=1 |⟨f, f n ⟩| 2 < B||f || 2 for all f ∈ H. (ii) {f n } ∞
n=1 is a Riesz-Fischer sequence if the moment problem ⟨f, f n ⟩ = c n has at least one solution in H for every sequence {c n } in the space l 2 (N).

The following result stated by Casazza et al. is an interesting connection between Bessel and Riesz-Fischer sequences.

Proposition A. [27, Proposition 2.3, (ii)]

The Riesz-Fischer sequences in H are precisely the families for which a biorthogonal Bessel sequence exists. In other words (a) Suppose that two sequences {f n } ∞ n=1 and

{g n } ∞ n=1 in H are biorthogonal. Suppose also that {f n } ∞ n=1 is a Bessel sequence. Then {g n } ∞ n=1 is a Riesz-Fischer sequence. (b) If {f n } ∞
n=1 in H is a Riesz-Fischer sequence, then there exists a biorthogonal Bessel sequence

{g n } ∞ n=1 .
And now a sufficient condition so that two biorthogonal families in H are Bessel and Riesz-Fischer sequences. The result follows from [28, Proposition 3.5.4] and Proposition A.

Lemma 8.1. Consider two biorthogonal sequences {u n } ∞ n=1 and {v n } ∞ n=1 in H and suppose there is some M > 0 so that

∞ n=1 |⟨v n , v m ⟩| < M for all m = 1, 2, 3, . . . . Then {v n } ∞ n=1 is a Bessel sequence in H and {u n } ∞ n=1 is a Riesz-Fischer sequence in H.
Let us now proceed with the second proof of Theorem 1.6. As before, let H Λ be span(E Λ ) in L 2 (γ, β), hence H Λ is a separable Hilbert space.

{d n,k : n ∈ N, k = 0, 1, . . . , µ n -1} be the sequence of non-zero complex numbers that satisfies (1.14). For every n ∈ N and k = 0, 1, . . . , µ n -1, define

U n,k (t) := λ n d n,k r n,k (t) and V n,k (t) := t k e λnt λ n • d n,k .
It then easily follows that the sets

{U n,k : n ∈ N, k = 0, 1, . . . , µ n -1} and {V n,k : n ∈ N, k = 0, 1, . . . , µ n -1} are biorthogonal in H Λ .
We claim that {U n,k } is a Bessel sequence and {V n,k } is a Riesz-Fischer sequence in H Λ . Indeed, by (1.14) and (1.11) it follows that for ϵ = (β -a)/6 there is a positive constant m ϵ so that

||U n,k || L 2 (γ,β) ≤ m ϵ e (-β+a+3ϵ)ℜλn .
By the Cauchy-Schwartz inequality we get

|⟨U n,k , U m,j ⟩| ≤ m ϵ e (-β+a+3ϵ)ℜλn • e (-β+a+3ϵ)ℜλm . (8.4) 
If we denote by C n,k,m,j the values of ⟨U n,k , U m,j ⟩ and by C the infinite dimensional hermitian matrix with entries the C n,k,m,j , then C is the Gram matrix associated with {U n,k }. From the choice of ϵ and relations (4.1) and (8.4), we get

∞ n=1 µn-1 k=0 ∞ m=1 µm-1 j=0 |C n,k,m,j | < ∞.
It then follows from Lemma 8.1 that {U n,k } is a Bessel sequence in H Λ and its biorthogonal sequence {V n,k } is a Riesz-Fischer sequence in H Λ .

Therefore, the moment problem

β γ f (t) • V n,k (t) dt = c n,k ∀ n ∈ N and k = 0, 1, 2, . . . , µ n -1, has a solution f in H Λ whenever ∞ n=1 µn-1 k=0 |c n,k | 2 < ∞.
Since Λ satisfies the condition (1.4), then we can take c n,k = 1/λ n for all n ∈ N and k = 0, 1, . . . , µ n -1. Hence, recalling the definition of V n,k , there is some function f ∈ H Λ so that

β γ f (t) • t k e λnt d n,k λ n dt = 1 λ n ∀ n ∈ N and k = 0, 1, 2, . . . , µ n -1. Thus β γ f (t) • t k e λnt dt = d n,k ∀ n ∈ N and k = 0, 1, 2, . . . , µ n -1,
hence obtaining a solution f ∈ H Λ to the moment problem. The second proof is now complete.

9 The solution space of the Carleson differential equation: Proof of Theorem 1.7 and a counterexample

In this section we prove Theorem 1.7 which is on the solution space of the differential equation (1.17). We first prove Part (A) and then Part (B). We also present an example where the groupings in (1.18) cannot be dropped in case Λ is not an interpolating variety for the space A 0 |z| .

9.1 Proof of Theorem 1.7

of Part A

Let f be a function in the class C(γ, β, {G n }) (Definition 1.2) such that it is a solution of the equation (1.17). Carleson and Leont' ev proved that f extends analytically in the sector Θ η,β (1.6) as a series with grouping of terms, (see (1.18)), converging uniformly on compact subsets of the sector Θ η,β , thus on closed bounded intervals [γ + ϵ, β -ϵ] for every small ϵ > 0. Clearly this means that for every j ∈ N, f belongs to the closed span of the system E Λ in the space L 2 (γ + ϵ j , β -ϵ j ) where ϵ j = (β -γ)/4j. From Theorem 1.2 we see that for every fixed j ∈ N, f extends as an analytic function in the open sector

Θ η,β-ϵ j := z : ℑz ℜ(z -β + ϵ j ) ≤ 1 tan η , ℜz < β -ϵ j
and admits a unique Taylor-Dirichlet series representation of the form

f j (z) = ∞ n=1 µn-1 k=0 c j,n,k z k e λnz , ∀ z ∈ Θ η,β-ϵ j
converging uniformly on every compact set of Θ η,β-ϵ j . Now, observe that Θ η,β-ϵ 1 ⊂ Θ η,β-ϵ j for all j ∈ N. This means that for all j ∈ N, f 1 (z) = f j (z) for all z in the sector Θ η,β-ϵ 1 . Hence, by the Uniqueness result of Lemma B.1 (see the Appendix) the respective coefficients of the f j series are identical. In other words c 1,n,k, = c j,n,k for all j ∈ N. Clearly this means that f extends as an analytic function in the open sector Θ η,β and admits in the sector the Taylor-Dirichlet series representation

∞ n=1 µn-1 k=0 c 1,n,k z k e λnz .
Alternatively, since f (z) = f 1 (z) on the sector Θ η,β-ϵ 1 and f is analytic in the larger sector Θ η,β , by [START_REF] Zikkos | Solutions of infinite order differential equations without the grouping phenomenon and a generalization of the Fabry-Pólya theorem[END_REF]Theorem 4.1] we know that f is either an entire function or it has a Natural Boundary. This implies that f admits the f 1 series representation not only in Θ η,β-ϵ 1 but in Θ η,β as well.

Proof of Part B

The proof is essentially the one given in [67, Theorem 4.1] but we will rewrite it in a more clear and coherent way. First we prove two results, Lemmas 9.1 and 9.2.

Lemma 9.1. Let Ω be an open region in the complex plane such that (γ, β) ⊂ Ω. Let a function p be analytic on Ω and let F, G be the infinite products as in (1.16). Then p belongs to the class C(γ, β, {G n }) and both F (D)f (z) and G(D)f (z) define analytic fucntions on Ω.

Proof. By [10, Proposition 6.4.2], F (D)p(z) and G(D)p(z) define analytic fucntions on Ω. In order to show that p ∈ C(γ, β, {G n }) as well, we have to prove that

∞ n=1 G (n) (0) n! • |p (n) (x)|
converges uniformly on the interval [γ + δ, β -δ] for every small δ > 0.

Let us first consider the Taylor series expansion of G about zero

G(z) = ∞ n=0 G (n) (0) n! z n .
We recall from Remark 1.4 that

G (n) (0) is positive for all n ≥ 0.
since G is an entire function of exponential type 0, the relation between the type and the coefficients of its power series is given by lim sup

n→∞ n G (n) (0) n! 1/n = 0.
Thus for every ϵ > 0, there is a m ∈ N so that

G (n) (0) ≤ ϵ n • n! n n ∀ n ≥ m. (9.1) 
Next, since Ω contains the interval (γ, β), then it contains the intervals [γ + δ, β -δ] for every small δ > 0. Fix such an interval. Clearly it is properly contained in some compact set K ⊂ Ω. In fact there is some R > 0, so that for any point

ζ ∈ [γ + δ, β -δ], the disk D j,R := {z : |z -ζ| ≤ R is a subset of K ⊂ Ω.
We let ∂D j,R to be the boundary of the disk D j,R . Now, since p is analytic on Ω, then p is bounded on K, thus there is some M K > 0, so that |p(z)| ≤ M K for all z ∈ K. Then by the Cauchy Integral formula

p (n) (ζ) n! = 1 2πi ∂D j,R p(z) (z -ζ) n+1 dz, n = 1, 2, 3, • • • .
Thus for n = 1, 2, 3, . . . , one gets

|p (n) (ζ)| n! ≤ M K R n for all ζ ∈ [γ + δ, β -δ].
Combining with (9.1) and taking ϵ < R, gives for n = 1, 2, 3, . . . ,

G (n) (0) n! • |p (n) (ζ)| ≤ M K • n! n n for all ζ ∈ [γ + δ, β -δ].
Obviously the series ∞ The following result is known. A short proof follows.

Lemma 9.2. Let f be a function analytic on Ω. Let F (z) be the infinite product as in (1.16) and let γ(z) be its Borel Transform. Let ζ ∈ Ω be an arbitrary point. Then there is a circle ∂B ρ ζ /2 so that

1 2πi ∂B ρ ζ /2 γ(z)f (z + ζ) dz = F (D)f (ζ) where D = d dz .
Proof. First we note that since the entire function F is of exponential type zero, then by the Pólya representation theorem for entire functions of exponential type [START_REF] Boas | Entire Functions[END_REF]Theorem 5.3.5] we have

F (z) = 1 2πi l γ(w)e zw dw (9.2)
where γ is the Borel Transform of F and l is any simple closed rectifiable curve enclosing the Origin.

By differentiation one gets 

F (n) (0) = 1 2πi l γ(w)w n dw, (9.3 
γ(z) • f (z + ζ) = ∞ n=1 γ(z) • f (n) (ζ) n! • z n
converges uniformly with respect to z on the closed disk

B ρ ζ /2 := {z : |z| ≤ ρ ζ /2}.
Applying (9.3) as well, one has 

1 2πi ∂B ρ ζ /2 γ(z)f (z + ζ) dz = 1 2πi ∂B ρ ζ /2 γ(z) • ∞ n=0 f (n) (ζ) n! z n dz = ∞ n=0 f (n) (ζ) n! 1 2πi ∂B ρ ζ /2 γ(z)z n dz = ∞ n=0 F (n) (0) n! f (n) (ζ) = F (D)f (ζ).
• F (D)f (ζ) = ∂B ρ ζ /2 γ(z) • f (z + ζ) dz = ∂B ρ ζ /2 γ(z) • ∞ n=1 µn-1 k=0 c n,k (z + ζ) k e λn(z+ζ) dz = ∂B ρ ζ /2 γ(z) • ∞ n=1   µn-1 k=0 c n,k k j=0 k! j!(k -j)! ζ k-j z j   e λn(z+ζ) dz = ∞ n=1   µn-1 k=0   k j=0 k! j!(k -j)! ζ k-j • ∂B ρ ζ /2 γ(z)z j e λnz dz   c n,k   e λnζ
then follows from the integrals in (9.4) that

F (D)f (ζ) = 0.
The arbitrary choice of ζ ∈ (γ, β) means that equation (1.17) is true. The second part of the proof of Theorem 1.7 is now complete. 2) that Λ = {λ n } ∞ n=1 is not an interpolating variety for the space of entire functions of exponential type zero. Hence this Λ is not in the ABC class. Consider then the entire functions of exponential type zero,

F (z) = ∞ n=1 1 - z λ n and G(z) = ∞ n=1 1 + z |λ n | .
We have

F (z) = 1 2πi l γ(w)e zw dw
where γ is the Borel Transform of F and l is any simple closed rectifiable curve enclosing the Origin. Since F vanishes on Λ = {λ n } ∞ n=1 we get l γ(w)e λnw dw = 0, n ∈ N.

We will now give an example of a series ∞ n=1 a 2n-1 • e λ 2n-1 z -a 2n • e λ 2n z which is analytic in the half-plane ℜz < 0 and satisfies the Carleson equation (1.17) on any interval (γ, β) on the half-line ℜx < 0, whereas the series ∞ n=1 a n • e λnz itself diverges everywhere in C. Clearly the following two series diverge everywhere in the complex plane The same is true for the series ∞ n=1 a n • e λnz where λ n are as in (9.5) and a 2n-1 = e n 3 and a 2n = -e n 3 .

However, we claim that if we regroup the a n • e λnz terms, as (a 2n-1 • e zλ 2n-1 -a 2n • e zλ 2n ), hence having

f (z) := ∞ n=1 e n 3 • e zn 2 -e n 3 • e z•(n 2 +e -n 4 ) = ∞ n=1 e n 3 • e zn 2 -e z•(n 2 +e -n 4 ) , (9.7) 
then this series is analytic in the left half-plane. Indeed, first we write

e n 3 • e zn 2 -e z•(n 2 +e -n 4 ) = e n 3 • e zn 2 • 1 -e z•e -n 4 .
Then, clearly for all z in the closed left half-plane ℜz ≤ 0, we have |e Replacing in (9.7) shows that there some positive constant A, so that |f (z)| < Ae |z| for all z in the closed half-plane ℜz ≤ 0, hence the series f converges uniformly on compact subsets of ℜz ≤ 0, thus it is analytic in ℜz < 0. Now, by Lemma 9.1, f belongs to the class C(γ, β, {G n }) for any interval (γ, β) which is on the semiaxis x < 0. Choose an arbitrary ζ ∈ (γ, β) and consider the circle ∂B ρ ζ /2 as in the previous subsection. Then, like before, we get (ii) Let f ∈ W (Λ, β) and suppose that f ∈ L p (γ, β). Then f belongs to the closed span of the exponential system E Λ in L p (γ, β). converges pointwise on a bounded interval (γ, β). Then the series extends analytically to the sector Θ η,β (1.6) with the same series representation, x replaced by z, converging uniformly on compact subsets of Θ η,β .

2πi • F (D)f (ζ) = ∂B ρ ζ /2 γ(z) • f (z + ζ) dz = ∂B ρ ζ /2 γ(z) • ∞ n=1 e n 3 • e (z+ζ)λ 2n-1 -e (z+ζ)λ 2n dz = ∞ n=1 e n 3 • ∂B ρ ζ /2 γ(z) • e (z+ζ)λ 2n-1 -e (z+ζ)λ 2n dz = ∞ n=1 e n 3 • e ζλ 2n-
The proof of this lemma depends on our Fundamental result, on an old result of G. Valiron [63] and on a Brudnyi inequality recalled below.

A Bernstein-type inequality for exponential polynomials by Alexander Brudnyi

Following A. Brudnyi [START_REF] Brudnyi | Bernstein type inequalities for quasipolynomials[END_REF], for n = 1, 2, . . . , M , let λ n be complex numbers and consider the exponential polynomial

q(x) := M n=1 µn-1 k=0 c n,k x k e λnx , c n,k ∈ C.
The degree of the exponential polynomial q, denoted by m(q), is defined to be

m(q) := µ 1 + µ 2 + µ 3 + • • • + µ M .
The exponential type of q, denoted by ϵ(q), is defined to be ϵ(q) := max 1≤n≤M max {z: |z|≤1}

|λ n z|.

Brudnyi proved the following Bernstein-type inequality.

Theorem E. [17, Theorem 1.5] Let q be an exponential polynomial of degree m(q). Let I be an interval on the real line, I = {x : |x -x 0 | ≤ r} for some x 0 ∈ R and some r > 0. Let w be a measurable subset of I. Then there exist positive constants c 1 , c 2 , c 3 , which do not depend on q, I, w,

c 1 < 15e 3 , c 2 < 4e + 1, c 3 < 4e + 1
and another positive constant C which depends on the exponential polynomial q, satisfying the upper bound

C < (M • m(q)) m(q) • e 2M , such that sup x∈I |q(x)| ≤ c 1 • |I| |w| l • sup x∈w |q(x)| where l = log C + (m(q) -1) • log(c 2 max{1, ϵ(q)}) + c 3 ϵ(q) • r.
10.2 Proof of Lemma 10.1

Consider the Taylor-Dirichlet series (10.2) converging pointwise on (γ, β). We will first prove that there exist positive constants T and d, so that for every ϵ > 0, a positive constant m ϵ exists, independent of n and k, with the coefficients c n,k having the upper bound

|c n,k | ≤ m ϵ • T • e (-β+ϵ+7d)ℜλn , ∀ n ∈ N, ∀ k = 0, 1, . . . , µ m -1. ( 10.3) 
Then by utilizing an old result of G. Valiron, we will reach our conclusion. Let us choose some small ϵ > 0: by Egoroff's theorem there exists a measurable subset of (γ, β), call it E, such that β -γ > µ(E) > β -γ -ϵ and such that {f M } ∞ M =1 converges uniformly to f on E. Since E ⊂ (γ, β) is measurable there is a closed and hence compact set

K ⊂ E such that β -γ > µ(K) > β -γ -2ϵ. The sequence {f M } ∞ M =1
converges uniformly to f on K and this implies that f is a continuous function on K. Clearly now there is a positive constant T such that

||f M || C[K] ≤ T ∀ M ∈ N where ||f M || C[K] = sup x∈K |f M (x)|. ( 10.4) 
We now use the result of Brudnyi. First observe that the degree m(f M ) of the exponential polynomial

f M is m(f M ) = µ 1 + µ 2 + µ 3 + • • • + µ M that is m(f M ) = n Λ (|λ M |)
where n Λ (t) = |λn|≤t µ n is the counting function of Λ. The exponential type of f M satisfies

ϵ(f M ) ≤ 2ℜλ M .
Consider the interval I, I = {x : x ∈ [γ, β]} with radius r = (β -γ)/2 and the compact subset K ⊂ I.

By Theorem E, there exist positive constants c 1 , c 2 , c 3 ,

c 1 < 15e 3 , c 2 < 4e + 1, c 3 < 4e + 1
and another positive constant C satisfying the upper bound

C < (M • n Λ (|λ M |)) n Λ (|λ M |) • e 2M , (10.5) 
such that

||f M || C[γ,β] ≤ c 1 • (β -γ) |K| l • ||f M || C[K] (10.6) 
where

l = log C + (n Λ (|λ M |) -1) • log(2c 2 ℜλ M ) + c 3 ℜλ M • (β -γ).
We will show below that l satisfies the upper bound (10.7) for some d > 0. Observe that from (10.5) we get

l < 2M + n Λ (|λ M |) • log(M • n Λ (|λ M |)) + (n Λ (|λ M |) -1) • log(2c 2 ℜλ M ) + c 3 ℜλ M • (β -γ). Since ∞ n=1 µ n /|λ n | < ∞ and sup | arg λ n | < π/2, then M ℜλ M → 0, M → ∞, and n Λ (|λ M |) ℜλ M → 0, n → ∞.
Thus M < ℜλ M and n Λ (|λ M |) < ℜλ M as well. Substituting above gives

l < 2ℜλ M + 2n Λ (|λ M |) • log(ℜλ M ) + (n Λ (|λ M |) -1) • log(2c 2 ℜλ M ) + c 3 ℜλ M • (β -γ) < A • ℜλ M + B • n Λ (|λ M |) • log(ℜλ M )
for some positive constants A and B. But Λ satisfies the condition (10.1) as well which implies that

n Λ (|λ M |) • log(ℜλ M ) ≤ Dℜλ M some D > 0.
All combined shows that there is some positive constant d so that l ≤ dℜλ M . (10.7)

Let us go back to relation (10.6). From (10.4), (10.7), the upper bound on c 1 , and the fact that

β -γ > µ(K) > β -γ -2ϵ, we get ||f M || C[γ,β] ≤ e 7l • T ≤ T e 7dℜλ M . (10.8) 
Then write f M (x) as

f M (x) = c m,k • [p m,k (x) + Q M,m,k (x)], p m,k (x) = x k e λmx ,
where for fixed M ∈ N, m = 1, . . . , M and k = 0, 1, . . . , µ M -1,

Q M,m,k (x) :=   µm-1 j=0,j̸ =k c m,j c m,k x j   e λmx + M n=1,n̸ =m   µn-1 j=0 c n,j c m,k x j   e λnx .
Then from (10.8) we get

T • e 7dℜλ M ≥ |c m,k | • ||p m,k + Q M,m,k || C[γ,β] , ∀ m = 1, . . . , M, ∀ k = 0, 1, . . . , µ M -1.
Clearly Q M,m,k belongs to the span of the exponential system E Λ \ p m,k . It then follows from Theorem 1.1 that for every ϵ > 0 there is a positive constant m ϵ which depends only on Λ and (β -γ), such that (10.3) is true. 

ℜ(z -β + 7d) ≤ 1 tan η , ℜz < β -7d , (10.9) 
converging uniformly on its compact subsets. By the Valiron-Hille results, we know that the open regions of pointwise convergence and absolute convergence of g(z), coincide with the open region D of convergence of the series

g * (z) = ∞ n=1 C n e λnz , C n = max{|c n,k | : k = 0, 1, . . . , µ n -1}
and this open region D is convex with Θ η,β-7d ⊂ D.

In fact we will show below that the interval (γ, β) is a subset of D. So suppose otherwise: then there is a point x 0 ∈ (γ, β) such that x 0 is not in D, thus x o / ∈ Θ η,β-7d either, which means that x 0 > β -7d. If this is true, we then claim that (x 0 , β) ∩ D = ∅. Indeed, suppose that there is a point x 1 ∈ (x 0 , β) such that x 1 ∈ D and choose the point x 2 = β -7d -1 which clearly is in the sector Θ η,β-7d hence in D as well. Then the convexity of the region D implies that the whole segment [x 2 , x 1 ] lies in D as well. But this is a contradiction since x 0 ∈ (x 2 , x 1 ). Thus if some point x 0 ∈ (γ, β) is not in D, then [x 0 , β) ∩ D = ∅. Then let x 3 = (x 0 + β)/2 thus (x 3 , β) ⊂ (x 0 , β). Due to the convexity of the region D, we can then show that there is δ > 0 so that the rectangle

K x 3 ,β,δ := {z : x 3 ≤ ℜz ≤ β, |ℑz| ≤ δ} does not intersect the closure of This means that inf{|z 1 -z 2 | : z 1 ∈ [x 3 , β], z 2 ∈ D} > 0,
that is, the Distance of the segment [x 3 , β] from the closure of D is positive. However, we will see below, based on a Valiron result, that this cannot take place: thus (γ, β) ⊂ D.

First we note that if a multiplicity sequence Λ satisfies (5.1) 

= µ n log |λ n | |λ n | • log n log |λ n | • |λ n | λ n
and use the fact that the convergence of the series ∞ n=1 µ n /|λ n | implies that n/λ n → 0 as n → ∞, we then see that conditions (5.1) and (10.10) definitely hold when Λ ∈ ABC. Thus for a Taylor-Dirichlet series associated to such a multiplicity sequence, it is not possible to have pointwise convergence on a set of points which has a positive linear measure and lies at a positive distance from the convex region of convergence.

As shown above, if the interval (γ, β) is not a subset of the convex region D, this implies that there is a segment [x 3 , β) on which the series f (z) converges pointwise and which is at a positive distance from the closure of D. But the linear measure of the interval [x 3 , β) is equal to its length (β -x 3 ) (see [START_REF] Ch | Boundary Behaviour of Conformal Maps[END_REF]Proposition 6.2]), hence it is positive. By Valiron's result we reach a contradiction. In other words, we proved that the whole interval (γ, β) is a subset of D. But then the convexity of the region D implies that the sector Θ η,β (1.6) is also a subset of D. The proof of this lemma is complete.
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A Matrix representation of relation (1.13)

If we identify r n,k with R n,k , let ξ n = µ n -1 for all n ∈ N, let c n,k,j,l = ⟨r n,k , r j,l ⟩, and write the elements of the exponential system E Λ and its biorthogonal sequence r Λ in column matrix form, then we have the following relationship:

r Λ = G r Λ • E Λ for all x < β
where G r Λ is the Gram matrix associated with r Λ with entries the inner products ⟨r n,k , r j,l ⟩.

                               r 1,0 (x) r 1,1 (x) . . . r 1,ξ 1 (x) . . . r 2,0 (x) r 2,1 (x) . . . r 2,ξ 2 (x) . . . r n,0 (x) r n,1 (x) . . . r n,ξn (x)      e λ 1 x xe λ 1 x . . .
x ξ 1 e λ 1 x e λ 2 x xe λ 2 x . . .

x ξ 2 e λ 2 x . . . e λnx xe λnx . . . Proof. Consider the entire function F of exponential type zero, vanishing exactly on Λ, with

x ξn e λnx Lemma B.1. Suppose that Λ = {λ n , µ n } ∞ n=1 satisfies ∞ n=1 µ n /|λ n | < ∞.
F (z) = ∞ n=1 1 - z λ n µn .
Since 1/F has a pole of order µ n at the point λ n , we write down the Laurent series

1 F (z) = µn k=1 A n,k (z -λ n ) k + f n (z)
which holds in some closed punctured disk D n so that f n is the regular part and

A n,k = 1 2πi ∂Dn (z -λ n ) k-1 F (z) dz.
As in Lemma 4.1, we can construct entire functions {F n,k } n=∞ n=1,k=0,...,µn-1 , and in fact of exponential type zero, that satisfy In this section we provide a second proof of the Distance result (1.20). The tool is the meromorphic function f (1.21) and we begin with a result regarding this function. We then prove two helpful lemmas. As usual, we assume that the multiplicity sequence Λ belongs to the class ABC. µn both infinite products define entire functions. Both of them are of exponential type zero since Λ ∈ ABC, thus for every ϵ > 0 there is a positive constant t ϵ , such that the modulus of the function in the denominator is bounded from above by t ϵ e ϵ|z| . Regarding the numerator, we claim that it satisfies the lower bound (2.7). The proof is identical as in the case of the even function in Lemma 2.2. Combining all together yields (C.2).

C.2 Auxiliary results

Lemma C.2. There exist analytic functions {f n,k (z) : n ∈ N, k = 0, 1, . . . , µ n -1} in the half-plane ℜz > -2, so that f A n,l (z -λ n ) l .

Then we get f (l) n,0 (λ j ) = 0 for j ̸ = n and l = 0, 1, . . . , µ j -1. Since f n,0 (z) is continuous at z = λ n , then

f n,0 (z) = f (z) 1 f (z) -g n (z) = 1 -f (z)g n (z) ∀ z ∈ C n,ϵ .
Hence, f n,0 (λ n ) = 1 and f (l) n,0 (λ n ) = 0 for l ∈ {1, . . . , µ n -1}. Thus, f n,0 (z) satisfies (C.3).

Next, suppose that k ∈ {1, . . . , µ n -1}. Since f n,k (z) is continuous at z = λ n , we rewrite f n,k (z) for all z in C n,ϵ as (C.9)

f n,k (z) = f (z)(z -λ n ) k k! µn l=k+1 A n,l (z -λ n ) l = f (z)(z -λ n ) k k!   1 f (z) -g n (z) - k j=1 A n,j (z -λ n ) j   = (z -λ n ) k k! - f (z)(z -λ n ) k g n (z) k! - f ( 
Furthermore, for every ϵ > 0 there is a constant M ϵ,3 > 0 independent of n and k but depending on Λ, so that h n,k is continuous and square-integrable on (-∞, 0], then the function h n,k (t)e t is also continuous on (-∞, 0]. Moreover, it belongs to the space L 1 (-∞, 0) by simply applying the Cauchy-Schwartz inequality. But f n,k (-1 + iy) is in L p (-∞, ∞) for all p ≥ 1. Then by Fourier Inversion we have Suppose that f ∈ span(E Λ n,k ) in the space L p (-∞, 0) for some p > 1. Hence for every ϵ > 0 there is an exponential polynomial P ϵ ∈ span(E Λ n,k ) such that ||f -P ϵ || L p (-∞,0) < ϵ. Let h n,k be the function as in Lemma C.3. Due to the upper bound (C.10) regarding the function h n,k (t)e t , we see that for every ϵ > 0 there is a positive constant m ϵ , independent of n, k, so that Clearly now h n,k e 2t ∈ L q (-∞, 0) where 1/p + 1/q = 1.

Next, let g n,k (t) = h n,k (t)e 2t . Then from (C.9) and the Hölder inequality we get

0 -∞ g n,k (t)f (t) dt = 0 -∞ g n,k (t) (f (t) -P ϵ (t)) dt ≤ ||g n,k || L q (-∞,0) • ϵ.
Since ϵ is arbitrary we then have Now, it follows from (C.12) that for every ϵ > 0 there is some M ϵ > 0, independent of q, n ∈ N and k = 0, 1, . . . , µ n -1, so that

||g n,k (t)|| L q (-∞,0) = 0 -∞ |h n,k (t)e 2t | q dt 1/q ≤ M ϵ e ϵℜλn .
Then, since (C.13) is true for all f ∈ span(E Λ n,k ) in L p (-∞, 0), we get

√ 2π ≤ inf f ∈span(E Λ n,k ) ||p n,k -f || L p (-∞,0) • M ϵ e ϵℜλn .
Letting u ϵ = √ 2π/M ϵ , we get D -∞,0,p,n,k ≥ u ϵ e -ϵℜλn . Similarly we can prove that D -∞,0,1,n,k ≥ u ϵ e -ϵℜλn .

| 1 )

 1 and Korevaar. Theorem A. ([52, Theorem 8.2]) Let {λ n } ∞ n=1 be a sequence of distinct complex numbers satisfying the condition arg λ n | < π/2, and |λ n -λ k | ≥ c|n -k|, c > 0, ∀ n ̸ = k. (1.Let f be in C[a, b] (or in L p (a, b)) for 0 ≤ a < b < ∞. Then f belongs to the closed span of the system {x λn } ∞ n=1 in C[a, b] (or in L p (a, b)) if and only if f admits the series representation f (x) = ∞ n=1 a n x λn , ∀ x ∈ (a, b) (or almost everywhere in (a, b))

βγ

  |f (x)| p dx < ∞. The L p (γ, β) space is equipped with the norm ||f || L p (γ,β) := β γ |f (x)| p dx 1 p , and L 2 (γ, β) is a Hilbert space once endowed with the inner product ⟨f, g⟩ := β γ f (x)g(x) dx. Next, for a set of complex numbers having multiple terms {λ n , µ n } ∞ n=1 := {λ 1 , λ 1 , . . . , λ 1 µ 1 -times , λ 2 , λ 2 , . . . , λ 2 µ 2 -times , . . . , λ k , λ k , . . . , λ k µ k -times , . . . }, we refer to it by the name multiplicity sequence Λ = {λ n , µ n } ∞ n=1 , where {λ n } ∞ n=1 is a sequence of distinct complex or real numbers diverging to infinity, enumerated so that 0 < |λ n | ≤ |λ n+1 | for all n ∈ N and -π < arg λ n < arg λ n+1 ≤ π whenever |λ n | = |λ n+1 |.

Definition 1 . 1 .Remark 1 . 1 .

 1111 ABC is the class of the multiplicity sequences Λ = {λ n , µ n } ∞ n=1 that satisfy the following three conditions.(A) : The Müntz-Szász convergence condition The λ n are in some sector of the right half-plane such that for some η ∈ [0, π/2) we havesup n∈N | arg λ n | ≤ η.(1.5) (C) : Λ is an interpolating variety for the space A 0 |z| . For β ∈ R, due to (1.5) and if η > 0, we will be considering the sectorΘ η,β := z : ℑz ℜ(z -β) ≤ 1 tan η , ℜz < β , η = sup n∈N | arg λ n |. (1.6) 

Theorem 1 .Theorem 1 . 2 .

 112 4 generalizes Theorem A and is split into two parts. First we prove: Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABC class. Then for every function f belonging to the closed span of E Λ in L p (γ, β), there exists an analytic function g(z) in the open sector Θ η,β (1.6), admitting a unique Taylor-Dirichlet series representation of the form

  |λ ′′ n |≤t µ ′′ n t = 0. Moreover, by the properties of entire functions of exponential type zero (see [14, Definition 2.5.4 and Theorem 2.10.3], either (I) G has order less than 1, which means that

. 4 )

 4 Fix such a positive ϵ and consider the P n,ϵ disks and their circles ∂P n,ϵ . Clearly they are all subsets of the region Ω η . For any z ∈ ∂P n,ϵ , z ≈ iλ n and |z| ≈ |λ n | < Aℜλ n for some A > 0 since sup n∈N | arg λ n | < π/2. Replacing in(3.4) gives|H(z)| • |e -iσz | ≥ M ϵ e (β-Aϵ)•ℜλn , ∀ z ∈ ∂P n,ϵ , n = 1,2, . . . . Combining the above with the lower bound of L(z) in (2.8), shows that (1.19) is true.

. 10 )

 10 Proof. From (3.1),(4.3), and (4.4), it follows that G n,k (z) is an entire function of exponential type,G n,k ∈ L 2 (R) ∩ L 1 (R),and it is the Fourier Transform of a continuous function compactly supported on the interval [γ, β]. Thus G n,k (z) admits the representation

  |c n,k,1 | ≤ m ϵ e (-β+ϵ)ℜλn ||P 1 || L p (γ,β) ∀ n = 1, 2, . . . , M 1 and k = 0, 1, . . . , µ n -1 and (II) |c n,k,1 -c n,k,2 | ≤ m ϵ e (-β+ϵ)ℜλn ||P 1 -P 2 || L p (γ,β) ∀ n = 1, . . . , M 1 and k = 0, 1, . . . , µ n -1.

  k z k e λnz , a n,k ∈ C, and to each h(z) consider the Dirichlet series h * (z) = ∞ n=1 A n e λnz where A n = max{|a n,k | : k = 0, 1, 2, . . . , µ n -1}. From the first condition in (5.1), it follows by the results of E. Hille [39, Theorems 1 and 3] that the open region of absolute convergence of h * is convex and it coincides with its open region of pointwise convergence. Assuming both conditions in (5.1), it then follows from the results of G. Valiron [63, p. 29], that the open regions of pointwise and absolute convergence of h(z) coincide with the open region of convergence of h * (z), that is, all open regions are identical and convex. Both series h and h * , converge uniformly on every compact subset of the open region, call it D, thus defining analytic functions in D.

Lemma 5 . 1 .

 51 Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 be an interpolating variety for the space A 0 |z| and satisfying the condition (1.5). Then a Taylor-Dirichlet series k z k e λnz , c n,k ∈ C, defines an analytic function in the open sector Θ η,β (1.6), converging uniformly on its compact subsets, if and only if the coefficients c n,k satisfy the upper bound (1.10).

c

  n,k z k e λnz(6.4) 

  ,k,j -c n,k )x k e λnx and k x k e λnx . Now, in relation (6.2) if we keep j fixed and let i → ∞, shows that

  |f (x)| p dx = β γ |f (x)| p dx,with the last step valid since f is uniformly continuous on intervals [ρ, γ] for every ρ ∈ (-∞, γ).

  δn→0 β γ |f (x -δ n )| p dx exists and it is equal to β γ |f (x)| p dx. The arbitrary choice of {δ n } ∞ n=1 implies that lim δ→0 + β γ |f (x -δ)| p dx = β γ |f (x)| p dx. Therefore lim δ→0 + β γ |f (x) -f (x -δ)| p dx = 0.

4 )

 4 Since f ∈ L 2 (γ, β), then the Taylor-Dirichlet series Q n (z) := also belongs to L 2 (γ, β). It then follows from Theorem 1.3 that Q n belongs to the closed span of the exponential system E Λ,n+1 := {x k e λmx : m ≥ n + 1, k = 0, . . . , µ m -1}

G

  (n) (0) n! • |p (n) (ζ)| converges uniformly on the interval [γ + δ, β -δ].The arbitrary choice of δ means that p belongs to the class C(γ, β, {G n }).

  ) and since F vanishes on Λ {λ n , µ n } ∞ n=1 we get l γ(w)w k e λnw dw = 0, n ∈ N, k = 0, 1, 2, . . . , µ n -1. (9.4) Consider now a function f analytic on Ω and a point ζ ∈ Ω. The Taylor series expansion of f about ζ has radius of convergence equal to some positive number, call it ρ ζ > 0. Therefore the series ∞ n=1 f (n) (ζ) n! • (z -ζ) n converges uniformly with respect to z to f (z) on the closed disk {z : |z -ζ| ≤ ρ ζ /2}. Combined with the continuity of γ(z) on curves enclosing the origin, yields that the series

Finally

  k z k e λnz , which is analytic in the sector Θ η,β , thus converging uniformly on its compact subsets. Let ζ be an arbitrary point in (γ, β) and as in the previous lemma, consider the disk {z : |z -ζ| < ρ ζ } where ρ ζ is the radius of convergence of the Taylor series of f about the point ζ. Clearly the Taylor-Dirichlet series converges uniformly on the closed disk {z : |z -ζ| ≤ ρ ζ /2}. Thus, the series γ(z) • f (z + ζ) = ) • c n,k (z + ζ) k e λn(z+ζ) converges uniformly on the circle ∂B ρ ζ /2 = {z : |z| = ρ ζ /2}. Together with Lemma 9.2, we get 2πi

9. 2 A

 2 Counterexample where the groupings in (1.18) cannot be dropped Consider the sequence Λ = {λ n } ∞ n=1 where λ 2n-1 = n 2 and λ 2n = n 2 + e -n 4 . (9.5) Clearly the conditions A (1.4) and B (1.5) hold. However, it follows from the Geometric Conditions (II) in subsection 2.1 and relation (2.

∞ n=1 e n 3 • e zn 2 and ∞ n=1 e n 3 •

 33 e z•(n 2 +e -n 4 ) .

10 Revisiting Theorems 1 .3 and 1. 7 Theorem 10 . 1 .

 17101 Given Λ ∈ ABC, by Lemma 5.1 a Taylor-Dirichlet series k z k e λnz , c n,k ∈ C, defines an analytic function in the open sector Θ η,β (1.6), converging uniformly on its compact subsets, if and only if the coefficients c n,k satisfy the upper bound (1.10). For Λ ∈ ABC, suppose now that a Taylor-Dirichlet series converges pointwise on an interval (γ, β). Can we draw any conclusions from this? Does pointwise convergence on (γ, β) imply uniform convergence on subintervals of (γ, β)? Does it also imply analytic continuation to the sector Θ η,β(1.6)? The answer is affirmative (seeLemma 10.1) assuming that Λ satisfies the additional condition (D) 2 n Λ (t) log t t = O(1), where n Λ (t) := |λn|≤t µ n . (10.1)We shall then say that Λ belongs to the ABCD class of multiplicity sequences.As a result we revisit Theorems 1.3 and 1.7. Combining them with Lemma 10.1 yields the following. Let the multiplicity sequence Λ belongs to the ABCD class. Let W (Λ, γ, β) be the space of functions defined on the interval (γ, β) that admit a Taylor-Dirichlet series representation k x k e λnx , converging pointwise on (γ, β).(i) Let V (Λ, γ, β) be the solution space of the differential equation (1.17). Then V (Λ, γ, β) = W (Λ, β).

10. 1 .

 1 Let the multiplicity sequence Λ = {λ n , µ n } ∞ n=1 belong to the ABCD class. Suppose that the series f (x) = k x k e λnx (10.2)

10. 2 . 1

 21 Obtaining the upper bound(10.3) the sequence of continuous functions {f M } ∞ M =1 on (γ, k x k e λnx , M = 1, 2, . . . , which converges pointwise to f on (γ, β).

10. 2 . 2

 22 Ending the proof with the aid of Valiron With (10.3) verified, Lemma 5.1 says that the Taylor-Dirichlet series k z k e λnz defines an analytic function in the sector Θ η,β-7d := z : ℑz

  k z k e λnz and g(z) = k z k e λnz , are analytic in some region Ω and g = f on some closed disk in Ω. Then c n,k = d n,k for all n ∈ N and k = 0, 1, . . . , µ n -1.

F 1 j

 1 (l) n,k (λ j ) =      1, j = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -k+l (z -λ n ) l .Therefore, if we denote by γ n,k (z) the Borel transform of F n,k (z), by the Pólya representation theorem of entire functions of exponential type, we haveF n,k (z) = 1 2πi ∂Bϵ γ n,k (w)e zw dw,where ∂B ϵ is the boundary of the closed disk B ϵ = {z : |z| ≤ ϵ} for ϵ > 0. Differentiation yields1 2πi ∂Bϵ γ n,k (w) • w l e λ j w dw = = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -1}. (B.1)Without loss of generality, suppose that the two Taylor-Dirichlet series f, g are equal on the closed disk B ϵ for some ϵ > 0. The continuity of the Borel Transforms on ∂B ϵ , the uniform convergence of the two series on B ϵ and relation (B.1), imply that for every fixed n ∈ N and k ∈ {0, 1, . . . , µ n -1}, one has1 2πi ∂Bϵ γ n,k (z) • f (z) dz = c n,k and 1 2πi ∂Bϵ γ n,k (z) • g(z) dz = d n,k .Since f = g on B ϵ then c n,k = d n,k .C Revisiting the Distance result(1.20) 

C. 1

 1 The Meromorphic function f (z) Lemma C.1. Consider the meromorphic function f (z)(1.21). Then this function is analytic in the right half-plane ℜz > -4 and there is some M > 0 so that|f (z)| ≤ M 1 + y 2 ∀ z : ℜz ≥ -2. (C.1)Moreover, for fixed ϵ > 0 let C n,ϵ for n = 1, 2, . . . be the disks as in Remark 2.3 and let ∂C n,ϵ be their respective circles. Then there is a positive constant m ϵ,2 , independent of n ∈ N, so that|f (z)| ≥ m ϵ,2 e -ϵ|λn| ∀ z ∈ ∂C n,ϵ , n = 1, 2, . . . .converges due to condition (1.4). Then clearly relation (C.1) holds for all z such that ℜz ≥ -2. Next we prove (C.2): we can write (4 + z) 2 f (z) as ∞ n=1 (1 -z/λ n ) µn ∞ n=1 1 + z/λ n + 4

1 j

 1 = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -1}.(C.3)For fixed ϵ > 0 let C n,ϵ for n = 1, 2, . . . be the disks as in Remark 2.3 and let ∂C n,ϵ be their respective circles. Then there is a positive constant m ϵ , independent of n and k, so that for every fixed n ∈ N and k ∈ {0, 1, . . . , µ n -1}, one has|f n,k (z)| ≤ m ϵ e ϵℜλn 1 + y 2 , ∀ z ∈ z : ℜz > -2, |z -λ n | ≥ 1 |λ n | , (C.4) and |f n,k (z)| ≤ m ϵ e ϵℜλn , ∀ z ∈ z : |z -λ n | < 1 |λ n | . (C.5)Proof. Consider the meromorphic function f of Lemma C.1. Since 1/f (z) has a pole of order µ n at the point λ n , we write down its Laurent series representation1 f (z) = µn j=1 A n,j (z -λ n ) j + g n (z)which is valid in the open punctured disk C n,ϵ \ λ n such that g n (z) is the regular part andA n,j = 1 2πi ∂Cn,ϵ (z -λ n ) j-1 f (z) dz.Then from (C.2) we see that for the fixed ϵ > 0 there is a positive constant m * ϵ so that|A n,j | ≤ m * ϵ e ϵℜλn . (C.6)We now construct the functions that satisfy (C.3). Fix some positive integer n and some k ∈ {0, 1, 2, . . . , µ n -1} and definef n,k (z) := f (z) k! µn-k l=1 A n,k+l (z -λ n ) l .(C.7)First suppose that k = 0, thus f n,0 (z) = f (z) µn l=1

A 1 ,

 1 n,j (z -λ n ) k-j . (C.8) From (C.7) we get f (l) n,k (λ j ) = 0 for j ̸ = n and l = 0, 1, . . . , µ j -1. From (C.8) we get f(k) n,k (λ n ) = 1 and f (l) n,k (λ n ) = 0 for l ∈ {0, 1, . . . , µ n -1} \ {k}. Thus, f n,k (z) satisfies (C.3) for k ̸ = 0. Next,by combining (4.1), (C.1), (C.6) and (C.7), shows that for the fixed ϵ > 0 there is a positive constant m ϵ such that the upper bound (C.4) holds for all z : ℜz > -2 which are outside the open disk |z -λ n | < 1/|λ n |. Finally, (C.5) follows by the Maximum Modulus Theorem.Lemma C.3. There exist continuous functions {h n,k (t) : n ∈ N, k = 0, 1, . . . , µ n -1} on the interval (-∞, 0], with h n,k ∈ L 2 (-∞, 0], so that k (t)e 2t t l e λ j t dt = j = n, l = k, 0, j = n, l ∈ {0, 1, . . . , µ n -1} \ {k}, 0, j ̸ = n, l ∈ {0, 1, . . . , µ j -1}.

  |h n,k (t)e t | ≤ M ϵ,3 e ϵℜλn ∀ t ∈ (-∞, 0], n ∈ N, k ∈ {0, 1, . . . , µ n -1}. (C.10) Proof. It follows from (C.4) and (C.n,k (x + iy)| p dy < ∞. n,k (x -2 + iy)| p dy < ∞. Therefore, the function f n,k (z -2) belongs to all the H p (C + ) spaces for p ≥ 1, where C + is the right half-plane ℜz > 0. It follows from the Paley-Wiener theorem [30, Theorems 11.9 and 11.10] that there exists a continuous and square-integrable function h n,k on (-∞, 0] so that f n,k (zk (t)e 2t e tz dt, ∀ z : ℜz > -2. (C.11) Differentiating with respect to z and applying (C.3) gives (C.9). Next, letting z = -1 + iy in (C.11) gives f n,k (-1 + iy) = 1 √ 2π 0 -∞ h n,k (t)e t e ity dt.

  k (-1 + iy)e -iyt dy, ∀ t ∈ (-∞, 0]. Finally, since (C.4) holds for the function f n,k (-1+iy), then the upper bound (C.10) follows easily. C.3 A second proof of the Distance result (1.20)

  |h n,k (t)e 2t | ≤ m ϵ e ϵℜλn • e t ∀ t ∈ (-∞, 0], n ∈ N, k ∈ {0, 1, . . . , µ n -1}.(C.12)

  k (t)t k e λnt dt = 0 -∞ g n,k (t) t k e λnt -f (t) dt. Hence √ 2π ≤ ||g n,k (t)|| L q (-∞,0) • ||p n,k -f || L p (-∞,0) , p n,k (t) = t k e λnt .(C.13)

  However, x o < β hence x o ∈ Θ η,β , a contradiction. Therefore the coefficients c n,k must satisfy the upper bound (1.10).And finally, we note that if the open region D is not the complex plane C, it follows from our work [68, Theorem 4.1] that its boundary ∂D is a Natural Boundary, in other words, the series cannot be analytically continued across any part of ∂D. The proof of our lemma is now complete.

1, 2, . . . , µ n -1}, the open regions of pointwise and absolute convergence of the series g(z) coincide with the open region of convergence of the series g * (z) which is convex. If we denote this open region by D and since in D the series g is analytic, then obviously we get D ⊃ Θ η,β . if the coefficients c n,k of the series g do not satisfy the upper bound (1.10), then we will have lim sup n→∞ log C n ℜλ n = a > -β. If a ∈ R, and similarly if a = ∞, it is then easy to see that the series ∞ n=1 C n • e xℜλn does not converge for x o = (β -a)/2.

  z•n 2 | ≤ 1. Using the Maclaurin series of the exponential function e z•e -n 4 gives |e zn 2 | • e n 3 • |1 -e z•e -n 4 | = |e zn 2 | • e n 3 • |z • e -n 4 + z 2 • e -2n 4

				2		+	z 3 • e -3n 4 3!	+	z 4 • e -4n 4 4!	+ . . . |
	< e n 3 • e -n 4 |z| +	|z| 2 2	+	|z| 3 • 3!	+	|z| 4 4!	+ . . . |
	< e n						

3 

-n 4 • e |z| .

•

  ∂B ρ ζ /2 γ(z) • e zλ 2n-1 dz -e ζλ 2n •

	γ(z) • e zλ 2n dz
	∂B ρ ζ /2
	It follows from (9.6) that F (D)f (ζ) = 0. Since ζ ∈ (γ, β) was chosen arbitrarily, then (1.17) is true.

  [63, page 30] as well asLepson [46, proved that the set of points at which a Taylor-Dirichlet series converges pointwise and which lies at a positive distance from the convex region of convergence must have Carathéodory Linear Measure 3 equal to zero. We recall now that since Λ ∈ ABC, then condition (2.3) is a necessary one. If we write µ n log n λ n

			as well as the condition	
	lim n→∞	µ n log n λ n	= 0,	(10.10)
	then Valiron (			

The author was not able to prove whether this condition is redundant or not assuming that Λ ∈ ABC

see[START_REF] Ch | Boundary Behaviour of Conformal Maps[END_REF] Chapter 6] for Linear Measure

7.3 Equal closures: span(r Λ ) span(E Λ ) in L 2 (γ, β)

Clearly span(E Λ ) in L 2 (γ, β) is a separable Hilbert space. So let us denote this space by H Λ and let S Λ be the closed span of r Λ in L 2 (γ, β). Obviously S Λ is a subspace of H Λ . Let S ⊥ Λ be the orthogonal complement of S Λ in H Λ , that is

, almost everywhere on (γ, β).

But if f ∈ S ⊥ Λ then ⟨f, r n,k ⟩ = 0 for all r n,k ∈ r Λ . Thus, f = 0 almost everywhere on (γ, β), hence S ⊥ Λ contains just the zero function. Therefore S Λ = H Λ .

The proof of Theorem 1.5 is now complete.

8 The Moment Problem: Proof of Theorem 1.6

In this section we prove Theorem 1.6: there exists a unique function f ∈ span(E Λ ) in L 2 (γ, β), so that f is a solution of the moment problem (1.15), where the set {d n,k : n ∈ N, k = 0, 1, . . . , µ n -1} is under the growth condition (1.14).

First we deal with Uniqueness. Suppose that f, g ∈ span(E Λ ) in L 2 (γ, β) are both solutions. Then

Completeness of E Λ in its closed span implies that f = g a.e on (γ, β). Moreover, by (1.12) in Theorem (1.5), this unique f extends analytically in the sector Θ η,β as a Taylor-Dirichlet series.

In addition, if h ∈ L 2 (γ, β) is a Taylor-Dirichlet series analytic in the same sector and h is a solution of the moment problem as well, it then follows from Theorem 1.3 that h ∈ span(E Λ ) in L 2 (γ, β), hence h = f a.e on (γ, β). In other words, there can exist just one Taylor-Dirichlet series f analytic in Θ η,β with f ∈ L 2 (γ, β), solving the moment problem.

Next we deal with the Existence of the solution f . We give two proofs and both of them depend on the r Λ family of functions from Theorem 1.5. We note that each r n,k ∈ r Λ is defined almost everywhere on (γ, β) on some subset call it B n,k . Let (γ, β) * := n∈N, k=0,1,...,µn-1

Since the measure of B c n,k is zero, so is the measure of the set n∈N, k=0,1,...,µn-1

since it a countable union of such sets. Therefore the measure of (γ, β) * is equal to the measure of (γ, β).

In the proofs below we assume that a in (1.14) is a real number less than β. The case a = -∞ is treated in a similar way.