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Abstract: The detachment and mobilization of boulders from rocky shore platforms by waves involves
complex geomorphic and hydrodynamic processes. Understanding these processes requires precise
information on the rates and patterns of movement of these megaclasts scaled against the wave
conditions that generate boulder mobility. Repeat photogrammetry and structure-from-motion (SfM)
models commonly used in geomorphic analyses are an interesting option for monitoring boulder
dynamics. In this study, we used unmanned aerial vehicle (UAV)-based digital photogrammetry
and SfM differential models to identify recent boulder movements over a rocky shore platform
in Laghdira, Morocco. Combining these results with data on storm occurrence in the study area
allowed us to identify storm waves as the unique driver of the dislodged and mobilized boulders.
The identified storm event had a significant wave height of 5.2 m. The UAV models were built from
imagery captured in September and December 2019 using a DJI MAVIC PRO PLATINUM, and we
used QGIS to produce 2D and 3D model outputs. The exploitation of the 2D model differentials
allowed us to appreciate the response of the boulders to the storm waves and to determine platform
volumetric changes and, therefore, boulder mobility. The 3D models were valuable in determining
the mode of transport of the boulders. Mobility patterns included sliding, overturning with no
further mobility, and rotation and saltation, as well as boulder breakup. Storm waves did not have
a preferential impact on any particular boulder shape, size category, or position at the outer edge
of the platform. These results highlight the utility of combining UAV surveys with identified storm
events, which are much more frequent than tsunamis, in determining observed boulder initiation
and mobility.

Keywords: UAV-based photogrammetry; coastal boulders; storms; tsunami; morocco

1. Introduction

Coastal boulder deposits (CBDs) are common worldwide on bedrock platforms
along high-energy coastlines, and include clasts with a wide variety of dimensions and
weights [1–7]. They are frequently found as isolated deposits, or form imbricated boul-
der ridges that can be several meters high, tens of meters wide, and hundreds of meters
long [4,8–16]. The presence of large and isolated boulders (~3–8 m dimensions) scattered at
high elevations—either at the landward edge of bedrock platforms or on top of bedrock
cliffs of varying heights [17–19]—is regularly interpreted as evidence of an inland trans-
port and deposition process by storm or tsunami waves [18–27]. At the intertidal zone of
bedrock shore platforms, smaller boulders (~1–3 m dimensions) are more commonly found,
and their occurrence as isolated clasts or organization into distinctive ridges, mounds, or
clusters is indicative of wave transport and sorting [28–34].
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There are numerous studies of storm-driven, bimonthly to century-timescale changes
in coastal boulder deposits in intertidal settings [17,32–37]. These studies typically report
movement of boulders months to years before and after a storm, and reflect poor time-
coupling between field observations and actual storm events [34]. An important issue in
understanding processes of coastal boulder transport resides in the difficulty of performing
in-situ monitoring and observations just before and after storm events. Surveys of boulder
movements before, during, and after specific storm events remain rare. However, such
surveys are critical in understanding and predicting boulder responses to past, present, or
future storms [34,38,39].

In the last few years, photogrammetric surveys to monitor rapid and significant mor-
phological changes (notably in coastal and fluvial environments) have become widely
employed [40–44]. Unmanned aerial vehicle (UAV) surveys and structure-from-motion
(SfM) photogrammetry using different kinds of software are increasingly employed for high-
frequency and high-resolution monitoring of boulder dynamics following storms [31,32].
UAV-derived orthophotographs and comparisons between DEMs can provide excellent
datasets and information on coastal boulder patterns and the assessment of potential
boulder movements following storm conditions [4,12,15]. The comparison between or-
thophotographs and 3D model differentials prior to and after storm conditions also enables
the identification of boulder detachment processes on rocky platforms [35,37]. These studies
demonstrate the reliability of using repeat photogrammetry coupled with the integration of
2D/3D digital terrain models (DTMs) in geographic information systems (GISs) to quantify
morphological changes on rocky platforms and, thus, extract accurate measurements of
boulders, their movement distances, and their imbrications and/or detachments from
bedrock shore platforms.

Here, we investigate the characteristics, the forcing parameters, and the movement of
boulders on a rocky shore platform in Laghdira, on the Larache coast of northwest Morocco
(Figure 1), following an intense storm in December 2019. Terrestrial and aerial surveys
were conducted before and after the storm to analyze the possible geomorphological effects
of this high-energy event in the movement of boulders, their disappearance, and the
appearance of new ones. By combining UAV-based repeat photogrammetry surveys and
quantitative differencing of 2D/3D digital terrain models (DTMs), we (1) detected and
quantified potential boulder transport and detachment triggered by the storm, and (2)
identified possible boulder transport modes. This study can hopefully provide new insight
into boulder dynamics in this area of the Atlantic coast of Morocco, where a previous study
has linked the location and potential mobility of boulders to tsunamis [23].
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Figure 1. (a) Location of the study area; (b) Google Earth map of the Laghdira site with wave data 
source (SIMAR) location; (c) wave rose off the study area based on data from 2000 to 2020 for SIMAR 
spot 5040000. 

2. Study Area 
The Laghdira site is part of a dominantly rocky shore south of the Loukkos River 

estuary and the city of Larache on the northwestern Atlantic coast of Morocco (Figure 1). 
The coast north of the estuary comprises a sandy beach, Ras Rmel, composed of fine and 
medium sand, either capped by dunes up to 10 m high or limited inland by a Quaternary 
sandstone cliff [45]. This sandstone formation also underlies the dunes, and is responsible 
for the constriction of the Loukkos estuary mouth [46]. The sector south of the estuary, 
comprising the study site, is composed of actively retreating cliffs that bound the Rmel 
Plateau, the elevation of which varies between 20 and 30 m asl [23,47]. Older inactive cliffs 
appear some 1–3 km inland [44]. The active cliffs form an almost rectilinear shoreline with 
a few promontories, including Punta Nador and Laghdira (the northern limit of our study 
area). The cliff outcrops consist of an alternation of poorly consolidated Quaternary aeo-
lianites with large foreset beds, thin red sandy levels, continental gastropods, and thin 
beach deposits. The lowermost part of the cliffs is composed of 2 m thick, horizontally 
layered, more compacted red Quaternary sandstones with low porosity [23,47]. The 

Figure 1. (a) Location of the study area; (b) Google Earth map of the Laghdira site with wave data
source (SIMAR) location; (c) wave rose off the study area based on data from 2000 to 2020 for SIMAR
spot 5040000.

2. Study Area

The Laghdira site is part of a dominantly rocky shore south of the Loukkos River
estuary and the city of Larache on the northwestern Atlantic coast of Morocco (Figure 1).
The coast north of the estuary comprises a sandy beach, Ras Rmel, composed of fine and
medium sand, either capped by dunes up to 10 m high or limited inland by a Quaternary
sandstone cliff [45]. This sandstone formation also underlies the dunes, and is responsible
for the constriction of the Loukkos estuary mouth [46]. The sector south of the estuary,
comprising the study site, is composed of actively retreating cliffs that bound the Rmel
Plateau, the elevation of which varies between 20 and 30 m asl [23,47]. Older inactive
cliffs appear some 1–3 km inland [44]. The active cliffs form an almost rectilinear shoreline
with a few promontories, including Punta Nador and Laghdira (the northern limit of our
study area). The cliff outcrops consist of an alternation of poorly consolidated Quaternary
aeolianites with large foreset beds, thin red sandy levels, continental gastropods, and thin
beach deposits. The lowermost part of the cliffs is composed of 2 m thick, horizontally
layered, more compacted red Quaternary sandstones with low porosity [23,47]. The retreat
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of these aeolianite cliffs has led to the cropping out of the sandstones that form the surface
of the shore platform (Figure 2). The intertidal width of the platform at Laghdira at mean
low tide varies from 20 m at the promontories to 100 m in the widest sectors, with a mean
of 60 m. The surface dips gently seawards or landwards (Figure 2). The basal level shows
a few wave-cut notches where the shore platform is narrowest. The boulders originate
from wave dismantling of this shore platform, and are deposited as single clasts, clusters,
or imbricated stacks (Figure 2). Medina et al. [23] and Adil [47] have provided detailed
geological descriptions of two sections of the cliff wall and platform: 5.2 km north and
5.4 km south of Laghdira, respectively.
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Figure 2. Oblique view of the shore platform at Laghdira, showing aspects of the lithology and
geomorphology.

The climate of the northwestern Atlantic coast of Morocco is subhumid and character-
ized by two distinct seasons. Conditions are cool and humid from the months of October
to April, which account for 90% of the annual rainfall. From May to September, dry and
hot conditions prevail, with virtually no rainfall in July [48–50].

The wind regime is closely related to the Azores anticyclone and North Atlantic
depressions [48,51]. The dominant winds in the Larache area are from west to west-
northwest, with average mean velocities of 5–10 m s−1. During the summer, these winds
alternate near the coast with the Chergui wind of continental origin and from the east [52].
The Larache coast is dominantly exposed to moderate- to high-energy swell waves [53]
with significant wave heights during normal weather conditions ranging from 1 to 3 m, but
which may reach up to 6 m during storms (Table 1) [54]. The archive of wave data for the
last 20 years extracted from the SIMAR spot 5040000 (with coordinates 35.25◦N and 6.17◦W,
and run by the Port Authorities of Spain http://www.puertos.es accessed on 1 October

http://www.puertos.es
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2019) offshore of Larache show that waves from the west-northwest largely dominate
in both winter and summer (Figure 1). Tides on the Larache coast are semi-diurnal and
mesotidal, with a mean spring range of 3.1 m and a mean neap range of 1.3 m.

Table 1. Wave characteristics off the study site from 1980 to 2020 (Port Authorities of Spain http:
//www.puertos.es accessed on 1 October 2019).

1980–2020
Wave Period (s)

Total
10> 10 9 8 7 6 5 4 3 2 <=1

Significant wave
height (m)

10> - - - - - - - - - - - -

10 - - - - - - - - - - - -

9 - - - - - - - - - - - -

8 - - - - - - - - - - - -

7 - - - - - - - - - - - -

6 0.030 - - - - - - - - - - 0.030

5 0.185 0.005 - - - - - - - - - 0.191

4 0.936 0.112 - - - - - - - - - 1.090

3 5.162 0.439 - - - - - - - - - 6.382

2 27.872 2.197 - - - - - - - - - 36.211

<=1 22.809 7.393 - - - - - - - - - 56.096

Total 56.994 10.146 9.369 7.129 6.766 5.418 3.243 0.895 0.041 - - 100%

3. Materials and Methods

Our investigation of the boulder accumulation combined classical geomorphological
and geological investigations with UAV surveys. In order to assess the impacts of the
2019 winter storms and possible boulder movements, two field surveys were conducted in
mid-September and at the end of December 2019.

3.1. Field Surveys

In the course of the field surveys, geological and geomorphological observations of the
coastal cliffs, shore platform, and boulders were carried out over an area of 980 m × 80 m.
In addition to an inventory of the boulders, their locations, sizes, shapes, and lithology
were determined. The distribution of these boulders is not homogeneous (Figure 2). We
therefore chose to focus on the southern part of the site, which has a wide distribution of
boulders with single clasts, clusters, and imbricated stacks (Figure 3).

http://www.puertos.es
http://www.puertos.es


Remote Sens. 2022, 14, 4102 6 of 23Remote Sens. 2022, 14, 4102 6 of 23 
 

 

 
Figure 3. September 2019 orthophotograph showing the spatial distribution of some of the analyzed 
boulders. 

Thirty-one boulders representing the range of sizes, shapes, and distances from the 
coastline were measured and analyzed. The dimensions of individual boulders were 
measured in terms of three perpendicular axes A, B, and C, representing the long, inter-
mediate, and short axes, respectively (Figure 4). The lengths of the A, B, and C axes were 
used to calculate the B/A and C/B ratios, and to morphologically classify the boulders in 
our study site according to the Zingg diagram. Boulder locations and distances from the 
shoreline were measured using a Trimble differential GPS in real-time kinematics mode 
with an accuracy of +/− 0.15 m (Figure 4), and the X, Y, and Z coordinates were referenced 
to the World Geodetic System (WGS84). 

B29 

B11 

B30 
B20 

B19 

B10 

B12 

B13 

B9 

B28 

B1 

B5 
B6 B26 

B2 B3 

Figure 3. September 2019 orthophotograph showing the spatial distribution of some of the analyzed
boulders.

Thirty-one boulders representing the range of sizes, shapes, and distances from the
coastline were measured and analyzed. The dimensions of individual boulders were mea-
sured in terms of three perpendicular axes A, B, and C, representing the long, intermediate,
and short axes, respectively (Figure 4). The lengths of the A, B, and C axes were used to
calculate the B/A and C/B ratios, and to morphologically classify the boulders in our study
site according to the Zingg diagram. Boulder locations and distances from the shoreline
were measured using a Trimble differential GPS in real-time kinematics mode with an
accuracy of +/− 0.15 m (Figure 4), and the X, Y, and Z coordinates were referenced to the
World Geodetic System (WGS84).
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MAVIC PRO PLATINUM quadcopter (DJI, Nanshan District, Shenzhen, China) equipped 
with a 12.35 MP camera. DJI GS Pro Flight Planner softwareTM was used for programming 
the automatically and autonomously executed flight plans (Figure 5). Images were col-
lected at nadirs along calibrated flight paths parallel to the coast, at an elevation of 70 m 
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Figure 4. Examples of boulders at Laghdira: (a) measured boulder axes (A, B, and C); (b) DGPS
topographic measurements of boulder positions; (c) imbricated boulders at the upper part of the
rocky platform (B1); (d) joint-bounded boulder at the platform edge (B11).

3.2. UAV on-Site Surveys and Image Acquisition

We carried out two UAV flights on 15 September and 26 December 2019 using a DJI
MAVIC PRO PLATINUM quadcopter (DJI, Nanshan District, Shenzhen, China) equipped
with a 12.35 MP camera. DJI GS Pro Flight Planner softwareTM was used for programming
the automatically and autonomously executed flight plans (Figure 5). Images were collected
at nadirs along calibrated flight paths parallel to the coast, at an elevation of 70 m (Table 2).

High-overlap image sets ensure sufficient target points in adjacent images; as the
standard procedure, we planned the flight paths to provide 80% overlap between successive
images and 70% sidelap between adjacent paths [35,55–59].
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Figure 5. September 2019 flight path over the study area as seen in the screen capture from the DJI
GO 4.

Table 2. September and December 2019 flight parameters.

Drone Model DJI MAVIC PRO PLATINUM

Camera model 1/2.3” (CMOS)
Sensor focal length 26 mm (35 mm format equivalent)

Field of view 78.8◦

Resolution (megapixels) 12.35
Flight altitude 70 m

Number of orthogonal photos 1017
Number of oblique photos 94

Number of GCPs 22

In both surveys, 22 ground control points (GCPs) consisting of black-and-white check-
ered cardboard, essential for the production of georeferenced aerial images, were deployed—
7 on the top of the cliff and 15 at different locations on the rocky platform (Figure 6)—to
provide the widest possible coverage. Their positions were recorded using a Trimble
differential GPS in real-time kinematics mode. The RMSE values of the September and
December 2019 UAV surveys were 14 cm (xy of 13 cm and z of 5.4 cm) and 13 cm (xy of
12 cm and z of 5.2 cm), respectively.
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Figure 6. Ground control points (GCPs) deployed in the study area: (a) photograph of a GCP
positioned on the rocky platform; (b) GCP (white arrow) visible on an image; (c) spatial distribution
of GCPs in the study area.

3.3. Aerial Image Analysis and Model Generation

We used Agisoft Metashape Professional software version 1.6.2 to process the images.
Image alignment was first performed in order to select the images for the computation of
the models and orthophotographs. During each UAV survey, a total of 882 images was
recorded; 788 images for the September 2019 survey and 729 for the December 2019 survey
were processed to construct the dense clouds. The digital marker coordinates were updated
automatically to match the GCP coordinates measured by DGPS in the field. The software
measured the differences between GCP coordinates and the estimated coordinates for other
points in the model, and refined the projections accordingly. Digital elevation models
(DEMs) and orthophotographs of the two surveys were then computed using Agisoft
Metashape software, with 2.04 and 3.08 cm/pixel resolutions, respectively.

The next stage consisted in transferring the results to a GIS environment using QGIS
version 2.18 (QGIS Development Team, QGIS Geographic Information System, Open-
Source Geospatial Foundation Project). The September and December 2019 models aligned
well in the QGIS output following examination of areas where we were certain that no
morphological changes occurred over the three-month interval.

In order to determine potential boulder displacements, we generated a digital differen-
tial model between the September and December 2019 DEMs using QGIS software. Most of
the work done on boulder monitoring and dynamics based on UAV and SfM data generally
uses only the analysis of the DEM differentials, or accompanies it with complementary
field measurements for the verification and characterization of boulder movements (ty-
pology and distance) [31–33,35]. However, there are other possibilities for generating 3D
orthorectified visuals from further processing using Agisoft software (Agisoft, 2019).

Building high-resolution 3D models for the entire study site is computationally de-
manding. Therefore, we limited ourselves to generating 3D models of the main area
of investigation, characterized by isolated boulders and clusters of imbricated boulders
(Figure 7). With the dense point clouds created and the whole model correctly georefer-
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enced, it is possible to create a 3D mesh by forming a planar structure “connecting” the
points: “processing” tab -> “build a mesh” [51]. It is then possible to specify the “source
data” (this involves favoring the dense point cloud, as it is fairly precise and has little space
between points), the “surface type” (choose “Arbitrary 3D” for fairly complex geometries),
and the “number of faces”. However, the more faces there are, the more computational
resources are required, and the finer the resolution of the output model. After this step, the
texture can be built and plated on the 3D model. The “mapping mode” determines how
the texture will be plated. It is desirable to choose the “generic” or “adjusted orthophoto”
modes for arbitrary geometries in order to ensure a better visual quality in the output [51].
The “merge mode” allows one to choose how the pixels of the different images will be com-
bined. At this stage, the “mosaic” mode is preferred, as it allows for selection of the pixels
of the center of the image in order to improve the quality of the images, with no luminosity
variation during the UAV tracking. Finally, the “size/number of textures” represents the
resolution of the image. The greater the size/number, the better the resolution, but at the
expense of computation time. The 3D models are generated and can then be processed to
search for the evaluation of possible boulder rotation and translation transport.
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We shared the two 3D models of the restricted area on the 3D photogrammetric project
publication website (Sketchfab.com accessed on 20 January 2020). These models are in
low resolution because we opted to share them with the free version of the website, which
imposes a reduction in the size of shared files (<40 Mo).

3D model of 15 September 2019: https://skfb.ly/o8LAD.
3D model of 26 December 2019: https://skfb.ly/o8LAD.
Extensive processing of the images also makes it possible to assess the mode of boulder

transport following storm events. The change in orientation of the A and B axes provides
information on the direction of movement. Analysis of the exposure of the 3 axes A, B,
and C of a boulder after one or more storm events could indicate the mode of transport
of the boulder. Indeed, with this type of treatment and analysis, Nagle-McNaughton and
Cox [35] were able to determine that translation was the dominant transport mode for
boulders during storms on the Aran Islands near Galway, Ireland. They were also able to
cross-reference the in-situ measurements with UAV image processing to observe rotated
or overturned boulders. Biolchi et al. [33] used 3D models to detect and characterize the
shifting of boulders (mainly rotation) on the Premantura (Kamenjak) Promontory in Croatia
during the October 2018 Storm Vaia.

The areas of erosion and accretion detected in the DEMs of differences between
September and December 2019, generated using QGIS, were initially considered to reflect
potential boulder movements prior to a comparative re-check between the models, as well
as ground-truthing. The field verification provided final validation of boulder mobility.

4. Results
4.1. Boulder Settings and Measurements

The rocky platform of Laghdira consists mainly of a horizontally layered, well-
compacted, porous sandstone [23,47]. Along this platform, the longitudinal distribution
of boulders is not homogeneous. Some sectors of the platform are completely devoid of
megaclasts. Boulders are mainly found on the southern part of the rocky shore platform,
where we concentrated our investigations. In this sector, boulders are deposited as single
clasts, clusters, or imbricated stacks. In total, 31 boulders of various sizes and shapes were
selected and analyzed (Figure 3).

Joint-defined blocks not yet detached from the shore platform and joint-defined sockets
were observed at the edge of the shore platform (Figures 4 and 7). The largest boulders,
which are also predominantly imbricated, with an onshore orientation (Figure 8), occur
closest to the shoreline. The central area of the rocky platform has a wide range of boulder
sizes and orientations. Most boulders display a normal polarity, and a few are turned
upside-down or laterally (Figure 7). In the same area, small and very small clasts can
sometimes be found imbricated below larger clasts. As we approach the top of the intertidal
zone near the foot of the cliff, boulders are less present and more dispersed (Figure 2,
Figure 3, and Figure 8). The surface of 90% of the boulders displays biogenic encrustations
of vermetids (Figure 4), and several boulders show sharp edges and striae on their surfaces
(Figure 4a).

The values of the A, B, and C axes measured on the 31 boulders are shown in Table 2
and Figure 8. The axis values and the volume of the average boulder are 3.38 × 2.51 ×
1.01 m and 10.43 m3, respectively. The largest boulder (B11) is 6.27 × 5.53 × 1.56 m, with a
resulting volume and mass of 54 m3 and 119 t, respectively.

https://skfb.ly/o8LAD
https://skfb.ly/o8LAD
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Figure 8. Zingg shape classification for the 31 selected boulders.

About 96% of the boulders exhibit a tabular or bladed shape (Figure 8), and are
characterized by slightly smoothed or sharp-cornered edges forming angles in the range
between 55 and 80◦. No common polarity or prevailing directions of the A and B axes
between the different boulders—from the outer edge to the upper rocky platform at the foot
of the cliff—could be detected. The lateral distribution of the boulders followed the same
pattern. Boulders B1, B12, and B11, which are isolated along the upper rocky platform,
have A, B, and C axis values ranging from even to double (Table 3).

Table 3. A, B, and C axis sizes, volume, and mass of the 31 selected boulders.

Boulder
Number A Axis (m) B Axis (m) C Axis (m) Volume (m3) Mass (t)

B1 2.95 2.85 0.78 6.56 14.43
B2 3.74 3.41 1.02 13.01 28.62
B3 3.36 2.5 1.03 8.65 19.03
B4 4.84 3.52 1.11 18.91 41.60

B4/5 3.1 1.97 0.52 3.18 6.99
B5 5.45 3.39 1.05 19.40 42.68
B6 3.22 3.02 1.31 12.74 28.03
B7 3.06 2.72 0.82 6.83 15.02
B8 5.46 2.74 1.82 27.23 59.90
B9 4.62 2.54 1.71 20.07 44.15

B10 5.34 2.92 0.93 14.50 31.90
B11 6.27 5.53 1.56 54.09 119.00
B12 2.2 2.01 1.52 6.72 14.79
B13 5.12 4.03 0.76 15.68 34.50
B17 3.42 2.21 0.56 4.23 9.31
B18 3.15 2.59 1.05 8.57 18.85
B19 3.08 1.84 1.06 6.01 13.22
B20 2.52 2.43 1.08 6.61 14.55
B21 2.21 1.68 1.07 3.97 8.74
B22 1.79 1.54 0.49 1.35 2.97
B23 2.98 1.95 0.54 3.14 6.90
B24 2.99 2.03 0.86 5.22 11.48
B25 1.92 1.77 0.78 2.65 5.83
B26 2.15 2.13 1.24 5.68 12.49
B27 1.45 1.01 0.62 0.91 2.00
B28 2.14 1.57 0.84 2.82 6.21
B29 3.72 2.33 0.39 3.38 7.44
B30 2.43 2.24 1.82 9.91 21.79
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4.2. Wave Conditions and Storms between UAV Surveys

A comparison between the UAV surveys of September and December 2019 was carried
out in order to identify and quantify any boulder movements related to the December 2019
storms (Figure 9).
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Figure 9. Significant wave height (m) conditions between the UAV surveys (red arrows), the wave
storm threshold adopted for this study (blue dashed line), and the December storm conditions (blue
circle). Wave data were obtained from the Port Authorities of Spain (http://www.puertos.es accessed
on 1 October 2019).

The storm wave threshold, which corresponds to the minimum wave height under
favorable high-tide conditions (especially during spring tides) liable to produce significant
morphological changes on beaches and dunes, has been defined in terms of a significant
wave height (Hs) value of about 2.5 m at the southwest Spanish Atlantic coast [60], and
of 2.5–4.5 m along the Portuguese coast [61], which is relatively similar to the Moroccan
Atlantic coast in terms of exposure to Atlantic swells. The storm wave threshold values
can vary from one coastline to another depending on initial morphology and the degree to
which significant morphological change is considered. Mhammdi et al. [62] have recently
attempted to identify the morphological impacts of storms that affect the Moroccan At-
lantic coast. In their study, they identified storms—notably those in 2014 and 2017—that
caused significant displacement of boulders on the rocky beaches of the coastline between
Casablanca and Rabat. Combining historical and recent data, Oliveira et al. [61] defined an
Hs of value of 4.5 m as the storm wave threshold, and we also opted for this value in our
study.

Between the survey of September 15th and December 26 (Figure 9), wave conditions
were generally calm until mid-November, when a few episodes of strong agitation with
Hs exceeding 3 m were recorded. This was followed by a relatively calm period until
December 19, when wave conditions exceeded the 4.5 m storm wave threshold for a
continuous period of 25 h. This storm occurred in a phase of transition from neap to spring
tides, which probably significantly reduced its impact on wave propagation over the rocky
platform, and, consequently, on boulder mobility.

4.3. UAV Images and SFM Photogrammetry Analysis

Comparison of the September and December models shows no erosion or accretion
over much of the rocky platform, and unevenly distributed boulder movements (Figure 10).
Areas with orange and green tints at the upper rocky platform are linked to an offset
because of the presence of humans or animals (especially donkeys used to transport sand)
during the drone flights.

http://www.puertos.es
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Figure 10. Orthophoto generated from the December 2019 UAV survey, showing the spatial distri-
bution of three boulders affected by the December storm (B28, B29, and B30). An incipient boulder
detachment is also visible in the central sector of the rock platform.

Detailed analysis of the model output differentials indicates detectable boulder move-
ments near the outer edge (B30) and the central areas of the rocky platform (B28 and B29)
(Figure 10). A recently initiated detachment process of a new boulder in the central sector
of the platform is also visible in the comparison of the UAV surveys (Figure 10).

The quadrangular boulder B29 (≈3.38 m3 and 7.44 t) was oriented with the longer axis
parallel to the shoreline and the main axis in the wave direction. Following the December
storm, this boulder was found 12 m further inshore and broken into two parts (Figure 10).
The alignment of the main axis of the two fragments of this dislocated boulder has now
become oriented in the main wave direction.

Boulders B28 and B30 showed lesser mobility following the storm, in the order of
1.2 m for B30 and 1.1 m for B28. This mobility was reflected in the model differential by
a sequence of erosion/accretion on similar surfaces, but with non-equivalent variations
in boulder-top elevations. The two boulders previously oriented in the direction of wave
propagation maintained this sense of their main axis (A) orientation after the storm.

The majority of the boulders have a tabular shape (Figure 8). However, the three
boulders that were significantly displaced during this storm belong to three categories of
clast shapes: B28 is tabular, B29 is bladed, and B30 is equant in shape. Furthermore, the
lightest of the mobile boulders (B28 ≈ 2.82 m3 and 6.21 t) presented a similar displacement
distance to the heavier and larger boulder B30 (B30 ≈ 9.91 m3 and 21.79 t). The mobile
boulders were located at varying distances from the outer edge of the platform, with B30
being closest and B28 being farthest (Figure 10).

The September and December 2019 differential was of a resolution high enough to
identify sliding as the mode of boulder transport for B29. The fresh traces of this boulder’s
movement are also detectable in the orthophoto and the model, and were confirmed by the
field investigation (Figure 11).
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Figure 11. (a) Initial position and (b) displacement of boulder B29 (white arrows); the orange arrows
(b,c) show the initial position and trace of the B29 pedestal; bleu pen in (c) for scale (d) Post-storm
position of B29.

However, the use of the same differential model did not allow us to identify the
transport modes of boulders B28 and B30. We therefore used the 3D models to perform
a more in-depth analysis of the transport modes of these two boulders. The 3D models
generated from the UAV tracking of the shore platform were exported to the Sketchfab.com
(accessed on 20 January 2020) platform in order to visualize them with different exposure
angles. This flexibility in the visualization of boulder clusters is advantageous, as it enables
the realization of the best comparative angle between the outputs of two consecutive UAV
surveys.

Figure 12 displays a view of B28’s position pre- and post-storm, and clearly shows that
the boulder was overturned by the storm and not displaced. A view from the sea to the
land enables clarification of the mode of movement of boulder B30 following the December
2019 storm (Figure 13). B30 moved laterally (eastwards) while positioning itself on the
boulder just ahead (imbrication) and obscuring its sharp eastern edge. It also exposed a
new face, but with no biogenic encrustations as yet (Figure 13). This confirms a rotation
and saltation of boulder B30 in response to the storm.
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Figure 13. (a) Initial position of boulder B30 in September 2019 (white arrow) and (b) in December 
2019; (c) field photo of B30 overturned; orange arrows show striae on the rock platform and adjacent 
boulder caused by B30’s movement. 
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Figure 12. (a) Initial position of boulder B28 (white arrow); orange arrow shows the position of a
small clast near B28; (b) photo of B28 in September 2019; (c) displacement of B28 (white arrow), initial
position of small clast (orange arrow) and its new position (red arrow); (d) photo of B28 in December
2019, with bar scale.

Remote Sens. 2022, 14, 4102 16 of 23 
 

 

 

Figure 12. (a) Initial position of boulder B28 (white arrow); orange arrow shows the position of a 
small clast near B28; (b) photo of B28 in September 2019; (c) displacement of B28 (white arrow), 
initial position of small clast (orange arrow) and its new position (red arrow); (d) photo of B28 in 
December 2019, with bar scale. 

 
Figure 13. (a) Initial position of boulder B30 in September 2019 (white arrow) and (b) in December 
2019; (c) field photo of B30 overturned; orange arrows show striae on the rock platform and adjacent 
boulder caused by B30’s movement. 

B28 

B28 

September 2019 

December 2019 

December 2019 

September 2019 

5 m 

5 m 

Figure 13. (a) Initial position of boulder B30 in September 2019 (white arrow) and (b) in December
2019; (c) field photo of B30 overturned; orange arrows show striae on the rock platform and adjacent
boulder caused by B30’s movement.
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5. Discussion

When combined with close monitoring of storms, the employment of the UAV ap-
proach at multimonth-to-multiyear time steps allows for distinguishing boulder dynamics
of tsunami origin from those of storm origin [63]. At Laghdira, our datasets provide ev-
idence of the detachment and mobilization of three boulders during the December 2019
storm, as well as the emplacement of a new boulder following the storm. Three modes of
boulder transport were detected from the analysis of orthophotographs in combination
with 3D SfM models. The northern area, mainly characterized by isolated boulders, was
subject to the longest boulder displacement (sliding) and the generation of a new boulder.
The southern zone, characterized by a broad cross-sectional distribution of imbricated boul-
ders and boulder clusters, showed a combination of saltation and boulder overturn with
contrasting sizes and volumes. The presence of some joint-bounded boulders (Figure 4d),
of sockets carved at the rocky platform edge, and the correspondence of morphometry be-
tween sockets and boulders, could confirm that the production of the blocks at the southern
part of the study area occurred because of their detachment from the platform edge. The
northern zone, without boulder clusters close to the rocky platform edge, was potentially
more affected by the storm, resulting in the longest recorded boulder displacement, but
also in the detachment of a new boulder in the central part of the platform. At the southern
zone, the imbricated boulder cluster situated near the platform edge may have acted as a
wave energy dissipation ramp, thus reducing the potential transport of adjacent boulders
(Figure 14).
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Figure 14. Satellite image (Google Earth) of Laghdira on 16 February 2016 showing northwesterly
storm waves with a significant wave height of 4.5 m (almost the same storm conditions as in December
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Medina et al. [23] assessed the forces and wave heights required to lift, dislodge,
and displace the boulders at another rocky site in Larache (situated 5.4 km to the south
of Laghdira) by using the equations of Nott (2003) [64] corrected by Pignatelli et al. [65]
and Nandasena et al. [66]. The authors estimated that a 17.88 m storm wave height was
necessary to move the largest studied boulder (3.9 m × 2.2 m × 1.4 m = 12.01 m3 and
26.42 t).

The storms of 2013–2014 significantly impacted the Atlantic coast of Europe [60,67]
but also the Moroccan coast [62]. The recurrence of this type of strong storm over the
last 20 years is remarkable, as between 1998 and 2015 there were up to 36 storm events of
Hs > 7 m, while only 2 were recorded between 1956 and 1998 [62]. Furthermore, Mhammdi
et al. [62] have shown that the storms that hit the Moroccan coast between 2014 (notably
Hercules/Christina in 2014) and 2017, with offshore significant wave heights ranging from
3.6 m to 7 m, were able to displace boulders from 8 m3/16 t to 16.5 m3 / 33 t (overturned)
on the beaches in the vicinity of Rabat (Figure 1). With the wave conditions recorded during
the December 2019 storm, we are approaching the boulder displacement scenario observed
on the Rabat coastline in [62], and definitely not the tsunami displacement/deposition
scenario (Hs > 17.44) suggested in [23].

Combining short-term monitoring with UAV images and medium-term monitoring
based on satellite images available via the Google Earth Engine and/or Bing could enable
a better evaluation of the movements of coastal boulders following one or a series of
storms [32,35]. Figure 15 depicts a selection of available Google Earth images of Laghdira
(2013, 2017, 2018, 2019) at low tide. Comparison of the 2013 and 2014 images shows that
boulders B28 and B12 (6.72 m3 and 14.8 tons) moved up on the rock platform by 12 and 14 m,
respectively. During this period, the Atlantic coast experienced a series of significant storms
(e.g., Hercules/Christina in 2014). A single storm occurred in February 2016. From 2017 to
2018, no detectable changes could be observed, although a high-energy event occurred on
1 March 2018 with a Hs > 5 m during 4 h. Boulder B28 appears onsite between October
2018 and August 2019 (just before our September 2019 fieldwork). This period was marked
by two brief high-energy events of >4 m and >5 m, respectively, between October and
November 2018. This hasty analysis of low-resolution images to extract possible boulder
movements enables the detection of some changes in the locations of these megaclasts at
Laghdira. However, it does not allow us to confirm that these movements were caused by
the abovementioned high-energy events, even if there is consistency between energy and
boulder movement.

Recently, boulder studies have become more oriented towards the observation of
movements and re-assemblages after exceptional storms [31,62,63]. Naylor et al. [34]
highlighted the difficulty of obtaining repeat photographic analysis of pre-, mid-, and
post-storm data in order to demonstrate how a storm influences boulder dynamics in key
morphodynamic zones. Combining hydrodynamic measurements and/or hydrodynamic
modeling with high-resolution boulder site monitoring could enable verification of the
reliability and applicability of various empirical models [64–67] commonly used for the
characterization of the energy and wave heights necessary for boulder mobility, and which
can regularly over- or underestimate the forcing conditions.

UAV surveys and SfM model analysis captured the start and end points of boulders
within a single storm event with measured waves at Laghdira, Morocco. This dataset
could provide an excellent opportunity to apply empirical models of the energy flux and
wave heights required for boulder mobility [64–66], and to test their effectiveness and
adaptability, and even eventually calibrate them for the geomorphological specificities of
Laghdira in order to project future boulder dynamics at this site. This study shows that with
pre- and post-storm UAV surveys, we can confirm that wave erosion and wave-induced
morphological changes are active at Laghdira. The appearance of a new detached boulder
in the central zone of the rock platform attests to the continuity of landform change in
this coastal setting. However, the location of mobile boulders at varying distances from
the outer edge of the platform, as during the December storm (Figure 10), also shows that
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incident wave energy did not have a preferential impact on any particular boulder’s shape,
size category, or position within the outer edge of the Laghdira platform.
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Figure 15. Satellite images (Google Earth Engine) of Laghdira in 2013, 2017, 2018, and 2019: (a) posi-
tions of boulders B12, B19, B20, and B28 in 2013; (b) displacement of boulders B12 and B28 between
2013 and 2017; (c) no significant and detectable changes in boulder locations in 2018; (d) appearance
of boulder B29 on the rock platform of the study site in 2019.

Where boulder accumulations are close to populated areas or socioeconomic activities
such as ports, urban centers, and tourist facilities [68–70], understanding the dynamics of
these megaclasts becomes paramount to preventing risks related to their mobility during
storm conditions and, in particular, the potential hazard to coastal infrastructure that
they may pose. People, vehicles, and other property have been known to be impacted
by waves and boulder projections on islands such as Malta and Jamaica [10,12,71], but
also in Morocco during storms [62]. Coastal hazard maps and warnings of expected
high waves exist in many countries, but are mainly intended for marine submersion.
However, maps of the potential mobility of megaclasts under extreme or high-energy
storm conditions unfortunately do not exist. Understanding the dynamics of boulders
under the impacts of storm conditions and, thus, being able to produce risk maps of
boulder movements, cannot be achieved through modelling and the use of hydrodynamic
formulae that systematically underestimate or overestimate the wave conditions necessary
for megaclast mobility [71,72], or through monitoring by satellite or aerial imagery spaced
out over time, which will simply show an accumulation of boulder movements generated
by several wave events—not an individual one [35]. It is therefore necessary to be able to
carry out regular and rapid pre- and post-storm monitoring in order to better detect the
different types and distances of possible boulder movements, and then combine them with
modelling and in situ hydrodynamic monitoring. This possibility to conduct reliable, rapid,
and inexpensive monitoring of pre- and post-storm boulder dynamics is exemplified by
our study.
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6. Conclusions

The analysis of drone-derived SfM models before and after a storm in December
2019 enabled the identification of three large boulders that were moved or rotated, along
with the placement of a new boulder at the rocky platform of Laghdira on the storm-
exposed Atlantic coast of Morocco. The SfM data and resulting models were of very high
resolution (1–10 cm/pixel) owing to the use of a high overlap between successive photos
and the deployment of GCPs that allowed for the improvement of quantitative differencing
capabilities.

This study also illustrates how the combination of 2D model differentials with 3D
model visuals enable us to go beyond the simple quantification of transport and distances
travelled by megaclasts, and even specify the travel mode. The three boulders that were
displaced during the December 2019 storm had different locations on the platform, as
well as different shapes, volumes, and mass; this demonstrates that the movement of the
boulders in time and space on this rocky shore platform is not a simple match between
incoming wave energy and size/weight.

We also demonstrated that a tsunamigenic origin for coastal boulder movements at
Laghdira, as initially inferred by other authors, is not valid, and various other boulder
movements that occurred between 2013 and 2019 were shown to have occurred under the
impact of storms.

The boulder-tracking technique used in this study, does not require extensive field
logistics, and is a promising methodology that could allow scientists to perform the high-
resolution monitoring and comparisons needed to better substantiate the connections
between storm waves and boulder movements. Such monitoring techniques may also be
useful to monitor the impacts of sea-level rise on boulder mobility. Sea-level rise associated
with climate change and more energetic storms on the coast of Morocco [73] could enable
waves to rework these megaclasts more frequently, but also to reach higher levels on rocky
platforms and, thus, access cliffs from which new boulders can be detached.
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