
HAL Id: hal-03760280
https://hal.science/hal-03760280v1

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Automatic Search of Rectangle Attacks on Feistel
Ciphers: Application to WARP

Virginie Lallemand, Marine Minier, Loïc Rouquette

To cite this version:
Virginie Lallemand, Marine Minier, Loïc Rouquette. Automatic Search of Rectangle Attacks on
Feistel Ciphers: Application to WARP. IACR Transactions on Symmetric Cryptology, 2022, 2022 (2),
pp.113-140. �10.46586/tosc.v2022.i2.113-140�. �hal-03760280�

https://hal.science/hal-03760280v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 2, pp. 113–140. DOI:10.46586/tosc.v2022.i2.113-140

Automatic Search of Rectangle Attacks on
Feistel Ciphers: Application to WARP
Virginie Lallemand1, Marine Minier1 and Loïc Rouquette2,3

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
firstname.name@loria.fr

2 CITI, INRIA, INSA Lyon, Villeurbanne, France
loic.rouquette@insa-lyon.fr

3 LIRIS, UMR5201 CNRS, Villeurbanne, France

Abstract. In this paper we present a boomerang analysis of WARP, a recently proposed
Generalized Feistel Network with extremely compact hardware implementations. We
start by looking for boomerang characteristics that directly take into account the
boomerang switch effects by showing how to adapt Delaune et al. automated tool to
the case of Feistel ciphers, and discuss several improvements to keep the execution
time reasonable. This technique returns a 23-round distinguisher of probability 2−124,
which becomes the best distinguisher presented on WARP so far. We then look for
an attack by adding the key recovery phase to our model and we obtain a 26-round
rectangle attack with time and data complexities of 2115.9 and 2120.6 respectively,
again resulting in the best result presented so far. Incidentally, our analysis discloses
how an attacker can take advantage of the position of the key addition (put after
the S-box application to avoid complementation properties), which in our case offers
an improvement of a factor of 275 of the time complexity in comparison to a variant
with the key addition positioned before. Note that our findings do not threaten the
security of the cipher which iterates 41 rounds.
Keywords: Cryptanalysis · Feistel cipher · Boomerang attack · WARP

1 Introduction
Boomerang distinguishers [Wag99] were introduced at FSE’99 as a variant of differential
distinguishers [BS91] taking advantage of the existence of short differentials of high
probability. In its simplest version, the attacker sees the cipher E as the composition of
two subciphers (E = E1 ◦E0) and makes use of a differential for each part. If at first it was
thought that these two differentials can be selected freely, following advances like [Mur11]
showed that the interdependence should be carefully treated, as incompatibilities or
better-than-expected probabilities might occur.

As a result, searching for the best boomerang distinguisher does not simply reduce to
finding two differentials of high probability, and thus emerged a need for automated tools
that would take into account the possible events in the middle, later formalized by the
BCT [CHP+18] (for SPNs) and FBCT [BHL+20] (for Feistels) theories. Two techniques
have been proposed recently to address this issue. In [HBS21], the authors proposed to
give as input to a MILP model the size of the middle part (where dependencies happen)
and to take into account one type of dependency (the so-called ladder switch [BK09]). A
more precise approximation of the probability of the middle rounds was then obtained with
the BCT framework or experimentally. A second technique has been proposed in [DDV20],
that directly takes into account all the possible middle dependencies and does not require
that the attacker specifies the size of the middle part.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-11-23 Revised: 2022-03-01 Accepted: 2022-05-01 Published: 2022-06-10

https://doi.org/10.46586/tosc.v2022.i2.113-140
mailto:firstname.name@loria.fr
mailto:loic.rouquette@insa-lyon.fr
http://creativecommons.org/licenses/by/4.0/

114 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

If many papers start by looking for the best distinguisher to next turn it into an attack,
better results might be obtained by taking into account the incidence of the distinguisher
on the key recovery phase. An example of this was given in [ZDJ19] when building a
rectangle attack on Deoxys, and further discussions were provided in [QDW+21] with
results on Skinny. The latter presents an automated tool that takes the model provided
in [DDV20] and adds relations to include the dominating factors of the key-recovery phase
so that the resulting model directly looks for an optimization of the attack as a whole.

Our contribution. In this work, we propose to study the security of the recently published
block cipher WARP [BBI+20] against boomerang techniques. To do so, we start by showing
how to adapt the model developed in [DDV20] to the case of Feistel ciphers, since the
original tool was developed for SPN ciphers in general and for Skinny in particular. Since
the execution time of the simple model is exponential in the number of rounds, covering
more than 20 rounds of WARP is out of reach. We thus propose several techniques to speed
up the model and to guide it to the solutions. By counting different solutions with the
same input and output differences, we were able to find a 23-round distinguisher that
covers 2 more rounds than the best result to date.

Second, we show how to extend this model to search for rectangle attacks, following the
method developed in [QDW+21]. This extra step ensures that both the key recovery part
and the distinguisher are optimized together to reach a (close to) optimal attack as a whole.
Finally, we describe a 26-round attack on WARP, again reaching the best result to date. Our
analysis shows that the designers’ choice of positioning the key addition after the S-box
in the Feistel round function (which is justified by the need to avoid complementation
properties) turns in favour of the attacker.

Our results on WARP with a comparison with previous works are summarized in Table 1.
The code of our tool is available at:

https://gitlab.inria.fr/lrouquet/boomerang-warp-fse-23

Outline. We start by recalling some preliminaries in Section 2 which include the speci-
fication of WARP, a reminder on boomerang attacks and a brief overview of the existing
techniques to automatically find them. Section 3 is dedicated to the description of our
model searching for boomerang distinguishers and to the discussion of our result on 23
rounds, that we can easily extend by 2 rounds. Our techniques to improve the execution
time of the model are presented. Section 4 shows how to turn the previous model into
one searching for rectangle attacks and in particular how the position of the key addition
turns favourable to the attacker, leading us to a 26-round attack.

2 Preliminaries

2.1 Specification of WARP

WARP [BBI+20] is a lightweight block cipher that has been recently presented at SAC 2020
by Banik et al. The main objective of the designers was to propose a cipher that could
be used as a direct replacement of AES-128 (thus with a 128-bit block and key) but that
would be lighter in terms of hardware footprint. This challenge was met with flying colours
as evidenced by the impressive reported number of around 800 Gate Equivalents (GEs) for
a serialized circuit of WARP.

Description. The cipher follows a variant of a Type-2 Generalized Feistel Network (GFN)
using 32 branches of 4 bits each. Special care was taken to the selection of the 32-branch

https://gitlab.inria.fr/lrouquet/boomerang-warp-fse-23

Virginie Lallemand, Marine Minier and Loïc Rouquette 115

Table 1: Complexities of the existing results on WARP. Note that for all the distinguishers
presented here we can add 2 rounds for free, see Section 3.4. ID = Impossible Differential,
DC = Differential Characteristic.

Technique Rounds Probability Time Data Mem. Ref.
DC distinguisher 18 2−122 - - - [KY20]
DC distinguisher 20 2−122.71 - - - [TB21]
ID distinguisher 21 1 - - - [BBI+20]

Boomerang distinguisher 21 2−121.11 - - - [TB21]
Boomerang distinguisher 23 2−124 - - - Section 3.4

Differential attack 21 - 2113 2113 272 [KY20]
Differential attack 23 - 2106.68 2106.62 2106.62 [TB21]
Rectangle attack 24 - 2125.18 2126.06 2127.06 [TB21]
Rectangle attack 26 - 2115.9 2120.6 2120.6 Section 4.3

permutation π in order to optimize both the diffusion and the number of active S-boxes in
a differential or linear trail. The cipher iterates 41 rounds, where the final round misses π.

In detail, the 128-bit internal state is split over 32 branches of 4 bits. At the input of
round r, the value of the 32 nibbles is denoted X[r, 0] to X[r, 31]. They go through five
elementary mappings in each (full) round, as depicted in Figure 1. Each nibble with an
even index X[r, 2i] is modified by the F function, which consists in the application of a
4-bit S-box (denoted SBOX in the following, and given in Table 2) followed by a round key
addition. The result is then xored to X[r, 2i+ 1], a constant is added to X[r, 1] and X[r, 3]
and finally the 32 branches are shuffled by the π permutation given in Table 3. Since the
values of the round constants have no impact on our analysis we refer the reader to the
specification [BBI+20].

The key schedule is linear and relies on a 128-bit master key seen as the concatenation
of two 64-bit keys: K = K0||K1. Each half is used alternatively as the round key, starting
with the 16 nibbles of K0 that are used in the first round.

Table 2: 4-bit S-box SBOX.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
SBOX (x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

Table 3: Shuffle π mixing the 32 branches.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

Security. The designers of WARP claimed single-key security and did not claim any security
in related-key and known/chosen-key settings. They provided a rather comprehensive secu-
rity analysis of their design, with a discussion of differential, linear, impossible differential,
integral, meet-in-the middle and invariant subspace attacks. The longer distinguisher they
mentioned is a 21-round impossible differential distinguisher.

116 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

F F F F F F F F F F F F F F F F
RCr

0 RCr
1

X[r, 2× i] X[r, 2× i+ 1]

SBOX

F

SB[r, i]

key[(r mod 2)× 16 + i]

RC0[r] if i = 0
RC1[r] if i = 1
else 0

Figure 1: One round of WARP. The constant addition in blue (—) plays no role when
searching for differential properties, and the round key addition in green (—) can be
ignored when considering the single key scenario.

To the best of our knowledge, two external cryptanalyses have been reported to date,
both studying differential-based attacks. In the article [KY20] by Kumar and Yadav, a 21-
round differential attack is presented (based on a 16-round differential characteristic), with
a time and data complexity of 2113. Concurrently with our work, a 23-round differential
attack and a 24-round rectangle attack were reported by Teh and Biryukov in [TB21].

2.2 Boomerang Attacks

The boomerang attack is a variant of the differential attack that was introduced by David
Wagner in 1999 [Wag99]. The boomerang distinguishers at their basis are defined by two
differences α and δ chosen so that the probability of the following equality is higher for
the (round-reduced) cipher E than for a random permutation:

E−1(E(X)⊕ δ)⊕ E−1(E(X ⊕ α)⊕ δ) = α (1)

In their basic form, boomerang distinguishers are built by rewriting E as the composition
of two sub-ciphers; E = E1 ◦ E0 and by finding a good differential for each part. If we
denote by p the probability of the differential over E0, that is p = Pr(α→E0 β) and by q
the probability of the second differential over E1 (q = Pr(δ →E−1

1
γ)), a first approximation

returns that the probability of Equation (1) is close to p2q2.
Kelsey et al. [KKS01] and Biham et al. [BDK01] independently introduced a chosen

plaintext-only version of the boomerang distinguisher, that they respectively named the
amplified and the rectangle technique. This variant relies on the same rewriting of the
cipher and on the same differentials as previously and consists in observing twice the
difference δ in the quartets at the output of the cipher. The distinguisher is expected to
have a probability of p2q22−n, while it would be 2−2n for a n-bit random permutation.

As shown for instance in the analysis of Sean Murphy [Mur11], the naive approximation
of the probability of a boomerang distinguisher might turn wrong due to an incompatibility
between the upper and the lower differentials. To solve this problem, Dunkelman et al.
introduced the sandwich attack [DKS10] which adds a middle part Em in the rewriting of
E (namely E = E1 ◦ Em ◦ E0) to isolate and study separately the rounds where the two
differentials are interdependent. This middle part is called boomerang switch [BK09]; if
we denote by r the probability that Em connects the upper and the lower trails, the final
probability of the distinguisher becomes p2q2r.

Virginie Lallemand, Marine Minier and Loïc Rouquette 117

Computing the middle part probability. A recent line of works showed how to approx-
imate the value of r with the use of various tables. The first to be introduced is the
BCT [CHP+18], developed by Cid et al. to deal with 1-round boomerang switches in the
case of SPN ciphers. In this paper we focus on the Feistel case and thus recall the FBCT,
the FBDT and the FBET, introduced in [BHL+20]. The notation is recalled in Figure 2.

Definition 1 (FBCT, FBDT and FBET [BHL+20]). Let S be a function from Fn
2 to

itself, and (∆i, δ,∇o, α) be elements of (Fn
2)4. The Feistel Boomerang Connectivity Table

(FBCT), Feistel Boomerang Difference Table (FBDT) and Feistel Boomerang Extended
Table (FBET) of S are given by:

FBCT (∆i,∇o) = # {x ∈ Fn
2 |S(x)⊕ S(x⊕∆i)⊕ S(x⊕∇o)⊕ S(x⊕∆i ⊕∇o) = 0} .

FBDT (∆i, δ,∇o) = #
{
x ∈ Fn

2

∣∣∣∣S(x)⊕ S(x⊕∆i)⊕ S(x⊕∇o)⊕ S(x⊕∆i ⊕∇o) = 0,
S(x)⊕ S(x⊕∆i) = δ.

}
.

FBET (∆i, δ,∇o, α) = #

x ∈ Fn
2

∣∣∣∣∣∣
S(x)⊕ S(x⊕∆i)⊕ S(x⊕∇o)⊕ S(x⊕∆i ⊕∇o) = 0,
S(x)⊕ S(x⊕∆i) = δ,
S(x⊕∆i)⊕ S(x⊕∆i ⊕∇o) = α.

 .

The table used to compute the 1-round probability depends on which input and output
differences of the S-box are fixed: for instance, the FBCT is chosen when only the inputs
∆i and ∇o are fixed (see Figure 2).

∆i

L1 R1

L2 R2

L3 R3

R4L4S

L

S S S S

S

L

S S S S

S

L

S S S S

S

L

S S S S

· · ·

· · ·· · ·

· · ·

1

2

3

4

δ

x

∇o

α

Figure 2: View of the parameters of the tables: ∆i is the input difference and δ is the
output difference of S when looking at the difference between state 1© and 2©. ∇o is the
input difference of the same S-box S when looking at the difference between state 1© and
3© and α is its output difference. We focus on the case where the differences are the same
on parallel sides.

From the distinguisher to the attack. Once an efficient boomerang distinguisher is
found, there exist several techniques to extend it to a key recovery attack, as summarized
for instance in [DQSW21]. In this article we focus on the technique devised by Zhao et al.
in [ZDM+20].

The parameters on which the complexities of an attack depend are shown on the
right in Figure 3. The key recovery works by adding few rounds before and after the
Nd distinguisher rounds Ed. We denote Eb the Nb rounds prepended and by Ef the Nf

appended rounds. The attacker extends backward with probability one the input difference
α, obtaining a truncated difference α′ with rb possibly active bits and n− rb inactive bits.
In the same way, δ is extended forward with probability one over the Nf rounds, giving a
truncated difference equal to δ′, with n− rf inactive bits.

The idea to recover some key material is to make a guess on key bits appearing in Eb

and Ef in order to be able to count how many times the distinguishing property happens,
the correct key material being amongst the ones with a large number of hits. In the

118 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

Ed

Ef

C1

Ed

Ef

α

Ed

Ef

C3

Ed

Ef

C4

δ

δ′

M1

Eb
M2

α′

Eb

M3

Eb
M4

α ′
=

Eb

Em

E1

Y 1

Em

E1

Y 2

β

Em

E1

Y 3

Em

E1

Y 4

γ

δ

X1

E0
X2

α

E0

X3

E0
X4

E0

γ

δ

α

β

Ed

Nb

Nf

rb

C2

rf

δ′ =

δ =

α =

Nd Nr

Figure 3: Sandwich distinguisher (left) and setting for an attack, including the key recovery
(right).

following description, we denote by mb the number of key bits in Eb and by mf the number
of key bits in Ef .

The detail of the attack procedure devised by Zhao et al. [ZDM+20] is as follows,
where s is the expected number of right pairs:

1. Build y =
√
s · 2n/2−rb/

√
p2q2r structures of 2rb plaintexts each, and store them

with their associated plaintexts.

2. For each possible value of the mb key bits:

(a) Initialize 2mf key counters.
(b) Partially encrypt each plaintext M1 of each structure using the guessed mb key

bits up to the beginning of Ed. Add α to the computed value and decrypt it up
to the plaintext, to obtain M2. Construct the set S (of size y · 2rb) given by:

S = {(M1, C1,M2, C2)|Eb(M1)⊕ Eb(M2) = α}.

(c) Insert S into a hash table H indexed by the n− rf bits that are inactive in δ′.
Each collision defines a quartet (C1, C2, C3, C4).

(d) Use these quartets to determine the correct mf key bits. The time complexity
of this stage is denoted ε.

Depending on the parameters, two factors might be dominating the time complexity;
either the cost of stage 2.(b) or the cost of the last stage. Their time complexity is
respectively 2mb+rb ·y ·µ = 2mb+n/2 ·

√
s · 1√

p2q2r
·µ and s ·2mb−n+2rf /(p2q2r) ·ε encryptions.

Since stage 2.(b) does partial encryptions over Eb, µ can be approximated by Nb

Nb+Nd+Nf

while ε corresponds to the cost of gradually decrypting rounds to check the validity of a
key guess, so we decide to approximate it by 1

s .

Success probability. We use the formula devised in [Sel08] for differential cryptanalysis
(and later used in the context of rectangle attacks) to evaluate the probability of finding
the correct key:

Ps = Φ(
√
sSN − Φ−1(1− 2−h)√

SN + 1
),

where SN is the signal-to-noise ratio, so is equal to p2q2r/2−n and h is the advantage.

Virginie Lallemand, Marine Minier and Loïc Rouquette 119

2.3 Delaune et al.’s Model
In [DDV20], Delaune et al. propose a model divided into two steps to search for optimal
boomerang distinguishers on SPN ciphers. In Step 1, a MILP model searches for truncated
boomerangs where each S-box is represented by 6 binary variables (described below). The
solutions of Step 1 are the input of a Step 2 search that tries to instantiate those truncated
boomerangs with concrete nibble differences so that the distinguisher has the highest
possible probability. In this article, we use the same notation and similar steps.

A boomerang distinguisher uses two differential trails, one is called the upper trail
and determines α, the input difference of the distinguisher. The other one is called the
lower trail and determines δ, the output of the distinguisher (see Figure 3). In the model
proposed in [DDV20] the division as a sandwich is not made but the upper and lower trails
are searched on all the rounds. In what follows we denote by δX [r, i] the nibble difference
at the input of an S-box and by δSB[r, i] the corresponding output difference of the S-box.

The boomerang model of [DDV20] uses six variables for each S-box in its Step 1: 3
variables relate to the upper trail (in the encryption direction) whereas the 3 others relate
to the lower trail (in the decryption direction). These variables are used to select the
proper boomerang transition tables and are defined as:

isActiveXup[r, i] (respectively isActiveXlo[r, i]) is a Boolean variable that indicates
if the nibble difference δX [r, i] is active in the upper (resp. lower) trail, considering
that it represents the S-box input,

freeXup[r, i] (respectively freeXlo[r, i]) is a Boolean variable that indicates if the
nibble difference δX [r, i] is free of conditions, that is can take any value with a
uniform probability in the upper (resp. lower) trail,

freeSBup[r, i] is a Boolean variable that indicates if the nibble difference δSB[r, i] can
take any value with a uniform probability in the upper trail as an output of the
S-box. freeSBlo[r, i] is a Boolean variable that indicates if the nibble difference
δSB[r, i] can take any value with a uniform probability in the lower trail. Note that
the freeSBup[r, i] variable represents the state of the variable after the S-box in the
encryption direction, so freeSBlo[r, i] can be seen as the input state of the S-box in
the decryption direction.

Several constraints describe the relations between these variables, starting with the one
modelling the propagation of the free states through the S-boxes: if a variable is free before
an S-box, it is also free after the S-box. Since the propagation is done in the opposite
direction for the lower trail, the implication is in the other direction for the lo variables.

freeXup =⇒ freeSBup

freeSBlo =⇒ freeXlo

The second rule ensures that if an S-box output is free then the S-box input must be
non-zero. Again the lower trail is reversed since it represents the decryption direction.

freeSBup =⇒ isActiveXup

freeXlo =⇒ isActiveXlo

The third rule ensures that we can compute the probability of the S-box by setting a
minimum number of parameters.

freeSBup + freeSBlo ≤ 1
freeXup + freeXlo ≤ 1

120 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

Finally, for any linear operation there is a constraint stating that if any input variable is
free then all the output variables on which it depends are also free.

Given this set of constraints, the solver is going to choose the best truncated trail
among the ones with a valid propagation of differences, where the quality of a trail is
measured by the best probability it might reach. Namely, given the state of each S-box,
one can determine which table (DDT, BCT, etc) should be used to compute its probability,
and based on this the best probability of the Step 1 solution is obtained by assuming that
the best transition in the table is met. Once the best solution for Step 1 is found it is
given as input to the Step 2 model, which looks for a concrete instance of the upper and
lower trails, again with the objective of reaching the best possible probability.

3 Automatic Search of Boomerang Distinguishers
3.1 Automatic Search of Truncated Boomerang Distinguishers for Feis-

tel Ciphers
This section describes how to build an automated tool that searches for truncated
boomerang distinguishers for Feistel ciphers. Our method follows the idea developed
by Delaune et al. for Skinny in [DDV20] but makes the required adjustments to fit the
Feistel structure.

Bup Aup

F

A′up Bup

F

(a) Feistel forward round.

Blo Alo

F

A′lo Blo

F

(b) Feistel backward round.

Figure 4: Encryption (4a) and decryption (4b) procedure of a classical Feistel cipher.
Note that the F function is never inverted and that the only difference comes from the
direction in which the XOR is computed.

Required changes. The model presented in [DDV20] for SPN ciphers treats differently
the S-boxes of the lower and upper trail to take into account the direction in which they
are computed. Given the specific property of Feistel ciphers (that are their own inverse)
and as illustrated in Figure 4, our model does not have to make this distinction, so we end
up with the same constraints for the S-boxes in the upper and in the lower trail:

freeXup =⇒ freeSBup
freeXlo =⇒ freeSBlo

(2)

For the same reason we change the second constraint as follows:

freeSBup =⇒ isActiveXup
freeSBlo =⇒ isActiveXlo

(3)

Virginie Lallemand, Marine Minier and Loïc Rouquette 121

Knowing which input and output differences are fixed for every S-box allows to select
the correct table from Definition 1 to compute the associated boomerang probability. For
instance, if the two input differences ∆i and ∇o are fixed while α and δ are free parameters,
the required table is FBCT (∆i,∇o).

For the model, it corresponds to the case where the input value of Xup and the input
value of Xlo are fixed, so where freeXup and freeXlo are assigned to false. α and δ being
free means that freeSBup and freeSBlo are equal to true, so we end up with constraint (4)
that indicates when the FBCT table is required to compute a 1-round probability.

predicate isFBCT(r, i) =(
isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ freeSBup[r, i]

∧
isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ freeSBlo[r, i]

)
(4)

Other tables are built in the same way and we obtain constraints (7) to (11) of Model 1
that select the correct table according to which variables are fixed or not.

To ensure that the probability of each S-box can be computed using one of the Feistel
boomerang transitions, we add the following constraint:

freeXup + freeSBlo ≤ 1
freeXlo + freeSBup ≤ 1 (5)

While S-boxes are treated in the same way in the upper and lower trail, special care
has to be taken to correctly propagate knowledge through the XOR operations. In the
upper trail (Figure 4a) we have the following equation: A′ = F (B)⊕A while for the lower
trail (Figure 4b) we have: A = F (B)⊕A′. This leads to the following distinction in the
constraints:

freeA′up = (freeF (Bup) ∨ freeAup)
freeAlo = (freeF (Blo) ∨ freeA′lo) (6)

Constraints (2) to (5) are the core mechanisms of the boomerang model for Feistel
ciphers. They must be applied on every S-box transition. Constraint (6) must be used on
the parts of the state that are XORed together.

Resulting model. The complete model is provided in Model 1. Its first half is dedicated
to the selection of the correct boomerang table. The second part starts with constraint
(12) which ensures that the trails are active (i.e. that there is at least one difference in α
and δ). Constraints (13) to (16) define the propagation from one round to the other, while
the block of constraints (17) corresponds to the constraints (2), (3) and (5) explained at
the beginning of this section and model the S-box transition. The model ends with the
objective (18) given here in its naive form and that can be simplified as we now discuss.

3.2 Improvements
Weighted sum simplification. Given a model looking for differential characteristics, an
upper bound of the probability is obtained by multiplying the number of active S-boxes
found during Step 1 by the log2 of the maximum probability of the transition of an active
S-box, that is UB = 2−PDDT×#SB .

Similarly, for a model looking for boomerang distinguishers, the upper bound has
to take into account the various tables that are possible (the ones that can be selected
in the first half of Model 1) and for each of them their maximum probability, denoted

122 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

predicate isDDT(r, i) =(¬isActiveXup[r, 2× i]
∧

isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ ¬freeSBlo[r, i]

)
∨(

isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ ¬freeSBup[r, i]
∧

¬isActiveXlo[r, 2× i]

) (7)

predicate isDDT2(r, i) =(
isActiveXup[r, 2× i] ∧ freeXup[r, 2× i] ∧ freeSBup[r, i]

∧
isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ ¬freeSBlo[r, i]

)
∨(

isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ ¬freeSBup[r, i]
∧

isActiveXlo[r, 2× i] ∧ freeXlo[r, 2× i] ∧ freeSBlo[r, i]

) (8)

predicate isFBCT(r, i) =(
isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ freeSBup[r, i]

∧
isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ freeSBlo[r, i]

)
(9)

predicate isFBDT(r, i) =(
isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ ¬freeSBup[r, i]

∧
isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ freeSBlo[r, i]

)
∨(

isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ freeSBup[r, i]
∧

isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ ¬freeSBlo[r, i]

) (10)

predicate isFBET(r, i) =(
isActiveXup[r, 2× i] ∧ ¬freeXup[r, 2× i] ∧ ¬freeSBup[r, i]

∧
isActiveXlo[r, 2× i] ∧ ¬freeXlo[r, 2× i] ∧ ¬freeSBlo[r, i]

)
(11)

Model 1: Model searching for truncated boomerangs on WARP, part 1/2: table selection.

PDDT , PDDT 2 , ..., PF BDT . The objective (and consequently the bound) thus corresponds
to a weighted sum, as shown in (18), Model 1.

Even if the semantic remains the same, reordering this weighted sum may have a huge
impact on the resolution time. The first simplification that can be done corresponds to
cases where a table has a maximum probability of 1. In such a setting, the table can simply
be ignored during Step 1. This happens for the FBCT of WARP. The second simplification
occurs when different tables have the same maximum probability, in which case they can
be grouped by their respective maximum probabilities. For WARP, such an equality happens
for the DDT , the FBDT and the FBET which have the same maximum denoted PisT able.
Also, the DDT 2 can be handled by counting them twice more than the DDT in the sum.
Thus, the obj function can be simplified as follows:

Virginie Lallemand, Marine Minier and Loïc Rouquette 123

31∑
i=0

(
isActiveXup[first distinguisher round, i]

)
6= 0

31∑
i=0

(isActiveXlo[last distinguisher round, i]) 6= 0
(12)

∀r ∈ all rounds?,∀i ∈ [0, BR/2[

freeXup[r + 1, πeven[i]] = freeXup[r, 2× i]
freeXup[r + 1, πodd[i]] = (freeXup[r, 2× i+ 1] ∨ freeSBup[r, i]) (13)

∀r ∈ all rounds,∀i ∈ [0, BR/2[

freeXlo[r, 2× i] = freeXlo[r + 1, πeven[i]]
freeXlo[r, 2× i+ 1] = (freeXlo[r + 1, πodd[i]] ∨ freeSBlo[r, i]) (14)

∀r ∈ all rounds,∀i ∈ [0, BR/2[

isActiveXup[r + 1, πeven[i]] = isActiveXup[r, 2× i]
isActiveXup[r + 1, πodd[i]] + isActiveXup[r, 2× i+ 1] + isActiveXup[r, 2× i] 6= 1 (15)

∀r ∈ all rounds,∀i ∈ [0, BR/2[

isActiveXlo[r + 1, πeven[i]] = isActiveXlo[r, 2× i]
isActiveXlo[r + 1, πodd[i]] + isActiveXlo[r, 2× i+ 1] + isActiveXlo[r, 2× i] 6= 1 (16)

∀r ∈ all rounds,∀i ∈ [0, BR/2[

freeSBup[r, i] =⇒ isActiveXup[r, 2× i]
freeSBlo[r, i] =⇒ isActiveXlo[r, 2× i]
freeXup[r, 2× i] =⇒ freeSBup[r, i]
freeXlo[r, 2× i] =⇒ freeSBlo[r, i]
freeXup[r, 2× i] + freeSBlo[r, i] ≤ 1
freeXlo[r, 2× i] + freeSBup[r, i] ≤ 1

(17)

obj =
∑

r∈distinguisher
rounds

15∑
i=0

 PDDT × isDDT[r, i] + PDDT 2 × isDDT2[r, i] +
PF BCT × isFBCT[r, i] + PF BDT × isFBDT[r, i] +
PF BET × isFBET[r, i]

 (18)

minimize obj

?: all rounds include Eb, Ed and Ef rounds of Figure 3 while distinguisher rounds only
include Ed rounds.
Model 1: Model searching for truncated boomerangs on WARP, part 2/2. πeven and πodd

correspond to the subparts of the π permutation for even or odd inputs only. BR is the
number of branches of the cipher, so is equal to 32 in the case of WARP.

124 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

obj =
∑

r∈distinguisher
rounds

15∑
i=0

(
PisTable × (isDDT[r, i] ∨ isFBDT[r, i] ∨ isFBET[r, i] ∨ isDDT2[r, i]) +
PisTable × isDDT2[r, i]

)
(19)

In addition to this, since there is a single maximum probability for all the tables (except
for the FBCT removed previously), we can rewrite the weighted sum as:

obj = PisTable ×
∑

r∈distinguisher
rounds

15∑
i=0

(
(isDDT[r, i] ∨ isFBDT[r, i] ∨ isFBET[r, i] ∨ isDDT2[r, i]) + isDDT2[r, i]

)
(20)

Finally, once the objective function is simplified we can use the Quine-McCluskey algo-
rithm to create a minimized Boolean predicate isTable[r, i] = (isDDT[r, i] ∨ isFBDT[r, i] ∨
isFBET[r, i] ∨ isDDT2[r, i]) and use it in the weighted sum:

obj = PisT able ×
∑

r∈distinguisher
rounds

15∑
i=0

((isTable[r, i]) + isDDT2[r, i]) (21)

Incremental search. In our model, the objective function non-strictly decreases as the
number of rounds r increases, since if we do not add an active S-box we will have the
same optimal probability while if we do add one S-box the probability will always be
equal (if the maximal possible probability of the table is 1) or lower (if the maximum
possible probability is strictly less than 1). We can use this information to lower bound
the objective function for r+ 1 rounds when we know the optimal probability for r rounds:

PisT able ×
Nb+r∑
r′=Nb

15∑
i=0

((isTable[r′, i]) + isDDT2[r′, i]) ≥ objr (22)

This observation allows to give the model additional information about the minimum
bound, which makes it stop the search earlier and therefore save execution time.

Forcing the pattern of the solution. The previous model allows to find distinguishers
for up to 20 rounds of WARP (in both Step 1 and Step 2), but more rounds are out of reach
as the computation time grows exponentially in the number of rounds.

However, we found out that all the optimal solutions returned for Nd = 15 to Nd = 20
have a specific pattern of the form 1-1-0-1-1, that is contain a sequence of 5 rounds with
1 active S-box in the first round, 1 active S-box in the second round, 0 in the third one,
and so on.

While we cannot formally prove that this pattern is going to appear in the optimal
solutions for 21 rounds and more, we believe that there are high chances that it does, so we
decided to add a Step 1 constraint that forces the solutions to follow this specific pattern.
This assumption seems reasonable as we did not observe a break in the probability chart.

Formally, it gives (note that we do not fix the position where the pattern appears):

Nb+Nd−5∨
r=Nb

r+4∧
i=r

(
15∑

j=0
isActiveXup[i, 2× j] = patterni)

 with pattern = [1, 1, 0, 1, 1]

(23)

Virginie Lallemand, Marine Minier and Loïc Rouquette 125

3.3 Instantiating the Truncated Boomerang Distinguishers
As mentioned before, we decompose our analysis into two steps. The first one (described
above) implements the search of truncated boomerang distinguishers and is written in
Picat SAT [ZK16], the SAT compiler in the Picat system. Each S-box of each round is
associated to 6 bits: 3 for the upper trail and 3 for the lower trail. They indicate if an
S-box is active or not, if the S-box input is free or not and if the S-box output is free or
not.

The second step looks for concrete instantiations of the previous truncated solutions.
It is written in the open source Java constraint programming library Choco [PFL16]. This
step is also inspired from the one of [DDV20].

3.3.1 CP Model

The Constraint Programming model of Step 2 takes as input the results of Step 1 to
know the general shape of the distinguisher, in particular which nibbles are inactive. To
transform a truncated solution into a concrete one we need to assign values to the nibbles.
For each pair of nibble abstraction (isActiveX, freeX) we create a variable δX whose
domain depends on the Step 1 solution:

δX ∈

[0, 16[if freeX = true
{0} else if isActiveX = false
[1; 16[else

In the same way, δSB variables are created depending on the value of the pair (isActiveX,
freeSB). As the free variables can take any value from the nibble domain and are not
constrained by the model we ignore them in Step 2.

The exact probability of each round is computed by using table constraints, which are
tables containing all the possible (or impossible) transitions. For instance, describing that
x⊕ y = z for binary variables could be done with the table constraint:

(x, y, z) ∈ Tab⊕ where Tab⊕ = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

One table constraint is created for each of the tables appearing in the probability
computation (DDT, DDT2, FBCT, FBDT and FBET), and we also make one to handle the
XOR over nibbles. In addition to indicating the valid transitions, it also contains a third
variable corresponding to the absolute value of the base 2 logarithm of its probability. The
truncated solutions outputted by Step 1 completely define which table is used. For example
if we have: (isActiveXup[r, 2×j]∧¬freeXup[r, 2×j]∧¬freeSBup[r, j]∧¬isActiveXlo[r, 2×
j]), which corresponds to a DDT transition in the upper trail, we add the constraint:
(δXup[r, 2× j], δSBup[r, j], p[r, j]) ∈ TabDDT. The objective function is then the following sum:

obj2 =
∑

r∈distinguisher
rounds

15∑
i=0

(
p[r, i]

)
(24)

Combining the two Steps. Step 1 is composed of two different strategies: Step1−Opt
that searches for the truncated boomerang with the best objective obj and Step1−Next
that enumerates one by one the solutions that reach this minimum obj. The best obj
value is an upper bound (UB) that can not always be reached as Step 1 is an abstraction
(some truncated solutions may not have concrete instances). The lower bound (LB) is
fixed to 0 since it is the lowest possible value. For a given number of rounds, we first run
Step1 − Opt to find UB, and we next interleave Step1 − Next with Step 2 to obtain a
concrete boomerang with the best probability. Once done, we update LB with this new

126 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

value and repeat the process for all the Step 1 optimal solutions. If a Step 2 is returned
it means that the solution has a better probability than the given LB, so we update LB
and we continue the search. If no Step 1 is found it means that we have already seen all
the Step 1 solutions that can match UB, so we degrade UB and we continue the search
with Step1−Opt. If LB = UB we have found the best solution available. Note that the
model generates many solutions in Step 1 and most of the time we stop the search when
LB = UB instead of enumerating all possible Step 1 solutions.

3.3.2 Clusters

Once the optimal solution has been found for Step 1 and Step 2 (this solution is hereafter
denoted < S1ref, S2ref >), the goal is to obtain a better approximation of the actual
probability of the boomerang distinguisher by considering clusters. Indeed, the solution
returned by Step 2 has most of its S-box transitions fixed, while the only differences that
matter when considering a boomerang distinguisher are the input and output differences
(α and δ in Figure 3).

To get closer to this actual probability, we start by generating multiple Step 1 solutions
that have their truncated differences in the first round and in the last round equal to the
ones of S1ref . The objective is to take into account many solutions that are all different
one from the others. We need to be carefull about what being different means in our
context as the situation is a bit more subtil than for a differential attack (for which the
only two possible S-box status are "active" and "inactive").

In our model, we have the special case of the free S-box inputs that can take any value
uniformly. If we focus on one particular S-box, the case of a fixed active input difference
can be seen as contained in this one, so we must not count these cases as two independent
ones. To be on the safe side, we choose to consider that two Step 1 solutions are different
if at least one of their S-boxes is not free and inactive in one while it is not free and active
in the other.

We thus search for the Step 2 solutions corresponding to these, with the additional
condition that the nibble differences in the first and last rounds are the one of S2ref .
We sum over the different values of obj2 in a variable called OBJ . To avoid counting
solutions with too low probabilities we leave out the solutions of probability lower than
2−10 × p(S1ref) for both Step 1 and Step 2. Still, the large number of solutions forces us
to set a limit on the number of solutions enumerated in Step 2 for a given Step 1 solution:
we set this limit to 220.

To check the validity of our approach, we wanted to compare the result of the simple
model and of the model with the clusters with what can be experimentally observed.
To do so, we decided to pick a Feistel cipher with a smaller block size than WARP with
the hope that the clustering effect would be easier and faster to observe. We selected
the 64-bit block cipher TWINE [SMMK13] reduced to 12 rounds. We first computed
its experimental probability by fixing the differences α and δ and we counted how many
times the boomerang comes back. For the considered example, we obtained a probability
close to 2−25.8 when testing 229 plaintexts with 24 keys with a Rust experiment. The
corresponding optimal Step 1 solution has a probability of 2−26 and is instantiated in Step
2 with a trail of probability 2−26. When aggregating solutions with the same input and
output differences we obtain an approximation of the distinguisher probability of 2−25.15

which is close to the experimental result, albeit slightly exceeding it.

3.4 23-round Distinguisher on WARP

Implementation details. The Step 1 is written in MiniZinc and runs on Picat [ZK16]
which uses the Lingeling solver [Bie11] under the hood, the Step 2 is written in Choco
[PFL16] version 4.10.6 which is a dedicated framework for Constraint Programming running

Virginie Lallemand, Marine Minier and Loïc Rouquette 127

Table 4: Best distinguishers found after 2 days when summing up boomerang characteristics
in the same cluster for the best Step 1 solutions.

Rounds Cluster objstep2 gain
18 2−54 2−58 24

19 2−66 2−70 24

20 2−76 2−84 28

21 2−96 2−104 28

22 2−108 2−120 212

23 2−124 2−140 216

on the Java Virtual Machine. We choose the Picat solver to solve the Step 1 as it is a
SAT solver, so is especially suited to problems on Boolean formulae. Previous works like
[LDLS21] have shown that Picat has good performances on multiple Step 1 models. Since
the Step 2 contains a lot of table constraints, it appears that CP solvers are more adapted.
The experiments are run on a virtual machine Ubuntu 18.04.5 LTS x86_64 with an Intel
Xeon Gold 5118 processor and 32 Gio of RAM. The requirements are : Java 10.0.12
OpenJDK, Gradle 6.8, MiniZinc 2.5.5, Picat 3.1.2 and Choco 4.10.6. Each instance
is run on a single thread.

We found 20 instances (from 3 rounds up to 22 rounds) with a probability better than
2−128. They all took less than 48 hours to solve.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

100

101

102

103

104

105

106

Number of rounds

Pr
oc
es
sin

g
tim

e
(s
)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0

20

40

60

80

100

120

140

O
bj

St
ep

1
O
pt

Figure 5: Execution time of Step 1 Opt enforcing the 1-1-0-1-1 pattern (in seconds)
(), execution time of Step 1 Enum + Step 2 Opt (), Total time (). Best
probability found with Step 1 Opt (). Time of Step 1 Opt without the 1-1-0-1-1 pattern
(). The black line corresponds to the probability 2−128.

Without taking into account the clusters, the longest distinguisher that can be obtained
is a 22-round boomerang of probability 2−120. By summing up several boomerang trails
inside one 23-round solution we are able to build a distinguisher of 23 rounds with
probability 2−124. By exploiting the position of the key addition, it can easily be extended
to a 25-round distinguisher, thanks to the easy trick that we now present1.

The distinguisher is depicted in Appendix A. Its 32 nibbles of input and output
1Note that a similar trick can be used to extend the 21-round impossible differential distinguisher

proposed by the designers of WARP to a 23-round distinguisher.

128 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

differences are given by:

α = 57 00 00 07 00 00 57 57 07 57 00 07 00 00 57 00

δ = 70 05 00 70 05 00 70 70 00 00 70 70 00 00 00 05

(note that for simplicity we kept the last round permutation in the figures and here). To
exploit this distinguisher, an attacker would ask for the encryption of a large number
of pairs M1,M2 verifying M1 ⊕M2 = α, and build two new ciphertexts by computing
C3 = E(M1)⊕δ and C4 = E(M2)⊕δ. She would then ask for the corresponding plaintexts
and check if E−1(C3)⊕ E−1(C4) = α.

Since the round keys are added after the application of the S-boxes, an attacker can
compute the difference entering the second round of the upper trail, and similarly the
difference at the input of the S-boxes of the penultimate round of the lower trail. This
easily leads to an extension of two rounds of any boomerang distinguisher. The attacker
starts by picking a random message M1 = M1[0],M1[1], · · · ,M1[31], and computes M2

according to the difference she wants to observe one round later. For instance, it would
give the begining of M2 to be

M2 = M1[0],M1[1],M1[2]⊕ 0x7,M1[3]⊕ 0x5⊕ S(M1[2])⊕ S(M1[2]⊕ 0x7), · · ·

A similar idea gives C3 in function of C1 and C4 in function of C2, and the boomerang
returns if M3 and M4 verify

M4 = M3[0],M3[1],M3[2]⊕ 0x7,M3[3]⊕ 0x5⊕ S(M3[2])⊕ S(M3[2]⊕ 0x7), · · · .

4 Automatic Search of Rectangle Attacks
As already discussed in [ZDJ19] in the case of Deoxys-BC, the best rectangle distinguishers
do not always lead to the best attacks, and choosing a sub-optimal (in terms of probability)
distinguisher might allow to cover more rounds in the key recovery phase, and then to
attack a bigger version of the cipher.

Following this idea, Lingyue Qin et al. proposed an automatic model that directly
searches for an attack [QDW+21] by taking into account the dominating factors of the
key-recovery step. The model simply minimizes the time complexity of the attack instead of
maximizing the probability of the distinguisher, while making sure that the data complexity
does not exceed the full codebook. The number of rounds on which is run the model is
gradually increased until the returned time complexity exceeds the cost of an exhaustive
search of the secret key. This technique turned effective as it leads to improved attacks on
the SPN ciphers Skinny and ForkSkinny [QDW+21].

In this section we study how to apply a similar idea to find good attack parameters
for WARP and show that when considering the attack technique introduced by Zhao et al.
in [ZDM+20] there are at least two possible improvements in comparison to a variant of
WARP with the key addition positioned before the S-box. The first one is the reduction of
the value of mb (the number of key bits that have to be guessed in the upper rounds), and
the second one is the potential growth of the number of filtering bits, that is of n− rf .

These two improvements are crucial since the two predominating factors of the
time complexity of the attack of [ZDM+20] are 2mb+n/2 ·

√
s · 1√

p2q2r
· Nb

Nb+Nd+Nf
and

2mb−n+2rf /(p2q2r).

Virginie Lallemand, Marine Minier and Loïc Rouquette 129

4.1 Taking Advantage of the Structure of WARP

Reduction of mb. To understand the first point, we look at a simple example that
considers Nb = 3 rounds of key recovery prepended to the distinguisher, where α, the top
difference of the boomerang distinguisher, has only two active nibbles, in position 1 and 4
(see the bottom of Figure 6).

To determine the value of rb (the number of active bits in the plaintext structures), an
attacker starts by propagating backwards the difference α to know which nibbles might be
active and which are inactive for sure. This process is rather straightforward, and in our
example it returns rb = 32 active nibbles (denoted in green in Figure 6).

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

K

F

K

F

K

F

K

F

Figure 6: Determining the required key bits to apply [ZDM+20] over 3 rounds.

The next step is the determination of the key bits that are required to compute M2

from M1. In the description given in [ZDM+20], the attacker starts from M1, computes
partially the state at the input of the boomerang distinguisher so that she can add α to it,
and decrypts the result to get M2. Put differently, it can be seen as guessing the necessary
key bits to uniquely determine the difference to add to M1 to get M2 knowing that after
Nb rounds the internal states differ of α, which can also be seen as being able to uniquely
propagate α backwards.

Consequently, the attacker starts from α, and takes note of the information needed:
in round 2, the exact difference at the output of the second S-box has to be uniquely
determined, so the input value of this S-box is needed. This is denoted by the dashed
lines in Figure 6. Knowing this value in round 2 implies that the two inputs of the xor
number 6 of round 1 are known, which in particular forces to make a guess on the key
nibble added after the S-box. The rest of the backward propagation is processed similarly,
and we obtain that 4 nibbles of key are required in total. In the case where round keys are
added before the S-boxes, this computation would have return a total of 10 nibbles of key
(we consider here that the round keys are independent).

Improved filtering process. For some specific shapes of output difference δ′, the attacker
is able to increase the number of bits on which she looks for collision in step number 2(c) of
the attack. An example of this is given in Figure 7 with Nf = 2: by counting the number
of active nibbles at the output, we obtain rf = 21× 4 = 84, which means that the hash
table is used to look for collisions over 2× (128− 84) = 88 bits.

In our example, the F functions number 4 to 9, 12 and 13 in the last round all have a
similar difference pattern where the input of the S-box (X[r, 2i]) is active while the right
part (X[r, 2i+ 1]) is not.

The inactivity of X[r, 2i+ 1] can be translated into the equality

F (C1[2i])⊕ C1[2i+ 1]⊕ F (C3[2i])⊕ C3[2i+ 1] = 0.

130 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

F F F F F

F F F F F F F F

Figure 7: Example of difference propagation over Nf = 2 rounds.

Given that F is the application of an S-box followed by a sub-key addition it can be
simplified into: S(C1[2i])⊕C1[2i+ 1] = S(C3[2i])⊕C3[2i+ 1] which does not depend on a
secret value. Thus, the idea is to simply add as index the value of S(C[2i])⊕C[2i+1] when
building the H table of step 2.(c), in addition to the value of the bits where the difference
is expected to be 0 in the ciphertexts. In our example, it means that we are colliding on
32 additional bits, and thus that the filter for quartets is of size 2× (128− 52) = 152 bits.

4.2 Model for Searching a Rectangle Attack
In this subsection, we briefly go over the main characteristics of the model searching for the
rectangle attack. The detailed model is given in Model 2 in Appendix C. It takes as input
the number of rounds covered by the distinguisher and by the prepended and appended
rounds of key recovery (respectively Nd, Nb and Nf) and returns the complexities of the
best attack that can be found.

The intermediate values that are needed to evaluate the time and data complexity of
the attack are mb, rf , and the probability of the distinguisher (previously denoted p2q2r).
This latter is determined with the same constraints as in the model searching for the best
distinguisher, and we simply add constraints to model the additional Nb and Nf rounds.

• rb and rf are computed by propagating with probability one the difference at the
input and at the output of the boomerang distinguisher, see constraints (30) and
(34). To take into account the above described trick on the filtering process, we
define rf as the number of active nibbles entering the last round.

• The data complexity is computed so that s right quartets are found, see constraint
(27). To make sure that it does not exceed was is available, one may add a constraint
stating that

√
s·2n/2√
p2q2r

< 2n.

• As it is impossible to compute the cluster at this stage, we introduce a variable
clustergain which is set by the attacker to represents the expected gain obtained with
clusters. Its value is precisely computed afterwards, once a solution to the model is
obtained.

• The time complexity is computed as the maximum between the two most expensive
stages detailed in Section 2.2, see constraint (27). Again, one may add a constraint
saying that the resulting time complexity has to be smaller than the cost of an
exhautive search of the key.

• Constraint (29) makes the link between the known variables and the guesskey vari-
ables.

• We take into account the simple key schedule of WARP to precisely compute the value
of mb. We start by determining the states that have to be known in value (denoted
known in the model, constraints (31), (32) and (33)) and then link them to the keys
and to mb, taking into account the key schedule (constraints (28) and (29)).

Virginie Lallemand, Marine Minier and Loïc Rouquette 131

All the values (except t which is related to the distinguisher probability and clustergain

which is first only approximated) can be computed during Step 1. As a result all the
constraints are computed in Step 1 and only the constraints that imply 2t or t are modeled
in Step 2.

4.3 Results: A 26-round Attack on WARP

We apply the previous model to search for rectangle attacks on WARP with various values for
the parameters Nb, Nd and Nf . As the execution time rapidly increases with the number
of rounds, we added another constraint (proposed in [DDV20]) which consists in using
the bounds obtained for differential distinguishers. The idea is that the upper trail (resp.
lower trail) cannot be better than a differential trail, i.e. the number of active S-boxes
in the upper trail (resp. lower trail) cannot be lower than the minimal number of active
S-boxes of a differential trail (optimaldiff). To implement this idea for WARP we use the
lower bound of the number of active S-boxes computed in [BBI+20].

The best attack we found covers 26 rounds of WARP based on a Nd = 22 rounds
distinguisher, Nb = 1 round added before and Nf = 3 rounds added after. The model
took 6 days to solve this instance, and returned the following values: mb = 0 , rb = 72,
rf = 60 and a distinguisher probability of 2−128. This search was made by assuming that
s is equal to 4 and that the value of the cluster gains would be the ones given in Table 4,
so in the case of a 22-round distinguisher equal to a factor of 212.

We next run the cluster search on the 22-round distinguisher. We obtained a probability
approximation of 2−111.2 (so with a cluster gain a bit larger than what was expected),
resulting in the associated attack having a data complexity of 2120.6 messages, and a time
complexity of little less than 2116 encryptions when following the key recovery method
introduced by Zhao et al. [ZDM+20].

The success probability of the attack is equal to 97,67 % (using the formula given in
[Sel08]) and this is the best attack reported so far on WARP.

4.4 On the Impact of the Key Addition Position
We now briefly discuss a variant of WARP with a round key addition made before the S-box
application, and consider an attack using the same 22-round distinguisher, and the same
number of rounds Nb and Nf added before and after the distinguisher. The different round
structure changes the value of mb and rf , as the improvements discussed in Section 4.1
cannot be applied anymore. mb increases (from 0) to 32, while rf is now equal to 88
instead of 60. The data complexity of an attack with such parameters would still be 2120.6,
but the dominating factor of the time complexity becomes 2191.2.

This example shows the importance of the key addition position and of the techniques
discussed in Section 4.1 that save a factor of 275.3 in the time complexity.

5 Conclusion
In this article, we propose the adaptation of two recent techniques to the case of Feistel
ciphers to find boomerang distinguishers and rectangle attacks. Our analysis reveals a
23-round distinguisher and a 26-round attack of WARP, beating by 2 rounds the recent
results of [TB21]. Our code is public and can be used as a basis to attack other Feistel
ciphers, and we actually demonstrate its versatility by providing results for TWINE and
LBlock-s (see Appendix D).

Secondarily, while studying WARP we show how to take advantage of the key addition
position to reduce the complexity of the attack. In our specific case, this design decision
allows to reduce by a factor of 275 the time complexity of the attack in comparison to a

132 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

variant of WARP that would have the key addition positioned before the S-box (and thus
would have the complementation property).

Acknowledgments
This work has been partly funded by the French Agence Nationale de la Recherche
through the Decrypt project under Contract ANR-18-CE39-0007. Some of the experiments
presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.grid5000.fr). We also used
LIMOS’ servers.

References
[BBI+20] Subhadeep Banik, Zhenzhen Bao, Takanori Isobe, Hiroyasu Kubo, Fukang

Liu, Kazuhiko Minematsu, Kosei Sakamoto, Nao Shibata, and Maki Shigeri.
WARP : Revisiting GFN for lightweight 128-bit block cipher. In Orr Dunkel-
man, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Selected Areas
in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers, volume
12804 of Lecture Notes in Computer Science, pages 535–564. Springer, 2020.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack -
rectangling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 340–357. Springer, Heidelberg, May 2001.

[BHL+20] Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and
Marine Minier. On the Feistel counterpart of the boomerang connectivity
table (long paper). IACR Trans. Symm. Cryptol., 2020(1):331–362, 2020.

[Bie11] Armin Biere. Lingeling and Friends at the SAT Competition 2011. 2011.
Publisher: Institut for Formal Models and Verification, Johannes Kepler
University.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 1–18. Springer, Heidelberg, December 2009.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90,
volume 537 of LNCS, pages 2–21. Springer, Heidelberg, August 1991.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 683–714. Springer, Heidelberg, April / May 2018.

[DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the
fastest boomerangs application to SKINNY. IACR Trans. Symm. Cryptol.,
2020(4):104–129, 2020.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key
attack on the KASUMI cryptosystem used in GSM and 3G telephony. In Tal
Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 393–410. Springer,
Heidelberg, August 2010.

https://www.grid5000.fr

Virginie Lallemand, Marine Minier and Loïc Rouquette 133

[DQSW21] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing
strategies for linear key-schedule algorithms in rectangle attacks. Cryptology
ePrint Archive, Report 2021/856, 2021. https://eprint.iacr.org/2021/
856.

[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks
on SKINNY and CRAFT. IACR Trans. Symm. Cryptol., 2021(2):140–198,
2021.

[KKS01] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang
attacks against reduced-round MARS and Serpent. In Bruce Schneier, editor,
FSE 2000, volume 1978 of LNCS, pages 75–93. Springer, Heidelberg, April
2001.

[KY20] Manoj Kumar and Tarun Yadav. MILP based differential attack on round
reduced WARP. Cryptology ePrint Archive, Report 2020/1598, 2020. https:
//eprint.iacr.org/2020/1598.

[LDLS21] Luc Libralesso, François Delobel, Pascal Lafourcade, and Christine Solnon.
Automatic generation of declarative models for differential cryptanalysis. In
Laurent D. Michel, editor, 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual
Conference), October 25-29, 2021, volume 210 of LIPIcs, pages 40:1–40:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Trans. Inf.
Theory, 57(4):2517–2521, 2011.

[PFL16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Docu-
mentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,
2016.

[QDW+21] Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yunwen Liu.
Automated search oriented to key recovery on ciphers with linear key schedule.
IACR Trans. Symm. Cryptol., 2021(2):249–291, 2021.

[Sel08] Ali Aydin Selçuk. On probability of success in linear and differential crypt-
analysis. Journal of Cryptology, 21(1):131–147, January 2008.

[SMMK13] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A lightweight block cipher for multiple platforms. In Lars R.
Knudsen and Huapeng Wu, editors, SAC 2012, volume 7707 of LNCS, pages
339–354. Springer, Heidelberg, August 2013.

[SN14] Hadi Soleimany and Kaisa Nyberg. Zero-correlation linear cryptanalysis of
reduced-round lblock. Des. Codes Cryptogr., 73(2):683–698, 2014.

[TB21] Je Sen Teh and Alex Biryukov. Differential cryptanalysis of WARP. Cryptology
ePrint Archive, Report 2021/1641, 2021. https://eprint.iacr.org/2021/
1641.

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE’99,
volume 1636 of LNCS, pages 156–170. Springer, Heidelberg, March 1999.

[WZ11] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher. In Javier
Lopez and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages
327–344. Springer, Heidelberg, June 2011.

https://eprint.iacr.org/2021/856
https://eprint.iacr.org/2021/856
https://eprint.iacr.org/2020/1598
https://eprint.iacr.org/2020/1598
https://eprint.iacr.org/2021/1641
https://eprint.iacr.org/2021/1641

134 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang
and rectangle attacks on deoxys-bc including BDT effect. IACR Trans. Symm.
Cryptol., 2019(3):121–151, 2019.

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Gener-
alized related-key rectangle attacks on block ciphers with linear key schedule:
applications to SKINNY and GIFT. Des. Codes Cryptogr., 88(6):1103–1126,
2020.

[ZK16] Neng-Fa Zhou and Håkan Kjellerstrand. The picat-sat compiler. In Practical
Aspects of Declarative Languages - PADL 2016, volume 9585 of LNCS, pages
48–62. Springer, 2016.

[ZWW+14] Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, and Jian Zhang. Lac:
A lightweight authenticated encryption cipher. Submitted to the CAESAR
competition, 2014.

Virginie Lallemand, Marine Minier and Loïc Rouquette 135

A 23-round Boomerang Distinguisher on WARP

A.1 Upper Trail

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

5 7

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

5 7

S

5 7

S

0 7

S

5 7

S

0 0

S

0 7

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 5

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

7 5

S

7 5

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

7 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 0

S

0 0

S

0 5

S

0 0

S

0 0

S

10 0

S

7 5

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 7

S

0 7

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

10 0

S

0 0

S

F 0

S

0 5

S

0 0

S

F 0

S

0 10

S

0 0

S

7 0

S

7 0

S

0 0

S

0 0

S

13 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

10 0

S

F 10

S

F 0

S

F 0

S

F 0

S

0 0

S

5 0

S

0 13

S

0 0

S

0 F

S

0 7

S

F 7

S

5 0

S

7 0

S

0 F

S

F F

S

F F

S

0 0

S

0 0

S

F 7

S

F F

S

F 0

S

F 0

S

F 0

S

F 5

S

F F

S

13 5

S

7 0

S

F F

S

F 10

S

0 0

S

F 0

S

F F

S

F 13

S

F 0

S

0 F

S

F 7

S

0 F

S

F F

S

F F

S

F F

S

F 0

S

F F

S

15 F

S

0 F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F 15

S

F F

S

F F

S

F F

S

F 0

S

F F

S

F F

S

F 0

S

F 0

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

136 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

A.2 Lower Trail

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

0 F

S

5 F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

7 F

S

F F

S

F F

S

F F

S

7 F

S

F F

S

F F

S

0 F

S

F F

S

F F

S

0 5

S

0 0

S

7 F

S

F F

S

F F

S

5 F

S

0 7

S

0 0

S

F F

S

F F

S

0 0

S

5 F

S

0 0

S

F F

S

0 7

S

F F

S

F F

S

5 F

S

F F

S

0 7

S

0 F

S

0 0

S

7 0

S

F F

S

0 0

S

0 0

S

0 5

S

0 0

S

7 F

S

F F

S

F F

S

7 F

S

0 0

S

0 5

S

F F

S

0 0

S

7 5

S

5 F

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

F F

S

5 F

S

0 7

S

5 F

S

0 0

S

0 7

S

0 0

S

0 0

S

13 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 13

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

7 5

S

7 F

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

7 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 0

S

0 0

S

0 5

S

0 0

S

0 0

S

7 0

S

7 5

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 7

S

0 7

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

7 0 0 5 0 0 7 0 0 5 0 0 7 0 7 0 0 0 0 0 7 0 7 0 0 0 0 0 0 0 0 5

Virginie Lallemand, Marine Minier and Loïc Rouquette 137

B 26-round Boomerang Attack on WARP

B.1 Upper Part

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

5 1

S

5 1

S

5 6

S

0 0

S

0 7

S

5 1

S

0 0

S

5 1

S

0 0

S

5 6

S

5 6

S

0 0

S

0 0

S

0 10

S

0 0

S

5 1

S

0 5

S

7 5

S

0 0

S

0 5

S

0 0

S

0 0

S

7 5

S

0 0

S

10 5

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

7 5

S

7 5

S

0 0

S

0 0

S

0 0

S

5 7

S

5 7

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

10 5

S

0 0

S

0 0

S

0 0

S

0 0

S

7 5

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

10 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

10 0

S

10 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 0

S

0 0

S

0 10

S

0 10

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

5 0

S

0 7

S

0 10

S

0 0

S

0 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 0

S

10 0

S

0 0

S

0 0

S

0 0

S

0 5

S

5 0

S

0 10

S

0 0

S

F 0

S

0 5

S

0 0

S

10 0

S

7 0

S

0 7

S

0 0

S

0 F

S

0 7

S

F 10

S

5 0

S

5 0

S

0 5

S

0 0

S

5 0

S

F 10

S

F 0

S

F 0

S

F 0

S

0 0

S

10 0

S

F 0

S

F 5

S

F F

S

7 10

S

7 0

S

5 F

S

F 5

S

0 0

S

F F

S

F F

S

0 0

S

0 0

S

F 5

S

F F

S

F 0

S

F 0

S

F F

S

F 5

S

F 0

S

F F

S

F F

S

0 F

S

F F

S

F F

S

F 0

S

F F

S

F 7

S

F 0

S

0 F

S

F 7

S

0 F

S

F F

S

F F

S

F 0

S

F F

S

F F

S

F 0

S

F 0

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

138 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

B.2 Lower Part

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

F F

S

5 F

S

0 F

S

F F

S

F F

S

0 5

S

F F

S

7 F

S

F F

S

F F

S

F F

S

10 F

S

F F

S

F F

S

F F

S

7 F

S

F F

S

F F

S

F F

S

0 7

S

F F

S

F F

S

5 F

S

F F

S

0 10

S

0 F

S

5 F

S

0 7

S

0 0

S

10 F

S

F F

S

F F

S

5 F

S

0 0

S

F F

S

F F

S

10 10

S

0 0

S

0 5

S

F F

S

0 0

S

7 5

S

0 0

S

F F

S

F F

S

0 0

S

0 0

S

0 5

S

0 0

S

7 F

S

0 10

S

5 F

S

0 0

S

0 7

S

0 0

S

0 0

S

5 F

S

0 0

S

5 F

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

F F

S

10 F

S

0 0

S

0 0

S

0 0

S

10 10

S

7 F

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

7 5

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 0

S

0 0

S

5 10

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 5

S

0 0

S

0 0

S

0 0

S

7 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

7 0

S

7 5

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

7 0

S

0 0

S

0 5

S

0 7

S

0 0

S

0 0

S

0 0

S

0 0

S

0 0

S

5 0

S

0 0

S

5 0

S

0 7

S

0 7

S

0 0

S

0 0

S

5 0

S

0 0

S

0 0

S

0 0

S

0 0

S

1 0

S

7 0

S

0 0

S

0 0

S

0 0

S

0 5

S

1 0

S

0 5

S

0 0

S

1 0

S

0 5

S

0 0

S

7 0

S

7 0

S

0 1

S

0 0

S

0 1

S

0 7

S

1 7

S

5 0

S

1 0

S

0 1

S

0 0

S

5 0

S

1 7

S

1 0

S

1 0

S

1 0

S

0 0

S

5 0

S

1 0 6 5 1 1 1 5 7 0 1 1 1 5 0 0 1 1 1 1 0 0 0 0 1 1 1 1 6 0 1 0

Virginie Lallemand, Marine Minier and Loïc Rouquette 139

C Model Searching for Rectangle Attacks with the Tech-
nique of [ZDM+20]

New variables

2t = obj−clustergain . we pose that: p2q2r = 2−2t

t = d2t/2e

rb =
31∑
i=0

isActiveXup[0, i]× 4

rf =
32∑
i=0

isActiveXlo[Nr − 1, i]× 4

(25)

data = σ + 64 + t (26)

t1 = σ + 64 + t+mb− 4 . we pose that: s = 22σ

t2 = 2σ +mb− 128 + 2rf + 2t
time = max(t1, t2)

(27)

mb =
∑

alt∈{0,1}

15∑
i=0

guesskey[alt, i]× 4 (28)

New constraints

∀i ∈ [0, BR/2[,

guesskey[0, i] = # {known[r, 2× i+ 1] | r ∈ [0, Nb[∧ r mod 2 = 0} ≥ 1∧
guesskey[1, i] = # {known[r, 2× i+ 1] | r ∈ [0, Nb[∧ r mod 2 = 1} ≥ 1 (29)

∀r ∈ [0, Nb[, ∀i ∈ [0, BR/2[,

(isActiveXup[r + 1, πodd[i]] ∨ isActiveXup[r, 2× i]) =⇒ isActiveXup[r, 2× i+ 1] (30)

∀r ∈ [0, Nb − 1[, ∀i ∈ [0, BR/2[,

known[r + 1, πodd[i]] =⇒ (known[r, 2× i] ∧ known[r, 2× i+ 1]) (31)

∀r ∈ [0, Nb[, ∀i ∈ [0, BR/2[,

isActiveXup[r + 1, πeven[i]] =⇒ known[r, 2× i] (32)

∀i ∈ [0, BR/2[

known[Nb − 1, 2× i+ 1] = false (33)

∀r ∈ [Nb +Nd, Nr[, ∀i ∈ [0, BR/2[,

isActiveXlo[r, 2× i+ 1] ∨ isActiveXlo[r, 2× i] =⇒ isActiveXlo[r + 1, πodd[i]] (34)

Model 2: Attack extension for the attack technique of Zhao et al. [ZDM+20].

140 Automatic Search of Rectangle Attacks on Feistel Ciphers: Application to WARP

D Application of our Technique to TWINE and LBlock-s
To illustrate the flexibility of our tool, this section reports the results obtained when
applying it to two well-known Feistel ciphers, TWINE and LBlock-s. TWINE [SMMK13]
is a 64-bit block cipher with a Type-II GFN structure and LBlock-s is used in the
authenticated encryption LAC [ZWW+14] submitted to the CAESAR competition. LBlock-
s is a simplified version of the original cipher LBlock [WZ11] which uses only one S-box
instead of the 8 original ones and admits 16 rounds or 32 rounds according to where it is
used in LAC. It is also a 64-bit cipher and it could also be represented as a Type-II GFN
as shown in [SN14]. This is that representation that we used for our models. Then, for
those two ciphers, we apply our method for computing the boomerang clusters and the
results are summed up in Table 5.

Table 5: Summary of the results for computing the best boomerang clusters for TWINE
and LBlock-s.
Cipher Distinguishers Rounds Probability Ref.
TWINE Boomerang distinguisher 15 2−58.92 [TB21]
TWINE Boomerang distinguisher 16 2−61.62 [TB21]
TWINE Boomerang Distinguisher + Clustering 15 2−47.7 This paper
TWINE Boomerang Distinguisher + Clustering 16 2−59.8 This paper
LBlock-s Boomerang distinguisher 15 2−58.64 [TB21]
LBlock-s Boomerang Distinguisher + Clustering 16 2−56.14 [BHL+20]
LBlock-s Boomerang Distinguisher + Clustering 16 2−54.8 This paper

In [BHL+20], the authors used a C code to experimentally compute the probability of
the 8 middle rounds of the boomerang distinguisher, while a single trail was used for the
top and the bottom parts of the sandwich. The slightly improved value obtained with our
new method shows that the 8-round boomerang switch does not capture everything, and
that other trails contribute to the boomerang.

	Introduction
	Preliminaries
	Specification of WARP
	Boomerang Attacks
	Delaune et al.'s Model

	Automatic Search of Boomerang Distinguishers
	Automatic Search of Truncated Boomerang Distinguishers for Feistel Ciphers
	Improvements
	Instantiating the Truncated Boomerang Distinguishers
	23-round Distinguisher on WARP

	Automatic Search of Rectangle Attacks
	Taking Advantage of the Structure of WARP
	Model for Searching a Rectangle Attack
	Results: A 26-round Attack on WARP
	On the Impact of the Key Addition Position

	Conclusion
	23-round Boomerang Distinguisher on WARP
	Upper Trail
	Lower Trail

	26-round Boomerang Attack on WARP
	Upper Part
	Lower Part

	Model Searching for Rectangle Attacks with the Technique of DBLP:journals/dcc/ZhaoDMJW20
	Application of our Technique to TWINE and LBlock-s

