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Abstract

When faced with a multiobjective optimization problem, it is necessary to
consider the decision-maker preferences in order to propose the best com-
promise solution. We consider the multiobjective flexible job shop schedul-
ing problem and a decision-maker that is best represented using a non-
compensatory reference level-based preference model. We show how inte-
grating this model into a multiobjective genetic algorithm allows to obtain
solutions that surpass more aspiration levels when compared to classical mul-
tiobjective optimization approaches. Furthermore, these solutions are found
faster and in greater numbers which facilitates their integration within the
workshop.

Keywords: Multiobjective Optimization, Multi-criteria Decision Aiding,
Flexible Job Shop Scheduling, Genetic Algorithm, Preference Models

1. Introduction

Taking into account multiple objectives in an optimization problem may
prove difficult from the perspective of a decision-maker (DM), and often a
compromise solution needs to be found. Classically, researchers have focused
on constructing a set of efficient, i.e. non-dominated, solutions which are
then submitted to the DM [30]. This approach, however, may spend a lot
of computational resources on constructing solutions that would be deemed
unsatisfactory by the DM. Integrating the preferences of the DM during the
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optimization process may help in focusing only on relevant solutions and thus
provide desirable solutions in a more timely manner.

In this work, we focus on integrating the preferences of DMs within the
optimization process and illustrate this using the multiobjective flexible job
shop problem (MOFJSP). Multi-criteria decision aiding (MCDA) methods
are generally classified into: methods based on multi-attribute value theory
(MAVT) [26] and outranking methods [28]. We consider that providing one
or multiple aspiration levels on the considered criteria may be a preferential
information more easily provided by a DM, hence we focus on a preference
model that is able to exploit this information in a meaningful way within
an optimization process. Furthermore, we assume the criteria scales to be
heterogeneous, therefore making it difficult to define tradeoffs between the
evaluations of a given solution.

It is known that methods relying on pairwise comparisons to derive a
ranking need to deal with Condorcet cycles in the outranking relation since
a preference relation over alternatives resulting from a weighted majority
of criteria are not necessarily transitive [20]. Most ranking methods based
on outranking relations transform this relation into a transitive ranking by
exploiting it [11], however, the Ranking with Multiple Points (RMP) method
[27] does not compare alternatives one to each other, but to external profiles
(as with Electre Tri [11]). As RMP imposes a dominance structure on the
profiles, the outranking relation is guaranteed cycle-free, therefore providing
a preorder on the set of alternatives. Hence, we propose to integrate the
RMP model within multiobjective optimization, in particular for MOFJSP,
in the form of an evolutionary population-based optimization approach using
both the a priori and a posteriori strategies [33].

The paper is structured as follows. Section 2 presents the state of the art
on the MOFJSP and on preference integration in multiobjective optimiza-
tion in general. It is followed by Section 3 where the considered scheduling
problem as well as the approach that will be used to solve it are presented.
Section 4 then introduces the RMP model as well as the proposed approach of
integrating it into the resolution method. Finally, we present the experimen-
tal protocol and several results in Section 5 before finishing with conclusions
and perspectives for future work in Section 6.
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2. State of the art

2.1. Multiobjective flexible job shop scheduling

The job shop scheduling problem (JSP) consists of assigning a number of
jobs involving operations on a set of machines that are required to process
them such that the operations of each job are sequenced in a given order and
often trying to optimize a given objective such as, for instance, the makespan,
i.e., the completion of all operations.

The flexible job shop scheduling problem (FJSP) extends the JSP by
potentially allowing for multiple machines to handle a given operation of a
job. The FJSP has a wide range of applications in several fields, such as
environment, health, industry, etc. These multiple fields of application have
attracted the interest of researchers to propose different approaches for its
resolution. The FJSP is a strongly NP-Hard problem even when reduced
to two machines and a maximum of three operations per job [9]. The multi-
objective FJSP (MOFJSP) has interested many researchers such as Kacem
et al. [17] who combined evolutionary algorithms with fuzzy logic to solve
the MOFJSP with the makespan, the total machine time, and the maximum
machine workload as objectives to be minimized. Several other methods can
also be found in [32]. Zhou et al. [38] introduce a multi-agent hyperheuristic
based on several algorithms. This hyperheuristic integrates the prior knowl-
edge of the workshop to evolve scheduling policies and aims to include domain
knowledge in the algorithm to speed up the search process and improve the
discovery of a solution. Their work is tested on real data from an aircraft
engine blade manufacturing plant. Wu et al. [37] considered the problem of
MOJSP and proposed a hybrid evolutionary algorithm, where the weighted
sum of the following objective functions is taken into account: makespan, ad-
justment processing time, and total deviation. In [14], a general local search
approach is suggested by Garćıa-León et al. for the multiobjective flexible
scheduling problem (MOFJSP) to identify a Pareto front over any pattern
of regular criteria.

2.2. Integrating DM preferences into multiobjective optimization

Multiple studies have focused on preference-based multiobjective evolu-
tionary algorithms (MOEAs) [5, 24, 29, 34]. Based on these studies, the
preference models may be classified into: goal specification, weights, utility
functions, outranking methods, and fuzzy logic.
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Goal specification consists of expressing the desired levels of the objec-
tives, or aspiration levels, of a DM. [13] is among the earliest to incorporate
DMs preferences into the search process of a MOEA by using a modified
ranking scheme of the objectives in order to include goal information. This
involved accommodating goal information as an additional criterion to the
non-dominance principle used to rank the population. The main advantage
of this method is its relative ease of use, as it does not require significant ef-
fort from the DM [12]. An interactive algorithm that incorporates the DMs
preferences into an evolutionary approach based on achievement scalarization
functions was introduced in [31].

Assigning weights to objectives can be used to reflect the relative impor-
tance of the objectives of a DM. A lexicographic order can be considered an
extreme case of using weights, i.e., a more important objective is infinitely
more important than a less important objective [35]. The best alternative is
obtained by minimizing the objective functions in the given order. Further-
more, weights can also be viewed as a guidance direction, which is applied
to find solutions along a particular search direction. For example, [7] linked
this with the NSGA-II approach [8]. Weights can also be viewed as trade-
offs, representing the extent to which the improvement on one (or several)
objective can be compensated by a degradation on another (or several) ob-
jective. Inferring these weights when few objectives are considered may be
easy and effective. However, this approach becomes more difficult to imple-
ment when the number of objectives increases. In [2] we find the G-MOEA
method, where user preferences are taken into account by using the version
of dominance proposed by Branke et al. [3]. A second version, called bi-
ased Crowding Distance, used a biased fitness sharing approach by adapting
this distance to a weighted sum of lengths in the different dimensions of the
objective space.

Utility functions are often difficult to provide due to the lack of knowledge
of the problem. Wierzbicki presented in [36] a conceptual and mathematical
model of the satisfaction of the decision-making process under multiple goals,
in which information about the DMs preferences is expressed in the form of
aspiration levels. The mathematical concept of a value (utility) function is
modified to describe satisfaction behavior. In [25], Rădulescu et al. devel-
oped a taxonomy that classifies multi-agent multiobjective decision making
contexts based on reward structures and on the way utility functions are ap-
plied. This mechanism is realized to provide a structured view of the field,
clearly delineating the current state of the art of multi-agent multiobjec-
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tive decision-making approaches, and identify promising directions for future
research.

Outranking models have been integrated in a a posteriori way in [21].
The Pareto front is obtained in a first step, without external influences using
a genetic algorithm, then the DMs preferences are taken into account to rank
the solutions obtained using the PROMETHEE II method [6]. The same ap-
proach was applied in [23], but using a Gaussian preference and a global ag-
gregation function in an NSGA-II algorithm, followed by the PROMETHEE
II method, which is applied on the set of efficient solutions. Nevertheless,
significant computational resources may be used in order to construct the set
of efficient solutions, only to select one or a few using the PROMETHEE II
method.

Fuzzy logic allows to integrate uncertainty in the parameter specification
of a preference model. In [16], Jamwal et al. proposed an approach called
‘Equitable Fuzzy Sorting Genetic Algorithm’. All criteria are defined as fuzzy
objectives and the population is given a global activation score based on their
respective fuzzy objective values. These scores are used to assign an explicit
fuzzy dominance ranking to the population to enhance the sorting process.

3. Solving the multiobjective flexible job shop problem

This section presents the problem that we aim to solve, using a small
example to illustrate it, along with the general framework of the resolution
method.

3.1. Problem description

The FJSP consists of assigning a number of jobs involving operations on
a set of machines that are required to process them, where multiple machines
are available to handle each operation, however, with different performance
levels. We illustrate this problem using the small example shown in Figure 1.

Here we have two jobs consisting of three and respectively two operations
to be performed on different subsets of three available machines (Figures 1a
and 1b). Furthermore, the processing times for performing the same opera-
tion may differ based on the selected machine, as seen in Figure 1c. A possible
schedule is provided in Figure 1d, where a single machine was selected for
each operation, among those that could process them, and sequencing was
performed on each machine. We observe that the duration of the project,
i.e., its makespan, is equal to 6.
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M1 M1

M2 M2
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(a) First job possible operations
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M2 M2 M2
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J2

(b) Second job possible operations se-
quences

Operation M1 M2 M3

O1,1 2 - 3
O1,2 4 3 -
O2,1 - 1 -
O2,2 3 2 -
O2,3 - 3 2

(c) Processing times

M1

M2

M3

0 2 4 6

O1,1

O1,2O2,1

O2,2

O2,3

(d) Feasible schedule

Figure 1: Illustration of a FJSP

In this work, we consider the MOFJSP with the following three objectives:

• f1 : the makespan, or project duration;

• f2 : the total machine processing time;

• f3 : the balanced machine utilization.

The first objective is ensured by minimizing the finishing time of the last
job and is mainly used in shipment planning. The second objective is given
by the sum of the processing times of each operation on the machines that
execute them, while the third objective is ensured by the minimization of
the variance between the working time of each machine with respect to the
average processing time of all machines. They are introduced to improve
machine utilization and reduce the load on some machines at the expense of
others.

3.2. Resolution approach

We recall that the FJSP involves a set of N jobs involving operations
that need to be processed on a set of M machines. We denote with Oi,j the
jth operation of job i, with i = 1..N and j = 1..Ni. The operations of each
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job have to follow fixed precedence constraints while each operation may
potentially be processed on different machines. The processing time needed
for each operation is also dependant on the selected machine and is denoted
as pi,j,k, ∀i = 1..N, j = 1..Ni, k = 1..M . For simplicity, we consider O to be
the set of all operations of all jobs.

A complete solution s therefore consists of:

• A = {Ak,∀k = 1..M}: the set of k disjoint subsets of operations
(
⋃

k∈1..M
Ak = O and

⋂
k=1..M

Ak = ∅), where each subset Ak ⊆ O contains

the operations assigned to machine k;

• C = {ci,j,∀i ∈ 1..N, ∀j ∈ 1..Ni}: the list of completion dates of all
operations.

We propose to solve this problem using a Multiobjective Genetic Algo-
rithm (MOGA), whose main steps are presented in Algorithm 1. We consider
an encoding of the previously defined solution s, or its chromosome, as a vec-
tor of machine assignments for all operations O. Decoding a solution involves
solving an auxiliary problem, using mathematical programming in order to
obtain the completion dates of all operations.

Algorithm 1: Used MOGA algorithm scheme

1 S ← Initial Population(pop size)
2 F ← Evaluate(S)
3 while stop condition not met do
4 S ′ ← Reproduce(S)
5 F ′ ← Evaluate(S ′)
6 S ← Select(S ∪ S ′, F ∪ F ′)
7 return S

The MOGA algorithm begins by constructing a set of solutions as the ini-
tial population by randomly generating machine assignments (A) according
to the machine compatibility of each operation.

Once the initial population is constructed, the solutions are decoded and
evaluated on the three objectives. Objectives f2 and f3 are computed directly
from the machine assignments, while f1 is computed using the completion
dates.
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The main loop is repeated until a stopping condition is met. This condi-
tion may be a set number of iterations, a set amount of time or a convergence
criterion linked to non-improvement of the best-found solutions across several
iterations, to name a few.

Within the main loop of the algorithm, individuals are selected and used
to construct new solutions using crossover and mutation operators. In our
case, pairs of individuals are selected using a roulette mechanism based on
the NSGA-II criterion [8], where solutions are sorted based on the dominance
principle. From each pair of parents, two children are generated using the
uniform crossover operator. This involves generating a uniformly distributed
binary vector of size equal to the number of operations. The first (resp. sec-
ond) child receives the machine assignments of the first (resp. second) parent
for operations corresponding to a 1 in the binary vector and the machine as-
signments of the second (resp. first) parent for the remaining operations.
Both children then go through a non-uniform mutation operator, where each
machine assignment is changed based on a given probability parameter.

The new individuals are then evaluated on the three criteria, followed by
a selection mechanism where both the old and new individuals are selected
to form the new population. We use the same approach as the NSGA-
II method [8], using an elitist scheme based on the non-dominance sorting
criterion and the crowding distance, which is used in order to distance the
solutions from each front apart.

In the end, the entire set of solutions is given, which may then be filtered
further, using, for instance, a model of the DMs preferences. We will cover
this part, as well as how to integrate this model within the MOGA approach
in the following sub-section.

We can notice that the last two criteria (f2 and f3) depend only on the
assignments Ak. To compute the value of the first criterion, we solve the
following auxiliary problem:

min Cmax (1)

s.t. Cij − Pijk ≥ Ci′j′ −XghkL ∀k = 1..M,∀g > h ∈ 1..|Ak|
Akg = Oij, Akh = Oi′j′ , i 6= i′ (2)

Ci′j′ − Pi′j′k ≥ Cij − (1−Xghk)L ∀k = 1..M,∀g > h ∈ 1..|Ak|
Akg = Oij, Akh = Oi′j′ , i 6= i′ (3)

Ci1 − Pi1k ≥ 0 ∀i = 1..N
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with k ∈ 1..M s.t. Oi1 ∈ Ak (4)

Cij − Pijk ≥ Ci(j−1) ∀i = 1..N, ∀j = 2..Ni

with k ∈ 1..M s.t. Oij ∈ Ak (5)

Cmax ≥ CiNi ∀i = 1..N (6)

The parameters of this model are:

• Pijk, the processing time of the jth operation of job i on machine k,
∀i = 1..N, j = 1..Ni, k = 1..M ;

• Ak, the sets of subsets of operations assigned to each machine k, ∀k =
1..M ; We use an additional index in order to denote a particular ele-
ment from this set (e.g. the gth element from Ak will be denoted as
Akg);

• L, a large constant.

The variables of the model are:

• Cij ≥ 0, the complete time of the jth operation of job i, ∀i = 1..N, j =
1..Ni;

• Cmax ≥ 0, the makespan, i.e. the complete time of the last operation
of any job;

• Xghk = 1 if the gth operation from Ak is executed after the hth opera-
tion, and 0 otherwise, ∀g = 1..|Ak| − 1, h = g + 1..|Ak|, k = 1..M .

The objective function in (1) seeks to minimize the makespan (the com-
pletion time of the last operation). Constraints (2) and (3) avoid overlapping
of operations assigned to the same machine. Constraint (2) imposes that the
the jth operation of task i starts after the j′th operation of task i′ finishes
when Xghk = 0 while constraint (3) imposes the reverse when Xghk = 1.
Since the machine assignments are known, these constraints are expressed
only when the two previously mentioned operations are assigned to the same
machine k, i.e. they are both in Ak. Note that the indexes g and h are not
indicative of the order in which the operations from Ak are executed on the
kth machine and are used only to define the pair of constraints once for each
pair of operations within this set. Furthermore, these constraints are not
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considered when operations of the same task are assigned to the same ma-
chine, since their execution order is dictated by constraints (5). Constraints
(4) ensure that the first operation of each job finishes after its execution time
while constraints (5) impose the precedence constraints linked to the opera-
tions of each task. Finally, constraint (6) is used to compute the makespan
which corresponds to the largest completion time of the last operations of
any task.

4. Integrating preferences within the optimization process

We consider here that a DM may be involved in the optimization process
and that a model of his/her preferences may be constructed. We assume that
this DM may be able to express multiple aspiration levels for the expected
scheduling solution and that a non-compensatory preference model would
be best suited. We propose to use the relatively recent RMP method [27],
which is described below, and integrate it within the resolution algorithm
using both an a priori and an a posteriori approach.

4.1. Ranking using reference profiles

We consider a finite set of alternatives A evaluated on a set of criteria,
where we denote with J = {1, 2, . . . , j, . . . } the set of criteria indices, and
with fj(a) the performance of alternative a ∈ A on criterion j. We consider,
without loss of generality, that preferences decrease with the evaluation on
each criterion, i.e. the lower the better, so that an alternative may correspond
to a solution to an optimization problem where the objectives, or criteria, are
to be minimized. The RMP method uses three different types of parameters:

• P = {ph, h = 1, . . . , k} a set of k reference profiles, with ph = {phj ,∀j ∈
J}, where phj denotes the evaluation of profile ph on criterion j; fur-
thermore, each subsequent profile dominates the previous ones on all
criteria, i.e, ph+1

j 6 phj , ∀h = 1..k − 1, ∀j ∈ J ;

• σ, a lexicographic order on the reference profiles, i.e., a permutation on
{1, . . . , k};

• criteria weights wj,∀j ∈ J , where wj ≥ 0 and
∑

j∈J wj = 1

Each reference profile ph ∈ P corresponds to a set of aspiration levels
of the DM on all considered criteria. The entire set of reference profiles P

10



furthermore corresponds to multiple sets of such aspiration levels, ordered
with respect to the preferences of the DM, i.e. the first profile corresponds
to the lowest aspiration levels on all criteria, the second profile corresponds
to the second lowest aspiration levels on all criteria, and so on, up to the last
profile which corresponds to the highest aspiration levels on all criteria.

RMP first identifies the criteria on which any alternative a ∈ A is at
least as good as a profile ph ∈ P as C(a, ph) = {j ∈ J : fj(a) 6 phj }. Any
two alternatives a, b ∈ A can then be compared according to each reference
profile through a preference relation %ph , such that a %ph b iff

∑
j∈C(a,ph)wj ≥∑

j∈C(b,ph)wj. This means that a is at least as good as b according to profile

ph if a compares to ph as well or better than b does. We will denote with �ph
the asymmetric part of this relation and with ∼ph , the symmetric part. The
two alternatives are then ranked by sequentially considering the relations
%pσ(1) ,%pσ(2) , . . . ,%pσ(k) . a is preferred to b if a �pσ(1) b, or if a ∼pσ(1) b
and a �pσ(2) b, or . . . Hence, a and b are indifferent iff a ∼pσ(h) b, for all
h = 1, . . . , k.

Let us consider a small illustrative example depicted in Figure 2.

f1 f2 f3

w 1
3

1
3

1
3

σ = {1, 2}

p2

p1

a

b

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 2: Illustration of an RMP model and two alternatives

Here we have a problem with three criteria to be minimized and an RMP
model containing two reference profiles, p1 and p2, equal criteria weights,
w1 = w2 = w3 = 1

3
, and a lexicographic order consisting of p1 followed by

p2. We also consider two alternatives, a and b, that we compare using the
RMP procedure. We start by comparing these alternatives to p1 and we
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observe that a ∼p1 b since they are both at least as good as p1 on two out
of the three criteria. We therefore pass to the second profile according to σ.
Here we observe that b �p2 a since b is at least as good as p2 on the second
criterion, while a is not at least as good as p2 on any criterion. Hence b � a.

Using this approach, an entire set of alternatives A may be compared
sequentially or through dichotomy in order to construct a preorder. In our
particular case, these alternatives correspond to solutions to the MOFJSP,
and their evaluations are the three considered criteria, although other criteria
and even other optimization problems may easily be considered.

4.2. Preference model integration

As previously mentioned, we focus on the a posteriori and a priori inte-
gration of an RMP preference model within the optimization of a MOFJSP.
Both of these approaches assume that one or multiple sessions are carried out
with a DM in order to construct, either directly or indirectly, an RMP model
that closely matches their perspective on the optimization problem. In the
a posteriori approach, this step occurs after the optimization approach has
constructed a set of efficient solutions, while in the a priori approach, this
process occurs before. We do not focus on the preference model construction
step in this work; the interested reader may refer to [22] for an exact approach
for inferring an RMP model indirectly, while the work in [18] illustrates an
incremental inference strategy.

The a posteriori approach is straightforward, as the NSGA-II algorithm
is first used to construct the set of efficient solutions, then, following the
inference of the RMP model, these solutions are ordered according to it, and
the top solutions are proposed to the DM.

The a priori approach adapts the MOGA algorithm by integrating the
RMP model in the evaluation of the solutions of each generation. We denote
this approach as MOGA-RMP.

The RMP model outputs an order, which is perfectly compatible with the
proposed approaches, however, one may also consider the RMP model as an
ordered classification approach, similar to the MR-Sort approach [19]. The
main difference consists in the fact that RMP constructs (k+ 1)|J | categories
instead of the k+ 1 categories of MR-Sort. We illustrate this using Figure 3.

We observe a two-criterion problem and illustrate multiple potential RMP
models with two profiles and the ordering of regions they induce. Considering
that the four models have the same two profiles, we show how the order in
which these profiles are used (σ) and how the order on the criteria weights (w)
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Figure 3: Several potential RMP ordered classification regions for 2 criteria and 2 profiles
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influence the order on the regions. We find a total of 9 categories, with the
best category denoted with 9 and the worst category denoted with 1. We have
also depicted the preference order on these categories with straight arrows.
Any solution that falls within a rectangular area defined by the two profiles
will be indifferent to other solutions from the same area. This is due to the
fact that all solutions from an area surpass the same aspiration levels, which
are represented by the profiles evaluations. The order of the categories can be
easily computed by generating an alternative for each area and then ranking
them using the RMP procedure. The ranks of the alternatives become the
ranks associated to their corresponding regions.

Let us take the second model as an example and detail in a more in-
tuitive way how the regions induced by the profiles are ordered. We will
denote a region by a tuple corresponding to the index of the interval of
values induced by the two profiles on each criterion, i.e. the white region
corresponds to (1, 1), the region to its right corresponds to (2, 1) and so on.
Since σ = {2, 1}, we first use profile p2 to partition the 9 regions leading to
the following ordered partition {(1, 1)} � {(2, 1), (3, 1)} � {(1, 2), (1, 3)} �
{(2, 2), (2, 3), (3, 2), (3, 3)}. The first partition contains regions that outrank
p2 on both criteria, followed by those outranking the profile on only the
first criterion, then those outranking the profile on only the second criterion
(since w1 > w2), and concluding with those not outranking the profile on
any criterion. Profile p1 is then used to partition each of these sets even
further. The first partition only contains one region so it cannot be split fur-
ther. The second partition can be split based on the second criterion, hence
{(1, 2), (1, 3)} becomes {(1, 2)} � {(1, 3)}. Similarly, partition {(2, 1), (3, 1)}
becomes {(2, 1)} � {(3, 1)} based on how the two regions outrank or not p1

on the first criterion. Finally, the last partition, {(2, 2), (2, 3), (3, 2), (3, 3)}
is split into four since region (2, 2) outranks profile p1 on both criteria,
(3, 2) outranks the profile on the first criterion only, (2, 3) outranks the pro-
file on the second criterion only, while (3, 3) does not outrank the profile
on any criterion. We are left with the following ordering on the regions
(1, 1) � (2, 1) � (3, 1) � (1, 2) � (1, 3) � (2, 2) � (3, 2) � (2, 3) � (3, 3).
This corresponds to the order we see in the second image from Figure 3.

Within our RMP implementation, instead of constructing an order by
comparing solutions pair-wisely, we construct a classification model based
on how each solution compares to the profiles of the RMP model, hence
rendering the ordering process linear with the number of solutions. The
values linked to each area are computed at the start of the MOGA-RMP
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algorithm and are normalized within a [0, 1] interval simply by dividing the
category index by the total number of categories. We will call this the RMP
score and denote it using RMP (s).

We also define ∆(s) = min
j∈J

min
h∈{1,...,k}
ph+1
j <fj(s)

fj(s)− ph+1
j

phj − ph+1
j

, which corresponds to

the smallest improvement on any criterion between a solution and any ref-
erence level, normalized with respect to the two nearest bounding reference
levels. This measure is useful in determining how close a solution is to sur-
passing any reference profile and thus move to an area corresponding to a
better RMP score.

Finally, ∆RMP (s) is a normalized measure corresponding to the im-
provement in RMP score if solution s were to improve and surpass the closest
better reference level.

The MOGA-RMP approach integrates these measures within two steps:
the reproduction and the population selection. Let us denote with P the
population of solutions of the genetic algorithm at a given time and with
NSGA(s) the NSGA-II criterion.

In the reproduction phase, we use a roulette selection where the prob-
ability of selecting a parent (s) depends not only on the NSGA-II criterion
but also on the three previously defined measures. We combine these three
measures into a secondary criterion as follows:

RMP ∗(s) =
RMP (s) + ∆RMP (s) + (1−∆(s))

3

The overall fitness of the parent then becomes:(
max
s′∈P

NSGA(s′)−NSGA(s) +RMP ∗(s)

max
s′∈P

NSGA(s′) + 1

)α

This normalized fitness value is then used in conjunction with a random
variable drawn from a uniform distribution in order to select the parent if
the variable is less or equal to the fitness of the individual. Therefore, higher
fitness values correspond to higher probabilities of selecting an individual. In
other words, the NSGA-II criterion is still used a the primary selection cri-
terion, while the three previously mentioned measures are used as secondary
criteria of equal importance. Higher values of the α parameter also shift the
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probability of selection in favor of better individuals since small fitness values
(in the [0, 1] interval) are further reduced for higher values of α.

In the population selection phase, the NSGA-II criterion is first used to
group individuals based on the dominance principle. The groups are then
considered one by one, starting with the top one. If a group is smaller than
the remaining spots needed by the new population then all of its individuals
are selected. In the opposite case, individuals are further grouped based on
their RMP scores and a number of individuals from each group, proportional
to their RMP score, are selected. When a group contains more individuals
than the required proportion, the crowding distance is further used to dis-
criminate among them. In the opposite case, all individuals from the group
are selected and the entire process is performed an additional time using the
groups still containing unselected individuals.

5. Experimental validation

In order to test the proposed approaches, we follow the experimental
protocol presented in Figure 4.

Figure 4: Experimental design

For each problem instance that we test, we begin by executing an NSGA-
II algorithm. This approach is allowed to run for a long period of time so
that a set of efficient solutions as close as possible to the Pareto front can be
found.

We then use the generated solutions in order to construct an RMP model,
since we need to simulate a DM. We do this so that the reference profiles of
the RMP model correspond to realistic aspiration levels, which no solution
may completely satisfy. We base this on the fact that a real DM would
express very demanding aspiration levels, otherwise, if solutions that satisfy
all aspiration levels are feasible, the problem would be easy to solve. We
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will describe the process of generating the RMP model in the following sub-
section.

Once the RMP model is generated, both approaches (NSGA-II and MOGA-
RMP) are executed for a shorter duration, up to one hour in particular.
The NSGA-II approach uses the RMP model only at the end, whereas the
MOGA-RMP approach requires it before starting. The results consist of a
set of non-dominated solutions that are further ordered based on the RMP
model. Comparing these solutions allows us then to compare the efficiency
of the two approaches.

5.1. Benchmarks

To compare these approaches we have adapted 2 instances from [17] (de-
noted as K3 and K4), two instances from [10] (denoted as F19 and F20)
amd two instances from [1] (denoted as B1 and B2). Some of these instances
correspond to problems considered as medium (K3, F19 and F20) and large
(K4, B1, B2). Moreover, the instances from [17] are known for their total
flexibility (all operations can be processed on any machine) and the instances
from [3] for their partial flexibility (operations can be processed on multiple
machines but not all of them). Table 1 summarizes the characteristics of the
instances used here.

Instance K3 F19 F20 K4 B1 B2

# jobs 10 11 12 15 10 10
# machines 10 8 8 10 6 6
# operations per job 3 4 4 [2∼4] [5∼7] [5∼7]
Flexibility total partial partial total partial partial

Table 1: Characteristics of tested instances

As presented previously in the experimental design, each of these in-
stances are first solved using the NSGA-II for a long period of time and with
plenty of computational resources in order to construct a set of efficient solu-
tions that are as close as possible to the Pareto front. We denote this set as
S. Using the solutions in S, we then randomly generate the reference profiles
of an RMP model. We use the ideal point (minimum objective values from
S), the closest solution from S w.r.t. the ideal point and finally the Nadir
point (maximum objective values for S) in order to partition each evaluation
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scale (the three considered objective functions) into two ordered intervals in-
tervals (values between the ideal point and the mid-point and values between
the mid-point and the Nadir point). Two profiles are generated by randomly
sampling the first interval for each evaluation scale and also making sure
that one profile dominates the other, while three profiles are generated in a
similar way using the second interval for each evaluation scale. The way in
which the first two profiles are generated makes it so that it is very unlikely
to find a solution satisfying all aspiration levels. This scenario corresponds
to the RMP model representing a demanding albeit fictitious DM. The lexi-
cographic order of the model is generated as a random permutation of the 5
profiles, while the criteria weights are generated using the method from [4].

5.2. Results

All the approaches have been implemented in Julia 1.6 and executed on
an Intel Xeon Gold with 80 cores at 2.00 GHz and 64 GB of RAM. Each
execution used a single thread, except for the mixed-integer linear program
which was solved using the CPLEX v0.7.8 solver [15] and up to 4 threads.
This decision was made in order to have the results correspond to those one
would get using a standard personal computer available today.

Figure 5 illustrates the results following 50 executions of the classical
NSGA-II approach together with an a posteriori integration of the RMP
model and the approach we propose on the medium sized instances. On the
left, we indicate the average normalized gap between the best category in a
given solution population and the overall best found category for all algorithm
executions. The category is computed according to the corresponding DM
preference model for each execution. On the left side of the figure, we indicate
the average number of solutions corresponding to the best category w.r.t. to
the DM preference model as a function of time.

We notice that the MOGA-RMP approach is able to provide solutions
with better RMP scores than those proposed by the NSGA approach, there-
fore corresponding to solutions perceived as better by the DM. Any difference
in the RMP score corresponds to one or multiple levels of aspiration being
surpassed by the corresponding solutions. MOGA-RMP also generally pro-
vides a larger number of such solutions. In the case of the F19 problem
instance, the algorithm proposes fewer solutions than the NSGA approach,
however, it should be noted that these solutions provide better performance
based on the DM model as can be seen on the corresponding figure on the
left.
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Figure 5: Gap from best RMP score (left) and number of solutions in best category (right)
for medium instances
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It should also be noted that, using the MOGA-RMP approach, we do not
need to spend a lot of time or computational resources as NSGA-II does in
order to propose solution of equivalent quality w.r.t. the DM preferences.
For instance, for K3, MOGA-RMP can propose a solution within a category
20% worse than the best found solution after 200 seconds while NSGA-II can
propose an equivalent solution after more than 300 seconds.

The previous remarks are also valid when considering the larger instances
in Figure 6. Here the differences in solution quality are more pronounced on
the K4 instance and slightly less on the B1 and B2 instances, however, in
these cases, more solutions of such quality are proposed by the MOGA-RMP
method, up to twice as many in some cases.

We can also notice that on the K4 problem instance, NSGA-II is not able
to find a solution with a gap of 20% from the best found solution within
5000 seconds, while MOGA-RMP finds such a solution after less than 2000
seconds. Such gains can prove very important when a solution needs to be
implemented in practice within a limited amount of time.

6. Conclusions and perspectives

In this work, we consider and compare the a priori and a posteriori inte-
gration of a non-compensatory preference model based on reference profiles
within multiobjective optimization and illustrate it using the flexible job-
shop scheduling problem. A multiobjective genetic algorithm is proposed
and tested on state of the art problems from the literature. The results show
that integrating a preference model within the optimization approach helps
in providing better solutions faster as well as in greater numbers. Having
more solutions of equivalent quality from the perspective of the DM may
be helpful in integrating additional and more complex constraints that were
not initially considered, thus increasing the chance of finding an operational
solution.

As future perspectives, we will integrate and test additional operators
within the genetic algorithm and improve its performance by either limiting
the use of the mathematical program via heuristics or integrating it com-
pletely within a metaheuristic approach. Our current objective was not to
propose solutions that perform better in terms of optimization w.r.t. to ex-
isting approaches, but mainly illustrate the gain that integrating a preference
model could yield. We also intend to explore single solution metaheuristics,
such as simulated annealing or tabu search, to give a couple of examples.
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Figure 6: Gap from best RMP score (left) and number of solutions in best category (right)
for large instances
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Finally, we will further explore integrating the preference elicitation phase
within the optimization phase in an interactive manner when dealing with
difficult problems where such an interaction is possible.
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[21] S. Massebeuf, C. Fonteix, L. N. Kiss, I. Marc, F. Pla, and K. Zaras.
Multicriteria optimization and decision engineering of an extrusion pro-
cess aided by a diploid genetic algorithm. In Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),
volume 1, pages 14–21. IEEE, 1999.

[22] A-L. Olteanu, K. Belahcène, V. Mousseau, W. Ouerdane, A. Rolland,
and J. Zheng. Preference elicitation for a ranking method based on
multiple reference profiles. 4OR, pages 1–22, 2021.

[23] R. O. Parreiras and J. A. Vasconcelos. Decision making in multiobjective
optimization aided by the multicriteria tournament decision method.
Nonlinear Analysis: Theory, Methods & Applications, 71(12):e191–e198,
2009.

[24] L. Rachmawati and D. Srinivasan. Preference incorporation in multi-
objective evolutionary algorithms: A survey. In 2006 IEEE International
Conference on Evolutionary Computation, pages 962–968. IEEE, 2006.
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