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ABSTRACT. We developed an algorithm to extract reduced-order model from Finite Element model,

in the framework of thermo-mechanical simulations. This is an a priori approach in so far as

we do not use the state forecasted by the Finite Element model. The basis functions of the

reduced-order model are defined for large evolutions of the state variables of the studied sys-

tem. An iterative non-incremental algorithm, a LATIN algorithm, constructs them. As the basis

functions are improved during the iterative procedure, an approximate state evolution is also

bettered. Thanks to the reduced-order model, an accurate overview of the variables evolutions

is quickly obtained over the entire time interval. This way we hope to forecast process defaults

as quickly as they are significant. An important advantage of this model reduction method is

that we do not need a special reflection of what could be the main phenomena that happen

during the case studied.

KEYWORDS: model reduction, Karhunen-Loève expansion, Krylov subspace, non-incremental ap-

proach, contact modelling.
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1. Introduction

Thanks to the Finite Element Method, we are able to describe accurately the
thermo-mechanical transformations that occur during processes like casting, form-
ing and cutting. It is quite easy to construct a very complex finite element model.
It is more difficult to forecast the state of the studied system during the process, by
solving a time-dependant and non-linear thermo-mechanical problem. Generally a
good knowledge of what are the main significant phenomena allows to simplify the
finite element model. Obviously, the simpler the finite element model is, the faster we
forecast the state of the system.

An interesting approach to simplify a finite element model is to build a reduced-
order model, thanks to an algorithm. Finite element modelling uses generally a large
number of variables to describe the state of the studied system. The aim of model re-
duction is to define a transformation matrix to get few basis functions, from the Finite
Element shape functions, to describe the spatially distributed state. In the framework
of non-linear time-dependant problems we can distinguish an a posteriori approach
based on Karhunen-Loève expansion [SIR 91] [PAR 01] and an a priori approach
based on the Krylov subspace [KNO 95] [WEI 95] [SUN 01]. The first kind of ap-
proach is based on the knowledge of the evolution of the state variables of the system,
the second one is not based on this knowledge. In the Karhunen-Loève method, state
snapshots, taken at various time instants, span a small subspace. The principal di-
rections of this subspace are chosen as basis functions. Hence, the Karhunen-Loève
expansion allows to extract the most significant part of the evolution of the state snap-
shots. The Krylov subspace allows to forecast the state evolution of the system. Using
this subspace, only few unknowns are needed during the incremental computation of
the state. At a given time step, the basis functions are built with the residual of the non-
linear equations of the finite element problem and a matrix defined to correct the ap-
proximate state forecasted at the end of the time step. The basis functions can be used
to simplify the computation of the state during several time increments [KNO 95]. In
practice, the same Krylov subspace is used only for few time increments. This sub-
space had to be adapted if there is large evolution of the state variables after the time
step when it was constructed. In this paper we propose an a priori reduction method
because we want to use it as a computational strategy.

The purpose of our approach is to define residuals over a time interval involving a
large state evolution. To do so, we need to improve the computation of an approximate
state over the same time interval, thanks to an iterative algorithm. Obviously this ap-
proximate state is described thanks to the basis functions of the reduced-order model.
A simple reduced-order model is supposed to be known and several correction stages
are used to improve the basis functions thanks to the residuals and to improve also
the approximate state over the entire time interval. So, this computational strategy is
necessarily a non-incremental one. In order to improve the approximate state at each
stage by a linear problem, we use the LATIN method [LAD 85] [LAD 96] to define
our algorithm. Because the correction stage is a linear stage, we need basis functions
for both displacements and stresses. The system Σ is split into sub-domains. Basis
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functions are defined for each sub-domain Ω of Σ. Moreover, in the framework of the
LATIN method, the basis functions for stresses satisfy some equilibrium conditions.
Therefore we need in fact couples of basis functions to describe stresses inside each
sub-domain Ω and normal stresses over the boundary of Ω. Even if the approximate
solution is far from the solution of the finite element problem, the residuals give effi-
cient indications to construct the reduced-order model. Maybe it is due to equilibrium
conditions satisfied when the corrections are computed. Several correction stages of
the approximate state must be considered in order to obtain residuals that span a suf-
ficient large subspace to define the reduced-order model. The subspace spanned by
the residuals is called the LATIN subspace. During the correction stages the basis
functions of the reduced-order model are extracted from the LATIN subspace thanks
to the Karhunen-Loève expansion, by selecting the most significant patterns of the
known approximate state. The subspace associated to these basis functions is called
the LATIN-KL subspace. A 2D example illustrates the capability of the model reduc-
tion technique. It corresponds to a kind of casting problem. The part material is a kind
of aluminium and the mould material is a kind of sand. We obtain a reduced-order
model defined for large non-linear evolutions, during all the cooling of the part. Non-
linear couplings are due to the thermal contraction of the part and thermal expansion
of the mould, which modify the thermo-mechanical contact conditions between the
part and the mould. An accurate approximate state evolution is obtained with few
basis functions obtained during 100 correction stages.

2. The Finite Element model

In order to define the LATIN algorithm, we introduce here a convenient manner
to describe the finite element model. The considered thermo-mechanical problem
involves small strains, small displacements, elasticity, and contact producing thermo-
mechanical coupling. Equations are given for each sub-domain Ω. Boundary condi-
tions are given for interfaces between a sub-domain Ω and a sub-domain Ω′, and for
interfaces between a sub-domain Ω and the boundary ∂Σ of the system. A mesh is
used to describe the displacement field U and the temperature field T by introducing
matrix of shape functions NU and NT , and Finite Element degrees of freedom q and
θ respectively. The shape functions NU and NT define two subspaces U and T re-
spectively. We assume that these subspaces are large enough to represent accurately
the evolution of the gradients of U and T . The time interval ]0, tf ] is divided into
time steps ]tj , tj+1]. The forward Euler scheme is used to solve the time differential
equations.

2.1. Equations defined inside Ω ∈ Σ

Inside each sub-domain Ω the following conditions must be satisfied. There is
initial conditions for temperatures and stresses σ. Stresses, normal stresses F over
∂Ω, temperatures, heat transfer g, internal energy e normal heat transfer φ over ∂Ω
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and heat dissipation r, must satisfy equilibrium conditions at any time instant tj+1

(forward Euler scheme):

∫

Ω

Tr [ε (U∗) σ] dΩ =

∫

∂Ω

U∗ . F dS ∀U∗ ∈ U [1]

∫

Ω

T ∗ ė dΩ −

∫

Ω

grad(T ∗) g dΩ =

−

∫

∂Ω

T ∗ φ dS +

∫

Ω

T ∗ r dΩ ∀T ∗ ∈ T [2]

The thermo-mechanical constitutive relations concern the elastic strain rate ε̇
e, the

thermal expansion ε̇
th, the heat dissipation, the internal energy and the heat transfer.

The heat dissipation is a fraction of the irreversible mechanical rate of work.

ε

(
U̇

)
= ε̇

e + ε̇
th [3]

σ̇ = K (T ) ε̇
e

ε̇
th = α (T ) Ṫ [4]

ė = ρ c (T ) Ṫ g = −k (T ) grad(T ) [5]

2.2. Boundary conditions over ∂Ω

On each integration point on the boundary of Ω there is an interface between an
other sub-domain Ω′ or the considered point belongs to the boundary of Σ. Two kinds
of interfaces between Ω and Ω′ are considered : a perfect interface and a contact
interface. In case of perfect interface the displacement and the temperature must be
continuous and some equilibrium conditions must be satisfied. We assume that heat
conduction decreases with the gap j such that: h (j) = ho e−γ j .

3. The non-incremental approach to construct the reduced-order model

The purpose of the LATIN method is to build an algorithm to compute corrections
of an approximate state thanks to stages, both global and linear, defined over the entire
time interval. The residuals we want to define, must characterise what could be the
mean value over ]0, tf ] of the corrections by using the Finite Element subspaces U and
T . But, to avoid expensive computations we do not want to compute these corrections
by using the Finite Element subspaces. In order to define the residuals, we present the
LATIN algorithm as if we used the Finite Element subspaces. Hence we modify the
formulation of the linear correction stage to employ the reduced-order model for the
computation of the corrections.
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3.1. A LATIN algorithm

The Finite Element problem presented in section 2 is both global and non-linear.
But, we chose a formulation such that the global equations are linear and the non-
linear equations are local equations. The LATIN method is based on three principles :
P1, P2 and P3 [LAD 85] [LAD 96]:

– P1 : in order to split the difficulties (global and non-linear equations), two groups
of equations are created from the reference problem : a group of local equations and a
group of linear equations;

– P2 : the algorithm is an iterative procedure that provides a solution for each
group of equations at each iteration, these solutions are defined over the structure and
over the entire time interval;

– P3 : an appropriate space-time representation has to be used to solve the global
equations.

The reference problem is the Finite Element problem. The linear equations are:
the initial conditions, the equilibrium conditions (1) (2) and the strain definition (3).
Necessarily, the other equations belong to the group of the local equations.

The third principle of the LATIN method allows to exploit various kind of time an
space representation of the variables (U , σ, F , T , φ). In our approach we use basis
functions associated to the reduced-order model. Different approaches were proposed
to define a convenient representation of the corrections (U − Un, σ − σn, . . . ), ex-
pressed linearly in terms of several space functions [LAD 96] [ART 92]. P. Ladevèze
has proposed in [LAD 96] an approach very closed to the Karhunen-Loève expansion
to construct these space functions at each correction stages. To employ the previously
computed space functions during a given correction stage, P. Bussy [BUS 90] pro-
posed to compute a part of the corrections while using the known space functions as
basis functions. In practice, this last approach is efficient enough to provide the entire
correction of the state variables [PEL 00]. The proposed approach can be understood
as an extension of the approach proposed by P. Bussy, in order to construct a reduced-
order model of a process, and not only to simplify the computation of the correction
stage of a LATIN algorithm. The most simple approximate state (Uo, σo, F o, To, φo)
is obtained from the initial state (U ini, σini, F ini, Tini, φini).

3.2. The Finite Element formulation of the correction stage

In accordance with the principle P2, the purpose of the correction stage is to con-
struct a solution of the linear equations (1), (2) and (3). To do so, we have to replace
the local equations by linear equations defined thanks to search directions. Let’s con-
sider that an approximate state (Un, σn, Fn, Tn, φn) satisfying (1), (2) and (3), is
known. A fixed-point approach allows to replace the local equations defined over Ω
by:
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σ̇ = K (Tn) ε̇
e

ε̇
th = α (Tn) Ṫn [6]

r = Tr [
(
ε

(
U̇n

)
− ε̇

e
n

)
σn] [7]

ė = ρ c (Tn) Ṫ g = −k (Tn) grad(T ) [8]

On the boundary of each sub-domain, search directions have been defined in
[CHA 96] for mechanical problems involving contact conditions. Similar search di-
rections are used at the correction stage, for interfaces between Ω and Ω′:

Ḟ = Ḟn+1/2 − k̂me
(
U̇ − U̇n+1/2

)
[9]

φ = φn+1/2 + ĥ th
(
T − Tn+1/2

)
[10]

where Fn+1/2, Un+1/2, F ′

n+1/2, U ′

n+1/2, Tn+1/2, T ′

n+1/2
, φn+1/2 and φ′

n+1/2
are

defined by the contact conditions or the perfect interface conditions and these equa-
tions:

Ḟn+1/2 = Ḟn + k̂me
(
U̇n+1/2 − U̇n

)

Ḟ
′

n+1/2 = Ḟ
′

n + k̂me
(
U̇

′

n+1/2 − U̇
′

n

)
[11]

φn+1/2 = φn − ĥ th
(
Tn+1/2 − Tn

)

φ′

n+1/2
= φ′

n − ĥ th
(
T ′

n+1/2
− T ′

n

)
[12]

To find the variables Fn+1/2, Un+1/2, F ′

n+1/2, U ′

n+1/2, Tn+1/2, T ′

n+1/2
, φn+1/2

and φ′

n+1/2
, in case of contact condition, on an integration point, we assume that

there is no contact, if it’s not correct hence there is contact and we assume there is
adherence. At last, if it’s not correct there is sliding contact. In case of an integration
point on ∂Σ, the variables Fn+1/2, Un+1/2, Tn+1/2 and φn+1/2 must satisfy the
boundary conditions. In practice, the Young modulus E and a characteristic length d

of Ω are used to define the parameters of the algorithm such that:

k̂ me =
E (Tn)

d
ĥ th =

k(Tn )

d
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3.3. The LATIN subspace

Basis functions have to be defined for U , σ, F , T and φ. Let’s note respectively
WU , Wσ , WF , WT and Wφ the residuals defining these basis functions. The three
residuals WU , Wσ and WF must characterise respectively U − Un, σ − σn and
F −Fn, over ]0, tf ]. To avoid several resolutions of Finite Element problems during a
correction stage, we introduce two given scalar time functions λme and λth such that:

U = Un + λme(t) WU

σ = σn + λme(t) Wσ

F = Fn + λme(t) WF

T = Tn + λth(t) WT

φ = φn + λth(t) Wφ

The couple (Wσ, WF ) must satisfy the equilibrium conditions (1). Because the
residuals are space functions, only a weak form of the equations of the correction stage
can be satisfied. The main equations of this weak form are:

∫ tf

0

λ̇me
σ̇ dτ =

∫ tf

0

λ̇me K (Tn)
(
ε̇ − α (Tn) Ṫn

)
dτ [13]

∫ tf

0

λ̇me Ḟ dτ =

∫ tf

0

λ̇me Ḟn+1/2 − k̂me
(
U̇ − U̇n+1/2

)
dτ [14]

Hence WU is computed to satisfy a linear system:

WU = NU q
W

Kme
W q

W
= Fme

W (tf )

The residuals Wσ and WF are deduced from WU by using the equations (13) and
(14). The sign of λ̇me is chosen such that ‖Fme

W (t)‖ is an increasing time function,
like it has been proposed in [PEL 00].

The same approach is used to compute WT and Wφ:

WT = NT θW

Kth
W θW = F th

W (tf )

Wφ =

∫ tf

0

λ̇th NT
T

(
φn+1/2 − φn + ĥ th

(
Tn − Tn+1/2

))
dτ
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The residuals can be used as basis functions only if they have significant values. If
it is the case they are normalised.

3.4. The LATIN-KL subspace

As the number of correction stages increases, the size of the LATIN subspace
increases also. More over the fields WU , Wσ , WF , WT and Wφ do not have any
physical meaning. Since we know an approximate state evolution (Un, σn, Fn, Tn,
φn) we can use the Karhunen-Loève expansion [SIR 91] to define a subspace with
a better physical sense. Therefore we propose to use the Karhunen-Loève method
to extract a subspace from the LATIN subspace. This subspace is the LATIN-KL
subspace. For each variable x represented with the basis functions of the LATIN
subspace, we use the coefficients of the linear combination x̃(t) of basis functions
placed in a matrix X and a particular state evolution xo:

x(t) = X x̃(t) + xo

An approximate value of each variable is known at the end of each time step.
Hence we know ˙̃x over the entire time interval. To construct the LATIN-KL subspace,
we apply the Karhunen-Loève expansion to the different variables ˙̃x(t). The values of
˙̃x on each time step define a smaller subspace than the LATIN subspace. The size of
this subspace can’t be higher than the number of time steps. For example, if there is
only one time step the size of the LATIN-KL subspace is one. The Karhunen-Loève
expansion is used to choose the principal directions ṽi of the subspace built with the
values ˙̃x(t). These principal directions are defined by the following eigensystem:

M . ṽi = μi ṽi with M =

∫ tf

0

˙̃x(t) ˙̃x
T
(t) dt [15]

Let’s note μmax the highest eigenvalue of M. Only a part of the principal vectors
is saved in a matrix V. These vectors are corresponding to the eigenvalues greater
than 10−6 μmax. Hence we obtain a matrix Xv containing the basis functions of the
LATIN-KL subspace such that:

Xv = X V [16]

In practice, only the basis functions of the LATIN-KL subspace are saved. For each
sub-domain Ω, the different matrix of basis functions are: AU for the displacements,
Aσ for the stresses, AF for the normal stresses over ∂Ω, AT for the temperatures and
Aφ for the normal heat transfer over ∂Ω. Therefore the known approximate state is
represented with few degrees of freedom aU n, aσ n, aT n and aφ n, to define the linear
combinations:
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Un = AU aU n(t) + Uo σn = Aσ aσ n(t) + σo Fn = AF aσ n(t) + F o

Tn = AT aT n(t) + To φn = Aφ aφ n(t) + φo

The same degrees of freedom aσ n(t) are used for the stresses and the normal
stresses on the boundary in order to obtain a couple (σn, Fn) that satisfy the equilib-
rium conditions (1) at any time instant. So, for stresses, the matrix V in equation (16)
is obtained from aσ n. But this matrix modifies both Aσ and AF . After each correction
stage, WU , Wσ , WF , WT and Wφ are added to the convenient matrix Ax, if we keep
a set of independent space functions. The Karhunen-Loève simplification is done only
once after three correction stages, before adding the last computed vectors Wx. When
the basis functions have been modified, we need to adapt their linear combination. To
do so, we use the Moore-Penrose inverse of V:

x̃v(t) =
(

VT V
)
−1

VT x̃(t) ∀ t ∈ [0, tf ]

3.5. Improvement of the approximate state over ]0, tf ]

To find a correction of the approximate state with the basis functions of the reduced-
order model we use a classical weak formulation of the equations of the correction
stage. The main variables of the corrections stages are the displacements and the tem-
peratures. From the corrections of these variables we deduce the corrections of the
stresses and the heat transfer. During the correction stage, the correction (δU , δσ, δF ,
δT , δφ) belong to the known LATIN-KL subspace. So the few variables of this global
stage are δaU , δaσ , δaT , and δaφ such that:

δU = AU δaU (t) δσ = Aσ δaσ(t) δF = AF δaσ(t)

δT = AT δaT (t) δφ = Aφ δaφ(t)

A weak form of the equations of the correction stage provides the four following
incremental problems:

{
δaU (0) = 0
Gme

U (tj+1) δaU (tj+1) = Nme
U (tj+1) ∀tj+1

{
δaT (0) = 0

Gth
T (tj+1) δaT (tj+1) = N th

T (tj+1) ∀tj+1

{
δaσ(0) = 0
Gme

σ (tj+1) δaσ(tj+1) = Nme
σ (tj+1) ∀tj+1
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{
δaφ(0) = 0

Gth
φ (tj+1) δaφ(tj+1) = N th

φ (tj+1) ∀tj+1

3.6. Algorithm of the linear correction stage

The local computation of (Un+1/2, Fn+1/2, Tn+1/2, φn+1/2) is both necessary
for the computation of the residuals and for the computation of the correction of the
approximate state. More over, this local computation and the global computations are
incremental ones. Hence we use the following algorithm:

- For each sub-domain Ω : we do a copy of the boundary variables
(U ′

n, F ′

n, T ′

n, φ′

n) of the neighbour sub-domain Ω′,
over the entire time interval [0,tf ]
- For each sub-domain Ω

- Initial conditions
- For each time step ]tj ,tj+1]

For each integration point inside Ω : local contributions to
Gme

U (tj+1) , Nme
U (tj+1) , Gme

σ (tj+1) , Nme
σ (tj+1) , Gth

T (tj+1) ,
N th

T (tj+1) , σ , Kme
W , Kth

W

For each integration point on ∂Ω : local contributions to
Gme

U (tj+1) , Nme
U (tj+1) , Gme

σ (tj+1) , Nme
σ (tj+1) , Gth

T (tj+1) ,
N th

T (tj+1) , Gth
φ (tj+1) N th

φ (tj+1) F , Kme
W , Kth

W

Computation of : δaU (tj+1) , δaT (tj+1)
For each integration point inside Ω : local contributions to
Gme

σ (tj+1) , Nme
σ (tj+1)

For each integration point on ∂Ω : local contributions to
Gth

φ (tj+1) , N th
φ (tj+1)

Computation of : δaσ(tj+1) , δaφ(tj+1)

Choice of the sign of λ̇me and λth for the contributions to
Fme

W (tj+1) , F th
W (tj+1) , Wφ

- Computation of new space functions WU , Wσ , WF and WT

- For each sub-domain Ω : update the approximate state ax n+1 = ax n + δax

and eventually update the LATIN-KL subspace

There is no time synchronisation for the computation of the corrections on each
sub-domain. This algorithm could be easily used on a parallel computer.

4. 2D examples

4.1. A first casting problem

Let’s consider the Finite Element model on the Figure 1. 40 time steps are used
to describe the evolution of the state variables. The two sub-domains Ω1 and Ω2 are
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elastic bodies, respectively in aluminium and sand. There is no initial gap between the
two sub-domains. This is a plan strain problem.

P

T = 20°C

T = 20°C

φ = 0

φ = 0

Ω
1

Ω 2

T   = 20°Cini

T   = 600°Cini

U = 0

U = 0

Figure 1. Meshes on each sub-domain

The way Ω1 is cooled down depends on the contact conditions between the two
sub-domains. More over these contact conditions are defined by the thermal expansion
of each sub-domain. The thermo-mechanical coupling is strong and similar to the one
encountered in casting problems.

4.2. Few stages to obtain the main part of the state evolution

To forecast the defaults in a process with a simulation, it is interesting to obtain
a quick overview of the evolution of the state variables. After 20 correction stages a
good overview of the displacements and temperature fields is obtained (Figure 2).

Even accurate local results are quickly available, with few corrections stages. On
Figure 3 there is the example of the temperature evolution (Figure 1) on the point P

obtained after different correction stages.

4.3. Discussion about the reduced-order model and the LATIN-KL subspace

The LATIN subspace is very closed to the subspace proposed by P. Bussy to rep-
resent the corrections of the state variables. The Karhunen-Loève expansion allows a
very nice reduction of the number of basis functions of the reduced-order model. On
Figure 4 we can observe, for the displacement defined over Ω2, the difference between
the size of the LATIN-KL subspace and the size of the LATIN subspace, during the
correction stages.
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0°C

800°C
t1 t2 tf

n=100

n=20

Figure 2. An interesting overview of the displacement and temperature field after 20

correction stages
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300

t (s)

T(P,t) (°C) n=5n=20

n=30

n=40

n=50 n=100

Figure 3. Different local evolutions of the temperature at the point P

On Figure 5 there is the first basis functions of AT and the corresponding values of
the degree of freedom aT n after 100 correction stages (n = 100). These basis functions
allow to represent 80% of the temperature field over the entire time interval.

In Table 1, we summarised the number of unknowns of the reduced-order model
obtained after 100 correction stages, and the number of unknowns of the Finite Ele-
ment model.

A more complex geometrie have been studied for the same kind of problem. The
system is split into four sub-domains (Figure 6). The numbers of unknowns of the
reduced-order model for each sub-domain are given in Table 2.
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Figure 4. Sizes of the LATIN subspace and LATIN-KL subspace during the correction

stages
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10
0

-4000

-2000

0

10
0

-3000

-2000

-1000

0

1000

10
0

-300

-200

-100

10
0

-300

-200

-100
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100

t (Log)t (Log)t (Log)t (Log)

A T

Figure 5. Basis functions for the temperature fields and corresponding degrees of

freedom (n=100)

Despite a representation of the displacement and the stresses is needed for our
approach, only few unknowns are necessary to obtain an accurate approximation of
the state evolution.

5. Conclusion

Thanks to the proposed reduction method we can quickly obtain an approximate
evolution of the state of the studied system. Therefore, if there is any important default
on the process, we can see it very quickly without any specific reflection to construct a
simple model to describe what is happening in the case studied. The main phenomena
are described automatically by the reduction method. So we suggest that very fine
Finite Element model should be realised to describe what could happen during the
transformation. The reduction method will automatically extract the basis functions
to describe the evolution of the state with few unknowns. To perform accurate simu-
lations, we just have to continue correction stages as long as it is necessary. This ap-
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Table 1. Number of unknowns for each variables over each sub-domain, for the

reduced-order model (n=100) / for the Finite Element model on Figure 1

U σ T φ

Ω1 7 / 636 8 / 1647 10 / 318 6 / 47
Ω2 12 / 926 9 / 2532 11 / 463 6 / 47

Fc

Ω1
Ω2

Ω4

Ω3

30°C
600°C

Figure 6. A more complex problem : Meshes and sub-domains

proach should be interesting to study processes involving multiphysic coupling which
are difficult to describe with a simple model.
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