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An e�cient adaptive strategy to master the global quality of

viscoplastic analysis

J.-P. Pelle, D. Ryckelynck *,1

L.M.T. ± Cachan, ENS de Cachan, CNRS, Université Paris 6, 61, avenue du President Wilson, 94235 Cachan Cedex, France 

To control the numerical quality of non-linear simulations allows to automate the choice of discretisation. Within 

the framework of time dependent problems, this quality depends on the error made in the calculation of the defor-

mation history. Generally, a kind of expert analysis precedes the satisfying computation. In practice, this analysis could 

be an optimisation of numerical approximations. We propose a strategy herein, which naturally includes this expert 

analysis stage. The desired solution is built iteratively, improving all of the history at each iteration, thanks to the 

LATIN method. A global error estimator is provided by the dissipation error. To pilot the adaptive computation, we 

propose a partition of this estimator into indicators associated with each kind of error contribution.

Keywords: Error estimates; Adaptivity; Non-linear analysis; Latin method; Viscoplasticity

1. Introduction

Nowadays, the industry requires the resolution of

highly complex problems: 3D problems, non-linear

material behaviours, contacts, large deformations, etc.

Ahead of solution of such problems, it is necessary to

take into account various economical aspects, which are

very important: computation time, time necessary to

prepare the computation (especially the meshing of

complex structures). For a given resolution algorithm,

adaptive computation allows us to minimise the com-

putational costs while obtaining a prescribed accuracy

by mastering the parameters of the computation (size

and type of elements, time increment length). This has

been done ®rst in case of linear problems like elasticity

[1±3]. And, the proposed methods have been extended to

some non-linear time-dependent problems [4±7]. Re-

garding the latter problems, all the adaptive computa-

tions proposed are based on the incremental resolution

method. Although a non-incremental method, called

LATIN method [8,9], allows us to treat problems of

non-linear material behaviours, contacts, or large de-

formations.

As the incremental method is not the only approach

to solve non-linear time-dependent problems, we can

wonder if it is the most suitable method to build an

adaptive strategy characterised by a short computation

time and robust error control. In this work, we address

this issue by considering the use of the LATIN method

to build a non-incremental adaptive strategy. To control

conveniently the numerical approximations, we studied

the computation of viscoplastic structures with standard

constitutive equations [10], on the assumption of small

displacements and for quasi-static loading. But numer-

ous other non-linear time-dependant problems could

have been studied to build a similar strategy.

The LATIN method is an iterative method to im-

prove approximate solution de®ned on all the structure

and on all the history studied. In the case studied, as well

as in NewtonÕs method, the goal of the iterations is to
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treat the non-linearities. But here it is realised on the

whole history. A discrete representation of the solution

is obviously used. In our approach, this representation is

built on a base of space functions computed by em-

ploying the ®nite element method. On this base, the

components of an approximate solution are scalar time

functions.

To reduce the computational cost, we have proposed

an adaptive strategy, in which the improvement of the

solution representation is due to the improvement of

the treatment of the non-linear equations. A coarse

discretisation must be chosen at the beginning of

the adaptive strategy. An initial solution is provided

through an elastic computation on the interval studied.

According to the ¯aws in the elastic approximation, an

error indicator provides a level of non-linearity for the

studied problem. In the case of signi®cant non-linearity,

LATIN iterations are initiated with the coarse time and

space representation, and this representation then be-

comes more precise over the course of the iterations.

Errors in constitutive equation, especially dissipation

error [9], provide a global error estimator, which char-

acterises the distance between an admissible solution

and the exact solution. We propose an analytical parti-

tion of the global error into indicators associated with

each error contributions (time, space, and iteration de-

faults). Hence, the goal of the main piloting criteria is

chosen to obtain a balanced contribution of each kind of

error indicator during the computation. The computa-

tion is stopped when the global error satis®es the pre-

scribed quality.

The layout of this paper is the following: A brief

analysis of existing adaptive strategies enables us to

discuss the drawbacks and advantages of the incre-

mental approach. The equations of the viscoplastic ref-

erence problem are introduced in Section 2 together with

the de®nition of the dissipation error estimator. A

straightforward LATIN algorithm is proposed to solve

the reference problem in Section 3. At the end of this

section, an example of time and space representation is

given. Section 4 outlines some error indicators used for

the piloting criteria. And at last, the non-incremental

adaptive strategy proposed is described in Section 5,

where numerical examples also show the reliability and

the e�ciency of our approach.

2. Adaptive strategy for incremental resolution

By adaptive strategy, we exactly mean the way to

organise the numerical resolution, the error control

procedure and the parameter adaptation. It could be a

mesh adaptation or a time discretisation adaptation for

example (Fig. 1). The di�culties encountered to build

such strategy are common to numerous time-dependent

problems. Hence, we extend our analysis from visco-

plastic or plastic problems to dynamic problems.

Throughout the studied strategy, the resolution method

is an incremental one. We will present its principle be-

fore dealing with di�erent strategies.

2.1. A few remarks about the incremental resolution

method

A good modelling of viscoplastic phenomena re-

quires to take into account the history of the deforma-

tion. Kinematic constraints and equilibrium equations

are similar to those of an elastic problem. To study

quasi-static transformation, their de®nition is merely

extended on the time interval [0, T]. The constitutive

equation can be formalised by a non-linear equation

linking local stresses to a strain history.

The usual incremental method consists in dividing

the time interval [0, T] into a sequence of subintervals

�tiÿ1; ti� associated with time steps.

Generally, on each subinterval the displacement

evolution is supposed to be linear:

U�M ; t� �
U i�M� ÿ U iÿ1�M�

ti ÿ tiÿ1

�t ÿ tiÿ1� � U iÿ1�M�; �1�

where M is the current point of the structure.

Consequently, the stresses at the instant ti depend on

the value of the displacements in t0; t1; . . . ; ti only. The
state of the structure being su�ciently known at the in-

stant tiÿ1, the problem is to ®nd displacements at the

instant ti, satisfying kinematic equations and being the

solution of time-independent non-linear equations. Such

equations are associated to equilibrium equations at the

instant ti through the constitutive relation. They are

solved through a Newton-type iterative method [11].

During the iterations, stresses in equilibrium and stresses

satisfying constitutive equations are successively built.

Usually the displacement ®nite element method is as-

sociated with the incremental method. Consequently,

the equilibrium stresses satisfy the equilibrium equation

in a restricted manner only.

2.2. The step-by-step strategy

We start with strategies for which the adaptation is

done during the resolution. Such strategies consist in

improving the discretisation while successively treating

the time steps. Generally, during a computation without

any adaptation, the errors accumulate as the time in-

creases. The minimum quality to respect is de®ned by

Fig. 1. Time discretisation.
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the user who prescribes, according to the kind of crite-

rion used, either:

· the maximum relative error e0 allowed on interval [0,

t] for each instant t of [0, T] (the part of error, which

is independent of the deformation history can be

modi®ed by an adaptation of the mesh) [5] (Fig. 2);

· or a maximum value for error contribution of each

time step [12±15].

During the computation, the time interval is subdi-

vided into adaptive periods with quality criteria. The

transition between the two periods is associated to an

adaptation (Fig. 3). After an adaptation, the computa-

tion is usually repeated again on the last time step of the

adaptive period, in order to improve the quality before

continuing the computation.

This kind of strategy is used to adapt the mesh in

Refs. [13,14] for dynamic analyses and in Refs. [5,12] for

plastic and viscoplastic analyses. Obviously, to continue

the computation with the adapted mesh, some initial

data, at the beginning of the step, are transferred from

the old mesh. Time adaptation is proposed with this

strategy in Ref. [16] for viscoplastic analyses while time

and space discretisation are together adapted in Ref. [17]

for dynamic analyses and in Ref. [15] for plasti analyses.

In non-linear cases when, due to mesh adaptation,

the computation is performed again on a step, a rather

good solution de®ned on the previous mesh is known. In

Ref. [18], the authors propose reducing the cost of the

non-linear treatment by using this solution to initialise

the iterative resolution on the step. This is performed

with a hierarchical mesh adaptation associated with a

sort of multigrid resolution of equilibrium equations.

One of the main advantages of an adaptation during

the resolution is to take into account the mechanical

information obtained through the previous computa-

tion, thanks to a transfer of initial data, or moreover,

thanks to the last approach presented above.

2.3. The multi-resolution stage strategy

All of the deformation history contributes to the er-

ror at instant t. If the adaptation periods are too long,

the error induced during the former instant can be

dominant and may not be reduced by an adaptation in

the following instant. In this case, it is more suitable to

use a strategy, which allows improving the description of

all the deformation history. But, because of the incre-

mental resolution method, this becomes possible only

with a new resolution started at the beginning.

This kind of strategy is used at the LMT for plastic or

viscoplastic analyses with several stages of resolution

[5,19,20]. In practice, in these works, the same mesh is

used on all the time interval. A ®rst mesh is obtained

through an adaptive elastic computation for the maxi-

mum loading. Then, after each resolution with error

control, the mesh and eventually some other parameters

are adapted to optimise the computation of a solution

with the required quality (Fig. 4).

In the cases of simple problems, only two stages are

needed. A time varying mesh has been used with this

strategy to improve the optimality for dynamic analyses

[13,21]. The problem is completely solved with an initial

coarse mesh. During the coarse mesh run, assessments

are made at selected intervals, from which the level of

adaptation for each adaptation interval is selected. This

time varying mesh is then used to make a second com-

plete run (Fig. 5).

We can note that mesh adaptation is not always

su�cient to master the quality of plastic or viscoplastic

analyses. In fact, the time discretisation and the accu-

racy of the iterative Newton algorithm must usually be

Fig. 2. Adaptation with a maximum relative error.

Fig. 3. The step-by-step strategy.

Fig. 4. The multi-resolution stage strategy.

Fig. 5. Time varying mesh.
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adapted. Such adaptations have been proposed in Refs.

[19,20].

2.4. Advantages and drawbacks

Both the strategies presented above have their own

drawbacks and advantages: On the one hand, the multi-

resolution stage strategy allows a robust error control.

But its costs can be worrisome in case of non-linear

analyses, because the intermediate solutions are used

only for their defaults although they provide mechanical

pieces of information. On the other hand, the step-by-

step strategy takes into account the previous computa-

tion, with only small returns (in few steps). But it canÕt

allow a robust error control, because the error is esti-

mated a posteriori. It is therefore known only when the

computation is ®nished. The incremental resolution

method does not seem, then, to be appropriate to build

an adaptive strategy with a robust error control and

e�cient simulation.

In the strategy proposed here, approximate solutions

can be improved over all the time interval through an

iterative approach: the LATIN method. As the ap-

proximate solution is de®ned on all the time interval, the

global error can be checked at the end of each iteration.

And thanks to the iterative approach, the previous

computation is obviously taken into account.

3. Properties of the equations to be solved

3.1. The reference problem

We suppose that the structure is a domain X. On a

part @1X of the boundary @X, we suppose that the im-

posed displacement ®eld is U d (Fig. 6). On the comple-

mentary part @2X, density of forces F d is imposed.

Moreover, X is submitted to a density of body forces f
d
.

In viscoplasticity, the value of the stress at t is a

function of the history of the strain at the instant t, and

this function may be expressed at each current point M

of the structure X, by the relation:

rjt � A�ejs; s 6 t�; �2�

where A is an operator characteristic of the material and

e is the strain ®eld. In case of stable constitutive equa-

tion, the knowledge of such a relationship between

stresses and strains is su�cient to give a solution which

respects kinematic equations and equilibrium equations.

To make everything simple, a common way to describe

this relationship is to use internal variables in the

framework of thermodynamics. It has been shown that

di�erent choices of internal variables can make it pos-

sible to formulate a given relationship between stresses

and strains [9]. A convenient formulation for computa-

tion is a normal formulation in which equations of state

are linear [9]. This formulation is obtained from the

classical one by changing a set of internal variables.

Moreover we suppose that the model is standard [10].

This means that evolution laws are obtained from a vi-

scoplastic potential.

The internal variables are the plastic strain ep, a

tensor a associated with the kinematic hardening b and a

scalar p associated to the isotropic hardening R. We use

the simpli®ed notations X � �a; p�;Y � �b;R�. There-

fore, the problem to be solved can be described as fol-

lows.

Reference problem Pref : to ®nd the dissipation

quantities s � �_ep; _X; r;Y� such that

kinematic equation: U 2 U
�0;T �
ad

8 t 2 �0; T �; U j@1X
� U d ; �3�

equilibrium equation: r 2 S
�0;T �
ad

8 t 2 �0; T � 8U � 2 U0; �4�

ÿ

Z

X

Tr�r e�U ���dX�

Z

X

f
d
� U �dX�

Z

@2X

F d � U
� dS � 0;

constitutive relations: 8M 2 X,

initial state

rjt�0 � 0; Yjt�0 � 0; �5�

equations of state

e
e � Kÿ1r; X � KY 8 t 2 �0; T �; �6�

evolution laws

_e
p � @ru

�; ÿ _X � @Yu
� 8 t 2 �0; T �; �7�

where U0 is de®ned by

U0 � U�M�M 2 X jU @1X

�

� 0
	

: �8�

We are also going to use S0 de®ned by

S0 � r�M�M 2 Xj

Z

X

Tr re�U ��� �dX

�

� 0 8U � 2 U0

�

: �9�
Fig. 6. The loading.
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The material behaviour is characterised by

u��r;Y� �
k

m� 1
hzim�1

� ; �10�

z � krD ÿ bk �
1

2

a

c
kbk2 ÿ 1�R� ÿ R0; �11�

k � k2 � Tr����2�; �12�

1�R� � Q
R

Rs

2

�

ÿ
R

Rs

�

for R 6 Rs; �13�

where rD is the deviatoric part of r, and K and K are

characteristic operators.

The reference problem is a global non-linear one. But

some of the equations are linear and others are local. In

fact non-linear equations, evolution equations, are local.

In order to use this feature, we say that s � � _ep; _X; r;Y�
is admissible if and only if it satis®es all the linear

equations, i.e. all except evolution laws. We then write

s 2 Ad . If � _e
p; _X; r;Y� con®rms the non-linear evolution

laws, we write: s 2 C. So, the exact solution of the ref-

erence problem sex must satisfy: sex � C \ Ad .

3.2. The dissipation error estimator

The constitutive formulation being a normal and

standard one, an error in constitutive equation allows to

value the way non-linear equations are solved. This er-

ror is based on Legendre±Fenchel inequality:

8� _ep; _X; r;Y� u� _ep;ÿ _X� � u��r;Y� ÿ Tr�r _ep�

� Y � _XP 0; �14�

where Tr�r _ep� ÿ Y � _X is the dissipation and u is the

dual function of u�:

u� _ep;ÿ _X� � Sup
�r;Y�

fTr�r _ep� ÿ Y � _Xÿ u��r;Y�g: �15�

A global distance in evolution laws can be de®ned:

s 2 C () e�s� � 0 �16�

with

e�s� �

Z T

0

Z

X

fu� _ep;ÿ _X� � u��r;Y� ÿ Tr�r _ep�

� Y � _XgdXdt: �17�

We therefore obtain a dissipation error estimator [9]

associated to the reference problem Pref :eref � e�s� with

s 2 Ad , to quantify the quality of s 2 Ad in terms of ap-

proximation of sex.

A relative error estimator is obtained by Ref. [20]:

eref �
eref

D
�18�

with D � 4Supt2�0;T � dt and

dt �
1

2
dissjt �

1

2
enerjtdissjt

�

Z t

0

Z

X

Max�u� _ep; _X�

� u��r;Y�;
R0Tr�K

ÿ1 r _r�

krDk
dXds;

enerjt �
1

2

Z

X

Tr�Kÿ1 rr� � Kÿ1Y � YdX

with the property: s 2 Ad and e�s� � 0 if and only if

s � sex.

e�s� with s 2 Ad is then a global error estimator,

which takes account of all the defaults that contribute to

the exact error: sÿ sex.

4. A non-incremental resolution

In this section, we present the numerical algorithm

that is used to approximately solve the reference prob-

lem. It is built in the framework of the LATIN method

introduced by Ladev�eze in 1985 [8,9]. In the ®rst part of

this section, we present a base-line algorithm common to

other implementations of the method. This algorithm is

completely de®ned without any discretisation. Then, we

describe the way we use a discretisation to build an ef-

®cient and robust algorithm. An example is presented to

explain the base of space functions used to obtain a

numerical representation of the solution on all of the

time interval and on all of the domain X.

4.1. The LATIN method

The LATIN method contrasts with the incremental

method in the sense that it is not built on the time step

notion. It is not necessary to subdivide [0,T] into incre-

ments to de®ne a LATIN algorithm. The three basic

principles of the method are

P1: In order to separate the di�culties, we create two

groups of equations

· a group of local equations, eventually non-linear,

· a group of linear equations, eventually global.

P2: The approach is an iterative one, which provides

a solution of each group of equations at each itera-

tion (Fig. 7).

P3: An appropriate representation de®ned on X�
�0; T � has to be used to solve the global equations.

Fig. 7. The LATIN iteration.
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The search for a solution for the ®rst group of equa-

tion is called local stage and the global stage is the search

for a solution for the second group. Search directions are

de®ned to solve one stage after the other, in order to

obtain a unique solution of good quality (Fig. 8).

The LATIN initialisation can be done through an

elastic computation on all the time interval, followed

by a local stage. The elastic computation consists in

searching for s0 2 Ad \ Ce with

Ce � f� _ep; _X; r;Y� j � _ep; _X� � �0; 0�8 t 2 �0; T �8M 2 Xg:

�19�

Thanks to the normal formulation of the constitutive

equations, we can use the real subspace tangent to C

(characterised by the operator H) to de®ne Eÿ:

Eÿ � �D _ep;D _X;Dr;DY� j
D_ep

ÿD _X

" #(

� H
Dr

DY

� �

8 t 2 �0; T �8M 2 X

)

: �20�

For E�, we choose a very simple approach:

E� � f�D _ep;D _X;Dr;DY� j �Dr;DY� � �0; 0�8 t

2 �0; T �8M 2 Xg: �21�

At the iteration n� 1, sn and sn�1=2 are known and

the two stages are as follows:

Global stage: to ®nd sn�1 2 Ad such that

8 t 2 �0; T � 8M 2 X; �22�

_e
p
n�1

ÿ _Xn�1

" #

�
_e
p

n�1=2

ÿ _Xn�1=2

" #

�H
rn�1 ÿ rn�1=2

Yn�1 ÿ Yn�1=2

� �

:

Local stage: to ®nd sn�3=2 2 C, such that

8 t 2 �0; T � 8M 2 X
rn�3=2 � rn�1;
Yn�3=2 � Yn�1:

�

�23�

Numerous choices of search directions can be used, with

reserve that the local stage is still local and that the

global stage is still linear. For materials which verify

DruckerÕs inequality, the conditions about E� and Eÿ

which ensure the convergence of the method are devel-

oped in Ref. [9]. But this approach cannot be used easily.

This is why we chose above, the search directions used in

Ref. [22] for viscoplastic analysis.

In practice, the local stage is very easy to solve be-

cause t he solution is explicit. It is not the same for the

global stage, which is the most costly stage of the al-

gorithm. This is why the third principle P3 is introduced

to use a suitable approximate resolution of this stage. In

order to do so, a variational formulation is required [9].

Admissible thermodynamic forces are searched ®rstly

and then other admissible variables are computed.

The previous admissible thermodynamic forces are

known. So, we can search for their correction. The

formulation is based on the strain compatibility equa-

tion.

Global stage

(1) to ®nd �rn�1;Yn�1��M ; t�X� �0; T � such that

�rn�1;Yn�1� � �rn;Yn� � �Drn�1;DYn�1�; �24�

8M 2 X �Drn�1;DYn�1�jt�0 � 0; �25�

8 t 2 �0; T �Drn�1jt 2 S0; �26�

Z T

0

Z

X

fTr�Kÿ1
D _rn�1r

�� � Kÿ1
D _Yn�1 � Y

�gdXdt

�

Z T

0

Z

X

H
Drn�1

DYn�1

� �

�
r�

Y�

� �

dXdt

�

Z T

0

Z

X

_epn ÿ _e
p

n�1=2

ÿ� _Xn ÿ _Xn�1=2

" #

�
r�

Y�

� �

dXdt �27�

8�r�;Y�� with r�
jt 2 S0 8 t 2 �0; T � and

�r�;Y��jt�0 � 0 8M 2 X:

(2) to ®nd the displacement U n�1 2 U
�0;T �
ad , such that

(search direction is satis®ed):

ke� _U n�1� ÿ _e
�
kK;X��0;T � � Min

V 2U
�0;T �

ad

ke� _V � ÿ _ekk;X��0;T � �28�

with

_e
�
� Kÿ1

_rn�1 � _e
p

n�1=2 �Hrr�rn�1 ÿ rn�1=2�

�HrY�Yn�1 ÿ Yn�1=2� and kek2K;X��0;T �

�

Z T

0

Z

X

Tr�Kee�dXdt:

When no space approximation is used to search for the

admissible forces, the solution of this problem of mini-

misation is such that:

e� _U n�1� � _e
�

8 t 2 �0; T � 8M 2 X: �29�

(3) the other quantities are computed through the

equations of state (6):

Fig. 8. Search directions.
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8 t 2 �0; T � 8M 2 X
_e
p
n�1 � e� _U n�1� ÿ Kÿ1

_rn�1;
_Xn�1 � K _Yn�1:

(

�30�

All the variables can be deduced from the admissible

thermodynamic forces and the displacement. The numer-

ical representation must be applied to these quantities.

4.2. The numerical algorithm

In this work, we propose a straightforward repre-

sentation of the admissible thermodynamic forces. No-

tice that simple choices can be made in so far as the

computations are to be submitted to an error control in

all the cases. This representation must allow a simple

approximate resolution of the global stage without al-

tering the reliability of the algorithm. For the numerical

aspect, scalar time function and classical ®nite element

space function are used.

4.2.1. The representation of admissible thermodynamic

forces

We propose to use a base of space functions and a

particular solution to represent the admissible forces.

This base is entirely built during the LATIN iteration by

introducing new space functions before solving the

global stage (Fig. 9).

Let suppose that we know

· a set of independent displacement ®elds de®ned on X,

�Ak�k�1;...;Nu such that

Ak 2 U0 8k 2 f1; . . . ;Nug; �31�

· a set of independent stress ®elds de®ned on

X; �Bk�k�1;...;Ns such that

Bk 2 S0 8k 2 f1; . . . ;Nsg; �32�

· a set of independent ®elds of complementary thermo-

dynamic force de®ned on X, �Ck�k�1;...;Ny.

Moreover, at the iteration number n� 1, the quantities

�rn;Yn� and U n are known and they respect the fol-

lowing admissible constraints:

rn 2 S
�0;T �
ad ; �rn;Yn�jt�0 � 0 8M 2 X; U n 2 U

�0;T �
ad :

Thermodynamic forces are searched such that

U n�1�M ; t� � U n�M ; t� �
X

Nu

k�1

an�1
k �t�Ak�M�; �33�

rn�1�M ; t� � rn�M ; t� �
X

Ns

k�1

b
n�1
k �t�Bk�M�; �34�

Yn�1�M ; t� � Yn�M ; t� �
X

Ny

k�1

cn�1
k �t�Ck�M�; �35�

where an�1
k , bn�1

k and cn�1
k are scalar time functions. In

practice, the order of magnitude of Nu, Ns, Ny and n are

quite the same.

Therefore, on the global stage, the unknown factors

are the set of time functions:

gT � �bn�1
1 ; . . . ; bn�1

Ns ; c
n�1
1 ; . . . ; cn�1

Ny �;

aT � an�1
1 ; . . . ; an�1

Nu

� �

:

Two time-dependent di�erential systems have to be

solved:

(1) to ®nd g(t) de®ned on �0; T � such that

g�0� � 0;
G _g �Mtg � Qt 8 t 2 �0; T �;

�

�36�

(2) to ®nd a�t� de®ned on �0; T � such that

a�0� � 0;
G
�
_a � Qt 8 t 2 �0; T �:

(

�37�

The ®rst di�erential problem is obtained through Eq.

(27) and the second one is obtained through the dis-

placement problem (28).

4.2.2. The improvement of the base of space functions

To improve the base, we ®rstly generate space func-

tions with the residue of the global stage. Then, if the

new function is independent from the previous ones, we

keep it to improve the base. Otherwise the base is not

improved.

To generate space functions, we search a potential

correction for thermodynamic forces Dr�M ; t� and

DY�M ; t� de®ned on X� �0; T � such that

Dr�M ; t� � d�t�B�M� with B 2 S0;

DY�M ; t� � d�t�C�M�;
�38�

where d is a known time function built on the distance

between sn�1=2 and sn.

With the variational formulation (27), we obtain this

equation:

aH ��B;C�; �B
�;C��� � b��B�;C��� 8B� 2 S0 8C�;

�39�

where b is a kind of global stage residue:

b��B�;C��� �

Z T

0

Z

X

dTr�� _epn ÿ _e
p

n�1=2�B
��dXdt

ÿ

Z T

0

Z

X

d� _Xn ÿ _Xn�1=2� � C
� dXdt;

aH ��B;C�; �B
�;C��� � 1

2
d2�T �aK��B;C�; �B

�;C���

�

Z T

0

Z

X

d2H
B

C

� �

�
B�

C�

� �

dXdt;
Fig. 9. The approximate resolution of the global stage.
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where

aK��B;C�; �B
�;C��� �

Z

X

fTr Kÿ1BB�
� �

Kÿ1C � C�gdX:

In order to simplify the space function generation, we

prefer to treat the following problem: To ®nd B 2 S0

and C such that

aK��B;C�; �B
�;C��� � b��B�;C��� 8B� 2 S0 8C�:

�40�

We then obtain a global problem as far as stresses are

concerned: To ®nd B 2 S0 such that
Z

X

Tr��Kÿ1Bÿ eb�B
��dX � 0 8B� 2 S0 �41�

with eb �

Z T

0

d� _epn ÿ _e
p

n�1=2�dt

and an explicit solution for the other thermodynamic

forces:

C�M� � ÿK

Z T

0

d _Xn

�

ÿ _Xn�1=2

�

dt: �42�

Problem (41) is an elastic problem in which a unique

displacement ®eld A 2 U0 exists such that

e�A� � Kÿ1Bÿ eb: �43�

The stress problem (41) is therefore equivalent to the

following displacement problem: To ®nd A 2 U0 such

that
Z

X

Tr��Ke�A� � eb�e�U
���dX � 0 8U � 2 U0 �44�

and B � Ke�A� � eb 8M 2 X: This formulation allows

us to use the classical displacement approach of the ®-

nite element method.

The independence criteria of the space functions are

not developed here. The matrix G and G
�

are in fact

matrix of coupling terms between space functions. If and

only if those matrix are regular, there is a unique solu-

tion of the time problems. We then use this property to

propose independence criteria [23].

4.2.3. Numerical approximation

The algorithm presented above is based on continu-

ous problems. These problems are solved through clas-

sical numerical approaches.

The space functions are represented through the ®-

nite element method. Thus, the displacement ®eld is

represented with a matrix of shape functions N and a

vector of nodal displacement q: Ak � Nqk8k 2 f; . . . ;
Nug.

The space integrals are approached through a Gauss

method:

Z

X

f �M�dX !
X

Nh

i

f �M i�wi

in which �M i�i�1;...;Nh are the integration points. The

quantities sn and sn�1=2 except the displacements, have to

be de®ned in space at the integration point.

To represent the time functions we use a partition of

the time interval:

t1 � 0 < � � � < tiÿ1 < ti < � � � < tNt � T :

The time evolution of the displacements and of the ad-

missible thermodynamic forces are assumed to be linear

on �tiÿ1; ti� (Fig. 10).
The time integrals are approached through a h-

method built on integration instants siÿ1 such that

siÿ1 � �1ÿ h�tiÿ1 � hti with h � 0:5:

Then,
R T

0
f �t�dt is approached by

PNt

i f �si��ti � 1ÿ ti�.
In a logical manner, the di�erential system (36) be-

comes

g�t1� � 0; �45�

G
g�ti�1 ÿ g�ti�

�ti�1 ÿ ti�
�Msig�si� � Qsi 8 iP 1: �46�

Therefore, the quantity sn�1=2 must be de®ned at the

integration times.

The numerical solution of the global stage is noted:

sh;n�1, which is not in Ad , because ®nite element stresses

do not satisfy equilibrium equations. In order to esti-

mate the global error, we have to build sn�1 2 Ad on the

base of sh;n�1 (Fig. 11). This construction is realised

through techniques, which have been developed in Ca-

chan for 15 years [24] (Table 1).

Fig. 10. Time representation.

Fig. 11. Construction of admissible stress.
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4.3. An example of few LATIN iterations

To show how the space function base works, we can

give a ®rst numerical example: a perforated plate, which

is subject in its upper part to a loading described in Fig.

12. The mesh has six-node triangular elements and the

time interval is divided into six-time steps. The plastic

zones are represented in dark. Four iterations are per-

formed to ameliorate the elastic initialisation. A space

function for the quantities U n, rn, bn and Rn has been

generated at each iteration.

Let us study R4, the isotropic hardening at the end of

the fourth iteration. Four space functions constitute the

base. They are represented on the left of Fig. 13 and they

are classi®ed in order of appearing downwards. The

components on this base of the approximation of

the isotropic hardening are represented on the right on

the same ®gure. These components are time functions

computed at the fourth global stage. Moreover, we re-

ported the operation � and � to schematise the sum of

the products of a space function by a time function.

Similar ®gures should have been done for the quantities

U 4, r4 and b4. We can also observe the improvement of

the relationship between the admissible quantities r4;y;y

and e4;y;y (e.g.) at the maximum loading point A (Fig.

14).

In conclusion, while the number of iteration in-

creases, non-linearities seems to be better taken into

account on the interval �0; T � (Fig. 14) and the base of

space functions is improved (Fig. 13). Then, if the mesh

and the time discretisation are su�ciently ®ne, the pro-

posed LATIN algorithm can provide a good approxi-

mation of the exact solution of the reference problem.

Fig. 12. Plastic zones, loading and discretisation.

Fig. 13. An approximation of the isotropic hardening R4.

Table 1

Material characteristics

E 200,000 MPa a 300 k 80 MPa RS 53 MPa m 2

m 0.3 c 248,000

MPa

Q 80 MPa k 1/1502

MPaÿ2 sÿ1

R0 150

MPa

Fig. 14. Example of the improvement of the non-linear rela-

tionship between admissible stress and strain.
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5. Error indicators for adaptation

One of the main advantages of the LATIN is to en-

able to control the errors after each iteration (Fig. 15).

This is due to the computation on X� �0; T � of the ad-

missible solution.

In order to simplify the notations, we are going to use

s and sh instead of sn�1 and sh;n�1, respectively. There are

numerous error sources, which all contribute to the

global error estimator eref . The di�culty is to separate

these contributions through error indicators. These in-

dicators must be e�cient enough to enable to pilot the

resolution algorithm in the various cases. The parame-

ters to adapt are the mesh, time discretisation and the

number of iterations. We therefore need three error in-

dicators at least. Our approach to de®ne these indicators

consists in exploiting the notion of reference associated

to the error control. We demonstrate that these indica-

tors provide a partition of the global error. A de®nition

of plasticity visibility is also presented in this section.

5.1. A geometric approach

Before developing the equations, we are going to

present the main points of the approach, which are used

to de®ne the indicators. During the conception of the

numerical resolution algorithm, we introduced in order

approximations, which are speci®c to the LATIN

method Lap, approximations associated to the ®nite el-

ement method hap, and approximations associated to the

time integration scheme Dtap. This can be schematised in

Fig. 16, in which Pnum is the numerical global stage of the

last LATIN iteration.

We can also consider the classi®cation of the ap-

proximations, appearing in Fig. 17.

Between Pref and Pnum, we can de®ne intermediate

problems (Fig. 18):

· a non-linear ®nite element problem, which is contin-

uous in time Ph,

· a non-linear ®nite element problem with a numerical

time integration scheme Pt.

As for the reference problem, we are going to de®ne

the admissibility sets Adh and Adt such that

· the exact solution of Ph is de®ned by Adh \ C,

· the exact solution of Pt is de®ned by Adt \ C.

Two additional dissipation errors can be de®ned. The

®rst one is associated to the reference problem Ph:

Itime � e�st� with sh 2 Adh. Itime characterises both the

approximations Dtap and Lap. It is usually called time

error indicator. The second additional dissipation error

is associated to the reference problem Pt: INL � e�st� with
st 2 Adt. INL is an indicator, which characterises the

convergence defaults of the numerical global stage.

These properties are represented in Fig. 19.

By comparing eref and Itime, we are able to obtain a

space error indicator Ih. A comparison between Itime and

INL provides a time discretisation error indicator IDt. The

relative indicators are de®ned as follows:

eh �
Ih

D
; etime �

Itime

D
; eDt �

IDt

D
; eNL �

INL

D
; �47�

where D is de®ned in Eq. (18).

All the equations are not developed here and only the

de®nition of the space indicator is presented. For more

details the reader can consult Ref. [23].

5.2. The space error indicator

The main di�culty is to de®ne Ph in order to com-

pare eref and Itime. To do so, we choose to keep the same

evolution laws for Ph and Pref . These equations are

Fig. 15. Error control during the computation.

Fig. 16. Amount of approximations.

Fig. 17. Classi®cation of the approximations, in order to de®ne

error indicators.

Fig. 18. Intermediate problems.

Fig. 19. Di�erent dissipation errors.
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characterised by C. Then, we can use the function e to

de®ne Itime and eref . All the space approximations are

reported in the de®nition of Adh.

Adh is de®ned by

· initial conditions (5),

· ®nite element representation and the kinematic equa-

tion, U 2 U
�0;T �
h

U�M ; t� � N�M�q�t� 8�M ; t� 2 X� �0; T �; �48�

U j@IX
� U d 8 t 2 �0; T �; �49�

· ®nite element equilibrium, r 2 S
�0;T �
h

8 t 2 �0; T � 8U � 2 Uho; �50�

X

Nh

i�1

Tr re�U ��� �jMi
wi �

Z

X

f
d
� U � dX�

Z

@2X

F d � U
� dS;

· state equations at the integration points

8 i 2 f1; . . . ;Nhg

8 t 2 �0; T �
e
p

jM
i
� �e�U� ÿ Kÿ1r�jM i

;

XjM i
� K

ÿ1YjM i
;

(

�51�

· Special space representation

8 i 2 f1; . . . ;Nhg 8�M ; t� 2 Xi � �0; T �; �52�

s�M ; t� � s�M i; t�;

where the domain, Xi is associated to the integration

point M i such that: M i 2 Xi and mes�Xi� � wi. The

shape of Xi has no importance. An example is given in

Fig. 20 for a six-node triangular element with three in-

tegration points.

A special representation is introduced in order to

obtain a unique solution sh de®ned onX� �0; T �, which is

built on the basis of the numerical results of the global

stage. To obtain sh 2 Adh, we just have to extend the value

obtained at each integration point M i to the domain Xi.

Thanks to the representation, the quantities _Xh and

Yh satisfy the admissibility conditions associated to Pref .

The di�erence between s2Ad and sh 2 Adh is due to:

· the reconstruction of a stress, which rigorously satis-

®es the equilibrium equation,

· the strain space representation, which is not classical

because we only take into account the value of strain

in the integration points to build sh.

sÿ sh � �D_eÿ Kÿ1
D _r; 0;Dr; 0� �53�

with Dr � rÿ rh r 2 S
�0;T �
ad ; rh 2 S

�0;T �, 8 if1;
. . . ;Nhg 8�M ; t� 2 Xi � �0; T � De � e�U� ÿ e�U�jM i

:

When studying the di�erence eref ÿ Itime, we obtain the

following partition of the global error:

eref � Itime � Ih � C �54�

with

_x � � _ep; _Xh�; y � �r;Yh�; _xh � � _eph ;
_Xh�;

yh � �rh;Yh�; Ih �

Z

X

ih dX;

ih �

Z T

0

fu� _x� ÿ u� _xh� ÿ @ _xu� _xh� � � _xÿ _xh�gdt

�

Z T

0

fu��y� ÿ u��yh� ÿ @yu
��yh� � �y ÿ yh�gdt

�
1

2
Tr�Kÿ1��rÿ rh��rÿ rh��jt�T ;

C �

Z T

0

Z

X

Tr�Dr�@ru
��yh� ÿ _e

p
h��dXdt

�

Z T

0

Z

X

Tr�Kÿ1
D _r�@ _e � pu� _xh� ÿ rh��dXdt

�

Z T

0

Z

X

Tr�D _e�@ _e � pu� _xh� ÿ rh��dXdt:

A part of Ih corresponds to the elastic error in constit-

utive relation [24]:

1

2

Z

X

Tr�Kÿ1�rÿ rh��rÿ rh��jt�T dX:

In fact, Ih is similar to a sum of distances between

s 2 Ad and sh 2 Adh. This is why we are going to use Ih as

a space error indicator. Local information for the mesh

adaptation is obtained through ih. The quantity C is the

sum of coupling terms between di�erent defaults. A

similar partition of Itime can be obtained.

5.3. Elasticity and plasticity visibility

When a mesh is coarse, it may not enable to consider

plasticity. In such case, there is a problem of plasticity

visibility.

De®nition 1. Consider the computation of an admissible

solution sh with an elastic approximation of the material

behaviour: sh 2 Adh \ Ce. The plasticity is visible through

the mesh if and only if the error sources are not limited

to the space errors. This can be written as follows:Fig. 20. Domains used to build sh 2 Adh.
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etime 6� 0; �55�

which amounts to saying that there is at least one inte-

gration point in the plastic zone. If the plasticity is not

visible through the mesh, it is then needless to consider

performing a non-linear computation. With etime and the

prescribed global quality e0, it is also possible to observe

if the plasticity is signi®cant.

De®nition 2. The plasticity is signi®cant if and only if

etime >
e0

k
with k > 1: �56�

(In practice we use k � 0:5.) If the plasticity is not sig-

ni®cant, the mesh can be adapted as if the problem were

elastic to obtain the prescribed quality e0.

6. The non-incremental adaptive strategy

In this section, we present the adaptive strategy based

on the non-incremental algorithm and the error indica-

tors introduced above. The main idea is to utilise the

solution improvement process, which is obtained

through the LATIN method. In the course of the iter-

ations, the admissible solution satis®es the non-linear

equations to a greater extent. However, in the beginning,

the computation is very far from the solution. We

therefore do not need to use ®ne discretisation to rep-

resent the ®rst coarse corrections. In order to reduce the

cost of the simulation, we suggest to adapt the discreti-

sation in the course of the iterations of the LATIN

method in order to obtain balanced contributions to the

global error.

6.1. The framework of the strategy

The error control during the computation enables to

master:

· the number of iteration through the global relative

error eref ,

· the mesh through the space error indicator Ih,

· and the time discretisation through IDt.

Classical mesh adaptation or time discretisation ad-

aptation are possible after each error checking. In order

to continue the computation, the admissible solution has

to be transferred on the new discretisation (Fig. 21).

In case of mesh adaptation, the admissible solution sh
before adaptation becomes ~sh after the projection. This

projection is done when the space functions are repre-

sented with the new mesh. We ®rst transfer to new in-

tegration points, the values of

e�Ak�� �k�1...Nu; Bk� �k�1...Ns and Ck� �k�1...Ny

to obtain

�ê�k�1...Nu; �B̂k�k�1...Ns and �Ĉk�k�1...Ny

Then, ê� �k�1...Nu and �B̂k�k�1...Ns are modi®ed into ad-

missible ®elds through a minimisation associated to an

elastic energy. Before following the iteration, a local

stage provides ~sn�3=2.

6.2. Piloting criteria

The piloting criteria of adaptation are very simple.

Error contributions are said to be balanced if and only if

space defaults are close to the rest of the defaults:

0:1etime < eh < etime; �57�

time discretisation defaults are close to the numerical

convergence defaults:

0:01eNL < eDt < 0:5eNL: �58�

If eh P etime, then the mesh is too coarse to continue the

LATIN corrections without a mesh adaptation. If

eh 6 0:1etime, then the mesh is too ®ne, and the LATIN

iteration is too expensive.

We add to these criteria the following rules:

· R1: after the initialisation, if plasticity is signi®cant,

then a ®rst iteration is made with the coarse mesh.

If this is not the case, the mesh is automatically re-

®ned to get a better elastic initialisation.

· R2: after each mesh adaptation, one iteration at least

is made, even if error contributions are not balanced.

Some rules are added to limit the number of error

controls. The global error and the space error indicator

are not computed at each iteration.

6.3. A detailed example

We consider the adaptive computation of the perfo-

rated plate presented in Section 2. The aim is to obtain a

global dissipation error estimate equal to 5% (e0 � 5%).

The initial mesh is M1 (Fig. 22) and the interval �0; T � is
divided into six subintervals.

The evolution of the global error, eh and etime during

the iteration, are presented Fig. 23. In the course of

the computation, the mesh is adapted three times. The

adapted meshes are M2, M3 and M4 (Fig. 24). The

analysis is conducted with six-node triangular elements.

An elastic computation with M1 (40 elements) allows

us to initialise the resolution with an admissible solution

s0. Using this approximation, the global error computed

is eref � 36%, the space error indicator is eh � 29%, and

Fig. 21. Adaptive iteration.
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etime � 16%. Plasticity is signi®cant (etime > 0:5e0). Then,
an initial iteration is performed to take better account of

plasticity in the admissible solution (Rule R1). Thus, the

error computation gives: eref � 20%, eh � 16%, etime �
12%. At the end of this ®rst iteration, space error are too

high in comparison with the other error sources (eh >
etime). Thanks to the local contribution ih, a new mesh

M2 (94 elements) is automatically built to reduce the

space error. Data are transferred from the mesh M1 to

the mesh M2, and an error control is realised: eref �
20%, eh � 9%, etime � 16%. We notice that space errors

have obviously decreased, and the error sharing has

been modi®ed (etime � 1:8eh instead of etime � 0:6eh). The
following iterations improve the integration of the non-

linear ®nite element problem: etime decreases. Three it-

erations are done before a new mesh adaptation. The

new adapted mesh is M3 (333 elements). The di�erent

error levels are balanced (eref � 14%, eh � 7%, etime �
10%). At the end of the 10th iteration, the mesh has to

be changed (eh > etime). The mesh M4 is built (1362 ele-

ments). At the end of the 16th iteration, the global error

represents 4.9%. The aim has been reached.

During this computation, the time discretisation has

been adapted at the end of 12th iteration. The third and

fourth time subintervals have been cut into two equal

parts.

6.4. An example where plasticity is negligible

In the previous example, by reducing the loading

intensity, the size of the plastic zones decreases. Let us

study a maximum loading equal to 80 MPa.

We still start the adaptive computation with the same

mesh M1 (Fig. 22). After the elastic initialisation, the

error computation gives: eref � 18%, eh � 18:5%, etime �
0:5%. Plasticity is not signi®cant (etime < 0:5e0). Then,
the mesh is adapted to improve the elastic computation.

The new mesh is M2 (Fig. 25) and we obtain: eref � 5%,

eh � 4%, etime � 0:8%. The aim is reached without any

plastic computation although plasticity exists (etime > 0).

In this case, plastic strains can be estimated with local

computations.

Fig. 22. Initial mesh M1.

Fig. 23. Error controls during the iterations.

Fig. 24. Adapted meshes.
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6.5. E�ciency of the strategy

Thanks to the use of coarse discretisation to start the

simulation, the time needed to prepare the computation

is reduced, because coarse mesh are very easy to obtain.

Moreover, by balancing the error contributions during

the iterations, this strategy allows to reduce the com-

putation itself, for a given quality. To quantify this cost

reduction, we compare the CPU time of our adaptive

computation to the CPU time of a reference computa-

tion. This reference computation is similar to an expertÕs

computation, where the adapted discretisation is known

in order to obtain the prescribed quality. Here, this

adapted discretisation is provided through the adaptive

strategy. Moreover, the reference computation is made

through the LATIN algorithm with the same discreti-

sation during all the iteration.

6.6. Example of e�ciency

To illustrate the reduction of the cost computation,

we present the adaptive computation of a complex

problem. Loading and plastic zones are presented in Fig.

26.

The evolution of the global error and eh during the

iteration are presented in Fig. 27. The mesh has been

adapted three times. These adaptations appear at the

end of the ®rst, second and eighth iterations. The meshes

are presented in Fig. 28. The aim has been reached in 14

iterations (eref � 5:1).

Fig. 25. Mesh adapted through an elastic computation.

Fig. 26. Loading and plastic zones.

Fig. 27. Error checks during the iterations.

Fig. 28. Adapted meshes.
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The reference computation is completely made with

the mesh M4. The aim is reached in 13 iterations. The

CPU time (on hp700 computer) needed for this com-

putation is twice as high as that of the adaptive strategy.

Thus, our adaptive strategy allows to reduce the com-

putation cost for a given quality.

7. Conclusion

The LATIN method is well suited for adaptive

computations based on error control, because it allows

an e�ective improvement in the numerical solution over

the entire time interval.

By balancing the error contributions during the

computation, we obtain lower computation cost. We can

say that the proposed strategy allows to adapt the

computational e�ort during the iteration in comparison

with the convergence defaults.

Thanks to the partition of the global error into error

indicator for each kind of approximation, the piloting

criteria are simple and robust, whatever the level of

plasticity is.
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