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To control the numerical quality of non-linear simulations allows to automate the choice of discretisation. Within the framework of time dependent problems, this quality depends on the error made in the calculation of the deformation history. Generally, a kind of expert analysis precedes the satisfying computation. In practice, this analysis could be an optimisation of numerical approximations. We propose a strategy herein, which naturally includes this expert analysis stage. The desired solution is built iteratively, improving all of the history at each iteration, thanks to the LATIN method. A global error estimator is provided by the dissipation error. To pilot the adaptive computation, we propose a partition of this estimator into indicators associated with each kind of error contribution.

Introduction

Nowadays, the industry requires the resolution of highly complex problems: 3D problems, non-linear material behaviours, contacts, large deformations, etc. Ahead of solution of such problems, it is necessary to take into account various economical aspects, which are very important: computation time, time necessary to prepare the computation (especially the meshing of complex structures). For a given resolution algorithm, adaptive computation allows us to minimise the computational costs while obtaining a prescribed accuracy by mastering the parameters of the computation (size and type of elements, time increment length). This has been done ®rst in case of linear problems like elasticity [1±3]. And, the proposed methods have been extended to some non-linear time-dependent problems [4±7]. Re-garding the latter problems, all the adaptive computations proposed are based on the incremental resolution method. Although a non-incremental method, called LATIN method [START_REF] Ladev | Sur une famille dÕalgorithmes en M ecanique des Structures[END_REF][START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF], allows us to treat problems of non-linear material behaviours, contacts, or large deformations.

As the incremental method is not the only approach to solve non-linear time-dependent problems, we can wonder if it is the most suitable method to build an adaptive strategy characterised by a short computation time and robust error control. In this work, we address this issue by considering the use of the LATIN method to build a non-incremental adaptive strategy. To control conveniently the numerical approximations, we studied the computation of viscoplastic structures with standard constitutive equations [START_REF] Halphen | Sur les mat eriaux standards g en eralis es[END_REF], on the assumption of small displacements and for quasi-static loading. But numerous other non-linear time-dependant problems could have been studied to build a similar strategy.

The LATIN method is an iterative method to improve approximate solution de®ned on all the structure and on all the history studied. In the case studied, as well as in NewtonÕs method, the goal of the iterations is to treat the non-linearities. But here it is realised on the whole history. A discrete representation of the solution is obviously used. In our approach, this representation is built on a base of space functions computed by employing the ®nite element method. On this base, the components of an approximate solution are scalar time functions.

To reduce the computational cost, we have proposed an adaptive strategy, in which the improvement of the solution representation is due to the improvement of the treatment of the non-linear equations. A coarse discretisation must be chosen at the beginning of the adaptive strategy. An initial solution is provided through an elastic computation on the interval studied. According to the ¯aws in the elastic approximation, an error indicator provides a level of non-linearity for the studied problem. In the case of signi®cant non-linearity, LATIN iterations are initiated with the coarse time and space representation, and this representation then becomes more precise over the course of the iterations.

Errors in constitutive equation, especially dissipation error [START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF], provide a global error estimator, which characterises the distance between an admissible solution and the exact solution. We propose an analytical partition of the global error into indicators associated with each error contributions (time, space, and iteration defaults). Hence, the goal of the main piloting criteria is chosen to obtain a balanced contribution of each kind of error indicator during the computation. The computation is stopped when the global error satis®es the prescribed quality.

The layout of this paper is the following: A brief analysis of existing adaptive strategies enables us to discuss the drawbacks and advantages of the incremental approach. The equations of the viscoplastic reference problem are introduced in Section 2 together with the de®nition of the dissipation error estimator. A straightforward LATIN algorithm is proposed to solve the reference problem in Section 3. At the end of this section, an example of time and space representation is given. Section 4 outlines some error indicators used for the piloting criteria. And at last, the non-incremental adaptive strategy proposed is described in Section 5, where numerical examples also show the reliability and the eciency of our approach.

Adaptive strategy for incremental resolution

By adaptive strategy, we exactly mean the way to organise the numerical resolution, the error control procedure and the parameter adaptation. It could be a mesh adaptation or a time discretisation adaptation for example (Fig. 1). The diculties encountered to build such strategy are common to numerous time-dependent problems. Hence, we extend our analysis from visco-plastic or plastic problems to dynamic problems. Throughout the studied strategy, the resolution method is an incremental one. We will present its principle before dealing with dierent strategies.

A few remarks about the incremental resolution method

A good modelling of viscoplastic phenomena requires to take into account the history of the deformation. Kinematic constraints and equilibrium equations are similar to those of an elastic problem. To study quasi-static transformation, their de®nition is merely extended on the time interval [0, T]. The constitutive equation can be formalised by a non-linear equation linking local stresses to a strain history.

The usual incremental method consists in dividing the time interval [0, T] into a sequence of subintervals t iÀ1 ; t i associated with time steps.

Generally, on each subinterval the displacement evolution is supposed to be linear:

U M; t U i MÀU iÀ1 M t i À t iÀ1 t À t iÀ1 U iÀ1 M; 1
where M is the current point of the structure. Consequently, the stresses at the instant t i depend on the value of the displacements in t 0 ; t 1 ; ...; t i only. The state of the structure being suciently known at the instant t iÀ1 , the problem is to ®nd displacements at the instant t i , satisfying kinematic equations and being the solution of time-independent non-linear equations. Such equations are associated to equilibrium equations at the instant t i through the constitutive relation. They are solved through a Newton-type iterative method [START_REF] Owen | Finite elements in plasticity[END_REF]. During the iterations, stresses in equilibrium and stresses satisfying constitutive equations are successively built. Usually the displacement ®nite element method is associated with the incremental method. Consequently, the equilibrium stresses satisfy the equilibrium equation in a restricted manner only.

The step-by-step strategy

We start with strategies for which the adaptation is done during the resolution. Such strategies consist in improving the discretisation while successively treating the time steps. Generally, during a computation without any adaptation, the errors accumulate as the time increases. The minimum quality to respect is de®ned by the user who prescribes, according to the kind of criterion used, either:

• the maximum relative error e 0 allowed on interval [0, t] for each instant t of [0, T] (the part of error, which is independent of the deformation history can be modi®ed by an adaptation of the mesh) [START_REF] Cognal | Optimisation et ®abilit e des calculs par el ements ®nis en elastoplasticit e[END_REF] (Fig. 2); • or a maximum value for error contribution of each time step [12±15]. During the computation, the time interval is subdivided into adaptive periods with quality criteria. The transition between the two periods is associated to an adaptation (Fig. 3). After an adaptation, the computation is usually repeated again on the last time step of the adaptive period, in order to improve the quality before continuing the computation.

This kind of strategy is used to adapt the mesh in Refs. [START_REF] Belytschko | Adaptivity in nonlinear structural dynamics with contact-impact. Adaptive, Multilevel Hierarch Computat Strateg AMD[END_REF][START_REF] Zeng | Spatial mesh adaptation in semidiscrete ®nite element analysis of linear elastodynamic problems[END_REF] for dynamic analyses and in Refs. [START_REF] Cognal | Optimisation et ®abilit e des calculs par el ements ®nis en elastoplasticit e[END_REF][START_REF] Bass | Adaptive ®nite element methods for a class of evolution problems in viscoplasticity[END_REF] for plastic and viscoplastic analyses. Obviously, to continue the computation with the adapted mesh, some initial data, at the beginning of the step, are transferred from the old mesh. Time adaptation is proposed with this strategy in Ref. [START_REF] Chaboche | EVPCYCL: Un code dÕ el ements ®nis en viscoplasticit e cyclique[END_REF] for viscoplastic analyses while time and space discretisation are together adapted in Ref. [START_REF] Choi | An adaptive control of spatialtemporal discretization error in ®nite element analysis of dynamic problems[END_REF] for dynamic analyses and in Ref. [START_REF] Barthold | Error estimation mesh adaptivity for elasto-plastic deformations[END_REF] for plasti analyses.

In non-linear cases when, due to mesh adaptation, the computation is performed again on a step, a rather good solution de®ned on the previous mesh is known. In Ref. [START_REF] Tie | Error estimates, h adaptative strategy and hierarchical concept for non-linear ®nite element method[END_REF], the authors propose reducing the cost of the non-linear treatment by using this solution to initialise the iterative resolution on the step. This is performed with a hierarchical mesh adaptation associated with a sort of multigrid resolution of equilibrium equations.

One of the main advantages of an adaptation during the resolution is to take into account the mechanical information obtained through the previous computa-tion, thanks to a transfer of initial data, or moreover, thanks to the last approach presented above.

The multi-resolution stage strategy

All of the deformation history contributes to the error at instant t. If the adaptation periods are too long, the error induced during the former instant can be dominant and may not be reduced by an adaptation in the following instant. In this case, it is more suitable to use a strategy, which allows improving the description of all the deformation history. But, because of the incremental resolution method, this becomes possible only with a new resolution started at the beginning.

This kind of strategy is used at the LMT for plastic or viscoplastic analyses with several stages of resolution [START_REF] Cognal | Optimisation et ®abilit e des calculs par el ements ®nis en elastoplasticit e[END_REF][START_REF] Gallimard | Error estimation and adaptivity in elastoplasticity[END_REF][START_REF] Mo | Une m ethode de mesure dÕerreur a posteriori pour les mod eles de mat eriaux d ecrits par variables internes[END_REF]. In practice, in these works, the same mesh is used on all the time interval. A ®rst mesh is obtained through an adaptive elastic computation for the maximum loading. Then, after each resolution with error control, the mesh and eventually some other parameters are adapted to optimise the computation of a solution with the required quality (Fig. 4).

In the cases of simple problems, only two stages are needed. A time varying mesh has been used with this strategy to improve the optimality for dynamic analyses [START_REF] Belytschko | Adaptivity in nonlinear structural dynamics with contact-impact. Adaptive, Multilevel Hierarch Computat Strateg AMD[END_REF][START_REF] Coorevits | Mesh optimization for problems with steep gradients areas[END_REF]. The problem is completely solved with an initial coarse mesh. During the coarse mesh run, assessments are made at selected intervals, from which the level of adaptation for each adaptation interval is selected. This time varying mesh is then used to make a second complete run (Fig. 5).

We can note that mesh adaptation is not always sucient to master the quality of plastic or viscoplastic analyses. In fact, the time discretisation and the accuracy of the iterative Newton algorithm must usually be adapted. Such adaptations have been proposed in Refs. [START_REF] Gallimard | Error estimation and adaptivity in elastoplasticity[END_REF][START_REF] Mo | Une m ethode de mesure dÕerreur a posteriori pour les mod eles de mat eriaux d ecrits par variables internes[END_REF].

Advantages and drawbacks

Both the strategies presented above have their own drawbacks and advantages: On the one hand, the multiresolution stage strategy allows a robust error control. But its costs can be worrisome in case of non-linear analyses, because the intermediate solutions are used only for their defaults although they provide mechanical pieces of information. On the other hand, the step-bystep strategy takes into account the previous computation, with only small returns (in few steps). But it canÕt allow a robust error control, because the error is estimated a posteriori. It is therefore known only when the computation is ®nished. The incremental resolution method does not seem, then, to be appropriate to build an adaptive strategy with a robust error control and ecient simulation.

In the strategy proposed here, approximate solutions can be improved over all the time interval through an iterative approach: the LATIN method. As the approximate solution is de®ned on all the time interval, the global error can be checked at the end of each iteration. And thanks to the iterative approach, the previous computation is obviously taken into account.

Properties of the equations to be solved

The reference problem

We suppose that the structure is a domain X.O na part @ 1 X of the boundary @X, we suppose that the imposed displacement ®eld is U d (Fig. 6). On the complementary part @ 2 X, density of forces F d is imposed. Moreover, X is submitted to a density of body forces f d .

In viscoplasticity, the value of the stress at t is a function of the history of the strain at the instant t, and this function may be expressed at each current point M of the structure X, by the relation:

r jt Ae js ; s 6 t; 2
where A is an operator characteristic of the material and e is the strain ®eld. In case of stable constitutive equation, the knowledge of such a relationship between stresses and strains is sucient to give a solution which respects kinematic equations and equilibrium equations.

To make everything simple, a common way to describe this relationship is to use internal variables in the framework of thermodynamics. It has been shown that dierent choices of internal variables can make it possible to formulate a given relationship between stresses and strains [START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF]. A convenient formulation for computation is a normal formulation in which equations of state are linear [START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF]. This formulation is obtained from the classical one by changing a set of internal variables. Moreover we suppose that the model is standard [START_REF] Halphen | Sur les mat eriaux standards g en eralis es[END_REF]. This means that evolution laws are obtained from a viscoplastic potential.

The internal variables are the plastic strain e p ,a tensor a associated with the kinematic hardening b and a scalar p associated to the isotropic hardening R. We use the simpli®ed notations X a; p; Y b; R. Therefore, the problem to be solved can be described as follows.

Reference problem P ref : to ®nd the dissipation quantities s _ e p ; _ X; r; Y such that kinematic equation:

U P U 0;T ad V t P0; T ; U j@ 1 X U d ; 3 equilibrium equation: r P S 0;T ad V t P0; T V U à P U 0 ; 4 À X Trr eU à dX X f d Á U à dX @ 2 X F d Á U à dS 0; constitutive relations: V M P X, initial state r jt0 0; Y jt0 0; 5 equations of state e e K À1 r; X KY V t P0; T ; 6 evolution laws _ e p @ r u à ; À _ X @ Y u à V t P0; T ; 7
where U 0 is de®ned by

U 0 U MM P X j U @ 1 X È 0 É : 8 
We are also going to use S 0 de®ned by

S 0 rMM P Xj X Tr reU Ã dX & 0 V U Ã P U 0 ' : 9 
Fig. 6. The loading.

The material behaviour is characterised by

u à r; Y k m 1 hzi m1 ; 10 z kr D À bk 1 2 a c kbk 2 À 1RÀR 0 ; 11 kk 2 Tr 2 ; 12 1RQ R R s 2 À R R s for R 6 R s ; 13 
where r D is the deviatoric part of r, and K and K are characteristic operators.

The reference problem is a global non-linear one. But some of the equations are linear and others are local. In fact non-linear equations, evolution equations, are local. In order to use this feature, we say that s _ e p ; _ X; r; Y is admissible if and only if it satis®es all the linear equations, i.e. all except evolution laws. We then write s P A d .I f_ e p ; _ X; r; Y con®rms the non-linear evolution laws, we write: s P C. So, the exact solution of the reference problem s ex must satisfy: s ex C A d .

The dissipation error estimator

The constitutive formulation being a normal and standard one, an error in constitutive equation allows to value the way non-linear equations are solved. es with s P A d is then a global error estimator, which takes account of all the defaults that contribute to the exact error: s À s ex .

A non-incremental resolution

In this section, we present the numerical algorithm that is used to approximately solve the reference problem. It is built in the framework of the LATIN method introduced by Ladev eze in 1985 [START_REF] Ladev | Sur une famille dÕalgorithmes en M ecanique des Structures[END_REF][START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF]. In the ®rst part of this section, we present a base-line algorithm common to other implementations of the method. This algorithm is completely de®ned without any discretisation. Then, we describe the way we use a discretisation to build an ef-®cient and robust algorithm. An example is presented to explain the base of space functions used to obtain a numerical representation of the solution on all of the time interval and on all of the domain X.

The LATIN method

The LATIN method contrasts with the incremental method in the sense that it is not built on the time step notion. It is not necessary to subdivide [0,T] into increments to de®ne a LATIN algorithm. The three basic principles of the method are P1: In order to separate the diculties, we create two groups of equations • a group of local equations, eventually non-linear,

• a group of linear equations, eventually global. P2: The approach is an iterative one, which provides a solution of each group of equations at each iteration (Fig. 7).

P3: An appropriate representation de®ned on XÂ 0; T has to be used to solve the global equations. The search for a solution for the ®rst group of equation is called local stage and the global stage is the search for a solution for the second group. Search directions are de®ned to solve one stage after the other, in order to obtain a unique solution of good quality (Fig. 8).

The LATIN initialisation can be done through an elastic computation on all the time interval, followed by a local stage. The elastic computation consists in searching for s 0 P A d C e with C e f_ e p ; _ X; r; Yj_ e p ; _ X0; 0Vt P0; T VM P Xg:

19

Thanks to the normal formulation of the constitutive equations, we can use the real subspace tangent to C (characterised by the operator H) to de®ne E À :

E À D_ e p ; D _ X; Dr; DYj D_ e p ÀD _ X 45 @ H Dr DY ! V t P0; T VM P X A : 20 
For E , we choose a very simple approach:

E fD_ e p ; D _ X; Dr; DYjDr; DY0; 0Vt P0; T VM P Xg: 21

At the iteration n 1, s n and s n1=2 are known and the two stages are as follows:

Global stage: to ®nd s n1 P A d such that

V t P0; T V M P X; 22 
_ e p n1 À _ X n1 45 _ e p n1=2 À _ X n1=2 45 H r n1 À r n1=2 Y n1 À Y n1=2 ! :
Local stage: to ®nd s n3=2 P C, such that

V t P0; T V M P X r n3=2 r n1 ; Y n3=2 Y n1 : & 23 
Numerous choices of search directions can be used, with reserve that the local stage is still local and that the global stage is still linear. For materials which verify DruckerÕs inequality, the conditions about E and E À which ensure the convergence of the method are developed in Ref. [START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF]. But this approach cannot be used easily.

This is why we chose above, the search directions used in Ref. [START_REF] Artz | An ecient computational method for complex loading histories[END_REF] for viscoplastic analysis.

In practice, the local stage is very easy to solve because t he solution is explicit. It is not the same for the global stage, which is the most costly stage of the algorithm. This is why the third principle P3 is introduced to use a suitable approximate resolution of this stage. In order to do so, a variational formulation is required [START_REF] Ladev | M ecanique non lin eaire des Stuctures[END_REF]. Admissible thermodynamic forces are searched ®rstly and then other admissible variables are computed.

The previous admissible thermodynamic forces are known. So, we can search for their correction. The formulation is based on the strain compatibility equation.

Global stage (1) to ®nd r n1 ; Y n1 M; t X Â0; T such that

r n1 ; Y n1 r n ; Y n Dr n1 ; DY n1 ; 24 V M P X Dr n1 ; DY n1 jt0 0; 25 V t P0; T Dr n1jt P S 0 ; 26 T 0 X fTrK À1 D _ r n1 r à K À1 D _ Y n1 Á Y à g dX dt T 0 X H Dr n1 DY n1 ! Á r à Y à ! dX dt T 0 X _ e p n À _ e p n1=2 À _ X n À _ X n1=2 45 Á r à Y à ! dX dt 27 
Vr à ; Y à with r à jt P S 0 V t P0; T and r à ; Y à jt0 0 V M P X:

(2) to ®nd the displacement U n1 P U 0;T ad , such that (search direction is satis®ed):

ke _ U n1 À _ e $ k K;XÂ0;T Min V PU 0;T ad ke _ V À_ ek k;XÂ0;T 28 with _ e $ K À1 _ r n1 _ e p n1=2 H rr r n1 À r n1=2 H rY Y n1 À Y n1=2 and kek 2 K;XÂ0;T T 0 X TrK ee dX dt:
When no space approximation is used to search for the admissible forces, the solution of this problem of minimisation is such that:

e _ U n1 _ e $ V t P0; T V M P X: 29 
(3) the other quantities are computed through the equations of state (6): 

V t P0; T V M P X _ e p n1 e _ U n1 ÀK À1 _ r n1 ; _ X n1 K _ Y n1 : @ 30
All the variables can be deduced from the admissible thermodynamic forces and the displacement. The numerical representation must be applied to these quantities.

The numerical algorithm

In this work, we propose a straightforward representation of the admissible thermodynamic forces. Notice that simple choices can be made in so far as the computations are to be submitted to an error control in all the cases. This representation must allow a simple approximate resolution of the global stage without altering the reliability of the algorithm. For the numerical aspect, scalar time function and classical ®nite element space function are used.

The representation of admissible thermodynamic forces

We propose to use a base of space functions and a particular solution to represent the admissible forces. This base is entirely built during the LATIN iteration by introducing new space functions before solving the global stage (Fig. 9).

Let suppose that we know • a set of independent displacement ®elds de®ned on X, A k k1;...;Nu such that A k P U 0 V k Pf1; ...; Nug; 31

• a set of independent stress ®elds de®ned on X; B k k1;...;Ns such that B k P S 0 V k Pf1; ...; Nsg; 32

• a set of independent ®elds of complementary thermodynamic force de®ned on X, C k k1;...;Ny . Moreover, at the iteration number n 1, the quantities r n ; Y n and U n are known and they respect the following admissible constraints: Two time-dependent dierential systems have to be solved:

r n P S 0;T ad ; r n ; Y n jt0 0 V M P X; U n P U
(1) to ®nd g(t) de®ned on 0; T such that g00;

G _ g M t g Q t V t P0; T ; & 36 
(2) to ®nd at de®ned on 0; T such that a00;

G $ _ a Q t V t P0; T : @ 37
The ®rst dierential problem is obtained through Eq. ( 27) and the second one is obtained through the displacement problem (28).

The improvement of the base of space functions

To improve the base, we ®rstly generate space functions with the residue of the global stage. Then, if the new function is independent from the previous ones, we keep it to improve the base. Otherwise the base is not improved.

To generate space functions, we search a potential correction for thermodynamic forces DrM; t and DYM; t de®ned on X Â0; T such that DrM; tdtBM with B P S 0 ; DYM; tdtCM; 38 where d is a known time function built on the distance between s n1=2 and s n .

With the variational formulation (27), we obtain this equation:

a H B; C; B Ã ; C Ã bB Ã ; C Ã V B Ã P S 0 V C Ã ;
39 where b is a kind of global stage residue: where

bB Ã ; C Ã T 0 X dTr_ e p n À _ e p n1=2 B Ã dX dt À T 0 X d _ X n À _ X n1=2 ÁC Ã dX dt; a H B; C; B Ã ; C Ã 1 2 d 2 T a K B; C; B Ã ; C Ã T 0 X d 2 H B C ! Á B Ã C Ã ! dX dt;
a K B; C; B Ã ; C Ã X fTr K À1 BB Ã ÂÃ K À1 C Á C Ã g dX:
In order to simplify the space function generation, we prefer to treat the following problem: To ®nd B P S 0 and C such that

a K B; C; B Ã ; C Ã bB Ã ; C Ã V B Ã P S 0 V C Ã : 40
We then obtain a global problem as far as stresses are concerned: To ®nd B P S 0 such that

X TrK À1 B À e b B Ã dX 0 V B Ã P S 0 41 with e b T 0 d_ e p n À _ e p n1=2 dt
and an explicit solution for the other thermodynamic forces:

CMÀK T 0 d _ X n À _ X n1=2 dt: 42 
Problem ( 41) is an elastic problem in which a unique displacement ®eld A P U 0 exists such that

eAK À1 B À e b : 43 
The stress problem (41) is therefore equivalent to the following displacement problem: To ®nd A P U 0 such that

X TrKeAe b eU Ã dX 0 V U Ã P U 0 44
and B KeAe b V M P X: This formulation allows us to use the classical displacement approach of the ®nite element method. The independence criteria of the space functions are not developed here. The matrix G and G $ are in fact matrix of coupling terms between space functions. If and only if those matrix are regular, there is a unique solution of the time problems. We then use this property to propose independence criteria [START_REF] Ryckelynck | Sur lÕanalyse des structures viscoplastiques: strat egie adaptative et contrôle de qualit e[END_REF].

Numerical approximation

The algorithm presented above is based on continuous problems. These problems are solved through classical numerical approaches.

The space functions are represented through the ®nite element method. Thus, the displacement ®eld is represented with a matrix of shape functions N and a vector of nodal displacement q: A k Nq k V k Pf; ...; Nug.

The space integrals are approached through a Gauss method:

X f M dX 3 Nh i f M i w i
in which M i i1;...;Nh are the integration points. The quantities s n and s n1=2 except the displacements, have to be de®ned in space at the integration point.

To represent the time functions we use a partition of the time interval:

t 1 0 < ÁÁÁ < t iÀ1 < t i < ÁÁÁ < t Nt T :
The time evolution of the displacements and of the admissible thermodynamic forces are assumed to be linear on t iÀ1 ; t i (Fig. 10).

The time integrals are approached through a hmethod built on integration instants s iÀ1 such that s iÀ1 1 À ht iÀ1 ht i with h 0:5:

Then, T 0 f t dt is approached by Nt i f s i t i 1 À t i .
In a logical manner, the dierential system (36) becomes

gt 1 0; 45 G gt i1 À gt i t i1 À t i M si gs i Q si V i P 1: 46 
Therefore, the quantity s n1=2 must be de®ned at the integration times.

The numerical solution of the global stage is noted: s h;n1 , which is not in A d , because ®nite element stresses do not satisfy equilibrium equations. In order to estimate the global error, we have to build s n1 P A d on the base of s h;n1 (Fig. 11). This construction is realised through techniques, which have been developed in Cachan for 15 years [START_REF] Ladev Eze | Error estimation and mesh optimization for classical ®nite elements[END_REF] (Table 1). 

An example of few LATIN iterations

To show how the space function base works, we can give a ®rst numerical example: a perforated plate, which is subject in its upper part to a loading described in Fig. 12. The mesh has six-node triangular elements and the time interval is divided into six-time steps. The plastic zones are represented in dark. Four iterations are performed to ameliorate the elastic initialisation. A space function for the quantities U n , r n , b n and R n has been generated at each iteration.

Let us study R 4 , the isotropic hardening at the end of the fourth iteration. Four space functions constitute the base. They are represented on the left of Fig. 13 and they are classi®ed in order of appearing downwards. The components on this base of the approximation of the isotropic hardening are represented on the right on the same ®gure. These components are time functions computed at the fourth global stage. Moreover, we reported the operation and  to schematise the sum of the products of a space function by a time function. Similar ®gures should have been done for the quantities U 4 , r 4 and b 4 . We can also observe the improvement of the relationship between the admissible quantities r 4;y;y and e 4;y;y (e.g.) at the maximum loading point A (Fig. 14).

In conclusion, while the number of iteration increases, non-linearities seems to be better taken into account on the interval 0; T (Fig. 14) and the base of space functions is improved (Fig. 13). Then, if the mesh and the time discretisation are suciently ®ne, the proposed LATIN algorithm can provide a good approximation of the exact solution of the reference problem. 

Error indicators for adaptation

One of the main advantages of the LATIN is to enable to control the errors after each iteration (Fig. 15). This is due to the computation on X Â0; T of the admissible solution.

In order to simplify the notations, we are going to use s and s h instead of s n1 and s h;n1 , respectively. There are numerous error sources, which all contribute to the global error estimator e ref . The diculty is to separate these contributions through error indicators. These indicators must be ecient enough to enable to pilot the resolution algorithm in the various cases. The parameters to adapt are the mesh, time discretisation and the number of iterations. We therefore need three error indicators at least. Our approach to de®ne these indicators consists in exploiting the notion of reference associated to the error control. We demonstrate that these indicators provide a partition of the global error. A de®nition of plasticity visibility is also presented in this section.

A geometric approach

Before developing the equations, we are going to present the main points of the approach, which are used to de®ne the indicators. During the conception of the numerical resolution algorithm, we introduced in order approximations, which are speci®c to the LATIN method L ap , approximations associated to the ®nite element method h ap , and approximations associated to the time integration scheme Dt ap . This can be schematised in Fig. 16, in which P num is the numerical global stage of the last LATIN iteration.

We can also consider the classi®cation of the approximations, appearing in Fig. 17.

Between P ref and P num , we can de®ne intermediate problems (Fig. 18): • a non-linear ®nite element problem, which is continuous in time P h ,

• a non-linear ®nite element problem with a numerical time integration scheme P t .

As for the reference problem, we are going to de®ne the admissibility sets A dh and A dt such that • the exact solution of P h is de®ned by A dh C, • the exact solution of P t is de®ned by A dt C.

Two additional dissipation errors can be de®ned. The ®rst one is associated to the reference problem P h : I time es t with s h P A dh . I time characterises both the approximations Dt ap and L ap . It is usually called time error indicator. The second additional dissipation error is associated to the reference problem P t : I NL es t with s t P A dt . I NL is an indicator, which characterises the convergence defaults of the numerical global stage. These properties are represented in Fig. 19.

By where D is de®ned in Eq. [START_REF] Tie | Error estimates, h adaptative strategy and hierarchical concept for non-linear ®nite element method[END_REF]. All the equations are not developed here and only the de®nition of the space indicator is presented. For more details the reader can consult Ref. [START_REF] Ryckelynck | Sur lÕanalyse des structures viscoplastiques: strat egie adaptative et contrôle de qualit e[END_REF].

The space error indicator

The main diculty is to de®ne P h in order to compare e ref and I time . To do so, we choose to keep the same evolution laws for P h and P ref . These equations are A dh is de®ned by • initial conditions (5),

• ®nite element representation and the kinematic equation, U P U 0;T h U M; tNMqtV M; tPX Â0; T ; 48

U j@I X U d V t P0; T ; 49 • ®nite element equilibrium, r P S 0;T h V t P0; T V U Ã P U ho ; 50 Nh i1 Tr reU Ã jMi w i X f d Á U Ã dX @ 2 X F d Á U Ã dS;
• state equations at the integration points V i Pf1; ...; Nhg V t P0; T e p jM i eU ÀK À1 r jM i ;

X jM i K À1 Y jM i ; @ 51
• Special space representation V i Pf1; ...; NhgV M; tPX i Â0; T ; 52 sM; tsM i ; t;

where the domain, X i is associated to the integration point M i such that: M i P X i and mesX i w i . The shape of X i has no importance. An example is given in Fig. 20 for a six-node triangular element with three integration points. A special representation is introduced in order to obtain a unique solution s h de®ned on X Â0; T , which is built on the basis of the numerical results of the global stage. To obtain s h P A dh , we just have to extend the value obtained at each integration point M i to the domain X i .

Thanks to the representation, the quantities _ X h and Y h satisfy the admissibility conditions associated to P ref .

The dierence between s P A d and s h P A dh is due to:

• the reconstruction of a stress, which rigorously satis-®es the equilibrium equation,

• the strain space representation, which is not classical because we only take into account the value of strain in the integration points to build s h .

s À s h D_ e À K À1 D _ r; 0; Dr; 0 53 with Dr r À r h r P S 0;T ad ; r h P S 0;T , V if1; ...; NhgV M; tPX i Â0; T De eU ÀeU jM i :

When studying the dierence e ref À I time , we obtain the following partition of the global error:

e ref I time I h C 54 with _ x _ e p ; _ X h ; y r; Y h ; _ x h _ e p h ; _ X h ; y h r h ; Y h ; I h X i h dX; i h T 0 fu_ xÀu_ x h À@ _ x u_ x h Á_ x À _ x h g dt T 0 fu à yÀu à y h À@ y u à y h Áy À y h g dt 1 2 TrK À1 r À r h r À r h jtT ; C T 0 X TrDr@ r u à y h À_ e p h dX dt T 0 X TrK À1 D _ r@ _ e Á pu _ x h Àr h dX dt T 0 X
TrD_ e@ _ e Á pu_ x h Àr h dX dt:

A part of I h corresponds to the elastic error in constitutive relation [START_REF] Ladev Eze | Error estimation and mesh optimization for classical ®nite elements[END_REF]:

1 2 X TrK À1 r À r h r À r h jtT dX:

In fact, I h is similar to a sum of distances between s P A d and s h P A dh . This is why we are going to use I h as a space error indicator. Local information for the mesh adaptation is obtained through i h . The quantity C is the sum of coupling terms between dierent defaults. A similar partition of I time can be obtained.

Elasticity and plasticity visibility

When a mesh is coarse, it may not enable to consider plasticity. In such case, there is a problem of plasticity visibility.

De®nition 1. Consider the computation of an admissible solution s h with an elastic approximation of the material behaviour: s h P A dh C e . The plasticity is visible through the mesh if and only if the error sources are not limited to the space errors. This can be written as follows: e time 16%. Plasticity is signi®cant (e time > 0:5e 0 ). Then, an initial iteration is performed to take better account of plasticity in the admissible solution (Rule R1). Thus, the error computation gives: e ref 20%, e h 16%, e time 12%. At the end of this ®rst iteration, space error are too high in comparison with the other error sources (e h > e time ). Thanks to the local contribution i h , a new mesh M2 (94 elements) is automatically built to reduce the space error. Data are transferred from the mesh M1 to the mesh M2, and an error control is realised: e ref 20%, e h 9%, e time 16%. We notice that space errors have obviously decreased, and the error sharing has been modi®ed (e time % 1:8e h instead of e time % 0:6e h ). The following iterations improve the integration of the nonlinear ®nite element problem: e time decreases. Three iterations are done before a new mesh adaptation. The new adapted mesh is M3 (333 elements). The dierent error levels are balanced (e ref 14%, e h 7%, e time 10%). At the end of the 10th iteration, the mesh has to be changed (e h > e time ). The mesh M4 is built (1362 elements). At the end of the 16th iteration, the global error represents 4.9%. The aim has been reached. During this computation, the time discretisation has been adapted at the end of 12th iteration. The third and fourth time subintervals have been cut into two equal parts.

An example where plasticity is negligible

In the previous example, by reducing the loading intensity, the size of the plastic zones decreases. Let us study a maximum loading equal to 80 MPa.

We still start the adaptive computation with the same mesh M1 (Fig. 22). After the elastic initialisation, the error computation gives: e ref 18%, e h 18:5%, e time 0:5%. Plasticity is not signi®cant (e time < 0:5e 0 ). Then, the mesh is adapted to improve the elastic computation. The new mesh is M2 (Fig. 25) and we obtain: e ref 5%, e h 4%, e time 0:8%. The aim is reached without any plastic computation although plasticity exists (e time > 0). In this case, plastic strains can be estimated with local computations. 

Eciency of the strategy

Thanks to the use of coarse discretisation to start the simulation, the time needed to prepare the computation is reduced, because coarse mesh are very easy to obtain. Moreover, by balancing the error contributions during the iterations, this strategy allows to reduce the computation itself, for a given quality. To quantify this cost reduction, we compare the CPU time of our adaptive computation to the CPU time of a reference computation. This reference computation is similar to an expertÕs computation, where the adapted discretisation is known in order to obtain the prescribed quality. Here, this adapted discretisation is provided through the adaptive strategy. Moreover, the reference computation is made through the LATIN algorithm with the same discretisation during all the iteration.

Example of eciency

To illustrate the reduction of the cost computation, we present the adaptive computation of a complex problem. Loading and plastic zones are presented in Fig. 26.

The evolution of the global error and e h during the iteration are presented in Fig. 27. The mesh has been adapted three times. These adaptations appear at the end of the ®rst, second and eighth iterations. The meshes are presented in Fig. 28. The aim has been reached in 14 iterations (e ref 5:1). The reference computation is completely made with the mesh M4. The aim is reached in 13 iterations. The CPU time (on hp700 computer) needed for this computation is twice as high as that of the adaptive strategy. Thus, our adaptive strategy allows to reduce the computation cost for a given quality.

Conclusion

The LATIN method is well suited for adaptive computations based on error control, because it allows an eective improvement in the numerical solution over the entire time interval.

By balancing the error contributions during the computation, we obtain lower computation cost. We can say that the proposed strategy allows to adapt the computational eort during the iteration in comparison with the convergence defaults.

Thanks to the partition of the global error into error indicator for each kind of approximation, the piloting criteria are simple and robust, whatever the level of plasticity is.
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Table 1

 1 

	Material characteristics								
	E	200,000 MPa	a	300	k	80 MPa	R S	53 MPa	m	2
	m	0.3	c	248,000	Q	80 MPa	k	1/150 2	R 0	150
				MPa				MPa À2 s À1		MPa

Fig. 14. Example of the improvement of the non-linear relationship between admissible stress and strain.
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e time T 0; 55 which amounts to saying that there is at least one integration point in the plastic zone. If the plasticity is not visible through the mesh, it is then needless to consider performing a non-linear computation. With e time and the prescribed global quality e 0 , it is also possible to observe if the plasticity is signi®cant. (In practice we use k 0:5.) If the plasticity is not sig-ni®cant, the mesh can be adapted as if the problem were elastic to obtain the prescribed quality e 0 .

The non-incremental adaptive strategy

In this section, we present the adaptive strategy based on the non-incremental algorithm and the error indicators introduced above. The main idea is to utilise the solution improvement process, which is obtained through the LATIN method. In the course of the iterations, the admissible solution satis®es the non-linear equations to a greater extent. However, in the beginning, the computation is very far from the solution. We therefore do not need to use ®ne discretisation to represent the ®rst coarse corrections. In order to reduce the cost of the simulation, we suggest to adapt the discretisation in the course of the iterations of the LATIN method in order to obtain balanced contributions to the global error.

The framework of the strategy

The error control during the computation enables to master:

• the number of iteration through the global relative error e ref , • the mesh through the space error indicator I h , • and the time discretisation through I Dt .

Classical mesh adaptation or time discretisation adaptation are possible after each error checking. In order to continue the computation, the admissible solution has to be transferred on the new discretisation (Fig. 21).

In case of mesh adaptation, the admissible solution s h before adaptation becomes sh after the projection. This projection is done when the space functions are represented with the new mesh. We ®rst transfer to new integration points, the values of 

Piloting criteria

The piloting criteria of adaptation are very simple. Error contributions are said to be balanced if and only if space defaults are close to the rest of the defaults: 0:1e time < e h < e time ; 57 time discretisation defaults are close to the numerical convergence defaults: 0:01e NL < e Dt < 0:5e NL : 58

If e h P e time , then the mesh is too coarse to continue the LATIN corrections without a mesh adaptation. If e h 6 0:1e time , then the mesh is too ®ne, and the LATIN iteration is too expensive. We add to these criteria the following rules: • R1: after the initialisation, if plasticity is signi®cant, then a ®rst iteration is made with the coarse mesh. If this is not the case, the mesh is automatically re-®ned to get a better elastic initialisation. • R2: after each mesh adaptation, one iteration at least is made, even if error contributions are not balanced. Some rules are added to limit the number of error controls. The global error and the space error indicator are not computed at each iteration.

A detailed example

We consider the adaptive computation of the perforated plate presented in Section 2. The aim is to obtain a global dissipation error estimate equal to 5% (e 0 5%). The initial mesh is M1 (Fig. 22) and the interval 0; T is divided into six subintervals.

The evolution of the global error, e h and e time during the iteration, are presented Fig. 23. In the course of the computation, the mesh is adapted three times. The adapted meshes are M2, M3 and M4 (Fig. 24). The analysis is conducted with six-node triangular elements.

An elastic computation with M1 (40 elements) allows us to initialise the resolution with an admissible solution s 0 . Using this approximation, the global error computed is e ref 36%, the space error indicator is e h 29%, and