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A fluid dispersion theory in partially magnetised plasmas is analysed to examine the
conditions under which large-wavelength modes develop in Penning-type configurations,
that is, where an electric field is imposed perpendicular to a homogeneous magnetic
field. The fluid dispersion relation assuming a slab geometry shows that two types
of low-frequency, gradient drift instabilities occur in the direction of the E × B and
diamagnetic drifts. One type of instability, observed when the equilibrium electric field
and plasma density gradient are in the same direction, is similar to the classic modified
Simon–Hoh instability. A second instability is found for conditions in which (i) the
diamagnetic drift is in the direction opposite to the E × B drift and (ii) the magnitude
of the diamagnetic drift is sufficiently larger than the electron thermal speed. The present
fluid dispersion theory suggests that the rotating spokes driven by such fluid instabilities
propagate in the same direction as the diamagnetic drift, which can be in the same
direction as or opposite to the E × B drift, depending on the plasma conditions. This
finding may account for the observation, in some plasma devices, of the rotation of
large-scale structures in both the E × B and −E × B directions.

Key words: plasma devices, plasma dynamics, plasma instabilities

1. Introduction

Low-temperature magnetised plasmas can be found in a variety of applications and
natural phenomena, including magnetron discharges (Keidar & Beilis 2006; Anders
2012; Ito, Young & Cappelli 2015; Hecimovic & von Keudell 2018), Penning discharges
(Quraishi, Robertson & Walch 2002; Abolmasov 2012), Hall effect thrusters (HETs)
and accelerators (Ellison, Raitses & Fisch 2012; Sekerak et al. 2015; Romadanov et al.
2016; Mazouffre et al. 2019), high-power microwaves (Lau 2001; Benford, Swegle &
Schamiloglu 2015), dusty (complex) plasmas (Bal & Bose 2010) and interplanetary
and interstellar environments (Breneman et al. 2013). An applied magnetic field traps
the charged particles, thus increasing ionisation efficiency and reducing the diffusivity,
serving as a critical path to control flows and chemistry in low-temperature plasmas.
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Depending on the magnetic field strength and collision frequency, plasmas can be
either partially magnetised (i.e. electrons are magnetised but ions are non-magnetised)
or fully magnetised (i.e. both ions and electrons are magnetised). In low-temperature
plasmas, the dynamics of the neutral gas also play an important role in the transport
properties and time-dependent plasma behaviour. The multiscale nature of the plasma
flow in such low-temperature magnetised plasmas leads to various oscillation modes from
high frequency (of the order of gigahertz) to low frequency (of the order of kilohertz)
(Hara 2019). Recent studies suggest that the anomalous electron transport across magnetic
fields can be due to plasma–wall interaction (Kaganovich et al. 2007; Sydorenko et al.
2008), the plasma waves initiated by kinetic instabilities (Adam, Héron & Laval 2004;
Héron & Adam 2013; Boeuf 2017; Janhunen et al. 2018) or a combination of these effects
(Héron & Adam 2013; Villafana et al. 2021). A few examples of the kinetic instabilities in
the high-frequency range include the electron cyclotron drift instability (Forslund, Morse
& Nielson 1971), modified two-stream instability (McBride et al. 1972), and ion–ion
two-stream instability (Gary 1991; Tsikata et al. 2014). On the other hand, low-frequency
plasma oscillations include breathing mode oscillations (Boeuf & Garrigues 1998; Barral
& Ahedo 2009; Hara et al. 2014a, b; Dale & Jorns 2019) and azimuthally rotating spokes
(Ellison et al. 2012; Sekerak et al. 2015; Kawashima, Hara & Komurasaki 2018). The
coupling between different instabilities in various spatial and temporal scales plays an
important role in determining the transport coefficients and turbulent phenomena in such
low-temperature magnetised plasmas.

In this paper, we derive the dispersion relation of low-frequency, large-wavelength
gradient drift instabilities, which may lead to the self-organising patterns in the
low-temperature magnetised plasmas. We consider a Penning-type configuration, where a
homogeneous axial magnetic field is applied and an electric field and density gradient exist
in the radial direction. Although the spokes are often observed in numerical simulations
(Boeuf 2014; Powis et al. 2018; Boeuf & Takahashi 2020) and in experiments (Raitses,
Kaganovich & Smolyakov 2015; Marcovati, Ito & Cappelli 2020), the mechanism of the
spoke formation is still not well understood. One of the most accepted theories attributes
the formation of rotating spokes in a Penning-type discharge to the class of Simon–Hoh
instabilities (SHIs) (Simon 1963; Hoh 1963). This terminology was first used by Sakawa
et al. (1993), who proposed the modified Simon–Hoh instability (MSHI), which comes
from a dispersion relation for partially magnetised plasma, whereas the original work by
Simon and Hoh individually focused on fully magnetised plasmas. In work by Simon
(1963), the criterion for rotating spoke formation has been proposed to be E0 · ∇n0 > 0,
where E0 is the applied electric field and ∇n0 is the equilibrium plasma density gradient.
Recent experimental studies in low-temperature magnetised plasma sources have shown,
however, that the rotation direction and speed can depend on various plasma parameters,
such as the current (Anders & Yang 2017), indicating that the instability criterion needs to
be revisited.

The theory of gradient-drift instabilities in low-temperature magnetised plasmas
is introduced in this paper. Section 2 discusses the linearised fluid equations for
magnetised plasmas under an applied magnetic field, assuming that the gyroviscosity
effects are negligible. Section 3 shows a low-frequency plasma dispersion relation
of the partially magnetised plasma considering a slab geometry. The criteria for the
large-wavelength, low-frequency, gradient drift instability under a homogeneous magnetic
field are discussed. Section 4 illustrates the results of the dispersion relation for partially
magnetised plasmas, showing results consistent with the instability criteria derived in § 3.
The gradient drift instability theory is applied to various cross-field plasma devices in § 5.
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Fluid theory of gradient drift instabilities 3

2. Linearised plasma equations for low-temperature magnetised plasmas

Although the rotating spokes are observed in cylindrical (axisymmetric) systems, here
we simplify the dispersion relation assuming a slab (Cartesian) geometry. A static, uniform
magnetic field in z direction B = B0ẑ and an equilibrium electric field (applied electric
field) are considered: E0 = E0x̂. It is assumed that the equilibrium plasma is quasineutral
and a plasma density gradient exists locally in the x direction: E0 �= 0 and dn0/dx �= 0,
generating E × B and diamagnetic drifts in the ±y direction, for the equilibrium condition.
In addition, the following assumptions are made: (i) although the temperature gradient
may affect the instabilities, we assume that the temperature is uniform and constant, for
simplicity; (ii) only ions and electrons are assumed for the species; (iii) the plasma is
assumed to be partially magnetised (i.e. magnetised electrons and unmagnetised ions);
(iv) collisions are assumed negligible; and (v) the plasma is electrostatic, that is, effects of
the induced magnetic field are negligible compared with the applied magnetic field.

2.1. Governing equations
The fluid equations are used for both ions and electrons, i.e. when kinetic effects, such as
the Bernstein modes (Bernstein 1958), can be neglected.

Conservation of mass can be constructed by taking the zeroth moment of the kinetic
equation. Here, ionisation and recombination are neglected. Thus, the continuity equation
can be written as

∂ns

∂t
+ ∇ · (nsus) = 0, (2.1)

where ns is the number density and us is the bulk velocity for species s.
The equation for the fluid momentum can be formulated by taking the first moment

of the kinetic equation, which can be written using conservative or primitive variables.
Assuming that the plasma is collisionless and the distribution function is close to an
isotropic Maxwellian distribution function, the conservation of momentum can be written
as

∂(msnsus)

∂t
+ ∇ · (msnsusus) = −∇ps + qsns(E + us × B), (2.2)

where ms is the mass, ps is the pressure, qs is the charge, E is the electric field and B
is the magnetic field. Using the source-less continuity equation, as shown in (2.1), the
momentum equation can also be given, using the primitive variables, by

∂us

∂t
+ (us · ∇)us = − ∇ps

msns
+ qs

ms
(E + us × B). (2.3)

Note that the pressure is a scalar term, which is valid when the velocity distribution
function (VDF) is close to an isotropic Maxwellian distribution function, that is, the
temperatures in three directions are equal. Under this condition, the pressure can be written
using the ideal gas law: ps = nskBTs, where kB is the Boltzmann constant and Ts is the
temperature for species s.

In the present model, the ideal gas law is assumed for the electron fluid model. It is to
be noted that standard drift models account for gyroviscosity effects, which arise due to
the non-Maxwellian distribution and lead to cancellation of the diamagnetic drift in the
inertia term in the momentum equation (Ramos 2005; Schnack et al. 2006). Although the
gyroviscosity effects may play an important role in low-temperature, partially magnetised
plasmas (Smolyakov et al. 2016), the validity of the drift models and the necessity
of including gyroviscosity effects in low-temperature magnetised plasmas needs to be
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investigated. In the state-of-the-art computational models for low-temperature plasmas,
simplified fluid models such as the drift-diffusion model are known to represent the
physical processes (Kushner 2009; Hara 2019). In this paper, a five-moment model that
neglects the gyroviscosity effects is used, based on recent numerical simulations that show
low-frequency rotating spokes (Mansour & Hara 2022). The inclusion of the gyroviscosity
effects is reserved for future work.

2.2. Linear perturbation analysis for partially magnetised plasmas
We consider the growth of the instabilities in y direction, that is, the direction in which
the electrons drift. Under the linear perturbation analysis, a plasma property Q can be
described as a sum of the steady-state quantity and a linear perturbation, such that

Q = Q0 + Q1 exp(−iωt + ikyy), (2.4)

where Q0 and Q1 are the equilibrium (steady-state) and first-order perturbation terms of a
plasma property Q, respectively, ω is the frequency, t is time and ky is the wave number in
the y direction. Here, ω = ωr + iγ , where ωr is the real frequency and γ is the imaginary
part which corresponds to the growth rate.

2.3. Zeroth-order (equilibrium) equations for magnetised electrons
Inserting (2.4) into the governing equations and considering the zeroth-order terms leads
to the equilibrium equations. For magnetised electrons, using (2.3) and considering the
equilibrium bulk velocity ue0 = (ue0x, ue0y, ue0z)

ᵀ, where subscripts x, y and z denote the
direction, the steady-state momentum equation in x and y directions can be written as

0 = − kBTe

men0

∂n0

∂x
− e

me
(E0 + ue0yB0), (2.5)

0 = e
me

ue0xB0, (2.6)

where e is the elementary charge, Te is the electron temperature, me is the electron mass
and n0 is the equilibrium density, assuming quasineutrality for the equilibrium condition.

Recall that the equilibrium density gradient and electric field are considered to exist
locally only in x direction. Although (2.6) results in ue0x = 0, (2.5) yields the well-known
drifts:

ue0y = −E0

B0
− kBTe

en0

n′
0

B0
, (2.7)

where n′
0 = dn0/dx is the plasma density gradient. The first term in (2.7) is the E × B

drift and the second term is the diamagnetic drift, which can be written as uE and u∗,
respectively. The diamagnetic drift does not come from the single-particle trajectory
analysis but appears as an equilibrium drift from the fluid theory, whereas the E × B
drift can be derived from single particle trajectories. Nonetheless, the diamagnetic drift
is a steady-state bulk velocity that can propagate in the same or opposite direction of the
E × B drift.

As the density gradient is only considered in x direction and using ue0x = 0 obtained
from (2.6), the steady-state conservation of mass can be written as

∇ · ue0 = 0. (2.8)

This relation shows that ue0y is constant in y direction, i.e. homogeneous, which is
consistent with the configuration considered.
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2.4. First-order (linear perturbation) equations for magnetised electrons
Let us consider the perturbation terms of the electron bulk velocity to be ue1 =
(ue1x, ue1y, 0)ᵀ for magnetised electrons. Using (2.8), the first-order conservation of mass
can be derived from (2.1) as

∂ne1

∂t
+ n0∇ · ue1 + ue0 · ∇ne1 + ue1 · ∇n0 = 0. (2.9)

Using the linear perturbation shown in (2.4), the perturbed electron density can be written
as

ne1 = n0kyue1y − iue1xn′
0

ω̃
, (2.10)

where ω̃ = ω − kyue0y. Note that ue0y is given in (2.7).
The first-order momentum equation can be derived from (2.2). Note that pressure term

leads to
kBTe∇(n0 + ne1)

me(n0 + ne1)
= kBTe

me

[∇n0

n0

(
1 − ne1

n0

)
+ ∇ne1

n0

]
, (2.11)

which results in two contributions to the linearised momentum equation. Thus, using
(2.11), the first-order momentum equation for magnetised electrons can be given by

− iω̃ue1 = v2
thkn

ne1

n0
x̂ − v2

th
∇ne1

n0
− e

me
(E1 + ue1 × B0), (2.12)

where vth = (kBTe/me)
1/2 is the electron thermal speed and kn = n′

0/n0 is the inverse of the
density gradient length scale, which is also defined similarly by Sakawa et al. (1993) and
Smolyakov et al. (2016). Taking the perturbation terms in y direction, e.g. φ1 exp(−iωt +
ikyy) for the electric field using the electrostatic assumption: E = −∇φ, (2.12) can be
written for x and y directions as

[−iω̃ ωce
−ωce −iω̃

] [
ue1x
ue1y

]
=

[
v2

thkn
ne1
n0−iv2

thky
ne1
n0

+ i e
me

kyφ1

]
, (2.13)

where ωce = eB0/me is the electron gyrofrequency. Solving for ue1x and ue1y in (2.13) gives

ue1x = i
ω̃2 − ω2

ce

[
ω̃knv

2
th

ne1

n0
− ωceky

(
v2

th
ne1

n0
− e

me
φ1

)]
, (2.14)

ue1y = 1
ω̃2 − ω2

ce

[
−ωceknv

2
th

n1

n0
+ ω̃ky

(
v2

th
ne1

n0
− e

me
φ1

)]
. (2.15)

Equations (2.14) and (2.15) are similarly derived in the Rayleigh–Taylor instability
analysis (Chen 1984). If cold electrons are assumed (i.e. vth = 0) and one considers the
low-frequency approximation (i.e. ω̃2 � ω2

ce), (2.14) and (2.15) reduce to ue1x = E1y/B0
and ue1y = iω̃ue1x/ωce, which are equivalent to the perturbed E × B and polarisation drifts,
respectively. However, it can be seen that the determinant of the matrix in (2.13) becomes
negative if ω̃2 � ω2

ce. In this case, ue1x moves in the opposite direction of the perturbed
E × B drift, which seems to be non-physical (see Appendix A for some discussions).
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Therefore, assuming ω̃2 � ω2
ce and using (2.14) and (2.15), (2.10) can be written as

ne1

n0
= eφ1

me

k2
y ω̃ − knkyωce

ω2
ceω̃ + (

k2
y + k2

n

)
v2

thω̃ − 2knkyωcev
2
th

. (2.16)

Note that this equation is similar to (10) in Sakawa et al. (1993), except for the coefficient
of the last term in the denominator.

2.5. Dispersion function for unmagnetised ions
Let us derive the zeroth-order equations for unmagnetised ions. If restricting the argument
to the cross-field direction (x and y), that is, neglecting the plasma dynamics in z direction
(along the magnetic field), the steady-state continuity equation gives, n0ui0x = const.,
where ui0x is the equilibrium ion bulk velocity in x direction. Assuming that the ion bulk
velocity is negligible in y direction (i.e. ui0y = 0), the linear perturbation of the ion number
density, ni1, can be derived from the linearised conservation of mass as

ni1 = n0kyui1y − iui1xn′
0

ω − iknui0x
, (2.17)

where ui1 = (ui1x, ui1y, 0)ᵀ is the linear perturbation of the ion bulk velocities.
Assuming cold ions (Ti = 0, where Ti is the ion temperature) and only considering

perturbation in y direction, as shown in (2.4), the linearised momentum equation for
unmagnetised ions can be written as

u1x = 0, (2.18)

u1y = ky

ω

e
mi

φ1, (2.19)

where mi is the ion mass. If one further assumes that the effects of knui0x to be small, (2.17)
can be reduced to

ni1

n0
= ek2

y

miω2
φ1. (2.20)

This is consistent with the dispersion function used for unmagnetised ions in Sakawa et al.
(1993).

3. Gradient drift instability for partially magnetised plasmas
3.1. Fluid dispersion relation

Assuming quasineutrality and perturbations occur in the azimuthal direction, which are
similar assumptions employed for the Rayleigh–Taylor instability theory (Chen 1984), and
using (2.16) and (2.20), the dispersion relation for partially magnetised plasmas can be
derived as

meky

miω2
= kyω̃ − knωce

[ω2
ce + (

k2
y + k2

n

)
v2

th]ω̃ − 2knkyωcev
2
th

, (3.1)

where ω̃ = ω − kyue0y is used throughout the derivation. Here, this drift-shifted frequency
can be written as ω̃ = ω − ωE − ω∗, where ωE = kyuE, ω∗ = kyu∗, uE = −E0/B0 and u∗ =
−knkBTe/(eB0), as can be seen from (2.7). It can be seen that (3.1) yields a third-order
equation for ω, from which the damping and linear instability growth can be evaluated.
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3.2. Instability criteria in the large-wavelength limit
In the limit of a large-wavelength mode, a simplified form of (3.1) can be obtained by
neglecting the kyω̃ term in the numerator of (3.1) compared with knωce, that is, kyω̃ �
knωce. In addition, u∗ωce = −knv

2
th gives k2

nv
2
th = ũ2

∗ω
2
ce, where ũ∗ = u∗/vth. Therefore, in

this limit, (3.1) can be written as

0 = − knmi

meωce
ω2 − ky(1 + ũ2

∗)ω + ũ2
∗k2

y(uE + u∗) + k2
y(uE − u∗). (3.2)

For the solution to have an unstable mode, that is, a root with a positive growth rate, the
discriminant of (3.2) must be negative. The instability condition can therefore be given by

me

mi
(1 + ũ2

∗)
2 − 4ũ∗

[
(1 + ũ2

∗)ũE − (1 − ũ2
∗)ũ∗

]
< 0, (3.3)

where ũE = uE/vth. By rewriting (3.3) considering me � mi, the condition for the partially
magnetised plasma to have an unstable mode in the limit of large wavelength can be written
as

ũ∗F(ũ∗, ũE) > 0, (3.4)

where
F(ũ∗, ũE) = ũ3

∗ + ũEũ2
∗ − ũ∗ + ũE. (3.5)

As can be seen from (3.4), the two instability criteria can be obtained as (i) ũ∗ > 0 and
F(ũ∗, ũE) > 0 and (ii) ũ∗ < 0 and F(ũ∗, ũE) < 0.

It can be seen that (3.3), in the limit of |ũ∗| → 0 and considering me � mi, reduces
to uEu∗ > 0, which is the instability criterion for the MSHI (Sakawa et al. 1993). See
Appendix B for further discussion about the comparison of the present dispersion relation
and MSHI.

Figure 1 shows the shape of (3.5) for two values of ũE, that is, ũE = −0.1 and −0.6, to
illustrate the range of unstable and stable roots in the limit of large wavelength and low
frequency. Here, negative uE values are chosen, as the E × B drift occurs in −y direction
when considering E0 in x direction and B0 in z direction. Unlike the MSHI that predicts
one region for unstable modes, that is, ũ∗ũE > 0, two unstable regions can be seen in
figure 1(a), whereas three unstable regions can be seen in figure 1(b).

Figure 2 shows the unstable and stable regions of the gradient drift instability in the
large-wavelength limit, as a function of the diamagnetic drift and E × B drift. The unstable
roots are obtained according to the instability condition shown in (3.4), and the results are
consistent with figure 1, showing the two and three unstable regions depending on u∗ and
uE. A few observations about the instability criteria can be made as follows.

(i) When |ũE| > 0.3, there are two regions that satisfy the instability condition shown in
(3.4). One is uEu∗ > 0, leading to a condition that can be written as E0 · ∇n0 > 0,
which is similar to the MSHI. In this regime, both E × B and diamagnetic drifts
are in the same direction, leading to instability. The other region that results in
instability can be found at u∗ > vth while uE < 0, as shown in figures 1(a) and 2.
It is interesting to note that E0 · ∇n0 < 0 in this second region, which is a different
instability criterion compared to the MSHI. This indicates that a strong diamagnetic
drift (compared with the magnitude of the E × B drift and the electron thermal
speed) can drive an instability at large wavelength whereas the diamagnetic drift is
in the opposite direction to the E × B drift.
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(b)

(a)

FIGURE 1. Cubic function, F(ũ∗, ũE), shown in (3.5) for (a) uE = −0.6vth and (b) uE =
−0.1vth, resulting in two and three instability regions, respectively. Instabilities occur according
to (3.4) in the regions where the product of the u∗ and the function F(ũ∗, ũE) is positive. The red
dashed line denotes F = 0 and the unstable regions are indicated in blue.

(ii) When 0 < |ũE| � 0.3, there are three regions that result in linear instability. As can
be seen from figure 1(b), F becomes positive in a certain range within u∗ < 0,
leading to a stable root because u∗F < 0. The appearance of a stable mode in the
E0 · ∇n0 > 0 region can also be seen from figure 2. It can be shown from (3.5)
that F ≈ (ũ∗ − ũE)(ũ∗ + ũE − 1)(ũ∗ + ũE + 1) when assuming |ũE| � 1. Hence, the
three instability regions can be observed approximately at (i) ũ∗ < −1 − ũE, (ii)
ũE < ũ∗ < 0 and (iii) ũ∗ > 1 − ũE for ũE < 0.

(iii) When ũE = 0, there are two regions where the unstable roots exist. Equation (3.5)
reduces to F = ũ∗(ũ∗ − 1)(ũ∗ + 1) when ũE = 0. Hence, the instability regions can
be observed at (i) ũ∗ < −1, and (ii) ũ∗ > 1, which can be seen from figure 2. The
solutions indicate that a low-frequency, large-wavelength instability can occur with
a strong diamagnetic drift in the absence of any electric field.

Figure 3 shows the schematic of the instability criteria for the low-frequency rotating
spokes. The first condition uEu∗ > 0 is similar to the MSHI, in which it is predicted that the
E × B and diamagnetic drifts must be in the same direction. Another instability condition
observed from the derivations shown in this section (i.e. (3.4) and (3.5)) illustrates that
the partially magnetised plasma can be unstable when the diamagnetic drift is sufficiently
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Fluid theory of gradient drift instabilities 9

FIGURE 2. Unstable and stable regions of the gradient drift instability in the large-wavelength
limit, as a function of uE and u∗. The blue region indicates where the unstable modes exist,
whereas unstable modes do not exist in the stable region, shown in white.

(b)(a)

FIGURE 3. Instability criteria for low-frequency rotating spokes. (a) The E × B drift and
diamagnetic drift are in the same direction. (b) The E × B drift and diamagnetic drift are in
the opposite direction and the diamagnetic drift must be larger than the electron thermal speed.

larger than the electron thermal speed, even if the electric field and the density gradient
exist in the opposite direction.

3.3. Direction of the wave propagation
When the instability condition is met in (3.3), the real part of the solution in (3.2) can be
obtained as

ωr = (1 + ũ2
∗)cs

2u∗
kycs, (3.6)

where cs = (kBTe/mi)
1/2 is the ion acoustic speed. The phase velocity of the wave can be

obtained from vφ = ωr/ky. It can therefore be seen from (3.6) that the wave propagates in
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the direction of the diamagnetic drift, which may lead to the rotating spokes to propagate
in the direction of E × B drift or −E × B drift, depending on the instability criteria
discussed in § 3.2.

3.4. Resonance
It can be seen from (2.14) and (2.15) that the linear perturbation of the electron bulk
velocities shows resonance when ω̃2 ≈ ω2

ce. In other words, ω ≈ ±ωce + kyue0y, where ue0y
is the sum of the E × B drift and diamagnetic drift, given in (2.7). If the real frequency
is of the order of ion plasma frequency, ωr � ωce, as shown later in § 4, a resonance
condition for the dispersion relation can be considered to be

ky = ∓ ωce

ue0y
. (3.7)

It can be seen that the smaller (larger) the electron drift, the larger (smaller) ky at which
resonance occurs. Equation (3.7) indicates that the electron drift is in resonance with the
electron gyromotion, which is akin to the electrostatic two-stream instability where the
electron drift is in resonance with the electron plasma frequency.

Equation (3.7) can also be written as kyλD = ũ−1
e0yωce/ωpe or kyrL = ũ−1

e0y, where ωpe =
(e2n0/meε0)

1/2 is the electron plasma frequency, λD = (ε0kBTe/e2n0)
1/2 is the Debye

length, ε0 is the vacuum permittivity, ũe0y = ue0y/vth and rL = vth/ωce is the electron
Larmor radius. Although the kinetic effects, such as the electron Bernstein mode leading
to electron cyclotron drift instability (Cavalier et al. 2013; Hara & Tsikata 2020), may play
an important role when kyrL = O(1), the results in the present fluid theory are applicable
for the smaller ky range, e.g. kyrL < 1. Investigation of the coupling of the present fluid
theory and the kinetic dispersion relation (Chang & Callen 1992) is reserved for future
work.

4. Results

In this section, the results from the linear perturbation theory are discussed. Although
the analytic discussions made in § 3.2 are applicable only in the large-wavelength,
low-frequency limit, the dispersion relation introduced in (3.1) is valid for a wide range
of ky under the assumption of the fluid approach and before the resonance condition as
shown in (3.7). It is discussed in this section that the growth rate exhibits a broadband
profile and the real frequency is of the order of the ion plasma frequency, which suggests
that the wave propagation speed is of the order of the ion acoustic speed.

The following conditions are considered for two cases: B0 = 200 G, n0 = 1015 m−3,
the electron temperature is 4 eV and mi = 40 amu (assuming singly charged argon ions).
These plasma parameters are representative of low-temperature cross-field plasma sources.
Here, the two cases considered are (I) E0 = 10 kV m−1 and (II) E0 = 4 kV m−1. Cases I
and II result in uE ≈ −0.6vth and uE ≈ −0.24vth, respectively, which correspond to the two
and three instability region cases as shown in figure 1. The solution to (3.1) is evaluated
for several representative values of u∗.

4.1. Case I: two instability regions, uE ≈ −0.6vth

Figure 4 shows the real and imaginary parts of the solution of (3.1) for different u∗ values
for uE ≈ −0.6vth. This is consistent with the two instability region case, which occurs
when |uE| > 0.3, as shown in figure 1(a).

In the limit of a large positive diamagnetic drift (e.g. u∗ = 1.67vth as shown in
figure 4a), a low-frequency mode is indeed observed in the limit of large wavelength.
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FIGURE 4. Case I: two instability regions at large wavelength, for different values of u∗ with
uE fixed at uE = −0.6vth. This value of uE = −0.6vth corresponds to the case illustrated in
figure 1(a). The real frequency, ωr, and growth rate, γ , are shown in blue dashed and black solid
lines, respectively, for each value of u∗.

The real frequency, ωr, is positive, indicating that wave propagates in the direction of the
diamagnetic drift as opposed to the E × B drift. This observation is consistent with the
theoretical observation in § 3.2.

Figures 4(b) and 4(c) show that the dispersion relation yields roots with a positive
growth rate at a finite ky �= 0 but yields stable solutions in the large-wavelength limit,
as the magnitude of the diamagnetic drift decreases. Note that for these cases, uEu∗ < 0,
that is, the diamagnetic drift is in the direction opposite to the E × B drift. These results
are consistent with the prediction from the analytic theory obtained in § 3.2. It is to be
noted that the sign of the real frequency flips, which can be seen from figures 4(b) and
4(c), indicating that the resonance type phenomenon is driven by the diamagnetic drift in
figure 4(b). However, the wave propagates in the direction of the E × B drift in figure 4(c)
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despite the fact that the magnitude of diamagnetic drift is larger than the E × B drift.
As the diamagnetic drift approaches zero, the resonance condition shifts towards a larger
kyλD, as shown in (3.7), and the partially magnetised plasma is stable for a wide range
of ky.

When the diamagnetic drift is in the same direction as the E × B drift (i.e. uEu∗ > 0),
the results in figure 4(d–f ) illustrate that the large-wavelength mode is indeed unstable.
This is consistent with § 3.2, in which it is observed that uEu∗ > 0 yields a root with a
positive growth rate at the large-wavelength, low-frequency limit, if |uE| > 0.3vth. Another
observation that can be made is that the real frequency is negative, illustrating that the
wave propagates in the direction of both E × B drift and diamagnetic drift. The real
frequency where the growth rate is maximum is approximately (5-6)ωpi, suggesting that
the wave propagation speed is of the order of the ion acoustic speed. The cutoff where γ
becomes zero at a finite ky in figure 4(d–f ) occurs before the resonance condition discussed
in § 3.4.

4.2. Case II: three instability regions, uE ≈ −0.24vth

Figure 5 shows the real and imaginary parts of the solution of (3.1) for several
representative u∗ values for uE ≈ −0.24vth. As discussed in § 3.2 and shown in figure 1(b),
three instability regions can be seen in the large-wavelength limit, when |uE| � 0.3vth.

Similar to Case I, there is a low-frequency mode at large wavelength when the
diamagnetic drift is opposite to the E × B drift and the magnitude of the diamagnetic
drift is sufficiently larger than the electron thermal speed, as shown in figure 5(a). Under
this situation, the wave propagation occurs in the direction of the diamagnetic drift. As
the magnitude of the diamagnetic drift is decreased, the partially magnetised plasma
becomes stable in the large-wavelength limit but a resonance type mode appears, as shown
in figures 5(b) and 5(c), similar to Case I. In addition, when the diamagnetic drift is
in the same direction as the E × B drift, the partially magnetised plasma is unstable
in the large-wavelength limit, which can be seen in figures 5(d) and 5( f ). However, it
is interesting to note that the growth rate becomes zero at ky → 0 for the cases with
intermediate u∗ values, as shown in figure 5(e). This is consistent with the theoretical
prediction in § 3.2 and figure 1(b): when |uE| � 0.3vth, the partially magnetised plasma
becomes stable at ky → 0 for a range of u∗ in which u∗F < 0, as shown in figure 1(b).

In summary, the partially magnetised plasma dispersion relation using the fluid
approach shows that the linear growth rate is positive in the large-wavelength limit not
only (i) when E0 · ∇n0 > 0 but also (ii) when E0 · ∇n0 < 0 and the diamagnetic drift
is sufficiently larger than the electron thermal speed. Although the former is similar
to the so-called MSHI, the latter suggests that a strong diamagnetic drift may excite
large-wavelength, low-frequency plasma oscillations that propagate in the direction of the
diamagnetic drift.

5. Application of the gradient drift instability to cross-field plasma sources

Now that we have established the theory of the gradient drift instability, in this
section, the theory is applied to various cross-field plasma configurations. Although the
theory discussed in the present paper assumes a slab geometry and the real systems
are cylindrical, the slab approximation may provide first-order estimates for the local
instabilities in cross-field plasma sources. Here, four configurations are considered: (a)
Penning discharge, (b) cylindrical magnetron (e.g. for high-power microwave generation),
(c) planar magnetron discharge (e.g. for plasma-assisted deposition) and (d) Hall effect
thruster (HET), as shown in figure 6.
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FIGURE 5. Case II: three instability regions at large wavelength, for different values of u∗ with
uE fixed at uE = −0.24vth. The real frequency, ωr, and growth rate, γ , are shown in blue dashed
and black solid lines, respectively, for each value of u∗. In figure 5(e), the growth rate is zero at
kyλD � 1, which corresponds to the region where u∗ < 0 and F > 0, shown in figure 1(b).

5.1. Penning discharge
The Penning discharge, as shown in figure 6(a), operates using an outer cylinder as an
anode with a cathode placed along the centreline, in addition to an applied axial magnetic
field (Hoh 1963; Simon 1963). The plasma density is typically largest near the cathode,
generating a radially inward plasma density gradient, ∇rn0 < 0. At the same time, the
applied electric field is also radially inward, Er < 0. Penning discharge typically naturally
satisfies the condition E0 · ∇n0 > 0, that is, the E × B and diamagnetic drifts are in the
same direction. Therefore, as shown in figure 3(a), the Penning-type discharge satisfies
(3.4), generating a gradient drift instability at low frequency.
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(b)(a)

(c) (d )

FIGURE 6. Application of the gradient drift instability theory to various cross-field plasma
devices. Note that the geometries between top and bottom figures are rotated to keep the magnetic
field direction consistent, that is, into the page. Blue arrows, that is, u0r in (a,b) or u0z in (c,d),
indicate the cross-field electron flow, whereas the red arrows indicate the electron drift in the
azimuthal direction.

5.2. Cylindrical magnetron
The cylindrical magnetron, shown in figure 6(b), is used to study critical ionisation
velocity (CIV) phenomena (Brenning et al. 2013). In addition, such a cross-field
configuration is used in high-power microwave sources. For its use as a microwave
generator, ion formation is to be avoided because the working principle is that the electrons
from the cathode are trapped (i.e. insulated) by the applied or induced magnetic field to
generate high-power microwaves (Benford et al. 2015). However, as the devices increase in
power and become more compact, plasma generation is unavoidable as the current density
in the system increases (Hadas et al. 2008). Although low-frequency plasma oscillations
are not well-studied due to the short pulse operation, it can be seen from figure 6(b) that
the partially magnetised plasma is unstable in such configurations, similar to the Penning
discharge.

5.3. Planar magnetron discharge
Figure 6(c) shows a schematic of the planar magnetron, used for plasma-assisted sputtering
and deposition (Waits 1978). An axial electric field and a radial magnetic field are applied
close to the cathode surface. The crossed electric and magnetic fields generate electron
drifts in the azimuthal direction.

Recent experimental observations in high-power impulse magnetron sputtering
(HiPIMS) show that the rotating spoke direction may be a function of the current (Anders
& Yang 2017) and can be reversed during a certain operation (Hecimovic et al. 2016).
Similar reversal of the rotating spoke propagation is found in a micro-magnetron discharge
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(Ito et al. 2015; Marcovati et al. 2020). The global axial plasma profile, such as the location
and amplitude of the density and potential gradients, can affect the characteristics of the
gradient drift instability, leading to rotating spokes.

In addition, magnetron sputtering devices have a large magnetic field inhomogeneity
in the region where the rotating spokes occur, leading to the possibility of gradient drift
instabilities due to magnetic field gradients (Esipchuk & Tilinin 1976; Tilinin 1977; Frias
et al. 2013) playing an important role in the formation of rotating spokes.

5.4. HET
The HET operates using a radial applied magnetic field and axial electric field, as shown
in figure 6(d). In the plume of a HET, the E × B drift is much larger than the diamagnetic
drift and the diamagnetic drift is in the opposite direction to the E × B drift, which is
shown as region 2 in figure 6(d). Consequently, using the instability criteria discussed in
(3.4), the partially magnetised plasma in the HET plume is stable against the Penning-type
instability. The simulation results by Kawashima et al. (2018) were compared with a class
of gradient drift instabilities in the presence of a magnetic field gradient (Esipchuk &
Tilinin 1976; Tilinin 1977; Frias et al. 2013) and showed that the gradient drift instability
due to the magnetic field gradient grows in the plume region, which leads to the excitation
of rotating spokes.

However, if one considers the plasma inside the channel, shown as region 1 in
figure 6(d), the cross-field electron transport is primarily driven by the pressure gradient
near the anode. It can therefore be considered that the magnitude of the diamagnetic drift
is larger than that of the E × B drift, while the two drifts may be in the opposite direction.
Thus, this condition may lead to the gradient drift instability presented in this paper to be
unstable. The spoke rotation will be in the direction of the diamagnetic drift driven by the
plasma density gradient inside the channel, which turns out to be in the same direction as
the E × B drift due to the applied electric field (set up by the anode and cathode) in the
system.

In summary, there are two scenarios in which azimuthally rotating spokes can occur
in HETs and in the planar magnetron discharge. One is due to the instabilities that are
caused by the magnetic field gradient. The other possibility is the gradient drift instability,
discussed in the present paper, which is caused by the diamagnetic drift in the absence of
magnetic field gradients.

6. Conclusion

The present paper has reviewed the fluid dispersion relation of the partially magnetised
plasmas. The dispersion relation derived in this paper shows that the partially magnetised
plasmas are unstable (i) when E0 · ∇n0 > 0 or (ii) in the presence of a large diamagnetic
drift while E0 · ∇n0 < 0. The former is consistent with the so-called MSHI where the
E × B drift and the diamagnetic drift are in the same direction. The latter is an instability
that occurs when the diamagnetic drift is sufficiently larger than the electron thermal
speed while occurring in the direction against the E × B drift. One similarity between
the two instability conditions is that the plasma wave in the large-wavelength limit
propagates in the direction of the diamagnetic drift. This indicates that the low-frequency,
large-wavelength, partially magnetised plasma oscillations can occur in either E × B or
−E × B direction, depending on the plasma conditions.
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Appendix A. Effect of ω̃2 in the electron bulk velocity dispersion

In (2.16), it is assumed that ω̃2 � ω2
ce. In the limit of large ky, the fluid dispersion

relation, shown in (3.1), can be written as

0 = (ω2 − k2
yc2

s )ω̃. (A1)

The solution to the dispersion relation yields three roots, that is, ω = ±kycs, kyue0y. Thus,
there are no growth rates in the limit of ky → ∞ in figures 4 and 5.

If one retains the ω̃2 term in (2.14) and (2.15), the electron density perturbation term can
be written as,

ne1

n0
= eφ1

me

k2
y ω̃ − knkyωce

−ω̃3 + ω2
ceω̃ + (

k2
y + k2

n

)
v2

thω̃ − 2knkyωcev
2
th

. (A2)

Combining (A2) and (2.20), a third-order equation can be constructed for ω. For this case,
the dispersion relation in the limit of ky → ∞ can be given by

0 =
(

ω2 − k2
yc2

s + me

mi
ω̃2

)
ω̃. (A3)

In (A3), one solution is always real, that is, ω = kyue0y. However, the other two solutions
must be evaluated separately. Using me � mi, (A3) can be rewritten as

0 = ω2 − 2
me

mi
kyue0yω − k2

y

(
c2

s + me

mi
u2

e0y

)
. (A4)

The discriminant of (A4) can be obtained as

D =
(

me

mi
kyue0y

)2

− k2
y

(
c2

s + me

mi
u2

e0y

)
, (A5)

which can be seen to be negative (i.e. D < 0), because me � mi. Thus, these two solutions
are not real and become imaginary at ky → ∞.
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Although the inclusion of the ω̃3 term affects the results in the larger ky region, the
large-wavelength solutions (kyλD < 1) shown in figures 4 and 5 are not affected by the
inclusion of the ω̃3 term. Therefore, in the present paper, the derivations and results
neglecting the ω̃3 term in (A2) are shown.

Appendix B. Comparison with MSHI theory

The condition for gradient drift instability shown in (3.4) and (3.5) is different from the
condition that is originally proposed by Simon (Simon 1963), that is, E0 · ∇n0 > 0.

To derive a dispersion relation similar to the MSHI (Sakawa et al. 1993), |ũ∗| � 1 and
ky → 0 can be assumed so that (3.1) reduces to

k2
yc2

s

ω2
= ω∗

ω − ωE + ω∗
, (B1)

where cs = (kBTe/mi)
1/2 is the ion acoustic speed. Assuming me � mi, the instability

criterion from (B1) can be derived as u∗(uE − u∗) > 0, which leads to |uE| > |u∗| and
uEu∗ > 0. This means that, assuming |ũ∗| � 1, a positive growth rate can be obtained
only when the magnitude of diamagnetic drift is larger than that of E × B drift and
E0 · ∇n0 > 0 are both satisfied.

It should be noted that the dispersion relation proposed by Sakawa et al. (1993) omitted
a factor of two in the last term of the denominator of the right-hand side in (3.1). This
results in a dispersion relation that omits the ω∗ term in the denominator in (B1), leading
to the instability condition to be unconditionally u∗uE > 0 and therefore E0 · ∇n0 > 0. It
is discussed in § 3.2 that the MSHI can be recovered in the limit of |ũ∗| → 0, which can
be seen from (B1) as well.
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