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The parameters uncertainty inflation fallacy

Pascal PERNOT1

Laboratoire de Chimie Physique, UMR8000, CNRS / Univ. Paris-Sud,

F-91405 Orsay, Francea)

Statistical estimation of the prediction uncertainty of physical models is typically

hindered by the inadequacy of these models due to various approximations they are

built upon. The prediction errors caused by model inadequacy can be handled either

by correcting the model’s results, or by adapting the model’s parameters uncertainty

to generate prediction uncertainties representative, in a way to be defined, of model

inadequacy errors. The main advantage of the latter approach (thereafter called

PUI, for Parameters Uncertainty Inflation) is its transferability to the prediction

of other quantities of interest based on the same parameters. A critical review of

implementations of PUI in several areas of computational chemistry shows that it is

biased, in the sense that it does not produce prediction uncertainty bands conforming

with model inadequacy errors.

Keywords: computational chemistry; uncertainty quantification; prediction

uncertainty; model inadequacy.
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I. INTRODUCTION

Prediction uncertainty of physical models or simulations is difficult to estimate1. Yet, it

is a necessary step to produce virtual measurements2, i.e., to enable simulations or models

to replace experiments.

Estimation of model prediction uncertainty requires a thorough analysis of three major

error sources: (i) systematic errors due to the model formulation and approximations (model

inadequacy); (ii) numerical errors (notably for stochastic models); and (iii) parameter un-

certainty. Numerical errors are expected to be kept to a negligible or well controlled level

(except maybe for chaotic model)2–4, while parameter uncertainty is estimated by well estab-

lished calibration methods, notably bayesian inference5–7. The most challenging part of the

uncertainty quantification process remains model inadequacy8, which takes often a major

fraction of the uncertainty budget9.

Model inadequacy is characterized by the inability of a model to produce results in statis-

tical agreement with reference data, within their uncertainty range. Even empirical physical

models, having adjustable parameters, cannot always achieve a statistically valid represen-

tation of the reference data used for their calibration. As model improvement is often

impractical or impossible, it is important to be able to deal with the limitations of existing

models. Model inadequacy should not be seen as a failure of physical models, but more as

an intrinsic component of their predictions that has to be taken care of. Two examples are

provided and commented in Fig 1.

Prediction errors due to model inadequacy can be handled either internally, by model

improvement in the spirit of Jacob’s ladder for DFT12 and composite methods of quantum

chemistry13, or externally, by statistical correction of model predictions. The focus of the

present study is on the latter approach, which consists in designing a statistical model

representing the unexplained part of the model residuals on a set of reference data14–20.

A major drawback of the statistical correction of model predictions is its lack of trans-

ferability to other observables21,22, which is an issue with generalist models, such as atom-

istic/molecular simulation or electronic structure computing. As model parameters and their

uncertainties are in principle transferable, a solution is to assign them the residual disper-

sion due to model inadequacy, by a controlled increase in parameters uncertainty. This has

been implemented, for instance, through ensemble methods in the calibration of density

functionals approximations17,23–29, or through the concept of embedded models30.

However, this parameter uncertainty inflation (PUI) approach suffers from intrinsic limi-
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Figure 1. Examples of model inadequacy:

(a) scatterplot of reference fundamental vibrational frequencies with respect to harmonic ab initio

frequencies calculated at the CCD/6-31G* theory/basis-set level. The red line depicts the linear

tendency in the data cloud, which is not the unit line. The error bars on the reference data are

invisible at this scale. The data are extracted from the CCCBDB10;

(b) residuals of the fit of Argon viscosity data by a Chapman-Enskog model. The error bars represent

2-σ experimental confidence intervals. Even if the empirical model achieves well centered residuals,

the T-dependent oscillation of the latter reveals an unsatisfactory fit, notably at low temperature.

This dataset is described by Cailliez and Pernot11.

tations which have to be carefully considered:

1. Due to the geometry of the problem in data space31,32, enlarging the uncertainty patch

on the model manifold around the optimal parameters does not contribute to improve

the validity of an inadequate model. Besides, even if model adequacy were recovered by

PUI for a calibration property, no guarantee exists on the transferability of adequacy

to other properties of interest, which have different model manifolds.

2. Considering a model M(x;ϑ),33 depending on a control variable x (e.g. temperature,

pressure...), and parameters ϑ, propagation of parameter uncertainty is governed by

the functional shape of the model sensitivity coefficients (∂M(x;ϑ)/∂ϑi) as functions

of x34. This means that the shape of the prediction uncertainty bands over the control

space does not necessarily conform with the shape of the model inadequacy errors.

As will be shown below, this might lead to uncontrolled under- or over-estimation of

prediction uncertainty, depending on the value of the control variables.
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This short study focuses on the second problem and considers a series of examples inspired

from the computational chemistry literature. It focuses on deterministic models, or stochas-

tic models with negligible numerical errors. The next section introduces three methods

implementing the PUI approach in a common bayesian framework. Section III treats three

examples: (1) a simple linear model involving the statistical correction of ab initio molecular

vibrational frequencies; (2) a meta-analysis of the prediction uncertainty for formation heats

of solids calculated by the mBEEF density functional; and (3) an original application to

the calibration of a Lennard-Jones potential on temperature-dependent viscosity data. A

discussion of the encountered problems and recommendations to users of these PUI methods

serve as conclusion in Section IV.

II. METHODS

Bayesian data analysis is a convenient framework to develop calibration-prediction meth-

ods, and it has been used here to present and develop PUI methods. A brief introduction

to bayesian analysis is provided in the next section. More details can be found in several

excellent textbooks5–7.

A. Statistical calibration and prediction

One considers a model represented by the function M(x;ϑ), which parameters ϑ have to

be identified, i.e. characterized by their probability density function (pdf) or, in the gaussian

hypothesis, their “best” value and covariance matrix.

Calibration. Parameters inference is done by calibration of the model on a set of reference

data D = {xi, yi}Ni=1, accompanied by uncertainties {uyi}
N
i=1. In the general case, the full

covariance matrix, V D, might be available in addition to the usual diagonal elements (uyi).

All the knowledge about the parameters is encoded in the posterior pdf p(ϑ|D) for ϑ,

conditional on D (and M). The posterior pdf is obtained by Bayes theorem

p(ϑ|D) ∝ p(D|ϑ) p(ϑ), (1)

where p(ϑ) is the prior pdf of the parameters and p(D|ϑ) is the likelihood. Assuming normal

data error distribution, the likelihood can be written as

p(D|ϑ) ∝ |V D|−1/2 exp
(
−1

2
RTV −1D R

)
, (2)
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where R is the column vector of residuals

Ri(ϑ) = yi −M(xi;ϑ). (3)

The maximum a posteriori (MAP)

ϑ̂ = argmaxϑp(ϑ|D) (4)

is a point estimate of the set of parameters providing the best fit to the data, constrained by

the prior pdf. The mean value of the parameters µϑ|D and their covariance matrix V ϑ|D are

often used to summarize the posterior pdf. It is important to note that, except if the model

is not identifiable, the variance of the parameters is a decreasing function of the calibration

dataset cardinal. Moreover, the covariance matrix of the parameters should not be used if

the model calibration is not statistically valid.

Validation of a calibration can be done by posterior predictive assessment (see below)6,22,35,

but simple statistics, such as the Birge ratio36,37 can be very useful. It is defined as

RB =
1

N − n
RT (ϑ̂)V −1D R(ϑ̂), (5)

where n is the number of parameters in the model, and should be close to 1 for satisfactory

fits. Values smaller than 1 point to over-estimated data variance, while too high values can

be due to under-estimated data variance or, most often, to model inadequacy.

Prediction. For deterministic models, the mean value of a prediction at a new control

value x̃ and its variance can be approximated by linear uncertainty propagation34

µM |D(x̃) =M(x̃;µϑ|D) (6)

u2M |D(x̃) = J
T (x̃;µϑ|D)V ϑ|DJ(x̃;µϑ|D), (7)

where J is a vector of sensitivity coefficients

Jk(x;µϑ|D) =
∂M(x;ϑ)

∂ϑk

∣∣∣∣
µϑ|D

. (8)

The linear approximation is exposed here mostly for didactic reasons. If it is not appropriate,

one has to estimate µM |D and u2M |D by higher order Taylor expansions34, or by numerical

integration (Monte Carlo method)38.

Various prediction statistics can be used for model validation6,22,35. Posterior predictive

assessment compares model predictions with reference data and/or validation data. Visual

inspection of prediction probability intervals (prediction bands) is generally very useful.
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In the following, one will mostly refer to the mean prediction variance on the calibration

set

MPV =
1

N

N∑
i=1

u2M |D(xi), (9)

and note the mean prediction uncertainty as

uM |D =
√
MPV . (10)

The mean squared errors of the model at the MAP

MSE =
1

N

N∑
i=1

R2
i (ϑ̂) (11)

will be used as a reference point for the validation of model predictions.

Inadequate models. If the covariance matrix of the reference dataset used for model val-

idation is known, a Birge ratio value higher than 1 is a good indicator of model inadequacy.

Otherwise, inspection of the residuals and comparison with typical reference data uncertain-

ties is often used. A notable trend in the residuals, possibly quantified by their correlation

length, is also a feature to be checked.

B. The Parameters Uncertainty Inflation strategy

The aim of PUI is to adjust a model’s parameters uncertainty in order to produce enough

model output variance to encompass the part of the variance in the residuals due to model

inadequacy. This is achieved in Eq. 7 by adapting the parameters covariance matrix V ϑ|D.

Two methods are considered: an indirect one, based on a scaling of the data covariance

matrix V D (Eq. 2); and a direct one, based on the optimization of the elements of V ϑ|D, a

more complex option with several variants.

1. The indirect approach

A statistical approach, inspired from bayesian statistics, developed by Brown and

Sethna39, and adapted by Frederiksen et al.23,40 identifies “parameters ensembles” from

which prediction statistics are estimated. To relieve the problem of model inadequacy, a

scaling factor, T , is introduced in the pdf describing the ensemble.

Translating this in the bayesian framework, an empirical likelihood is used

p(D|ϑ, T ) ∝ |TV D|−1/2 exp
(
− 1

2T
RTV −1D R

)
, (12)
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which can be seen as the standard likelihood (Eq. 2) with a scaled data covariance matrix

TV D.

Jacobsen and collaborators choose T so that the mean variance of model predictions

reproduces the mean squared error for the best parameters26, i.e.

MPV (T ) 'MSE. (13)

This equation assumes that model inadequacy is a strongly dominant part of the residuals,

otherwise, data uncertainty should be explicitly considered. In the ensemble method, T is

chosen using a statistical mechanics analogy with a temperature, leading to40

T =
2C0

n
, (14)

where C0 =
1
2
RT (ϑ̂)V −1D R(ϑ̂), and n is the number of parameters.

It is thorough to establish the link with the Birge ratio, using Eq. 5, as

T =
N − n
n

RB. (15)

Note that this indirect PUI method is akin to the Birge ratio method used in metrological

inter-laboratory comparisons to reconcile inconsistent data37,41. The Birge ratio method,

assuming an adequate model and misestimated data variances, rescales the latter in order to

get a valid statistical estimation of the data mean, whereas, in the hypothesis of reliable data

variances, T is chosen here to compensate for model inadequacy and obtain valid prediction

statistics.

An alternative estimation of T can be based on Eqns. 7 and 13, assuming a near-linear

dependence of the model on its parameters in their uncertainty range and negligible data

uncertainty:

T ' MSE

MPV (T0)
, (16)

using the mean prediction variance from a reference calibration with T = T0 ≡ 1.

2. The direct approach

In the direct approach, the model’s parameters are considered as random variables, with a

pdf conditioned by a set of hyperparameters, typically their mean values µϑ and a covariance

matrix V ϑ, defining a multivariate normal distribution p(ϑ|µϑ,V ϑ).

Such stochastic parameters can be handled in the bayesian inference problem, either at

the model level, leading to use a stochastic model within the standard likelihood framework

(Eq. 2), or at the likelihood level.
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Model level. At the model level, one estimates the impact of stochastic parameters on

model predictions by uncertainty propagation38

fM(ξ;x,µϑ,V ϑ) =

∫ N∏
i=1

δ (ξi −M(xi;ϑ)) p(ϑ|µϑ,V ϑ) dϑ, (17)

where fM(.;x,µϑ,V ϑ) is the multivariate pdf of the model’s predictions at the vector of

control points x. Inserting this stochastic model in Eq. 2 can be done by replacing M(xi;ϑ)

by the mean predictions (Eq. 6) and their covariance matrix V M

p(D|µϑ,V ϑ) ∝ |V D + V M |−1/2 exp
(
−1

2
RT (V D + V M)−1R

)
, (18)

where

V M,ij ≡ u2M(xi, xj) = J
T (xi;µϑ)V ϑJ(xj;µϑ), (19)

Ri = yi − µM |D(xi). (20)

Note that using the full variance matrix of Eq. 18 in the calculation of the Birge ratio

(Eq. 5), by increasing the variance without affecting the residuals, should enable to validate

the model with RB ' 1.

For a deterministic modelM , when the number of parameters is smaller than the number

of data points, V M is singular (non positive-definite), causing the likelihood to be degenerate,

and the calibration to be intractable30. By definition, for inadequate models, the data

covariance matrix is too small to alleviate the degeneracy problem.

As all data points cannot be reproduced simultaneously by the model, one has to replace

the multivariate problem by a set of univariate problems (marginal likelihoods30), i.e., one

ignores the covariance structure of model predictions by taking

V M,ij = u2M(xi, xj)δ(i− j). (21)

Likelihood level. A new likelihood, conditioned on the hyperparameters to be inferred22,30,

is obtained by integration of the standard likelihood (Eq. 2) over the possible values of the

parameters (marginalization)

p(D|µϑ,V ϑ) =

∫
p(D|ϑ)p(ϑ|µϑ,V ϑ) dϑ. (22)

As in the previous case, it is pointed out by Sargsyan et al.30 that this likelihood is in

general degenerate, so that the inference problem has to be solved by alternative methods,

such as Approximate Bayesian Computation (ABC)42,43. In this case, the full likelihood

(Eq. 22) is replaced by a tractable expression, involving summary statistics of the model
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predictions, to be compared to similar statistics of the data. An example is provided in

Sargsyan et al.30, where the mean value of the model and its prediction uncertainty are

used. A version adapted to the present problem, with an explicit treatment of experimental

uncertainty is

pABC(D|µϑ,V ϑ) ∝ exp

(
−1

2
RTV −1D R

)
× preg(D|µϑ,V ϑ) (23)

where the first term has the same expression as the standard likelihood (Eq. 2) using residuals

evaluated at the mean of the model prediction (Eq. 20), and the second term ensures that

the predicted model uncertainty uM(xi), combined with experimental uncertainty uyi , is of

a magnitude compatible with the residuals

preg(D|µϑ,V ϑ) = exp

− N∑
i=1

(√
u2M(xi) + u2yi − |Ri|

)
2

2u2yi

 . (24)

As evidenced in our notation, this term can also be seen as a regularization function, nec-

essary to constrain the parameters covariance matrix V ϑ in the inference process. The

constraint imposed here is a statistical variant of Eq. 13, but aims at the same effect.

III. APPLICATIONS

A. Harmonic vibrational scaling factors

Various approximations in the ab initio calculation of harmonic vibrational frequencies

of molecules lead to a systematic bias with respect to fundamental experimental frequen-

cies (Fig. 1(a)), which can be statistically corrected by a simple scaling of the calculated

values44–49. This a posteriori scaling corrects empirically for the approximations involved in

the ab initio calculation. After scaling, the residual errors are typically still much larger than

the reference data uncertainties50, and the corrected model is still inadequate (RB � 1).

One considers here the scaling model M(x; s) = s ∗ x, where s is the scaling factor and

x a calculated frequency. Irikura et al.50 proposed a method to evaluate the prediction

uncertainty of vibrational frequencies corrected by scaling factors. Their approach assumes

a multiplicative uncertainty model

νi = s ∗ xi, (25)

uνi = us ∗ xi, (26)
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Figure 2. Scatter plots of the residuals of 2279 scaled vibrational frequencies for the CCD/6-31G*

theory/basis-set level. The orange lines show the 95% confidence prediction range for two methods:

(a) parameters uncertainty inflation; (b) dispersion correction. The red points lie outside of the

95% prediction range.

where νi a scaled frequency and us is the scaling factor uncertainty. An expression of us has

been derived (Eq. 21 in Irikura et al.50) as

u2s '
∑

i(yi − s ∗ xi)2∑
i x

2
i

, (27)

which is different from the uncertainty that would result from an ordinary least squares

calibration model51, i.e., for large data sets,

u2s '
MSE

N
∑

i x
2
i

. (28)

We want to emphasize here that it is possible to recover Eq. 27 by the indirect PUI

approach. Namely, equating the mean prediction variance with the mean squared errors

(Eq. 13) leads to

1

N

∑
i

u2νi =
1

N

∑
i

(yi − s ∗ xi)2, (29)

while Eq. 26 gives ∑
i

u2νi = u2s
∑
i

x2i , (30)

from which one derives Eq. 27.

This shows clearly that the derivation of us by Irikura et al.50 does not provide the uncer-

tainty on the scale parameter resulting from the calibration procedure, but the parameter
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Figure 3. Scatterplot of reference fundamental vibrational frequencies with respect to harmonic ab

initio frequencies calculated at the CCD/6-31G* theory/basis-set level, as directly extracted from

the CCCBDB10; the most outlying points have been circled and labeled.

uncertainty necessary to recover a prediction variance over the calibration set compatible

with the model errors, in the hypothesis of a multiplicative uncertainty model.

To illustrate the implication of this choice on prediction uncertainty bands, let us consider

a set of vibrational frequencies extracted from the CCCBDB52. A link to the R53 scripts used

for data extraction, cleanup and treatment is provided in the Supporting Information section.

For the CCD/6-31G* theory/basis-set combination, a data set containing 2323 frequencies

is recovered (7 records with incomplete data have been removed). A sanity check, based on

a plot of the reference frequencies vs. the calculated frequencies, enables to detect several

aberrant points, mainly due to incorrect symmetry assignment for CH3OCH2CN and C8H8

(Fig. 3). Also, the CN frequency and one BH2 frequency are outstanding and marked as

outliers. These data were removed, and the final data set contains 2279 frequencies.54 Let us

note that a more rigorous data curation procedure would be required to generate reference

scaling factors, which is not the aim of the present paper.

The statistical analysis of this set gives s = 0.947, in conformity with the CCCBDB

value10, and us = 0.020 (Eq. 27), smaller than the value of 0.046 reported in the CCCBDB,

which reflects the impact of aberrant points in the original dataset on us.

One can check on Fig. 2(a) that the linear dependence of the prediction uncertainty

implied by Eq. 26 is not representative of the residuals cloud. It underestimates the dispersion
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at low frequency and overestimates it at high frequency. Furthermore, the probability for a

calibration data point to lie in a 95 percent confidence band [−2usxi, 2usxi] is only 82%.

It has been shown that in this case, model inadequacy should not be accounted for by

Eq. 2651,55. Instead, the completion of the model by a stochastic variable δ ∼ N(0, σ2)

representing model inadequacy,

νi = s ∗ xi + δ (31)

u2νi = u2s ∗ x2i + σ2, (32)

enables a more consistent estimation of prediction uncertainty bands (Fig. 2(b)). The use

of the stochastic correction δ recognizes that the model errors have a random and uniform

distribution with respect to the control variable. In this case, us = 4.1 10−4 is the standard

uncertainty of the scale factor resulting from ordinary least-squares regression51. For large

calibration datasets like the present one, the first term of the prediction variance is negligible,

and one finds that u2νi ' σ2 'MSE17,51.

This example shows how the one-parameter scaling model, and the implied sensitivity

coefficient, prevents the indirect PUI strategy to achieve reasonable prediction uncertainty

bands. It is now acknowledged that the uncertainty factor defined by Eq. 27 should not

be used for prediction uncertainty56,57, although this is not clearly stated in the CCCBDB

where the corresponding values of us are still reported10.

B. Calibration of density functional approximations

Jacobsen and coworkers23,24,27,40,58,59 have elaborated an ensemble method to account for

the uncertainty in the parameters of their calibrated mBEEF density functional. Considering

that the prediction errors are typically much larger than the reference data uncertainty

(model inadequacy), they scale the parameter covariance matrix to get a mean prediction

uncertainty in agreement with the MSE (Eq. 13).

In the publications on mBEEF, one has only access to histograms of the scaled errors,

which do not enable us to appreciate the structure of the prediction uncertainty for this

method. Thanks to the formation heat data provided in a recent article27, one can now

compare the prediction uncertainty with the residual errors of the calibrated method and

test their conformity. The dataset of residual errors and prediction uncertainty used below

has been extracted from Table I of this article. The measurement uncertainty of the reference

data is not provided, but the typical experimental uncertainty on formation heats has been

reported to be well below 0.1 eV/atom60.
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Figure 4. Residuals (a) and prediction uncertainties (b) of the mBEEF density functional on a

dataset of formation heats. The red points are those for which a 95% confidence interval around

the calculated value does not contain the reference value.

The residual errors are plotted in Fig. 4(a) as a function of calculated heats (the control

variable): their distribution presents a small positive linear trend, but the amplitude is

weak, and one would not gain much by an additional a posteriori correction. One can

therefore assume that the method is well calibrated and enables to make predictions without

significant bias (smaller than 0.1 eV/atom) within the calibration range. One can also see

that the residual errors are often much larger than the typical reference data uncertainty,

revealing model inadequacy.

Prediction uncertainties generated by the mBEEF method are plotted in Fig. 4(b): they

display a marked negative linear dependency with the control variable, with a correlation

coefficient of -0.63 and a ratio of about 3 between the extreme average values (blue dashed

line). This trend is not observable on the absolute values of the residuals.

The mean prediction uncertainty uM |D (0.18 eV/atom) is slightly higher than the RMSE

(0.14 eV/atom). As a consistency check, one calculates for each residual a 95% confidence

interval using the prediction uncertainty provided in the original article and checks if this

interval contains 0. This is verified in 93% of the cases, confirming the good average prop-

erties of the estimated prediction errors. However, instead of being uniformly distributed

over the heat range, all the intervals failing the test appear only for formation heats above

−2 eV/atom (red points in Fig. 4), i.e., 100% of the intervals below −2 eV/atom include the

null value.
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This leads us to conclude that the uncertainty of the lower heats is overestimated

(Fig. 4(b)), while the uncertainty of a fraction of the higher heats is underestimated. The

RMSE for the heats below −2 eV/atom is about 0.14 eV/atom, while the mean prediction

uncertainty for this group is about 0.23 eV/atom (∼65% overestimation).

Even if the effect is less striking than in the vibrational frequencies case (Section IIIA),

this example shows also that indirect PUI produces prediction uncertainties that are not

distributed like the model errors they are supposed to represent.

C. Lennard-Jones parameters

The third example concerns the estimation of the σ, ε Lennard-Jones (LJ) potential

parameters from the analysis of temperature-dependent viscosity data. The data and

Chapman-Enskog viscosity model are described in Cailliez and Pernot11. The reference set

contains 41 points {xi, yi, uyi}, where x is the temperature, y the viscosity and uy is the

viscosity measurement uncertainty. They result from 5 measurement series
{
D(i)

}5
i=1

, but

one did not attempt here to model inter-series discrepancy. Therefore the data covariance

matrix is diagonal, with V D,ij = u2yiδ(i− j)
11,32.

The indirect and direct PUI methods presented above have been implemented in Stan61,

using the rstan62 interface package for R53. Stan is a very flexible and efficient probabilistic

programming language to implement bayesian statistical models. A link to the codes to

reproduce the results of this example is provided in the Supporting Information section.

The indirect method (Sect. II B 1), implementing Eqns. 12 and 15, is named VarInf_Rb;

the direct method based on marginal likelihoods (Sect. II B 2) is named Margin; and the

approximate bayesian method (Sect. II B 2) ABC. The covariance matrix of the parameters

is parameterized by uε, uσ and ρ, the uncertainty on ε, σ, and their correlation coefficient,

respectively.

A Stan code provides a sample of the posterior pdf of the model’s parameters p(µϑ,V ϑ|D),

from which statistics are calculated. The No-U-Turn sampler63 was used, and convergence

of the sampling was assessed by examining the parameters samples and the split Rhat statis-

tics provided by rstan62. Uniform prior pdfs have been used for location parameters, and

log-uniform for scaling parameters, unless stated explicitly. All models were run with 4

parallel Markov Chains of 5000 iterations each, 1000 of which are used as warm-up for the

No-U-Turn sampler. The convergence criteria and parameters statistics are thus estimated

on four samples of 4000 points.
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Table I. Parameters of the posterior pdf of the Lennard-Jones parameters recovered by different

PUI methods. The RMSE for all fits is 0.10 µPa.s.

Method µε µσ uε uσ ρ RB uM |D

(K) (Å) (K) (Å) (µPa.s)

WLS 146.1(4) 3.315(1) - - -0.97 6.60 0.01

VarInf_Rb 146(5) 3.32(1) - - -0.97 0.05 0.13

Margin 146(1) 3.316(3) 0.6(8) 0.004(2) 0.0(6) 0.98 0.11

ABC 146.2(4) 3.315(1) 0.7(7) 0.003(2) 0.0(6) 1.20 0.09

Margin1 144(2) 3.321(4) 5.0(10) 0.015(3) -0.98(2) 0.88 0.13

Margin2 146(1) 3.315(3) 0.01(2) 0.0043(6) 0.0(6) 1.00 0.11

Margin3 145(1) 3.318(3) 1.6(2) 0.0001(2) 0.0(6) 0.98 0.10

The mean values of the parameters and hyperparameters estimated for all methods are

reported in Table I, along with their Birge ratio (RB), and mean prediction uncertainty

uM |D. The RMSE for all methods is 0.1µPa.s.

The Birge ratio for a model implementing the standard likelihood (Eq. 2) is RB ' 6.6

(method WLS in Table I), indicating clearly that the Chapman-Enskog model is unable

to fit the data within their uncertainty range. Model inadequacy is also apparent through

the trend/oscillation in the residuals (Fig. 1(b)). As the VarInf_Rb method has inflated

data uncertainty (the scale factor T has been estimated from the Birge ratio of the WLS

method by Eq. 15, giving T ' 129), its Birge ratio (0.05) is too small. The Margin method

achieves a near-unit Birge ratio, but the ABC method cannot reach this value, because of

the constraints introduced in the likelihood (Eq. 24).

The residuals (points) and prediction band (gray area) for the indirect method (Var-

Inf_Rb) are shown in Fig. 5. To be comparable with the residuals, the prediction bands

are corrected from the mean prediction value, µM |D(T ). One sees that the prediction band

adopts a diabolo structure, with a pronounced waist around 500K. By contrast, optimization

of the covariance matrix of the parameters by the direct methods, Margin and ABC, leads to

prediction bands with more regular shapes (Fig. 5). All methods achieve a mean prediction

uncertainty in fair agreement with their RMSE of 0.1µPa.s, although VarInf_Rb returns

a value slightly in excess, with uM |D = 0.13µPa.s. It is difficult at this stage to pick a best

prediction uncertainty model: the Margin method might be favored due to its better Birge

ratio.

Inspection of a sample of the posterior pdf for the Margin (Fig. 6) and ABC methods (not

15



Figure 5. Residuals and centered prediction bands of a Chapman-Enskog model of Ar viscosity for

the VarInf_Rb, Margin and ABC methods (top row), and for the three degenerate solutions of the

Margin method (bottom row). The dark-gray bands represent model prediction confidence interval

at the 2-σ level, corrected from the mean prediction.

shown) reveals the presence of three modes (high-density areas), each one corresponding to

a minimum value of a parameter of the V ϑ covariance matrix. In the present case, the mode

corresponding to ρ ' −1 is less outstanding than the modes at uε ' 0 and uσ ' 0.

By constraining the support of the parameters through their prior pdf, the three modes

have been sampled independently for the Margin method. They are reported as Margin1 to

Margin3 in Table I, and in Fig. 5. The three samples produce very slightly different estimates

of the LJ parameters, achieve good Birge ratios near unity, but present marked differences

on the variance matrix parameters:

• Margin1 corresponds to an extreme negative correlation of ε and σ , and to large

values of both uε and uσ. This solution gives a prediction band very similar to the one

of VarInf_Rb (Fig. 5), and leads to the same excess in mean prediction uncertainty

(Table I). Its Birge ratio value (0.88) is the smallest of the 3 modes.

• Margin2 corresponds to a minimal value of uε and an undetermined value of ρ. Con-
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Figure 6. Scatterplots matrix of the posterior sample for the Margin method’s covariance matrix

parameters, showing its multimodality; the diagonal provides histograms of the parameters posterior

distribution, while the out-of-diagonal plots represent a projection of the sample in the 2D space

of the corresponding parameters pair (the upper and lower matrices are redundant); “log_post.” is

the logarithm of the posterior pdf.

sidering the prediction bands the Margin2 mode appears to have a major contribution

to the Margin sample.

• Margin3 is the symmetrical of Margin2, with a minimal value of uσ, and corresponds

to an almost uniform prediction band.

The direct PUI methods Margin and ABC are therefore subject to a degeneracy in the

optimal hyperparameters describing the stochastic LJ parameters, the implications of which

are presented in the next section.
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IV. DISCUSSION AND CONCLUSION

We have presented PUI methods in a unified formalism and established links between these

methods, and with other methods in uncertainty quantification. We have shown through a

series of examples in different contexts that existing methods attempting to capture model

inadequacy errors in the covariance matrix of the model parameters present a series of

problematic properties.

The prediction uncertainty bands are constrained by the functional form of the sensitivity

coefficients of the model (Eq. 8), notably when using a simple inflation of the data variance

(indirect method, Sect. II B 1). This has been apparent in the three examples above, and

it might lead to areas of the control parameter with systematic under- or over-estimation

of the prediction uncertainty. Unfortunately, this information is hard to gather directly

from the literature, as the authors report typically the mean prediction uncertainty, or

histograms of prediction uncertainties, which mask trends or systematic effects along the

control variable. We can only recommend that authors working with these methods provide

more informative/detailed representations of prediction uncertainties, and discuss the impact

of under- or over-estimated prediction uncertainties on their intended use.

The influence of the model sensitivity coefficients can be modulated by the covariance

matrix of the parameters, when the latter is optimized (direct methods, Sect. II B 2). We

have seen in Sect. III C, that direct PUI methods based on a stochastic representation of

the model’s parameters might present degenerate modes leading to very different shapes of

the prediction uncertainty bands, and that one has no a priori criterion to choose among

them.64 However, it is interesting that one of the modes of the Margin method is similar

to the solution obtained by the scaling of data variance, and that this mode achieves sub-

optimal statistics, both for its Birge ratio and for its mean prediction uncertainty. This would

suggest that the indirect PUI method does not provide the best solution to the prediction

uncertainty estimation problem. As discussed by Pernot and Cailliez32, the posterior pdf

multimodality/degeneracy might imply an undesirable high sensitivity of the prediction band

shape to changes in the calibration dataset. Besides, the multimodality problem of the

posterior pdf can be expected to increase with the number of parameters.

Considering the direct PUI method, the Margin method has no tuning option that would

enable a performance improvement. At the opposite, the empirical likelihood on which the

ABC method is based enables to envision additional constraints which might help to relieve

the multimodality problem. This is in our opinion the most promising route to a design a
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satisfying PUI method. But, we have also seen that these constraints tend to produce sub-

optimal residuals, leading to a compromise between fit quality and prediction uncertainty

quality.

Linear uncertainty propagation (LUP) has been used to estimate the mean value and

covariance matrix of the model predictions in the Margin and ABC methods (Eqns. 19, 20

and 24). In the present application (Ar viscosity), the uncertainty on the model’s parameters

is small (less than 1%) and the viscosity model is monotonous and continuous in the LJ

parameters variation range. There is no reason to be worried about uncontrolled non-linearity

effects. However, this is not necessarily the case for other models, and the use of LUP has

to be handled with care. For instance, Pernot and Cailliez32 validated the use of LUP in

a similar application by estimating the relative errors between an LJ parameter-wise linear

approximation of the viscosity model over the whole T range and a sample of model values

for LJ parameters drawn from their posterior pdf.

The main conclusion of this study is that methods to estimate prediction uncertainty of

inadequate models based on parameters uncertainty inflation have to be used with great care

and subjected to careful inspection, both of parameter space, and of prediction uncertainty

trends. There is no sense in using prediction uncertainties if they are not reliable.

SUPPLEMENTARY MATERIAL

See supplementary material for the data and codes used in Sections IIIA and III C.
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