
HAL Id: hal-03759954
https://hal.science/hal-03759954

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

U_qsl_2-invariant non-compact boundary conditions for
the XXZ spin chain

Dmitry Chernyak, Azat M. Gainutdinov, Hubert Saleur

To cite this version:
Dmitry Chernyak, Azat M. Gainutdinov, Hubert Saleur. U_qsl_2-invariant non-compact bound-
ary conditions for the XXZ spin chain. Journal of High Energy Physics, 2022, 2022 (11), pp.16.
�10.1007/JHEP11(2022)016�. �hal-03759954�

https://hal.science/hal-03759954
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


J
H
E
P
1
1
(
2
0
2
2
)
0
1
6

Published for SISSA by Springer
Received: August 20, 2022

Accepted: October 14, 2022
Published: November 4, 2022

Uqsl2-invariant non-compact boundary conditions for
the XXZ spin chain

Dmitry Chernyak,a,c Azat M. Gainutdinovb and Hubert Saleurc,d
aLaboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS,
Sorbonne Université, Université de Paris, F-75005 Paris, France

bInstitut Denis Poisson, CNRS, Université de Tours, Parc de Grandmont, 37200 Tours, France
cInstitut de Physique Théorique, Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
dUSC Physics and Astronomy Department, Los Angeles, CA 90089, U.S.A.
E-mail: dmitry.chernyak@phys.ens.fr,
azat.gainutdinov@lmpt.univ-tours.fr, hubert.saleur@ipht.fr

Abstract: We introduce new Uqsl2-invariant boundary conditions for the open XXZ spin
chain. For generic values of q we couple the bulk Hamiltonian to an infinite-dimensional
Verma module on one or both boundaries of the spin chain, and for q = e

iπ
p a 2p-th root

of unity — to its p-dimensional analogue. Both cases are parametrised by a continuous
“spin” α ∈ C.

To motivate our construction, we first specialise to q = i, where we obtain a modified
XX Hamiltonian with unrolled quantum group symmetry, whose spectrum and scaling limit
is computed explicitly using free fermions. In the continuum, this model is identified with
the (η, ξ) ghost CFT on the upper-half plane with a continuum of conformally invariant
boundary conditions on the real axis. The different sectors of the Hamiltonian are identified
with irreducible Virasoro representations.

Going back to generic q we investigate the algebraic properties of the underlying lattice
algebras. We show that if qα /∈ ±qZ, the new boundary coupling provides a faithful
representation of the blob algebra which is Schur-Weyl dual to Uqsl2. Then, modifying
the boundary conditions on both the left and the right, we obtain a representation of the
universal two-boundary Temperley-Lieb algebra. The generators and parameters of these
representations are computed explicitly in terms of q and α. Finally, we conjecture the
general form of the Schur-Weyl duality in this case.

This paper is the first in a series where we will study, at all values of the parameters,
the spectrum and its continuum limit, the representation content of the relevant lattice
algebras and the fusion properties of these new spin chains.
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1 Introduction

The XXZ spin chain of length N with open boundary conditions is governed by the Hamil-
tonian

Hopen
XXZ := 1

2

N−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 σzi σ
z
i+1

)
(1.1)

acting on the Hilbert space H := (C2)⊗N , where q is a complex parameter. If q 6= 1, the
global SU(2) symmetry of the XXX spin chain (q = 1) breaks down to U(1). However, we

– 1 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
6

can recover the larger symmetry by deforming SU(2) into the Uqsl2 quantum group and
changing the boundary conditions as

HXXZ := 1
2

N−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 σzi σ
z
i+1

)
+ q− q−1

4 (σzN − σz1)

:= Hopen
XXZ + q− q−1

4 (σzN − σz1) .

(1.2)

The Hamiltonian HXXZ is then Uqsl2-invariant [1]. If moreover |q| = 1 it is known to be
critical [2, Ch. 12] (see also [3]).

The aim of this paper is to introduce more general boundary conditions for HXXZ. Let
us add a vector space V on the leftmost boundary and take an arbitrary nearest-neighbour
coupling J ∈ End(V ⊗ C2) on two leftmost sites to define a new local Hamiltonian

Hb = J +HXXZ (1.3)

acting on V ⊗ (C2)⊗N . To choose V and J our guiding principle is to preserve the Uqsl2
symmetry of the XXZ model. This means that V must be a representation of Uqsl2 and J
some operator commuting with its action.

We will be most interested in “non-compact” boundary conditions, that is, infinite-
dimensional V. There are many possible choices, but, for generic q, the most natural for
us is to take Verma modules of Uqsl2. Denoted Vα, these are infinite-dimensional highest-
weight modules depending on a complex parameter α ∈ C (see section 2.1). If q = e

iπ
p is a

2p-th root of unity, we consider instead p-dimensional analogues of these representations,
also parametrised by α ∈ C (see section 2.3). For simplicity they are equally denoted by Vα.

To define a Uqsl2-invariant boundary condition on

Hb := Vα ⊗ (C2)⊗N (1.4)

we need to find an operator J acting on Vα ⊗ C2 and commuting with Uqsl2. It is known
that generically1 we have an isomorphism

Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1 , (1.5)

so the only operators acting on this space and commuting with Uqsl2 are the projectors
on Vα±1 which we denote b±. Since b+ + b− = 1, it is sufficient to take one of them, say
b := b+. The most general Hamiltonian of the form (1.3) acting on Hb and compatible
with Uqsl2 symmetry is then

Hb = −µb+HXXZ (1.6)

for some µ ∈ C. We call Hb the one-boundary Hamiltonian.
To change the boundary conditions on both the left and the right boundaries, we can

proceed in the same fashion, taking the Hilbert space to be

H2b := Vαl ⊗
(
C2
)⊗N

⊗ Vαr (1.7)

1Exact conditions for this result to hold will be specified in section 2.
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and defining projectors bl (resp. br) on the Vαl+1 (resp. Vαr+1) factors of Vαl ⊗ C2 (resp.
C2⊗Vαr). The most general extension of HXXZ toH2b by Uqsl2-invariant two-site boundary
terms is then

H2b = −µlbl +HXXZ − µrbr (1.8)

for some µl, µr ∈ C. We call H2b the two-boundary Hamiltonian.
The general goals of the series of works we start here are:

i) To compute the spectra of Hb and H2b and their conformal scaling limits.

ii) To understand the underlying lattice algebras generated by the operators of nearest
neighbour couplings.

iii) To define a consistent fusion procedure for these models.

In this first paper we initiate our study by applying this program to the special case
q = i, where the Hamiltonian (1.2) becomes that of the XX model and admits a free-
fermion representation, making it rather simple to obtain exact results for the spectrum.
After constructing in section 2 the one-boundary and two-boundary Hamiltonians, Hb and
H2b for all q, we specialise to the value q = i and diagonalise Hb in section 3. This is
achieved by performing a Jordan-Wigner transformation, reducing the spectral problem
to an N × N linear system which can be solved using plane waves (see section 3.2). The
boundary conditions constrain the energies λ of the corresponding modes to be the roots
of the polynomial of degree N , i.e. they satisfy

UN (λ/2) + µUN−1(λ/2) + (1− µy)UN−2(λ/2) = 0 ,

where Un are Chebyshev polynomials of the second kind and y = cot πα2 . We then show in
section 3.3 that these roots, as well as the momenta of the associated plane waves, are all
real in a certain domain of the parameter space and that, together with Uqsl2 symmetry,
they generate a complete basis of eigenstates of Hb. Finally, in section 3.4 we compute
the large-N limit of the spectrum and express the scaling limit of the partition function
in terms of Virasoro characters of generic conformal weights depending only on α. The
continuum limit of the spin chain is then identified in section 3.5 with the (η, ξ) ghost
system with the action

S[η, ξ, η̄, ξ̄] = 1
2π

∫
d2z

(
η∂̄ξ + η̄∂ξ̄

)
(1.9)

defined on the upper-half plane with some specific α-dependent conformal boundary con-
ditions on the real axis [4, 5].

In section 4 the above procedure for the spectrum analysis and the scaling limit is
extended to the two-boundary Hamiltonian H2b, also for q = i, by following the same steps.

In the second half of the paper, we present a general algebraic formalism, valid for
any q, relating the Hamiltonians Hb and H2b to some well-known lattice algebras. It is
known [6] that the local Hamiltonian densities (ei)1≤i≤N−1 of HXXZ satisfy the defining
relations of the Temperley-Lieb (TL) algebra

e2
i = (q + q−1)ei , eiei±1ei = ei , [ei, ej ] = 0 , |i− j| ≥ 2 , (1.10)
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faithfully (that is, without any additional relations between them) and that their action
on H = (C2)⊗N and that of Uqsl2 centralise each other (see section 5.1). This result is
sometimes called quantum Schur-Weyl duality [7–9]. We extend it to Hb defined in (1.4)
by showing that the additional boundary operator b we construct satisfies

b2 = b , e1be1 = ye1 , [b, ei] = 0 for 2 ≤ i ≤ N − 1 (1.11)

with
y = qα+1 − q−α−1

qα − q−α

and thus gives a representation of the so-called blob algebra [10]. We then prove that if
qα /∈ ±qZ it is faithful and Uqsl2 and the blob algebra are mutual centralisers on Hb (see
Proposition 1 in section 5.2). We equally consider the root of unity case q = e

iπ
p where we

place at the boundary p-dimensional representations parametrised by α ∈ C. If the weight
α is generic, that is α /∈ Z, we prove in Proposition 2 that Hb still provides a faithful
representation of the blob algebra in this case, however now the role of the quantum group
Uqsl2 is played by its unrolled version UH

q sl2 with an additional generator H = log(K) where
K is the standard Cartan generator of Uqsl2. The unrolled quantum group was widely used
in knot theory [11, 12]2 but its generic q version has also been known in the spin chain
literature since long ago (see for example [13, 14] where the spin projection operator Sz
plays the role of H and qS

z that of K). We also briefly discuss the situation with p-
dimensional cyclic representations at the boundary (see Remark at the end of section 5.2).

A similar study is done for the two-boundary system H2b defined in (1.7), for both
generic q and the root of unity cases. The relevant lattice algebra is now the two-boundary
Temperley-Lieb algebra [15, 16]. In our case however, we need a slightly generalised ver-
sion of it (a central extension) called the universal two-boundary Temperley-Lieb algebra,
which we introduce in section 6. The result is that H2b carries a representation of the uni-
versal two-boundary TL algebra, and we find explicit expressions for the generators and
parameters. The main technical difficulty is to compute the central element Y correspond-
ing, in the lattice algebra language, to the (universal) weight of a closed loop decorated
by both the left and right boundary operators. By using diagrammatic calculus tools,
we manage to find its explicit expression in terms of the Casimir element of Uqsl2. For
generic q this is established in Proposition 3 in section 6.1, and for the root of unity cases
in Proposition 4. Decomposing H2b into Y -eigenspaces, we recover representations of the
“standard” two-boundary TL algebra with a fixed (scalar) value of Y in each eigenspace
(see Propositions 5 and 6 in section 6.2 for q generic and a root of unity respectively).
However, due to the non-generic values Y takes in these sectors that make the representa-
tion theory non-semisimple, so far we can only conjecture the Schur-Weyl duality in this
case (see Conjectures 1 and 2 in section 6.3 for q generic and a root of unity respectively).

The irreducible representations of these lattice algebras — also known as standard
modules — can be identified with sectors of Hb and H2b. For the one-boundary system, it

2The important aspect used in the mathematics literature is that the unrolled quantum group admits a
universal R-matrix at roots of unity and therefore we have a non-trivial braiding for the generic p-dimensional
representations Vα. This braiding will be important in our analysis of the two-boundary spin-chains.
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was conjectured in [17, 18] from various symmetry considerations and numerical evidence [1,
19, 20] that at criticality (|q| = 1) the scaling limit of the spectrum in each sector should
correspond to some specific representation of the Virasoro algebra. The results of this
paper are sufficient to prove this claim for q = i (section 3.4). As the computation of
the spectrum and of its scaling limit for arbitrary q requires the introduction of the heavy
machinery of boundary Bethe ansatz [21], the general proof for all |q| = 1 will be given
in a separate paper. For the two-boundary system, a similar conjecture (also for |q| = 1)
relating the scaling limit of the spectrum of H2b in each of its irreducible sectors to Virasoro
modules also exists [22]. For q = i, we were able to compute the scaling limit of H2b in
those sectors (section 4) but it still remains to identify them with known representations
of the two-boundary TL algebra, which is made difficult by the non-generic values of the
Y parameter we have to consider. Nevertheless, we have a strong conjecture on what these
representations should be (Conjecture 2) and it is consistent with the prediction from [22].

Even though our results on the spectra of the one-boundary and two-boundary Hamil-
tonians at q = i match those already stated in previous works [17, 23] and the underlying
algebraic structures (for generic and non-generic values of the parameters) are mostly
known [16, 24, 25], we want to emphasise that our approach is very different conceptu-
ally. The above-cited papers use another type of spin-chain representation for the blob and
two-boundary algebras: they have no extra degrees of freedom at the boundary and so the
boundary operators bl/r act only on the leftmost and rightmost C2 sites, i.e. they are locally
represented by 2×2 matrices with scalar entries. This contrasts with our spin chains where
bl/r are locally represented by 2×2 matrices whose entries are infinite-dimensional matrices
acting on the additional spaces Vαl/r . Though the resulting Hamiltonians — called non-
diagonal XXZ models — used in these works are also of the form (1.8) and are known to be
integrable [26, 27] (see also the discussion in [22, section 3.4]), the boundary operators break
Uqsl2 symmetry and even the standard U(1) symmetry in this case. This symmetry break-
ing makes it impossible to carry out neither the Algebraic Bethe Ansatz procedure directly
due to absence of the standard reference state, nor the free fermion method at q = i be-
cause the Jordan-Wigner transformed Hamiltonian is not quadratic. Instead, a coordinate
Bethe ansatz in the reduced state basis [28] or, for the one-boundary system, a non-trivial
mapping to an equivalent U(1)-invariant spin chain [17, 24] had to be used in these works.

In the context of the above-mentioned non-diagonal XXZ models, it is also known
that one can perform an intricate gauge transformation to construct a suitable reference
state [29], or derive some functional relations [30, 31], or even use the Modified Algebraic
Bethe Ansatz [32] to obtain the Bethe ansatz equations. Moreover, a general algebraic
framework to clarify the integrability structure of the non-diagonal XXZ models based on
the so-called q-Onsager algebra was developed in [33]. Nevertheless, in all these works, the
lack of a sufficiently strong spin chain symmetry greatly complicates the computations and
the analysis of the spectrum.

Considering more “canonical” spin-chain representations (1.4) and (1.7) of the relevant
lattice algebras in the sense that they preserve Uqsl2 symmetry — even by adding additional
degrees of freedom and sacrificing finite-dimensionality — enables us to circumvent the
above problems and to provide a more rigid and arguably simple formalism to diagonalise
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these one-boundary and two-boundary systems as well as to organise their spectra into
sectors which are standard modules over the underlying lattice algebras. For example,
in the two-boundary case and for generic q, Proposition 5 together with Conjecture 1
suggest that a single spin chain (1.7) contains an infinite discrete series of non-diagonal
XXZ models, where the integrable boundary conditions are certain functions on αl/r, µl/r
and Y (see the discussion at the end of section 7).

It is worth mentioning that the idea to use extra degrees of freedom to simplify the
diagonalisation problem was previously applied to compute the spectrum of the open XX
spin chain with arbitrary boundary fields [34] and the large-N expansion of the ground
state for some choices of parameters [35]. In these papers, auxiliary spectator 1/2-spins
were added at the boundary, so as to obtain a free-fermion system on N + 2 sites. Even if
our approach may resemble what was done in these works, the Hamiltonian we consider has
completely different (and stronger) algebraic properties and it involves ‘continuous spins’,
yielding simpler expressions and enabling us to find the complete scaling limit for q = i.

Finally, let us note that this philosophy was also used in various other related contexts,
most notably the boundary sine-Gordon model [36–38]. The idea is always to try to replace
complicated boundary interactions by some equivalent coupling to an additional degree of
freedom which preserves the relevant symmetries of the model and makes it easier to
derive exact results (see for example [36]). Here, we apply the same technique to a lattice
model and with a rather modest symmetry group: Uqsl2. We will see however — in this
paper and the following ones — that this algebra as well as its various Schur-Weyl duals
are sufficient to understand the structure of the continuum limit and the integrability
properties of our spin chains. More generally, if we think of spin chains as discretisations
of QFTs, symmetry-preserving boundary couplings to additional degrees of freedom should
have natural continuum counterparts. This could provide new insights into the study of
boundary CFTs and related physical applications, such as quantum impurity problems [39]
and out-of-equilibrium quantum systems [40].

Notations.

• N : Length of bulk of spin chains

• σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
: Pauli matrices

• σ+ := 1
2 (σx + iσy) =

(
0 1
0 0

)
, σ− := 1

2 (σx − iσy) =
(

0 0
1 0

)

• q = e
iπ
p : Deformation parameter of the XXZ spin chain with p ∈ N\{0, 1} if q is a

2p-th root of unity

• [x]q := qx−q−x
q−q−1 : q-deformed numbers

• {x} := qx − q−x

• Uqsl2: Quantum group, a q-deformation of SU(2)
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• U
H
q sl2: For q a 2p-th root of unity, the restricted unrolled quantum group constructed

from Uqsl2

• E,F,K,K−1: Generators of Uqsl2. U
H
q sl2 has an additional generator H

• C: Casimir operator of Uqsl2 and UH
q sl2

• Vα: Infinite-dimensional Verma module of Uqsl2 of highest-weight α− 1 ∈ C or p-
dimensional representation of UH

q sl2 of highest-weight α+ p− 1 ∈ C if q is a 2p-th
root of unity

• b: Uqsl2-invariant boundary coupling operator, or the blob generator

• bl/r: Left/right Uqsl2-invariant boundary coupling operators, or left/right blobs (bl :=
b)

• H :=
(
C2)⊗N : Hilbert space of the XXZ spin chain on N sites

• HXXZ: Uqsl2-invariant open XXZ Hamiltonian

• Hb := Vα ⊗
(
C2)⊗N : Hilbert space of the one-boundary spin chain on N sites

• Hb := −µb + HXXZ: Uqsl2-invariant one-boundary Hamiltonian with coupling con-
stant µ ∈ R

• Hb := Vαl ⊗
(
C2)⊗N ⊗Vαr : Hilbert space of the two-boundary spin chain on N sites

• Hb := −µlbl+HXXZ−µrbr: Uqsl2-invariant two-boundary Hamiltonian with couplings
µl, µr ∈ R

• HXX: U
H
q sl2-invariant open XX Hamiltonian (HXXZ at q = i)

• θ†k/θk: Fermionic creation/annihilation operators of mode 1 ≤ k ≤ N

• λk: Energy of mode 1 ≤ k ≤ N

• (Un)n≥0: Chebyshev polynomials of the second kind

• ]·, ·[: Interval of R with endpoints excluded

• c = −2: Central charge

• hr,s := (2r−s)2−1
8 : Conformal weights corresponding to Kac labels (r, s)

• δ := q + q−1: Loop weight

• TLδ,N : Temperley-Lieb (TL) algebra on N sites with loop weight δ

• (ei)1≤i≤N−1: Generators of the Temperley-Lieb algebra

• (Tj)0≤j≤N/2: Standard TLδ,N -modules (j half-integer if N is odd)

– 7 –
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• y := [α+1]q
[α]q : Blob weight

• Bδ,y,N : Blob algebra on N sites with loop weight δ and blob weight y

• (Wj)−N/2≤j≤N/2: Standard Bδ,y,N -modules (j half-integer if N is odd)

• yl/r := [αl/r+1]q
[αl/r ]q : Left/right blob weights

• 2Bδ,yl,yr,Y,N : Two-boundary Temperley-Lieb algebra on N sites with loop weight δ,
left/right blob weights yl/yr and two-blob weight Y

• 2Buni
δ,yl,yr,N

: Universal two-boundary Temperley-Lieb algebra on N sites with loop
weight δ and left/right blob weights yl/yr

2 Construction of Hamiltonians Hb and H2b

Our first task is to construct the one- and two- boundary Hamiltonians Hb and H2b ex-
plicitly from Uqsl2 symmetry. The procedure is slightly different for q a root of unity or q
generic, so these two cases have to be dealt with separately.

2.1 Uqsl2 symmetry and its representations

The algebra Uqsl2 [41, 42] (see also [43, Ch. 6.4] and [44, Ch. VI-VII]) is defined by gener-
ators E, F, K and K−1 and relations

KEK−1 = q2E , KFK−1 = q−2F , [E,F] = K− K−1

q− q−1 , KK−1 = K−1K = 1 .

It is a q-deformation of the universal enveloping algebra of the Lie algebra sl2, in the sense
that we recover the commutation relations of the sl2 triple (E,F,H) in the limit q→ 1 with
K = qH. It is important for defining the action on tensor products of representations that
this algebra admits the coproduct

∆(E) = 1⊗ E + E⊗ K , ∆(F) = K−1 ⊗ F + F⊗ 1 , ∆(K±1) = K±1 ⊗ K±1 . (2.1)

As sl2, Uqsl2 admits (2j + 1)-dimensional spin-j representations for all j ∈ 1
2N. For

our purposes we will need the fundamental spin- 1
2 representation C2 where the action of

the generators is given by

EC2 = σ+ , FC2 = σ− , K±1
C2 = q±σ

z
. (2.2)

To extend it to the N sites of the Hilbert space H := (C2)⊗N we apply the coproduct (2.1)
N − 1 times (recall that the coproduct is coassociative, and so the result does not depend
on the order of its application). The Hamiltonian HXXZ then commutes with the action of
all the Uqsl2-generators [1].

– 8 –
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Finally, let us introduce the Verma modules Vα [44, Ch. VI.3] that we shall need
to define our modified boundary conditions. For all α ∈ C they are given in a basis
Vα := ⊕

0≤nC |n〉 by
EVα |n〉 = [n]q[α− n]q |n− 1〉 ,
FVα |n〉 = |n+ 1〉 ,
K±1
Vα |n〉 = q±(α−1−2n) |n〉

(2.3)

for all n ≥ 0, with |−1〉 = 0, and where

[x]q := qx − q−x

q− q−1 = {x}
{1} , {x} := qx − q−x .

The basis vectors |n〉 diagonalise K and their K-eigenvalue qα−1−2n is called the weight.
The vector |0〉 is annihilated by the raising operator E and is thus called the highest-weight
vector.

Note that the modules Vα and Vα+2p, where we parametrise q = e
iπ
p for some complex

p ∈ C, are the same. Therefore, technically we should define it only for α ∈ C/2pZ or
work with the exponentiated parameter qα. However, in all practical applications, we will
only encounter modules of the form Vα+j with j ∈ Z, so as long as q is not a root of unity
(that is p /∈ Q), α+ j 6= α+ j′ mod 2p for all integers j 6= j′ and this will not be an issue.
Therefore, we will often slightly abuse notation and lift α to C.

The Verma modules Vα are not always irreducible. For example, for certain values of
α, one may have EVα |m〉 = 0 for some m ≥ 1 giving rise to a non-trivial stable subspace⊕

m≥nC |n〉. One can actually show [44, Ch. VI] that this is the only way Vα can become
non-irreducible. Thus, Vα is irreducible if and only if [α − n]q 6= 0 for all n ∈ N∗ or, in
other words, if and only if qα 6= ±qn for all n ∈ N∗ ([n]q can never vanish if q is not a root
of unity). If that is the case, Vα is also unique, meaning any Uqsl2-module generated from
a highest-weight vector of weight qα−1 is isomorphic to Vα.

2.2 Generic q

Let us first assume that q is generic, that is, not a root of unity.
As was explained in the introduction, the boundary Hamiltonian Hb is obtained by

tensoring the standard spin chain H = (C2)⊗N with the Verma module Vα and adding a
new Uqsl2-invariant boundary term −µb acting on the two leftmost sites Vα ⊗ C2 of the
new Hilbert space Hb.

To construct the most general such operator, one has to understand the decomposition
of Vα⊗C2 into irreducible Uqsl2-modules. First, let us assume that qα 6= ±qn for all n ∈ N∗

so that Vα is irreducible. Next, if qα /∈ ±qN, we have Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1. Indeed,
using the coproduct (2.1) it is easy to check that

|v+〉 := |0〉 ⊗ |↑〉 and |v−〉 := |1〉 ⊗ |↑〉 − q[α− 1]q |0〉 ⊗ |↓〉 (2.4)

are highest-weight vectors. By the uniqueness result for the Verma modules discussed
above, these two vectors generate submodules isomorphic to Vα+1 and Vα−1 respectively,
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and these submodules are irreducible due to the assumption on qα. Then, comparing the
dimensions of the weight spaces we conclude that the tensor product Vα ⊗ C2 is spanned
by these two irreducible submodules and therefore consists of their direct sum

Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1 .

With some more work, one can actually show that this tensor product Uqsl2 decomposition
remains true even if Vα±1 are non-irreducible, as long as qα 6= ±1.3

We now turn to the construction of the boundary Hamiltonians. Let us begin with the
assumption qα /∈ ±qN (we give comments on the case qα ∈ ±qN at the end of this section).
In this case, the only Uqsl2-invariant operators acting on Vα ⊗ C2 are linear combinations
of the projectors b± on Vα±1. Obviously, b+ + b− = 1 so without loss of generality we can
choose b := b+ as our boundary operator (the other choice would just shift the Hamiltonian
by a constant term and change the sign of µ).

To find the explicit expression of the projector b+, we study the action of the Uqsl2
Casimir element C defined by

C := {1}2FE + qK + q−1K−1 = {1}2EF + q−1K + qK−1 . (2.5)

It is central in Uqsl2 and, moreover, all possible operators of End(Vα⊗C2) commuting with
the Uqsl2-action are of the form

A = µ1Id + µ2C .

Using the coproduct (2.1) and the fact that, as operators on Vα,

{1}2FE = qα + q−α − qK− q−1K−1 , (2.6)

the Casimir element value on Vα ⊗ C2 is

CVα⊗C2 =
(
−q−1{1}K−1 + q(qα + q−α) F{1}2

q{1}2K−1E q{1}K−1 + q−1(qα + q−α)

)
(2.7)

where we interpreted CVα⊗C2 ∈ End(Vα⊗C2) as a 2×2 matrix with coefficients in End(Vα)
and dropped the Vα subscripts to lighten notations.

By Schur’s lemma, C is constant on any irreducible representation of Uqsl2. From (2.3)
and (2.5) we easily compute4

CVα = qα + q−α . (2.8)

Thus the projectors on Vα±1 are given by the solutions of the linear systems{
µ1 + µ2(qα±1 + q−α∓1) = 1 ,
µ1 + µ2(qα∓1 + q−α±1) = 0 . (2.9)

3Concretely, if qα = ±qn for some n ≥ 1, the two vectors (2.4) are still highest-weight and generate
the submodules Vα+1 and Vα−1. The only non-trivial stable subspaces of Vα±1 are isomorphic to Vα−2n∓1,
and so we must have Vα+1 ∩ Vα−1 = {0}. Comparing the dimensions of the weight spaces we obtain
Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1. Note that for qα = ±1 this is no longer the case, in particular F |v+〉 = |v−〉 so
Vα−1 ⊂ Vα+1. We give more details about this case in Remark at the end of this section.

4In what follows, we often omit the identity operator Id and show only the corresponding coefficient.
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Solving these we obtain

b± = ±CVα⊗C2 − qα∓1 − q−α±1

{1}{α} , (2.10)

that is,

b±= ±1
{α}

(
−q−1K−1 +q±α {1}F

q{1}K−1E qK−1−q∓α

)
(2.11)

= 1
2±

1
[α]q

(1
2K−1⊗1+ 1

2{1}
(
qα+q−α−(q+q−1)K−1

)
⊗σz+F⊗σ+ +qK−1E⊗σ−

)
,

where again we interpreted b± ∈ End(Vα ⊗ C2) as a 2 × 2 matrix with coefficients in
End(Vα). By construction, we have b2± = b±, b+ + b− = 1, and b±b∓ = 0. Setting b := b+
we obtain the explicit expression of the one-boundary Hamiltonian

Hb := −µb+HXXZ , (2.12)

where HXXZ is defined in (1.2), which is an operator acting on Hb = Vα ⊗ (C2)⊗N .
To construct the two-boundary Hamiltonian H2b we proceed in the same fashion. We

already know that the projector bl on Vαl+1 is given by b+ from (2.11) (with α replaced by
αl). To compute br — the projector on Vαr+1 — we now take the linear combination

br = µ1 + µ2CC2⊗Vαr .

Note that the Casimir element action on C2⊗Vαr is different from the action on Vαr ⊗C2,
as the tensor product of Uqsl2 representations is not symmetric but braided (see section 6).
For br to be the projector on Vαr+1, µ1 and µ2 must satisfy the same constraints (2.9)
(with α replaced by αr). We obtain

br =
CC2⊗Vαr − qαr−1 − q−αr+1

{1}{αr}

= 1
{αr}

(
qK− q−αr q{1}KF
{1}E −q−1K + qαr

)
(2.13)

= 1
2 + 1

[αr]q

(1
21⊗ K + σz

2{1} ⊗
(
(q + q−1)K− qαr − q−αr

)
+ qσ+ ⊗ KF + σ− ⊗ E

)
and thus the explicit expression of the two-boundary Hamiltonian

H2b := −µlbl +HXXZ − µrbr . (2.14)

Again, the projector on Vαr−1 is simply 1− br, so we lose no generality by writing H2b in
this form.

2.3 Root of unity q

Let us now assume that q = e
iπ
p , p ∈ N\{0, 1}, a 2p-th root of unity.5 This case is different,

because we now have EVα |p〉 = 0 for any α, and so the subspace ⊕n≥p |n〉 ⊂ Vα is stable
5The definitions and conventions for even and odd roots of unity differ slightly. We decided to work with

only the even roots to lighten the exposition. The odd root cases are conceptually the same, and analogous
results can be obtained with only minor modifications. Also, different choices of 2p-th roots of unity of the
form q = e

iπp′
p with p and p′ coprime will yield exactly the same results as q = e

iπ
p .
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under the action of Uqsl2, making Vα reducible but indecomposable. Working with such
Vα then complicates the algebraic analysis. The proper way to fix this is to slightly modify
the algebra Uqsl2 by introducing the restricted unrolled quantum group U

H
q sl2 (see for

example [45]). It has an additional generator H satisfying

[H,K±1] = 0, [H,E] = 2E, [H,F] = −2F

with the coproduct ∆(H) = H⊗ 1 + 1⊗ H, as well as the relations

Ep = Fp = 0 .

The action of this algebra on the spin-chain sites C2 is the same as Uqsl2 with HC2 =
σz. However, the infinite-dimensional Verma modules are now truncated to p-dimensional
modules Vα := ⊕p−1

n=0 C |n〉, which we still denote Vα. They are given by

EVα |n〉 = [n]q[n− α]q |n− 1〉 ,
FVα |n〉 = |n+ 1〉 ,
HVα |n〉 = (α+ p− 1− 2n) |n〉 ,

K±1
Vα = q±HVα

(2.15)

for all 0 ≤ n ≤ p − 1, with |−1〉 = |p〉 = 0. Note that the weight of |n〉 (meaning its
K-eigenvalue) is shifted by qp = −1 with respect to the definition (2.3). For generic values
of α ∈ C, i.e. α /∈ Z, these p-dimensional modules are irreducible. They are also irreducible
if α = 0 mod p but not for α ∈ {1, . . . , p − 1}mod p where they contain an irreducible
submodule which is not a direct summand [45].

The advantage of using UH
q sl2 instead of Uqsl2 at roots of unity is that its representa-

tion theory has better properties making it more suitable for our purposes. In particular, at
roots of unity, conservation of H — which holds for all the Hamiltonians we consider — is
stronger than the conservation of K := qH (which is equivalent to the conservation of H only
modulo 2p) so we need to add H to our symmetry algebra to correctly describe the central-
izers of our systems. A consequence of this is that the UH

q sl2-modules Vα and Vα+2p are no
longer isomorphic and so one has to treat α as an element of C (and not C/2pZ as before).
This modification is also needed for the braiding of representations to be well-defined, a
feature which will be useful for us later on in section 6. Finally, if qα 6= ±1 (that is α /∈ pZ),
the fusion rule Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1 remains true for the UH

q sl2 representations (2.15).
Therefore, if α /∈ Z (recall that Vα is irreducible if and only if α /∈ Z\pZ) the only UH

q sl2-
invariant operators acting on Vα⊗C2 are linear combinations of the projectors b± on Vα±1.

The Casimir C defined in (2.5) is a central element of UH
q sl2 and so we can apply the

same method as in the generic q case. We obtain

b± = ∓1
{α}

(
−q−1K−1 − q±α {1}F

q{1}K−1E qK−1 + q∓α

)
, (2.16)

where again we interpreted b± ∈ End(Cp ⊗ C2) as a 2 × 2 matrix with coefficients in
End(Vα = Cp). Note that (2.11) and (2.16) are related by the change of variables α→ α+p,
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which is clear from the definitions. Again, by construction, b2± = b±, b+ + b− = 1, and
b±b∓ = 0. Setting b := b+ we obtain the explicit expression of Hb = −µb + HXXZ. We
notice that the only case where Hb is not well-defined is when α = 0 mod p (see more
explanations from the representation theory point of view below).

The two-boundary Hamiltonian H2b is introduced again very similarly to the generic
q case. The left coupling is given by the projector bl := b+ on Vαl+1 from (2.16) (with α
replaced by αl). As for the projector br, it is now given by

br = 1
{αr}

(
−qK− q−αr −q{1}KF
−{1}E q−1K + qαr

)
. (2.17)

We thus obtain H2b := −µlbl +HXXZ − µrbr, for αl, αr 6= 0 mod p.
One may wonder if we “lose” something by restricting to p-dimensional representations

at roots of unity instead of still working with Verma modules as for generic q. In a nutshell,
with this simplification, we might only miss the non-trivial Jordan block structure we could
have obtained with Verma modules (which are reducible but indecomposable at roots of
unity) but the spectrum remains the same. This will be discussed in more detail in a future
paper.

Remark for non-generic α. If qα = ±1, the fusion rule Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1 does
not hold any more for generic as well as for root of unity q. In both cases, Vα⊗C2 is then a
reducible but indecomposable module. For example for α = 0, this is a projective module
in the category O of Uqsl2 (the category of all finitely-generated Uqsl2-modules with finite-
dimensional weight spaces and such that every vector is annihilated by a sufficiently large
power of E) containing the Verma modules V1 and V−1 as non-trivial submodules where the
Casimir operator is non-diagonalisable [46], and similarly for UH

q sl2 at roots of unity [45].
Therefore, we have no non-trivial projectors in these cases. This can already be seen in
the expressions (2.11) and (2.16) for the projectors b±: they are degenerate if and only if
qα = ±1. This explains why the one-boundary Hamiltonians Hb constructed above are well-
defined only for qα 6= ±1. To cover the missing cases, we note that by rescaling µb→ µ̃[α]qb
and taking the limit qα → ±1 one can extend the definition of Hb even to qα = ±1. This
trick will later be used in the study of the spectrum of the p = 2 model in section 3.4.

Now if qα = ±qn for some n ∈ Z∗, or some n ∈ {1, . . . , p−1} if q is a root of unity, even
if Hb is well-defined, we will have a similar problem of indecomposable and yet reducible
modules but in bigger chains. Indeed, for sufficiently large N (actually for N = |n|) a
module Vβ with qβ = ±1 appears in the decomposition of the Hilbert space which brings
us back to the previous situation with V0 ⊗C2 for larger values of N . Generally speaking,
the presence of such representations with non-diagonal action of the Casimir element makes
the spectrum analysis more complicated, with for example, the appearance of non-trivial
Jordan blocks for the Hamiltonian action. We leave its careful treatment for a further
work. This is why, in this paper, we will mostly consider the case qα /∈ ±qZ (thus simply
α /∈ Z for root of unity q), and only occasionally give comments for qα ∈ ±qZ.
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3 Spectrum of Hb for q = i and its scaling limit

In order to motivate our construction — in particular on physical grounds — we discuss as
an aside, in this section and the next, the case q = i. We find the spectrum of Hb for q = i

using free fermions. We then study its scaling limit, and show that it is given by a conformal
field theory whose partition function is calculated explicitly. We identify this CFT with
the (η, ξ) ghost system on the upper half-plane, with special boundary conditions on the
real axis that are indexed by the lattice boundary parameter in the domain α ∈ R/2Z,
that is y = cot πα2 ∈ R.

3.1 The one-boundary XX model

When taking q = i, (i.e., p = 2) in (1.2) we obtain the Hamiltonian of the open U
H
q sl2-

invariant XX model,

HXX = 1
2

N−1∑
j=1

(σxj σxj+1 + σyj σ
y
j+1) + i

2(σzN − σz1) .

Let us now modify the boundary conditions on the leftmost boundary by adding a rep-
resentation Vα, as explained in the previous section. For p = 2, Vα defined in (2.15) is
two-dimensional and we can express b in terms of Pauli matrices,

b = 1
2(1 + σz0)− cot πα2

(
e−

iπα
2 σ+

0 σ
−
1 + 1

cos πα2
σ−0 σ

+
1 + i

2(σz1 − σz0)
)
, (3.1)

where the site 0 corresponds to Vα. The one-boundary XX Hamiltonian is then given
by (1.6) at q = i or p = 2, i.e. Hb = −µb+HXX and it acts on the chain Hb = Vα⊗ (C2)⊗N
where Vα is the two-dimensional representation introduced in (2.15).

3.2 Construction of plane waves

Let us introduce the Jordan-Wigner transform. For 0 ≤ j ≤ N , consider the operators

c†j := (−1)j
j−1∏
k=0

σzkσ
+
j , cj := (−1)j

j−1∏
k=0

σzkσ
−
j , (3.2)

satisfying the anti-commutation relations

{c†j , c
†
j′} = 0 , {cj , cj′} = 0 , {c†j , cj′} = δj,j′ . (3.3)

Then
1
2(σxj σxj+1 + σyj σ

y
j+1) + i

2(σzj+1 − σzj ) = cjc
†
j+1 + cj+1c

†
j + i(c†jcj − c

†
j+1cj+1)

for 1 ≤ j ≤ N − 1, and

b = c†0c0 + cot πα2

(
e−

iπα
2 c1c

†
0 + 1

cos πα2
c0c
†
1 + i(c†0c0 − c†1c1)

)
.

Therefore Hb is quadratic in c’s.
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We now want to build operators θ† diagonalising the adjoint action of the Hamiltonian,
that is, satisfying

[Hb, θ
†] = λθ† (3.4)

for some λ ∈ C. We will look for θ† of the form

θ† =
N∑
j=0

Ajc
†
j .

Using the commutation relations

[c†jcj , c
†
k] = δj,kc

†
j , [cjc†j+1, c

†
k] = −δj,kc†j+1 , [cjc†j−1, c

†
k] = −δj,kc†j−1 ,

the equation (3.4) then gives the following linear system of equations on Aj ’s:
−A0µ

(
1 + i cot πα2

)
+A1µ cot πα2 e

− iπα2 = λA0 ,

A0
µ

sin πα
2

+A1iµ cot πα2 + (A2 − iA1) = λA1 ,

Aj−1 +Aj+1 = λAj , 2 ≤ j ≤ N − 1 ,
AN−1 + iAN = λAN .

(3.5)

Eliminating A0 from the first two equations we obtain
A0 = A1

cos πα2 e−
iπα

2

ie−
iπα

2 +λ
µ

sin πα
2

,

A1
iλ cos πα2

ie−
iπα

2 +λ
µ

sin πα
2

+ (A2 − iA1) = λA1 ,
(3.6)

and introducing
χ(λ) =

iλ cos πα2
ie−

iπα
2 + λ

µ sin πα
2

equations (3.5) become
A2 − (i− χ(λ))A1 = λA1 ,

Aj−1 +Aj+1 = λAj , 2 ≤ j ≤ N − 1 ,
AN−1 + iAN = λAN .

(3.7)

Similarly, solving
[Hb, θ] = λθ

with

θ =
N∑
j=0

Bjcj

gives
B0 = B1

ie−
iπα

2 − λ
µ sin πα

2

and 
B2 − (i− χ(−λ))B1 = −λB1 ,

Bj−1 +Bj+1 = −λBj ∀ 2 ≤ j ≤ N − 1 ,
BN−1 + iBN = −λBN .

(3.8)
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We see that the systems (3.7) and (3.8) are related by the transformation λ→ −λ, and so
it is sufficient to consider only one of them.

We now look for plane wave solutions, that is, amplitudes Aj of the form

Aj = a+x
j + a−x

−j ,

where x ∈ C\{−1, 1}.6 This ansatz solves the system (3.7) in the bulk (for all 2 ≤ j ≤ N−1)
with λ = x+x−1. We now have to look for x such that the two boundary equations admit
a non-zero solution. Rewriting (3.7) we obtain{

(1 + (i− χ(λ))x)a+ + (1 + (i− χ(λ))x−1)a− = 0 ,
xN (i− x)a+ + x−N (i− x−1)a− = 0 .

The equation on x is obtained by imposing that the determinant of this system vanishes.
This computation gives

λ

(
xN

(
sin πα2

(
1 + λ

µ

)
− x−1 cos πα2

)
− x−N

(
sin πα2

(
1 + λ

µ

)
− x cos πα2

))
= 0 .

(3.9)
We note that the presence of the overall λ factor, and the corresponding solution λ = 0,

is due to the UH
q sl2 symmetry. In what follows, we only analyse solutions with non-zero λ,

and as said above x 6= ±1. Then dividing by λ(x− x−1) and introducing the Chebyshev
polynomials of the second kind

Un

(
x+ x−1

2

)
= xn+1 − x−n−1

x− x−1 ,

we can rewrite (3.9) in a more compact form (recall that λ := x+ x−1)

P (λ) := UN (λ/2) + µUN−1(λ/2) + (1− µy)UN−2(λ/2) = 0 , (3.10)

where we introduced
y := cot πα2 . (3.11)

Denoting by λk = xk + x−1
k , for 1 ≤ k ≤ N , the solutions of this polynomial equation we

obtain (with some choice of normalisation) N operators θ†k,

θ†k :=
N∑
j=0

Aj(λk)c†j , 1 ≤ k ≤ N ,

where7

A0(λ) = −e
− iπα2 χ(λ)

λ
(UN−2(λ/2) + iUN−1(λ/2)) ,

Aj(λ) = UN−j(λ/2)− iUN−j−1(λ/2) ∀ 1 ≤ j ≤ N .

(3.12)

6Here x = ±1 are not allowed, since the amplitude Aj will then only depend on the combination a+ +a−,
and so a+ and a− cannot be treated as independent variables. One can check that the corresponding
constant (or alternating) amplitude is not a solution of (3.7).

7By convention U−1 = 0 and U0 = 1.
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The explicit expressions (3.12) are found by noticing that the standard property of the
Chebyshev polynomials

λUn(λ/2) = Un+1(λ/2) + Un−1(λ/2)

implies that, for any λ ∈ C, Aj(λ) satisfy the system (3.7) for 2 ≤ j ≤ N . If additionally λ is
a solution of (3.10) the first equation of (3.7) is also fulfilled. Computing A0(λ) from (3.6),
we obtain the coefficients Aj(λk) corresponding to a solution λk. By construction, the
operators θ†k then satisfy

[Hb, θ
†
k] = λkθ

†
k . (3.13)

Using the λ→ −λ transformation we also have N operators θk,

θk =
N∑
j=0

Bj(λk)cj , 1 ≤ k ≤ N ,

where

B0(λ) = − χ(λ)
λ cos πα2

(UN−2(λ/2) + iUN−1(λ/2)) = e
iπα

2

cos πα2
A0(λ) ,

Bj(λ) = Aj(λ) ∀ 1 ≤ j ≤ N ,

(3.14)

satisfying
[Hb, θk] = −λkθk .

Finally, the zero modes corresponding to the eigenvalue λ0 ≡ 0 are given by

θ†0 = cos πα2 c†0 +
N∑
j=1

ijc†j , θ0 = c0 + e−
iπα

2

N∑
j=1

ijcj . (3.15)

They are related to UH
q sl2 generators as

EHb = iθ†0KHb , FHb = θ0 , (3.16)

and they satisfy the anti-commutation relation

{θ†0, θ0} = e
iπα

2 + (−1)Ne− iπα2
2 . (3.17)

All the constructed operators satisfy the anti-commutation relations

{θ†k, θ
†
k′} = 0 , {θk, θk′} = 0 . (3.18)

Note however that {θ†k, θk′} 6= δk,k′ and that θ†k and θk are not actually the adjoint of one
another. In general {θ†k, θk′} = Skk′IdHb for some (N + 1) × (N + 1) matrix (Skk′). Since
Skk′ → δkk′ as µ → 0 (for some normalisation of θk), this matrix is generically invertible,
and so we can in principle find a linear transformation θk 7→ θ̃k such that {θ†k, θ̃k′} = δk,k′ ,
but the new modes θ̃k will no longer diagonalise the adjoint action of the Hamiltonian
Hb. As the matrix (Skk′) depends explicitly on the solutions of (3.10) it does not admit a
simple closed form in full generality. Later on, we will still manage to calculate it up to
order 1/N (see equation (B.1)).
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3.3 Computation of the spectrum

For p = 2, Vα := C |0〉 ⊕ C |1〉 is of dimension 2, so for convenience let us denote the basis
vectors |0〉 and |1〉 defined in (2.15) by |↑〉 and |↓〉 respectively.

We take a subset S ⊆ {1, . . . , N} and consider the vector

|S〉 =

∏
k∈S

θ†k

 |↓〉⊗N+1 .

It is non-zero, and by (3.18) the ordering of θ†k’s will only affect its sign. These vectors
are eigenstates for the Hamiltonian Hb. Indeed, by (3.13), and since |↓〉⊗N+1 ∈ Ker Hb

(from (1.2) and (3.1) one easily checks that HXXZ |↓〉⊗N+1 = b |↓〉⊗N+1 = 0), we have

Hb |S〉 =
∑
k∈S

λk |S〉 := λS |S〉 ,

where λk are corresponding solutions of the equation (3.10). There are 2N such eigen-
vectors, but dim Hb = 2N+1. However, when α /∈ Z, using repeatedly the fusion rule
Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1, we know that the Hilbert space decomposes as

Hb =
N⊕
k=0

(
N

k

)
Vα−N+2k (3.19)

into two-dimensional irreducible representations of UH
q sl2. Therefore if the λS ’s are pairwise

distinct (which is true for generic α and µ) each eigenvalue of Hb is only twice degenerate
with each λS-eigenspace spanned by the two linearly independent sates |S〉 and θ†0 |S〉 ∝
EHb |S〉. We thus get

Spec(Hb) = {λS | S ⊆ {1, . . . , N}} . (3.20)

For special non-generic values of α and µ, some λS corresponding to different S may
“accidentally” be equal but with vectors |S〉 and θ†0 |S〉 still providing an eigenbasis. A
more complicated situation is when these vectors become linearly dependent. In that case
we still expect that all the eigenvectors of Hb are (possibly, linear combinations of vectors)
of the form |S〉 or θ†0 |S〉 but that they cannot span the whole chain Hb because of the
appearance of non-trivial Jordan blocks in the action of Hb. Such a phenomenon can be
observed for α ∈ Z (see the corresponding Remark at the end of section 2), but rigorously
proving that it happens only at those values requires further study. For example, the case
of α = 1 produces the standard open XX chain on an even number of sites where the
Hamiltonian is known to be non-diagonalisable. This case was studied in detail in [47] (see
the discussion at the end of section 3.4).

For α /∈ Z, the basis {|S〉 , θ†0 |S〉}S⊆{1,...,N} respects the UH
q sl2-decomposition (3.19).

Indeed, if we introduce the k-fermion subspaces, for 0 ≤ k ≤ N ,

Wk :=
⊕
|S|=k

C |S〉 and W k := θ†0Wk , (3.21)
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each of them is of dimension
(N
k

)
, then, using the commutation relations of the zero modes

θ0 = F and θ†0 = EK−1, we see that

θ0W k = Wk and θ0Wk = θ†0W k = {0} .

In other words, Wk ⊕W k is stable under the action of UH
q sl2. Moreover, since

H|Wk
= (α+ 2k −N − 1)IdWk

, H|Wk
= (α+ 2k −N + 1)IdWk

, (3.22)

and Wk (resp. W k) is annihilated by F (resp. E), we have

Wk ⊕W k =
(
N

k

)
Vα−N+2k ⊂

N⊕
k=0

(
N

k

)
Vα−N+2k = Hb

for all 0 ≤ k ≤ N . Let us also stress again that Wk and W k are both stable under the
action of Hb, and that Spec(Hb|Wk

) = Spec(Hb|Wk
). We will show in section 5.2 that these

spaces are even irreducible representations of the lattice algebra generated by the nearest
neighbour couplings (ei)1≤i≤N−1 and b, that is the blob algebra.

We would now like to show that the spectrum of Hb is real in some domain in (µ, y)-
space. For this, we have to show that equation (3.10) has exactly N real roots for some
values of µ and y. We would also like to parametrise all the solutions as λk = 2 cos pk,
pk ∈]0, π[, in order to interpret pk as the momentum of the spin wave associated to θ†k.
Therefore we will be looking for values of µ and y such that all the solutions of (3.10) are
in the interval ]− 2, 2[.

The first requirement is obviously µ, y ∈ R, so that the coefficients of P are real.
Moreover, since the spectral equation (3.10) is invariant under (λ, µ, y) → −(λ, µ, y), we
can restrict ourselves to µ > 0, y ∈ R (if µ = 0, Hb = HXX whose spectrum is known).
Now for y = 0 (3.10) it takes the form

(λ+ µ)UN−1(λ/2) = 0 ,

so as long as |µ| < 2 and UN−1(µ/2) 6= 0, all the solutions are distinct and in ] − 2, 2[.
Now, if we fix such a µ, this will remain true for y in some neighbourhood of 0. Let
]y−(µ,N), y+(µ,N)[ be the maximal such neighbourhood. Its endpoints correspond to the
smallest values of y, such that either one of the roots of P leaves ]− 2, 2[, or two of them
collide and are ejected into the complex plane. To determine them, set λ = 2 cos ξ, ξ ∈]0, π[
and rewrite (3.10) as

sin (N + 1)ξ + µ sinNξ + (1− µy) sin (N − 1)ξ = 0 ,
⇔ ((2− µy) cos ξ + µ) sinNξ + µy sin ξ cosNξ = 0 ,

⇔ ∆ sin (Nξ + ϕ(ξ)) = 0 ,
(3.23)

where
∆ =

√
((2− µy) cos ξ + µ)2 + (µy sin ξ)2

and
ϕ(ξ) = arccot (2− µy) cos ξ + µ

µy sin ξ .
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We thus have to determine whether we can find N distinct ξ ∈]0, π[, such that

Nξ + ϕ(ξ) = kπ (3.24)

for some k ∈ Z . If 0 < µ < 2 and 0 < y < 2−µ
µ := ymax, then ϕ(0+) = 0+ and ϕ(π−) = π−,

and so by the intermediate value theorem, (3.24) will have exactly N solutions in ]0, π[
corresponding to 1 ≤ k ≤ N . Therefore ymax ≤ y+(µ,N) for all N . Actually, by plotting
P for different values of 0 < µ < 2, y > 0 and N , one sees that y+(µ,N) is reached because
of a solution hitting −2, so one has

UN (−1) + µUN−1(−1) + (1− µy+)UN−2(−1) = 0 ⇒ y+(µ,N) = 2− µ
µ

N

N − 1 . (3.25)

Note that y+(µ,N)→ y+
max as N →∞.

Now, if 0 < µ < 2 and y < 0, ϕ(0+) = π− and ϕ(π−) = 0+, so (3.24) will have at
least N − 2 solutions in ]− 2, 2[. The two remaining roots of P can also belong to ]− 2, 2[,
as the function ξ → Nξ + ϕ(ξ) may pass by some πk more than once as ξ goes from 0 to
π, if it is not strictly increasing. Numerically, one sees that as y decreases below 0, two of
the N roots of P at y = 0 collide and become complex. The value y−(µ,N) at which this
happens is given by the solution of the system Py−(λ) = P ′y−(λ) = 0 in λ and y− and cannot
be expressed analytically. However, it is clear that for sufficiently large N , the function
ξ → Nξ+ϕ(ξ) is strictly increasing on ]0, π[, and so (3.24) will have exactly N−2 solutions,
corresponding to 2 ≤ k ≤ N − 1. This implies that y−(µ,N)→ 0− as N →∞. Therefore
we see that the spectral equations of y > 0 and y < 0 have quite different properties.
Additional properties of the roots of P for µ > 0 and y ∈ R are given in appendix A.

Example. Take µ = y = ymax = 1. With the parametrisation λ = 2 cos ξ, (3.10) becomes

UN (cos ξ) + UN−1(cos ξ) = sin (N + 1)ξ + sinNξ
sin ξ = 2 cot ξ2 sin (2N + 1)ξ

2 = 0 ,

and so we see that it has N solutions λk ∈]− 2, 2[,

λk = 2 cos 2kπ
2N + 1 , 1 ≤ k ≤ N , (3.26)

with real associated momenta pk = 2kπ
2N+1 .

3.4 Scaling limit

We now want to study the spectrum of Hb in the scaling limit N → +∞, to extract infor-
mation about the CFT which this lattice model will give in the continuum. In particular
we would like to find the surface energy, the central charge and the partition function in
terms of y and µ. To do so, we have to compute the ground-state energy and the low-lying
excitations at order o(1/N).

Assume 0 < µ < 2, 0 ≤ y ≤ ymax, and N even (the odd N case requires only slight
modifications and will be briefly discussed later on). Since the ground-state energy is the
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sum of all the negative λk, corresponding to N/2 + 1 ≤ k ≤ N , let us change variables
ξ → π − ξ, k → N + 1− k in (3.24) to rewrite it as

Nξ + φ(ξ) = kπ , (3.27)

with φ(ξ) := π − ϕ(π − ξ). Denote (ξk)1≤k≤N its N solutions in ]0, π[ corresponding to
each 1 ≤ k ≤ N . One of the two ground states8 is then given by

|vac0〉 :=

N/2∏
k=1

θ†k

 |↓〉⊗N+1 ∈WN/2 ,

and its energy is

E0 = −
N/2∑
k=1

2 cos ξk .

Let us expand ξk at order o(1/N2),

ξk = kπ

N
+ ξ

(1)
k

N
+ ξ

(2)
k

N2 + o(1/N2) .

Plugging this expression into (3.27) we obtainξ
(1)
k = −φ

(
kπ
N

)
,

ξ
(2)
k = φ′φ

(
kπ
N

)
.

(3.28)

Therefore
2 cos ξk = 2 cos kπ

N
+ (2φ sin)

(
kπ

N

) 1
N

−
(
2φ′φ sin +φ2 cos

)(kπ
N

) 1
N2 + o(1/N2) .

(3.29)

Let us now compute the sum of each term in (3.29) at order o(1/N). First,

N/2∑
k=1

2 cos kπ
N

= −1 + cot π

2N = 2N
π
− 1− π

6N + o(1/N) .

To compute the sum of the second term at order o(1/N) we have to use the Euler-Maclaurin
formula

1
N

N/2∑
k=1

(2φ sin)
(
kπ

N

)
=
∫ 1/2

0
(2φ sin) (πu)du+

(φ sin)
(
π
2
)

+ (φ sin) (0)
N

+ o(1/N)

= 2
π

∫ π/2

0
φ(u) sin(u)du+ π − arccot (1/y)

N
+ o(1/N) .

8Recall that each eigenvalue has multiplicity 2 because of the UH
q sl2 symmetry.
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Finally,

− 1
N2

N/2∑
k=1

(
2φ′φ sin +φ2 cos

)(kπ
N

)
=

= − 1
N

∫ 1/2

0

(
2 sinφ′φ+ cosφ2

)
(πu)du+ o(1/N)

= − 1
πN

[
sin(u)φ(u)2

]π/2
0

+ o(1/N)

= − 1
πN

(π − arccot (1/y))2 + o(1/N) .

Putting everything together we obtain

E0 = Neb + Es −
πvF
N

ceff
24 + o(1/N2) , (3.30)

where
eb = − 2

π
(3.31)

is the bulk energy per site,

Es = 1− 2
π

∫ π/2

0
φ(u) sin(u)du (3.32)

is the surface energy,
vF = p sin π

p
= 2 (3.33)

is the Fermi velocity and

ceff = −2 + 12
π

(π − arccot(1/y))− 12
π2 (π − arccot(1/y))2

= −2 + 12
π

arccot(1/y)− 12
π2 arccot(1/y)2

= 1− 3α2

(3.34)

is the effective central charge. The value of eb matches that of the usual XX model, which
is unsurprising, as boundary conditions are not expected to influence the bulk properties
of the system. The value of Es is different, however. In the limit µ → 0, the integral
in (3.32) vanishes and we recover the surface energy of the XX model (which is equal to 1).
As far as we know, the exact expression (3.32) is new. Finally, the central charge of the
XX is known to be c := −2, (see for example [1]). With our new boundary conditions, we
obtain an effective central charge ceff which only depends on α (and not µ). Introducing
the conformal weights

hr,s := (2r − s)2 − 1
8 , (3.35)

we have
ceff = c− 24hα,α .

Let us compute the scaling limit of the low-lying excitations. First, let us find the
ground states of the other Wj sectors. They are obtained by acting on |vac0〉 with the
θ†k, N/2 + 1 ≤ k ≤ N , corresponding to the smallest (positive) λk’s, or by removing θ†k,
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1 ≤ k ≤ N/2 corresponding to the biggest (negative) λk. In both cases we have to take k
close to N/2. Set k̃ = N/2− k. For k̃ close to 0 and at large N ,

λk̃ = 2 cos ξk̃ = 2k̃π
N

+
2φ
(
π
2
)

N
+ o(1/N) = (2k̃ + α+ 1)π

N
+ o(1/N) . (3.36)

Thus, the energy Ej of the ground state |vacj〉 :=
(∏N/2+j

k=1 θ†k

)
|↓〉⊗N+1 of the WN/2+j

sector, 1 ≤ j, is

Ej = E0 −
π

N

−j∑
k̃=−1

(2k̃ + α+ 1) + o(1/N) = E0 + πvF
N

j(j − α)
2 + o(1/N) ,

and the energy E−j of the ground state |vac−j〉 :=
(∏N/2−j

k=1 θ†k

)
|↓〉⊗N+1 of the WN/2−j

sector, 1 ≤ j, is

E−j = E0 + π

N

j−1∑
k̃=0

(2k̃ + α+ 1) + o(1/N) = E0 + πvF
N

j(j + α)
2 + o(1/N) .

Now, let us fix a sector WN/2+j , j ∈ Z, and compute the low-lying excitations above
|vacj〉 with the energy Ej . These are obtained by replacing some of the θ†k with k close
to N/2 appearing in |vacj〉 by some others with bigger λk (but still close to N/2), keeping
in mind that no θ†k must appear more than once (otherwise the resulting vector is zero).
By (3.36), an elementary substitution of some θ†k by some θ†k′ with k < k′ increases the
energy by 2π(k′−k)

N at order o(1/N). We claim that for N → ∞ the number of ways to
increase the ground-state energy Ej by 2πm

N for m ∈ N is equal to the number of integer
partitions of m. To see this, take such a partition K = (κ0 ≥ . . . ≥ κ`) of m and associate
to it the vector |K, j〉 by performing the series of substitutions

(θ†N/2+j , . . . , θ
†
N/2+j−`)→ (θ†N/2+j+κ0

, . . . , θ†N/2+j−`+κ`)

inside |vacj〉. Conversely, it is clear that to any eigenvector of Hb in WN/2+j one can
associate such a partition K in a unique way. Of course, this bijection only holds for m
not too big, since we have a finite number of θ†k at our disposal. A sufficient condition is,
for example, that m < N/2 − |j|. As we are only interested in the low-lying excitations,
that is m� N , this will be enough.

To summarise, in the scaling limit, the generating function of the spectrum of Hb,
restricted to WN/2+j for each j ∈ Z, is given by

Zj(q, α) := lim
M→∞

lim
N→∞

tr<MWN/2+j
q

N
πvF

(Hb−Neb−Es) = q−
1−3α2

24

P (q) q
j(j−α)

2 , (3.37)

where 1/P (q) := 1/∏+∞
n=1(1 − qn) is the generating function of integer partitions, and

tr<MWN/2+j
means that we only sum over the M first excitations above the ground state

in the WN/2+j sector. This double-limit construction is needed to ensure that the final
expression is convergent and consistent with our computation.
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The full generating function of the spectrum of Hb in the scaling limit is given by

Z(q, α) := lim
M→∞

lim
N→∞

tr<MHb q
N
πvF

(Hb−Neb−Es)

= 2
∑
j∈Z

Zj(q, α) = 2q− 1−3α2
24

P (q)
∑
j∈Z

q
j(j−α)

2 ,
(3.38)

where the factor of 2 comes from the UH
q sl2-symmetry which makes each eigenvalue twice

degenerate (or, equivalently, from the contribution of theW j sectors). Rewriting this result
in terms of the conformal weights (3.35) and of the XX central charge c := −2, as

−1− 3α2

24 + j(j ± α)
2 = − c

24 + hα,α∓2j ,

we obtain
Zj(q, α) := 2q− c

24

P (q) q
hα,α+2j . (3.39)

Thus, in the scaling limit, the spectrum of Hb|WN/2+j is exactly that of a CFT with central
charge −2 in the generic Virasoro Verma representation of conformal weight hα,α+2j . This
proves a special case (q = i) of a prediction made in [17, 18] for the abstract one-boundary
Hamiltonian evaluated on standard representations of the blob algebra. We discuss this
more from lattice algebra considerations in sections 5.2 and 7. The proof of the general
result for any q with |q| = 1 will be given in a future paper.

All these results are manifestly independent of µ, which is consistent with [18, 48] and
renormalisation arguments [49]. Nevertheless, one should not forget that in our derivation
we had to assume 0 < µ < 2 and 0 ≤ y ≤ ymax, so technically speaking, equations (3.38)
and (3.37) are valid only for α ∈]0, 1]. To extend them to y < 0 (and still µ > 0), that is
to α ∈ [1, 2[,9 we have to modify the expansion (3.28) to take into account the fact that at
large N we will have only N−2 solutions in ]−2, 2[. A faster way is to invoke the unicity of
the analytic continuation in α, and claim that (3.37) and (3.38) remain valid for α ∈ [1, 2[.
It is however important to remember that even if the final result does not explicitly depend
on µ, its sign is still important, as the spectral equation of Hb is only invariant under the
simultaneous transformation (µ, y)→ −(µ, y). Concretely, from (3.11), and since α ∈]0, 2[,
the change of sign y → −y is implemented by α → 2 − α. This means that the scaling
limit for the two choices of sign for µ are related by

Z
(µ≤0)
j (q, α) = Z

(µ≥0)
j (q, 2− α) . (3.40)

Note also that Z(q, α) = Z(q, 2− α), so the total spectrum of Hb does not depend on the
sign of µ in the scaling limit, but the spectrum in each sector does.

To complete the analysis, let us explain what happens at the endpoints of our funda-
mental α-domain ]0, 2[, corresponding to y → ±∞, and also at the special point α = 1 for
which y = 0 and Vα is reducible but indecomposable.

9We chose this interval (and not ] − 1, 0] for example), because b becomes singular at α = 0 and
computations (3.34)–(3.36) are valid only for 0 < α < 2.
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Let us start with α = 1. At this value we have

b = 1
2(1 + σz0)− σ−0 σ+

1 ,

so |↓〉 ⊗ H is a proper subspace of Hb. Moreover, for any |v〉 ∈ |↑〉 ⊗ H,

Hb |v〉 = (−µ+ IdC2 ⊗HXX) |v〉+ |w〉 ,

where |w〉 ∈ |↓〉 ⊗ H. In other words, with respect to the direct-sum decomposition Hb =
|↓〉 ⊗ H ⊕ |↑〉 ⊗ H, Hb is of the form

Hb =
(
HXX ∗

0 HXX − µ

)
. (3.41)

Therefore, if µ 6= 0, that is, if there is a finite energy gap between the two diagonal blocks,
the scaling limit of Hb will be exactly that of HXX on an even number of sites (with surface
energy decreased by µ if µ > 0), and if µ = 0, that of two copies of HXX (which is obvious
from the definitions). It is known [1, 47] that in the continuum the XX spin chain is
described by the partition function (recall that we assumed that N is even)

ZXX(q) = q−
c

24
∑
j≥0

(2j + 1)q
h1,1+2j − qh1,−1−2j

P (q) = 4q− c
24

P (q)
∑
j≥0

q
j(j+1)

2 .

On the other hand,

Z(q, α = 1) = 2q− c
24

P (q)

1 +
∑
j≥1

(
q
j(j−1)

2 + q
j(j+1)

2

) = 4q− c
24

P (q)
∑
j≥0

q
j(j+1)

2 ,

so we have, indeed, ZXX(q) = Z(q, α = 1).
Now let us consider the limits α → 0+, 2−. By (3.40), it is sufficient to study only

one of these endpoints, say α = 0, as the behaviour for the other one can be recovered by
changing the sign of µ.

In the limit α→ 0+, b diverges, but we can still obtain a well-defined Hamiltonian by
rescaling µ = 2

π µ̃α so that the boundary term −µb converges to a finite limit. It is then
easy to see from (3.1) that

lim
α→0
−µb = µ̃

[1
2(σx0σx1 + σy0σ

y
1) + i

2(σz1 − σz0)
]

:= −µ̃e0 ,

so Hb just becomes the XX Hamiltonian on N + 1 sites with an inhomogeneous coupling
constant µ̃ on the first two sites. This is quite natural since at α = 0, Vα becomes
isomorphic to the fundamental C2 representation of UH

q sl2, so the boundary coupling b has
to be proportional to the bulk coupling, as it is the only UH

q sl2 intertwiner of C2 ⊗ C2, up
to a constant shift.

Because the scaling limit only depends on the sign of µ, it is sufficient to take µ̃ = ±1.
If µ̃ = 1, Hb just becomes the XX Hamiltonian on N + 1 sites. The scaling limit of HXX
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on an odd number of sites (recall that we assumed N even) was carefully treated in [47]
and is given by

Zodd
XX (q) = 2q− 1

24

P (q)

1 + 2
∑
j≥1

q
j2
2

 .

We see that Zodd
XX (q) = Z(q, 0), which is consistent with our argument. If µ̃ = −1 or,

equivalently, α → 2−, µ ∼ 2
π (2 − α), the scaling limit of Hb is a priori different and has

not been computed independently in the literature to our knowledge. However, carefully
following the computations of this section, it is not too hard to see that the relation

Z(µ≤0)(q, α) = Z(µ≥0)(q, 2− α)

still holds for α = 0+, 2−, provided of course that we rescale µ as discussed above. Since
Z(q, 0) = Z(q, 2), this means that the scaling limit of the XX model on an odd number
of sites (which is N + 1) with an inhomogeneous coupling on the first two sites does not
depend on the coupling constant µ̃ and is therefore the same as the scaling limit of the
homogeneous XX model on odd number of sites. For an even number of sites this property
is also true but somewhat more obvious as Z(q, 1+) = Z(q, 1−).

As the spectrum of Hb and Z(q, α) only depends on α modulo 2, this completes the
study for all α ∈ R and even N .

For odd N , we need in principle to modify the expansion (3.29) and also be careful
as to whether the “middle” mode θ†(N+1)/2 decreases or increases the energy depending on
the value of α. This computation can be performed straightforwardly, but let us present a
faster argument. From the discussion above, we have seen that taking the limit α → 0+

(while keeping µ positive and of order α) amounts to considering an XX spin chain of size
N + 1 while α = 1 corresponds to an XX spin chain of size N . Therefore, we must have
Zodd(q, 1) = Z(q, 0) and Zodd(q, 0) = Z(q, 1). The obvious guess for Zodd(q, α) is then

Zodd(q, α) = Z(q, α− 1) = 2q 1
12

P (q)
∑
j∈Z

q
(α−1−2j)2−1

8 = 2q− c
24

P (q)
∑

j∈ 1
2 +Z

qhα,α+2j . (3.42)

This is indeed the correct expression and can be checked by direct computation. Note
also that Zodd(q, α) only differs from Z(q, α) by the fact that the rightmost sum in (3.42)
now runs over half-integer and not integer j. This is not a coincidence and has a natural
explanation in terms of lattice algebras (see section 5.2).

3.5 The (η, ξ) ghost system

As the generating functions Zj(q, α) exactly match the characters of Virasoro Verma mod-
ules of weight hα,α+2j , we would like to identify the scaling limit of our spin chain with a
known conformal field theory. Consider the action (1.9) of the (η, ξ) ghost system

S[η, ξ, η̄, ξ̄] = 1
2π

∫
d2z

(
η∂̄ξ + η̄∂ξ̄

)
.

This model was originally introduced in the context of string theory [50], and it is an
important example of a logarithmic CFT [51]. It is also related to the GL(1|1) WZNW
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model [52, 53]. It was shown in [47] that the UH
q sl2-invariant open XX spin chain with

Hamiltonian HXX gives this model in the continuum limit.10 We would like to generalise
this result to the XX model with twisted open boundary conditions considered here.

The (η, ξ) system has the energy momentum tensor

T (z) = − : η(z)∂ξ(z) : , (3.43)

where we used the standard normal ordering, and a similar expression for the anti-chiral
part T̄ (z̄). Additionally, it has a U(1) symmetry with (chiral) Noether current

J(z) =: ξ(z)η(z) : .

The field ξ(z) increases the associated charge Q by 1, whereas η(z) decreases it by 1. The
canonical anti-commutation relation reads

{ξ(z), η(w)} = δ(z − w) , (3.44)

and similarly for the anti-chiral fermionic fields.
Since our spin-chain system has the geometry of a strip, we need to define this theory

on the upper-half of the complex plane and prescribe some conformally invariant boundary
conditions on the real axis, for which there are many possible choices [4, 5, 54, 55]. Let us
simply take11

η(x) = η̄(x) , ξ(x) = ξ̄(x) for x ∈ R>0 ,

η(x) = e−2iπτ η̄(x) , ξ(x) = e2iπτ ξ̄(x) for x ∈ R<0 ,
(3.45)

for τ ∈ R/Z. Note that they preserve the energy-momentum tensor (3.43). This is equiv-
alent to defining the theory on C∗, but prescribing a fixed monodromy around 0 to the
fields (η, ξ, η̄, ξ̄). It is easy to see that

η(e2iπz) = e−2iπτη(z), ξ(e2iπz) = e2iπτξ(z) ,
η̄(e2iπz) = e2iπτ η̄(z), ξ̄(e2iπz) = e−2iπτ ξ̄(z) .

(3.46)

Therefore, to compute the partition function of the (η, ξ) system on the upper-half plane
with boundary conditions (3.45), we can use the results of [4, 5]. They state that the
chiral partition function (which is the one we need to consider in the context of a boundary
CFT [56]) of the twisted theory (3.46) takes the form

Z(η,ξ)(q, τ, g) = q−
c

24−
τ(1−τ)

2

+∞∏
n=0

(1 + gqn+τ )(1 + g−1qn+1−τ )

= q−
c

24

P (q)
∑
j∈Z

gjqh1−2τ,1−2τ+2j ,

10Actually, a more conceptually accurate description would be in terms of symplectic fermions [4, 5], but
for our case of twisted open boundary conditions this will not make a difference.

11We use τ to denote the twist, since its usual notation µ is already used for the boundary coupling. This
τ should not be confused with the modular parameter, which we do not use in this paper.
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where g is a formal parameter keeping track of the value of the U(1) charge in each sector.
More abstractly, one can think of Z(η,ξ)(q, τ, g) as a Vir× U(1)-character. Note also that

Z(η,ξ)(q, τ + 1, g) = g−1Z(η,ξ)(q, τ, g) .

One might absorb the g−1 factor by rescaling the partition function as Z(η,ξ) → gτZ(η,ξ),
so that it only depends τ ∈ R/Z, but we will not do this here.

To make an explicit connection between this theory and our spin chain, introduce the
lattice fields

χ+(z)<M := −
∑

−M≤k≤M
χ+
k+τz

−k−1+τ ,

χ−(z)<M :=
∑

−M≤k≤M
χ−k−τz

−k−1−τ ,

for some τ /∈ Z with modes

χ+
k+τ :=

sin
(
ξN/2+k

)
√
π

θ†N/2+k , χ−k−τ :=
−i sin

(
ξN/2−k

)
√
π

θN/2−k (3.47)

and a cut-offM ∈ N. Here, ξk are solutions of (3.24), and θ†k, θk the associated modes shift-
ing the energy by ±2 cos(ξk). It is clear from the definitions that χ±(z)<M has monodromy
e±2iπτ . Set

ξ(z)<M :=
∑

−M≤k≤M

χ+
k+τ

k − τ
z−k+τ ,

η(z)<M :=
∑

−M≤k≤M
χ−k−τz

−k−1−τ .

Note that ∂ξ(z)<M = χ+(z)<M . We claim that in the scaling limit we have, for all
α /∈ 1 + 2Z,

lim
M→∞

lim
N→∞

ξ(z)<M = ξ(z) ,

lim
M→∞

lim
N→∞

η(z)<M = η(z) ,

with
τ = 1− α

2 .

This is motivated by the fact that

lim
M→∞

lim
N→∞

{ξ(z)<M , η(w)<M} = 1
w

∑
k∈Z

(z/w)k+τ =: δτ (z, w) , (3.48)

where δτ (z, w) is the τ -twisted delta function. This is the natural generalisation of the
canonical anti-commutation relation (3.44) (which we recover for τ = 0 ∈ R/Z) to fields
with non-trivial monodromy. The proof of (3.48) is given in appendix B together with
some elementary properties of δτ (z, w).

We can thus identify the scaling limits of the lattice fields χ+(z)<M , ξ(z)<M , and
χ−(z)<M = η(z)<M with respectively ∂ξ(z), ξ(z), and η(z). Moreover, χ±(z)<M shifts the
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eigenvalue of H by ±2. Recalling that ξ(z) and η(z) shift the U(1) charge Q by +1 and −1
respectively, let us set

Q = 1
2(H− α) . (3.49)

Then
Q|WN/2+j = j − 1

2 , Q|WN/2+j
= j + 1

2 ,

and so
Z(q, α, g) := lim

M→∞
lim
N→∞

tr<MHb gQq
N
πvF

(Hb−Neb−Es)

=
(
g

1
2 + g−

1
2
) q− c

24

P (q)
∑
j∈Z

gjqhα,α+2j

=
(
g

1
2 + g−

1
2
)
Z(η,ξ)

(
q, τ = 1− α

2 , g

)
.

(3.50)

The additional factor of g 1
2 +g− 1

2 comes from the UH
q sl2 symmetry which creates two copies

of the same sector, with the U(1) charge shifted by ±1
2 . One can get rid of it by restricting

to ⊕jWN/2+j ⊂ Hb, and redefining the charge as Q → Q + 1
2 (or to ⊕jWN/2+j , with

Q→ Q− 1
2).

Therefore, we can identify the scaling limit of our XX spin chain with twisted open
boundary conditions with the (η, ξ) ghost CFT on the upper half-plane with boundary
conditions given by (3.45), with the identification τ = 1−α

2 .

4 Spectrum of H2b for q = i and its scaling limit

Let us now turn to the two-boundary Hamiltonian, still at q = i. Recall that it is defined
on the Hilbert space

H2b = Vαl ⊗
(
C2
)⊗N

⊗ Vαr

by the Hamiltonian
H2b = −µlbl −HXX − µrbr ,

where bl := b is still given by (3.1), with α replaced by αl, whereas

br = 1
2(1 + σzN+1)− cot παr2

(
σ−Nσ

+
N+1 + e

iπαr
2

cos παr2
σ+
Nσ
−
N+1 + i

2(σzN+1 − σzN )
)
.

is given by (2.17). In Jordan-Wigner form, recall the fermions cj and c†j introduced in (3.2),

br = c†N+1cN+1 + cot παr2

(
cNc

†
N+1 + e

iπαr
2

cos παr2
cN+1c

†
N + i(c†NcN − c

†
N+1cN+1)

)
.

The spectrum of this model can be computed using the same method as for Hb, by
looking for operators θ† diagonalising the adjoint action of H2b

[H2b, θ
†] = λθ† (4.1)
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for some λ ∈ C. Taking θ† of the form

θ† =
N+1∑
j=0

Ajc
†
j ,

and eliminating A0 and AN+1 from the system of equations given by (4.1), we obtain
A2 − (i− χl(λ))A1 = λA1 ,

Aj−1 +Aj+1 = λAj ∀ 2 ≤ j ≤ N − 1 ,
AN−1 + (i+ χr(λ))AN = λAN ,

(4.2)

where
χl(λ) =

iλ cos παl2

ie−
iπαl

2 + λ
µ sin παl

2

and
χr(λ) =

iλ cos παr2

ie−
iπαr

2 − λ
µ sin παr

2

.

Taking Aj = a+x
j + a−x

−j for x ∈ C\{−1, 1}, (4.2) reduces to{
x(i+ x−1 − χl(λ))a+ + x−1(i+ x− χl(λ))a− = 0 ,
xN (i− x+ χr(λ))a+ + x−N (i− x−1 + χr(λ))a− = 0 ,

with λ = x+ x−1. The spectral equation is obtained by imposing that the determinant of
this system vanishes. After a tedious computation, and dividing by λ(x− x−1) as before,
we obtain the polynomial equation

UN+1 + (µl + µr)UN + (µlµr + tl + tr)UN−1 + (µltr + µrtl)UN−2 + tltrUN−3 = 0 (4.3)

in the variable λ/2, where

tl := 1− µlyl = 1− µl cot παl2 , tr := 1− µryr = 1− µr cot παr2 .

It is the two-boundary analogue of (3.10). Note that it has real coefficients for real µl/r, yl/r,
that it is invariant under the left/right exchange (µl/r, yl/r) ↔ (µr/l, yr/l), and that if we
set µr or µl to 0 we recover (3.10) up to a factor λ (which accounts for the fact that H2b
then becomes equivalent to two copies of Hb).

Again, parametrising λ = 2 cos ξ, the polynomial equation (4.3) can be rewritten as

sin (Nξ + ϕ2b(ξ)) = 0 , ξ ∈]0, π[ , (4.4)

with

ϕ2b(ξ) = arccot µlµr + tl + tr + cos(2ξ)(1 + tltr) + cos(ξ)(µl(1 + tr) + µr(1 + tl))
sin(ξ) (2 cos(ξ)(1− tltr) + µl(1− tr) + µr(1− tl))

.

Here we are working with the generalised arccot function taking values in [0, 2π]. The
function ϕ2b is then defined either by continuity, or by tracking the signs of the numerator
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and denominator to figure out in which quadrant of the [0, 2π] circle it must take its values.
At fixed yl, yr > 0 and for sufficiently small µl, µr > 0, ϕ2b is a strictly increasing function
of ξ with ϕ2b(0) = 0 and ϕ2b(π) = 2π, meaning that (4.4) has exactly N + 1 real solutions
(with real associated momenta). This provides N + 1 operators θ†k, with 1 ≤ k ≤ N + 1,
whose action on |↓〉⊗N+2, together with the zero-mode θ†0 coming from the UH

q sl2 symmetry,
generates a complete basis of eigenstates of H2b. Note that the U

H
q sl2-decomposition of the

Hilbert space is now

H2b =
N+1⊕
k=0

(
N + 1
k

)
Vαl+αr−N−1+2k ,

and that the new k-fermion subspaces Wk and W k are of dimension
(N+1

k

)
.

To find the scaling limit of H2b, we do not need to redo all the computations, because
from the analysis of section 3.4 it is clear that the ground state energies in each sector
WN/2+j only depend on φ(π2 ) = π − ϕ(π2 ), and that the combinatorics for the excitations
is still valid for our new fermionic modes. There are two minor subtleties, however. First,
to obtain the analogue of (3.27),

Nξ + φ2b(ξ) = kπ ,

we now have to set φ2b := 2π − ϕ2b(π − ξ), because ϕ2b takes values in [0, 2π]. This way
1 ≤ k ≤ N + 1, and the mode θ†k corresponding to a solution ξk decreases the energy by
λk = 2 cos ξk. Second,

φ2b

(
π

2

)
= 2π − arccot 1− ylyr

yl + yr
= π + π(αl + αr)

2 ,

so for 0 < αl, αr < 1 (that is, 0 < yl, yr), π < φ2b
(
π
2
)
< 2π. This means that λN/2+1 > 0

and λN/2+2 < 0, so the vacuum is now given by |vac0〉 = ∏N/2+1
k=1 θ†k |↓〉

⊗N+2, that is, it
belongs to the (N/2 + 1)-fermion sector WN/2+1, and not to WN/2 as before (again we
assume that N is even).

Taking all this into account we obtain12

Z2b,j(q, αl, αr) := lim
M→∞

lim
N→∞

tr<MWN/2+j+1
q

N
πvF

(H2b−Neb−Es)

= 2q−
1−3(αlr−1)2

24

P (q) q
j(j−(αlr−1))

2

= Zj(q, αl + αr − 1) ,

(4.5)

where we introduced αlr := αl + αr. The full partition function is then given by

Z2b(q, αl, αr) = 2q−
1−3(αlr−1)2

24

P (q)
∑
j∈Z

q
j(j−(αlr−1))

2 = Z(q, αl + αr − 1) . (4.6)

12Note the j → j + 1 shift with respect to the definition (3.37).
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Note that it only depends on the sum αl + αr. Using the fact that Z(q, α + 2) = Z(q, α)
we can also rewrite this partition function in a more suggestive manner,

Z2b(q, αl, αr) = q−
c

24

P (q)
∑
j∈Z

(
qhαlr+1,αlr+1+2j + qhαlr−1,αlr−1+2j

)
= 1

2 (Z(q, αlr + 1) + Z(q, αlr − 1)) ,
(4.7)

making apparent the analogy with the UH
q sl2-fusion rule

Vαl ⊗ Vαr ∼= Vαlr+1 ⊕ Vαlr−1

valid for αl, αr, αlr /∈ Z [45].
These results are extended by analytic continuation to all values of yl, yr, that is,

0 < αl, αr < 2. As before, even if µl and µr do not appear in the final expressions we had
to assume that they were positive in our derivations: changing the sign of µl/r amounts
to replacing αl/r by 2 − αl/r. The special values αl/r = 0, 1 play the same role as for
the one-boundary system (see the discussion at the end of section 3.4). Namely, taking
αl/r → 0+, while rescaling µl/r = 2

π µ̃l/rαl/r > 0, amounts to taking a boundary coupling
of TL type (that is, proportional to the bulk coupling) on the left, right or both sides of
the spin chain whereas setting αl/r = 1 is equivalent to imposing the usual XX boundary
conditions on the left, right or both boundaries. This last property follows from the same
kind of arguments as in the one-boundary case. For example, taking αr = 1 we obtain the
block structure (compare with (3.41))

H2b =
(
Hb ∗
0 Hb − µr

)

with respect to the decomposition H2b = Hb ⊗ |↓〉 ⊕ Hb ⊗ |↑〉 and similarly for αl = 1.
This is consistent with the fact that Z2b(q, α, 1) = Z2b(q, 1, α) = Z(q, α) and Z2b(q, α, 0) =
Z2b(q, 0, α) = Zodd(q, α) (recall the one-boundary partition functions in (3.38) and (3.42)).
Moreover, since the scaling limit of the XX spin chain on N and N + 2 sites must be the
same, we naturally have Z2b(q, 1, 1) = Z2b(q, 0, 0). Finally, to obtain the scaling limit for
odd N , we can, as before, just formally replace the summation over integer j in (4.6) by a
summation over half-integers.

These results are also consistent with the (η, ξ) field-theory computation, where bound-
ary conditions (3.45) are now replaced by

η(x) = e−iπ(1−αl)η̄(x) , ξ(x) = eiπ(1−αl)ξ̄(x) for x ∈ R<0 ,

η(x) = eiπ(1−αr)η̄(x) , ξ(x) = e−iπ(1−αr)ξ̄(x) for x ∈ R>0 .
(4.8)

Note that these boundary conditions are not manifestly left/right symmetric for αl = αr.
There is no contradiction here, as permuting the left and right boundaries also reverses the
orientation of the U(1) current in the field theory and the sign of the surface term at the
level of the spin chain. Therefore, when doing so, one should also conjugate all the phases
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in (4.8). Taking into account this subtlety, these boundary conditions are thus indeed
left/right symmetric when αl = αr. More abstractly, one can see this symmetry as the
field-theoretic realisation of the UH

q sl2 automorphism (K,K−1,E,F,H)→ (K−1,K,F,E,−H).
One also checks that taking αr,l → 1 in (4.8) we recover the usual boundary conditions of
the (η, ξ) field theory on the left, right or both boundaries, in agreement with the above
analysis for the special values of αl/r.

5 Lattice algebras underlying the one-boundary spin chains

We now go back to the general q case, and study in detail, for all q, the lattice algebra
underlying the XXZ spin chain and the Uqsl2-invariant boundary conditions we have con-
structed in section 2 for arbitrary complex parameters. We will show that the Hilbert
space Hb admits an action of the blob algebra which, for qα /∈ ±qZ, is faithful and Schur-
Weyl dual to Uqsl2 (or UH

q sl2 if q is a root of unity), and also establish the corresponding
bimodule decomposition.

5.1 The XXZ spin chain

Recall the expression of the XXZ Hamiltonian HXXZ in (1.2). Let us introduce the Hamil-
tonian densities, or the nearest-neighbour coupling operators,

ei = −1
2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 (σzi σzi+1 − 1)
)
− q− q−1

4 (σzi+1 − σzi )

= Id(C2)⊗(i−1) ⊗


0 0 0 0
0 q −1 0
0 −1 q−1 0
0 0 0 0

⊗ Id(C2)⊗(N−i−1)

(5.1)

for all 1 ≤ i ≤ N − 1 to rewrite

HXXZ = q + q−1

4 (N − 1)−
N−1∑
i=1

ei .

By direct computation, the ei satisfy the relations

e2
i = (q + q−1)ei , eiei±1ei = ei , [ei, ej ] = 0 ∀ |i− j| ≥ 2 ,

making them a representation of the Temperley-Lieb (TL) algebra TLδ,N with loop weight
δ = q + q−1 [1, 57]. If we set

ei =

.

.

.

.
...

. .

. .
...

.

.

.

.

i i+ 1
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these relations are neatly expressed by the graphical rules

e2
i =

.

.
...

. .

. . ....
..

.
...

. .

. . ....
.

= δ .
.

...
. .
. . ....

.

eiei+1ei =

... .
. . .
. . .

.
.
.

...

... .
.
.
. . .
. . .

.
...

... .
. . .
. . .

.
.
.

...

= ... .
. . .
. . .

.
.
.

...

.

In other words, the ei expression (5.1) in terms of Pauli matrices provides a representation
of the Temperley-Lieb algebra TLδ,N (which is known to be faithful). This way, HXXZ can
be interpreted as an abstract element of TLδ,N represented on the spin chain H.

It is known that the actions of TLδ,N and Uqsl2 onH are mutual maximal centralisers [6,
7], even at roots of unity [8]. If moreover q is generic (not a root of unity), TLδ,N and Uqsl2
are both semi-simple and we can use Schur-Weyl duality to decompose the Hilbert space
as a (TLδ,N , Uqsl2)-bimodule

H =
N/2⊕
j=0
Tj ⊗ C2j+1 ,

where C2j+1 are spin-j representations of Uqsl2, whereas Tj are the standard TLδ,N -modules
with 2j through lines (if N is odd, j is a half-integer). The standard modules Tj are
irreducible and of dimension

( N
N/2+j

)
−
( N
N/2+j+1

)
(see more details on their definition in [58]).

As HXXZ commutes with Uqsl2, seen as an element of TLδ,N , its action can be restricted to
Tj while the C2j+1 components are just multiplicity spaces. Our goal is to generalise this
picture to one-boundary and two-boundary Hamiltonians Hb and H2b introduced in (2.12)
and (2.14), respectively.

5.2 The one-boundary spin chain and the blob algebra

During the construction of the one-boundary Hamiltonian Hb in section 2.2, we defined an
additional Uqsl2-invariant generator b := b+ in (2.11), and so the Temperley-Lieb algebra
formalism is insufficient to deal with it.

Let us recall the blob algebra introduced in [10] and denoted by Bδ,y,N . The algebra
depends on two complex parameters, δ and y, denoting respectively the loop weight and
the blob weight. It is defined by adding a generator b — called the blob — to TLδ,N with
the additional relations

b2 = b , e1be1 = ye1 , [b, ei] = 0 for 2 ≤ i ≤ N − 1. (5.2)
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This is a finite-dimensional algebra, and its dimension does not depend on q or y. Graph-
ically, b is represented by

b =

.

.
•

.

.
...

.

.

.

.

and the rules (5.2) mean that

.

.
•
• =

.

.
•

. .

. .. .

. .

• = y

. .

. .

One also introduces the anti-blob b− = 1− b, represented by

b− =

.

.
◦

.

.
...

.

.

.

.

which satisfies relations (5.2) but with the blob weight y replaced by δ − y. Whenever it
is convenient we will denote by b± simultaneously the blob and the anti-blob, and by y±
their respective weights.

One can verify by direct computation that the projectors b± that we defined in (2.11)
and (2.16) satisfy the relations (5.2) with

y± := [α± 1]q
[α]q

= qα±1 − q−α∓1

qα − q−α
, (5.3)

so Hb = −µb+HXXZ can be interpreted as an abstract element of Bδ,y,N represented on the
spin chain Hb = Vα⊗ (C2)⊗N . We will call y := y+ generic if it is as in (5.3) for qα /∈ ±qZ.

A complete classification of the irreducible Bδ,y,N -modules for generic y was performed
in [10] (see also [59]). The result is that for all q, including roots of unity cases, and generic
y, Bδ,y,N is semi-simple and has N + 1 non-equivalent irreducible representations known
as standard modules. They are constructed using a special diagrammatical basis encoded
graphically by through lines and nested arcs — similarly to the TL case — but now also
decorated by blobs and anti-blobs. Modules whose basis diagrams have 1 ≤ 2j ≤ N

through lines and such that the leftmost through line carries a blob (resp. anti-blob)
are called standard blob (resp. anti-blob) modules and will be denoted Wj (resp. W−j).
The so-called vacuum standard module with no through lines does not depend on the
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blob/anti-blob configuration and will be denoted W0. The N + 1 standard modules Wj

are thus labelled by −N/2 ≤ j ≤ N/2, with j integer if N is even and j half-integer if N is
odd (see more details in [10]). Below, we will also use the notation WN

j to emphasise the
number N of sites used.

Let us first assume that q is generic (not a root of unity). Our main algebraic claim
here is the following.

Proposition 1. Let q ∈ C\eiπQ, qα ∈ C\{±1}, and N ∈ N∗. Then Hb := Vα ⊗ (C2)⊗N ,
where Vα is the Verma module defined in (2.3), carries a representation of Bδ,y,N with

δ = [2]q , y = [α+ 1]q
[α]q

, (5.4)

and

b = 1
{α}

(
−q−1K−1 + qα {1}F
q{1}K−1E qK−1 − q−α

)
,

ei = −1
2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 (σzi σzi+1 − 1)
)
− q− q−1

4 (σzi+1 − σzi ) .
(5.5)

Moreover, if qα /∈ ±qZ, this representation is faithful, Uqsl2 and Bδ,y,N are mutual maximal
centralisers and we have the decomposition of (Bδ,y,N , Uqsl2)-bimodules

Hb =
N/2⊕

j=−N/2
Wj ⊗ Vα+2j . (5.6)

Proof. As was already mentioned above, using the explicit expressions of b and the ei one
can check by direct computation that they indeed satisfy the defining relations of the blob
algebra (5.2) with parameters as in (5.4). By construction, they also commute with the
action of Uqsl2. It remains to show that if qα /∈ ±qZ this representation is faithful, that it
is indeed the full centraliser of Uqsl2, and that we have the decomposition (5.6).

Let us start with (5.6). In [10], it is explained how to inductively construct the irre-
ducible Bδ,y,N -modules WN

j from the Bδ,y,N−1-modules WN−1
j− 1

2
and WN−1

j+ 1
2
. An immediate

consequence is that dimWj =
( N
N/2+j

)
and

ResBδ,y,N−1W
N
j =WN−1

j− 1
2
⊕WN−1

j+ 1
2

with respect to the natural embedding Bδ,y,N−1 ↪→ Bδ,y,N . Reciprocally, any irreducible
Bδ,y,N -module W such that

ResBδ,y,N−1W =WN−1
j− 1

2
⊕WN−1

j+ 1
2
, −N/2 ≤ j ≤ N/2 , (5.7)

is isomorphic to WN
j (by convention WN−1

±(N+1)/2 = 0).
Let us now use this characterisation to show (5.6). From the fusion rule Vα ⊗ C2 ∼=

Vα+1 ⊕ Vα−1 we already know that the Uqsl2-decomposition of Hb is given by

Hb =
N/2⊕

j=−N/2

(
N

N/2 + j

)
Vα+2j ,
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where j is integer if N is even and half-integer if N is odd. We will now show that, as a
(Uqsl2,Bδ,y,N )-bimodule, (

N

N/2 + j

)
Vα+2j = Vα+2j ⊗WN

j . (5.8)

Denote by ṼNj ⊂
( N
N/2+j

)
Vα+2j the

( N
N/2+j

)
-dimensional space of Uqsl2 highest-weight

vectors of weight α+ 2j − 1. Since Bδ,y,N commutes with Uqsl2, ṼNj is stable by the action
of Bδ,y,N and is thus a Bδ,y,N -module. Let us show by induction on N that ṼNj ∼=WN

j .
For N = 1 this is obvious, as b± are the projectors on Vα±1. Now assume that the

proposition holds for N − 1. For all −N/2 + 1 ≤ j ≤ N/2, if |v〉 ∈ ṼN−1
j− 1

2
then

ρ+
j (v) := |v〉 ⊗ |↑〉 (5.9)

belongs to ṼNj and for all −N/2 ≤ j ≤ N/2− 1 if |v〉 ∈ ṼN−1
j+ 1

2
then

ρ−j (v) := [α+ 2j]q |v〉 ⊗ |↓〉 − q−1
(
FVα⊗(C2)⊗(N−1) |v〉

)
⊗ |↑〉 (5.10)

is also an element of ṼNj . Indeed, using the coproduct (2.1), we have

EHb = IdVα⊗(C2)⊗(N−1) ⊗ σ+ + EVα⊗(C2)⊗(N−1) ⊗ qσ
z

and so |v〉 ∈ ṼN−1
j− 1

2
implies

EHbρ
+
j (v) = |v〉 ⊗ σ+ |↑〉+ EVα⊗(C2)⊗(N−1) |v〉 ⊗ qσ

z |↑〉 = 0

and |v〉 ∈ ṼN−1
j+ 1

2
implies

EHbρ
−
j (v) = [α+ 2j]q |v〉 ⊗ |↑〉 − (EF)Vα⊗(C2)⊗(N−1) |v〉 ⊗ |↑〉

= [α+ 2j]q |v〉 ⊗ |↑〉 −
(

FE + K− K−1

q− q−1

)
Vα⊗(C2)⊗(N−1)

|v〉 ⊗ |↑〉

= [α+ 2j]q |v〉 ⊗ |↑〉 − [α+ 2j]q |v〉 ⊗ |↑〉 = 0 .

Thus, we have defined two injections ρ±j : ṼN−1
j∓ 1

2
↪→ ṼNj for −N/2 + 1 ≤ j ≤ N/2− 1,

as well as two isomorphisms ρ±±N/2 : ṼN−1
±(N−1)/2

∼−→ ṼN±N/2. Moreover, by construction,
these morphisms all commute with the action of the subalgebra Bδ,y,N−1 ⊂ Bδ,y,N . Indeed,
Bδ,y,N−1 commutes with the action of Uqsl2 on the first N − 1 sites, so one can permute
the elements of Bδ,y,N−1 acting on vectors v with F in formula (5.10) (for morphisms ρ+

j

the commutation property is obvious). We also notice that the two set of vectors in (5.9)
and (5.10) are all linearly independent so by comparing dimensions their linear span is ṼNj .
We thus have a decomposition of Bδ,y,N−1-modules:

ṼNj = Im(ρ+
j )⊕ Im(ρ−j ) (5.11)
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(by convention ρ±∓N/2 = 0). By the induction hypothesis this means that

ResBδ,y,N−1Ṽ
N
j =WN−1

j− 1
2
⊕WN−1

j+ 1
2
, (5.12)

so to show that ṼNj ∼=WN
j it only remains to prove that ṼNj is irreducible.

For j = ±N/2 this is obvious as ṼN±N/2 is one-dimensional. For −N/2+1 ≤ j ≤ N/2−1
we have to show that ṼNj has no non-trivial stable subspace. Because of (5.11) and (5.12),
if such a subspace exists, it can only be Im(ρ+

j ) or Im(ρ−j ). Moreover, since Bδ,y,N is semi-
simple for qα /∈ ±qZ it suffices to prove that the generator eN−1 does not stabilise Im(ρ+

j )
(as it will automatically imply that Im(ρ−j ) is not stable either).

To see this, note that all the vectors of Im(ρ+
j ) are of the form |v〉 ⊗ |↑〉 and that

by (5.10) ṼN−1
j− 1

2
contains a vector |v〉 of the form

|v〉 = |w〉 ⊗ |↓〉+
∣∣w′〉⊗ |↑〉

as long as −N/2 + 1 ≤ j ≤ N/2− 1 and qα /∈ ±qZ. If |v〉 ⊗ |↑〉 ∈ Im(ρ+
j ) then

eN−1 |v〉 ⊗ |↑〉 = |w〉 ⊗ eN−1 |↓↑〉+
∣∣w′〉⊗ eN−1 |↑↑〉 = q |w〉 ⊗ |↑↓〉 /∈ Im(ρ+

j ) .

Therefore, Im(ρ+
j ) is not stable by the action of eN−1 and so ṼNj is indeed irreducible for

all −N/2 ≤ j ≤ N/2. We have thus proven that ṼNj ∼=WN
j .

Finally, since all the vectors of ṼNj are highest weight, FkṼNj ∼=Wj for all k ≥ 0, so we
have (5.8). This enables us to write the (Bδ,y,N , Uqsl2)-bimodule decomposition of Hb (5.6),
which is equivalent to the statement that Bδ,y,N and Uqsl2 are mutual maximal centralisers
on Hb, as it is multiplicity-free. Since all the irreducible Bδ,y,N -modules appear in this
decomposition, this also implies that the representation of Bδ,y,N on Hb is faithful.

Note that the statement and the proof above remain valid also if qα = ±qn for some
n ∈ Z∗ as long as N ≤ |n| because the algebra stays semisimple in this case [10, 60].

It is worth mentioning that an analogue of Proposition 1 for α ∈ N was recently proven
in [61] using abstract categorical and diagrammatic methods, while the case of α being a for-
mal parameter was further treated in [62]. To our knowledge, Proposition 1 is the first result
of this kind that treats q and α as actual complex numbers in some explicit allowed domains.

For q = e
iπ
p being a 2p-th root of unity, a similar statement is true.

Proposition 2. Let q = e
iπ
p with p ∈ N\{0, 1}, α ∈ C\pZ and N ∈ N∗. Then Hb = Vα ⊗

(C2)⊗N , where Vα is the p-dimensional module defined in (2.15), carries a representation
of Bδ,y,N with

δ = [2]q , y± = [α+ 1]q
[α]q

, (5.13)

and

b = − 1
{α}

(
−q−1K−1 − qα {1}F
q{1}K−1E qK−1 + q−α

)
,

ei = −1
2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 (σzi σzi+1 − 1)
)
− q− q−1

4 (σzi+1 − σzi ) .
(5.14)
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Moreover, if α ∈ C\Z, this representation is faithful, UH
q sl2 and Bδ,y,N are mutual maximal

centralisers and we have the decomposition of (Bδ,y,N , U
H
q sl2)-bimodules

Hb =
N/2⊕

j=−N/2
Wj ⊗ Vα+2j . (5.15)

Proof. The proof for q generic will also work for the root-of-unity case with almost no
modifications. We already know from direct computation that the operators b and ei
indeed define a representation of Bδ,y,N , and that by construction they commute with the
action of UH

q sl2. As for the bimodule decomposition (5.6), we only used the fact that the
spaces of highest-weight vectors ṼNj are of dimension

( N
N/2+j

)
coming from the fusion rule

Vα ⊗ C2 ∼= Vα+1 ⊕ Vα−1 which also holds for UH
q sl2; the injections ρ±j , whose construction

relies on the coproduct formula (2.1) and the commutation relation between E and F, which
is the same for Uqsl2 and U

H
q sl2; and finally the semi-simplicity of Bδ,y,N for qα /∈ ±qZ,

which is preserved at roots of unity (the semi-simplicity condition then simply becomes
α /∈ Z). The only change is that we will now have only p copies of Wj in each sector given
by FkṼNj for 0 ≤ k ≤ p − 1. Also, one should note that the weight conventions of the
Vα representations in (2.3) and (2.15) are slightly different, so one has to apply the shift
α→ α+ p to all expressions.

Remark. At roots of unity, it is also possible to use yet another version of Uqsl2, where
Ep and Fp are central elements, instead of just equal to 0 as in UH

q sl2. This choice gives rise
to p-dimensional so-called cyclic representations B(x±, z, `), first considered in [63], now
depending on three continuous parameters — the eigenvalues of the three central elements
Ep, Fp and Kp — and a discrete parameter ` ∈ Z/pZ (for more details see [64] and [43,
Ch. 9.2, 11.1]). All these representations can also be used to construct a representation
of the blob algebra. However, it turns out that the corresponding blob weight y will
only depend on the value of the Casimir of B(x±, z, `) which is still given by (2.5). More
precisely, if we define α̌ ∈ C/2Z as

qp(α̌+p) + qp(α̌+p) := {1}2px+x− − (z + z−1) ,

then
CB(x±,z,`) = −qα̌+2` − q−α̌−2` ,

and the blob weight is
y = [α̌+ 2`+ 1]q

[α̌+ 2`]q
.

Specialising at Vα, that is, taking x+ = x− = 0 and α = α̌ + 2`, we recover y = [α+1]q
[α]q , so

without loss of generality we can work with the Vα representations of UH
q sl2.

Example. Recall the introduction of fermionic Fock spaces in (3.21). For q = i, y± =
± cot πα2 , we have isomorphisms of the blob algebra representations

WN/2+j = Ṽj ∼=Wj , WN/2+j = FṼj ∼=Wj
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for all −N/2 ≤ j ≤ N/2. Thus

Wj ⊗ Vα+2j =
(

N

N/2 + j

)
Vα+2j = 2Wj = WN/2+j ⊕WN/2+j , (5.16)

where we have written the same vector space as a (Bδ,y,N , U
H
q sl2)-bimodule, a U

H
q sl2-

module, a Bδ,y,N -module, and finally as the (N/2 + j)-fermion Fock subspace. Retrospec-
tively, it is quite natural that the spectral equation (3.10) only depends on µ and y and has
real coefficients even if Hb is not self-adjoint, because, when restricted to a Bδ,y,N -module,
its matrix entries are all real.

Let us show how this works for N = 2 in terms of link states. The basis states are
given by ||• |〉, ||◦ |〉, | •_〉, | ◦_〉 on which the one-boundary Hamiltonian H` = −µ |• | − ^

_

acts by the graphical rules of the blob algebra. We have

H` =


−µ 0 0 0
0 0 0 0
−1 −1 −µ− y y
−1 −1 −y y

 .

Therefore, denoting λ1 and λ2 the two roots of the polynomial

P (λ) = λ2 + µλ− µy ,

we have
Spec(H`) = {0,−µ, λ1, λ2} .

On the other hand, by (3.10),

U2(λ/2) + µU1(λ/2) + (1− µy)U0(λ/2) = (λ2 − 1) + µλ+ (1− µy) = P (λ) .

Thus
Spec(Hb) = {0, λ1, λ2, λ1 + λ2 = −µ} = Spec(H`) .

Moreover, introducing the blob modules W1 = C ||• |〉, W0 = C | •_〉 ⊕ C | ◦_〉, and W−1 =
C ||◦ |〉 he have

H`|W1 = Hb|W2 = −µ ,

H`|W0 = Hb|W1 =
(
−µ− y y
−y y

)
,

H`|W−1 = Hb|W0 = 0 .

6 Lattice algebras underlying the two-boundary spin chains

We recall that the two-boundary Hamiltonian acts on the Hilbert space

H2b := Vαl ⊗
(
C2
)⊗N

⊗ Vαr
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as

H2b = −µlbl − µrbr −
N−1∑
i=1

ei . (6.1)

with bl/r introduced in sections 2.2 and 2.3. From the above it is clear how to proceed to
define the adapted lattice algebra: we have to extend Bδ,y,N , which already contains the
left blob bl := b of weight yl := y, by adding a right blob br with diagram

br =

.

.
�

.

.
...

.

.

.

.

and satisfying

b2r = br , eN−1breN−1 = yre1 , [bl, br] = 0 , [br, ei] = 0 for 1 ≤ i ≤ N − 2 , (6.2)

where yr is now the weight of the loop carrying the right blob �. By direct computation we
can check that the projector br, defined in (2.13) and (2.17), satisfies relations (6.2) with

yr = [αr + 1]q
[αr]q

.

For even N , this is however not enough from a diagrammatic point of view, because
we also need to specify the weight of a loop carrying both the left and the right blob.
Concretely, we need to introduce some Y such thatN/2∏

i=1
e2i−1

 bl
N/2−1∏

i=1
e2i

 br
N/2∏
i=1

e2i−1

 = Y

N/2∏
i=1

e2i−1 . (6.3)

If Y is a complex number, this relation, together with (6.2) and the relations of the blob
algebra, define the two-boundary Temperley-Lieb algebra [16], denoted 2Bδ,yl,yr,Y,N . How-
ever, in our spin chains, it will not be possible to fix Y and instead we have sectors with
different values of Y . In other words, it is convenient to think of Y as an abstract central
element or, said differently, to consider a central extension of the “standard” two-boundary
Temperley-Lieb algebra. Then the same relations (6.3) define what we call the universal
two-boundary Temperley-Lieb algebra, denoted 2Buni

δ,yl,yr,N
.

Computing Y is difficult because, contrary to the other loop weights δ, yl and yr which
can be found by performing some elementary computations on two or three sites, Y is an
intrinsically non-local quantity as one has to go through the whole system to form a loop
touching both boundaries. It is thus not surprising that Y turns out to be some non-trivial
non-local operator and not a fixed complex number. In what follows, we will express Y
in terms of the Casimir element of Uqsl2 (which commutes with all the ei, bl and br as
well as Uqsl2) and then decompose H2b into Y -eigenspaces so as to obtain representations
of the standard two-boundary TL algebra with some well-defined scalar value of Y in
each eigenspace. Finally, we will formulate some conjectures on isomorphisms of these
representations to standard modules or quotients thereof.
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6.1 H2b as a representation of the universal two-boundary TL algebra

Let us state the final result, first for generic q, and then prove it in detail.

Proposition 3. Let q ∈ C\eiπQ, qαl , qαr ∈ C\{±1} and N ∈ 2N∗. Then H2b := Vαl ⊗(
C2)⊗N ⊗ Vαr , where Vαl and Vαr are two Verma modules defined in (2.3), carries a
representation of the universal two-boundary Temperley-Lieb algebra 2Buni

δ,yl,yr,N
commuting

with the Uqsl2 action, with parameters

δ = [2]q , yl = [αl + 1]q
[αl]q

, yr = [αr + 1]q
[αr]q

, (6.4)

and generators

bl = 1
{αl}

(
−q−1K−1 + qαl {1}F

q{1}K−1E qK−1 − q−αl

)
, br = 1

{αr}

(
qK− q−αr q{1}KF
{1}E −q−1K + qαr

)
,

ei = −1
2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 (σzi σzi+1 − 1)
)
− q− q−1

4 (σzi+1 − σzi ) , (6.5)

Y = qαl+αr+1 + q−αl−αr−1 − CH2b

{αl}{αr}
,

where CH2b is the Casimir of Uqsl2 on H2b given by (2.5) or, explicitly,

CH2b = {1}2FH2bEH2b + qKH2b + q−1K−1
H2b

(6.6)

with

K±1
H2b

= K±1
Vαl
⊗ q±

∑N

i=1 σ
z
i ⊗ K±1

Vαr ,

EH2b = EVαl ⊗ q
∑N

i=1 σ
z
i ⊗ KVαr +

(
N∑
k=1

σ+
k ⊗ q

∑N

i=k+1 σ
z
i ⊗ KVαr

)
+ EVαr ,

FH2b = FVαl +
(

N∑
k=1

K−1
Vαl
⊗ q−

∑k−1
i=1 σ

z
i ⊗ σ−k

)
+ K−1

Vαl
⊗ q−

∑N

i=1 σ
z
i ⊗ FVαr .

(6.7)

Proof. We already know that the ei satisfy the relations of the TL algebra (1.10), and
that the two operators br and bl commute with each other and satisfy the left/right blob
relations

b2l = bl , e1ble1 = yle1 , [bl, ei] = 0 ∀ 2 ≤ i ≤ N − 1 ,
b2r = br , eN−1breN−1 = yreN−1 , [br, ei] = 0 ∀ 1 ≤ i ≤ N − 2 .

(6.8)

By construction, all these generators do commute with Uqsl2. Therefore it only remains to
prove (6.3). For this, let us first introduce a powerful diagrammatic formalism.

Braiding. It is known that Uqsl2 admits a universal R-matrix given by [65] (see also [43,
Ch. 6.4])

R = q
H⊗H

2
∑
k≥0

{1}2k
{k}! q

k(k−1)/2Ek ⊗ Fk , (6.9)
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where
{n}! :=

n∏
k=1
{k} .

Although strictly speaking R /∈ Uqsl2⊗Uqsl2, it can be evaluated on tensor product of any
pair (X ,Y) of representations of Uqsl2 as long as at least one of them is finite-dimensional.13

We denote this evaluation by RX ,Y . One of the essential properties of R is that for any two
such representations X and Y, the two operators

PX ,Y ◦ RX ,Y and R−1
Y,X ◦ PX ,Y , (6.10)

where
PX ,Y : X ⊗ Y → Y ⊗X

x⊗ y 7→ y ⊗ x

is the operator permuting the two tensor factors, commute with the action of Uqsl2, that is,
they belong to HomUqsl2(X ⊗Y ,Y⊗X ). In other words, R generates two (a priori different)
intertwiners between X ⊗ Y and Y ⊗ X . Graphically, one often represents

PX ,Y ◦ RX ,Y =

X Y

Y X

R−1
Y,X ◦ PX ,Y =

X Y

Y X

.

Now define the double braidings (also known as monodromies)

BX ,Y := PY,X ◦ RY,X ◦ PX ,Y ◦ RX ,Y ,
BX ,Y := R−1

X ,Y ◦ PY,X ◦ R−1
Y,X ◦ PX ,Y = B−1

X ,Y .

From (6.10) it is clear that BX ,Y ,BX ,Y ∈ EndUqsl2(X ⊗ Y). Graphically

BX ,Y =

X Y

X Y

BX ,Y =

X Y

X Y

.

Quantum traces and the Casimir element. Additionally, for any finite-dimensional
Uqsl2-module X , one has natural linear maps EndUqsl2(X )→ C defined by

qtrX (f) := trX (KX f) , qtrX (f) := trX (fK−1
X ) , f ∈ EndUqsl2(X ) ,

13It is enough to consider the action of R on eigenvectors of H⊗ H, so the action of the first factor q
H⊗H

2

is well defined. If, say Y, is finite-dimensional, then for every v ∈ Y only finitely many F kv are non-zero,
and therefore the sum in (6.9) is finite on every vector w ⊗ v ∈ X ⊗ Y.
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called, respectively, the right and left quantum traces. These traces can be thought as a
result of consecutive application of the following three Uqsl2-intertwining operators: for the
right quantum trace, first, the standard coevaluation map

coevX : C→ X ⊗X ∗, 1 7→
∑
i

vi ⊗ vi ,

where vi is a basis in X and vi ∈ X ∗ is the dual basis, i.e. vi(vj) = δij , then followed by
f ⊗ IdX ∗ , and finally by the evaluation map

evX : X ⊗ X ∗ → C, v ⊗ f 7→ f(KX v)

that uses the pivotal structure of Uqsl2 given by action of K;14 whereas for the left quantum
trace, first, the pivotal coevaluation map

coevX : C→ X ∗ ⊗X , 1 7→
∑
i

vi ⊗ K−1
X vi ,

then IdX ∗ ⊗ f , and lastly the standard evaluation map

evX : X ∗ ⊗X → C, v ⊗ f 7→ f(v) .

Graphically, representing the coevaluation map by a cup and the evaluation map by a cap,
the right and left quantum traces of a map f ∈ EndUqsl2(X ) are respectively drawn as

. .

. .fqtrX (f) =

X X ∗ . .
. .fqtrX (f) =

X ∗ X

. (6.11)

Note that the auxiliary dual space X ∗ is on the left (resp. right) for the left (resp. right)
quantum trace, which justifies their names.

We also note that the fundamental representation C2 is self-dual and the TL generators
can be written in terms of the (co)evaluation maps15

ei = coevC2 ◦ evC2 : C2 ⊗ C2 → C2 ⊗ C2

14The term ‘pivotal’ means here that S2(x) = KxK−1 for all x ∈ Uqsl2 where S : Uqsl2 → Uqsl2 is
the antipode of Uqsl2 (see [43, Ch. 4.2] and [44, Ch. VII.1]). This property assures that evX commutes
with Uqsl2 action. Indeed recall that, for all f ∈ X ∗ the action on the dual space X ∗ is given via the
antipode S by (x · f)(−) := f(S(x)−), the action on a tensor product via the coproduct ∆ and on C via
the counit ε : Uqsl2 → C. Then, for all x ∈ Uqsl2, v ∈ X , f ∈ X ∗ and denoting ∆(x) =

∑
x(1) ⊗ x(2),

we have evX (x · (v ⊗ f)) = f
(∑

S(x(2))Kx(1)v
)

= f
(∑

S(x(2))S2(x(1))Kv
)

= f
(
S
(∑

S(x(1))x(2)
)

Kv
)

=
f(S(ι ◦ ε(x))Kv) = ε(x)evX (v⊗ f) where we use the anti-automorphism property of S as well as the axiom∑

S(x(1))x(2) = ι ◦ ε(x) with ι : C→ Uqsl2 the unit map.
15Strictly speaking, one needs to compute explicitly the isomorphism C2 ∼= (C2)∗ and compose the

(co)evaluation maps with them.
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acting on the i-th and i+ 1-th C2 sites which is consistent with their diagrammatic repre-
sentation.

The quantum traces over finite-dimensional X are important because they allow to
construct new intertwining operators via taking partial quantum traces. Indeed, for any
(not necessarily finite-dimensional) Uqsl2 module Y and any Uqsl2-intertwining operators
f ∈ EndUqsl2(Y ⊗ X ) and f ∈ EndUqsl2 , (X ⊗ Y) we can define

qtrX (f) := trX (KX f) ∈ EndUqsl2(Y) ,
qtrX (f) := trX (fK−1

X ) ∈ EndUqsl2(Y) ,

where we abuse our notation and write KX instead of more lengthy IdY ⊗ KX , etc., and
trX stays for the (usual) partial trace over the X component of X ⊗ Y . Graphically, one
represents these partial traces as

. .

. .f

.

.

Y

Y

qtrX (f) =
. .
. .f

.

.

Y

Y

qtrX (f) =

(6.12)

From this diagrammatic presentation it is clear why the partial traces are Uqsl2-intertwining
operators on Y, and not just linear endomorphisms of Y: they are again compositions of
three intertwining operators, (IdY ⊗ evX ) ◦ (f ⊗ IdX ∗) ◦ (IdY ⊗ coevX ) for the right partial
quantum trace and (evX ⊗ IdY) ◦ (IdX ∗ ⊗ f) ◦ (coevX ⊗ IdY) for the left one.

An essential property of this pictorial formalism is that isotopic deformation of strings
in a diagram does not affect the Uqsl2-intertwiner it represents [43, Ch. 5.3] (see [44,
Part III] for more details). This will be particularly important for us later on.

We are now ready to state the main lemma we will use for the proof of Proposition 3.

Lemma 1. For any Uqsl2-module V,

qtrC2

(
BV,C2

)
= trC2

(
qσ

zBV,C2

)
= CV ,

qtrC2

(
BC2,V

)
= trC2

(
BC2,Vq

−σz
)

= CV ,
(6.13)

where CV is the Casimir element action on V. Graphically,

. .

. .
V

V

C2
=

. .

. .
V

V

C2
=

V

V

C2
= CV

. (6.14)
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Proof. By direct computation,

BV,C2 = q
H⊗σz

2 (1 + {1}F⊗ σ+)q
H⊗σz

2 (1 + {1}E⊗ σ−)

=
(

K + q−1{1}2FE q−1{1}F
{1}K−1E K−1

)

and
BC2,V = (1− {1}σ+ ⊗ F)q−

σz⊗H
2 (1− {1}σ− ⊗ E)q−

σz⊗H
2

=
(

K−1 + q{1}2FE −q2{1}KF
−q{1}E K

)
,

so
qtrC2

(
BV,C2

)
:= trC2

(
qσ

zBV,C2

)
= {1}2FE + qK + q−1K−1 := CV

and
qtrC2

(
BC2,V

)
:= trC2

(
BC2,Vq

−σz
)

= {1}2FE + qK + q−1K−1 := CV .

End of the proof. We now have all the ingredients to prove (6.3) with the expression
for Y in Proposition 3. First, observe that

bl = 1
{αl}

(
qBVαl ,C2

(1)
− q−αl

)
,

br = 1
{αr}

(
qαr − q−1BC2

(N),Vαr

)
,

where C2
(k) denotes the k-th C2 site of the spin chain H2b. Then write

blbr = −
BVαl ,C2

(1)
BC2

(N),Vαr

{αl}{αr}
+ qαr

{αr}
bl −

q−αl

{αl}
br + qαr−αl

{αl}{αr}
. (6.15)

From the usual Temperley-Lieb (1.10) and blob (6.8) relations we haveN/2∏
i=1

e2i−1

( qαr

{αr}
bl −

q−αl

{αl}
br + qαr−αl

{αl}{αr}

)N/2−1∏
i=1

e2i

N/2∏
i=1

e2i−1

 =

= qαr{αl + 1} − q−αl{αr + 1}+ δqαr−αl

{αl}{αr}

N/2∏
i=1

e2i−1


= qαl+αr+1 + q−αl−αr−1

{αl}{αr}

N/2∏
i=1

e2i−1

 .

(6.16)

On the other hand, the graphical expression forN/2∏
i=1

e2i−1

(BVαl ,C2
(1)

BC2
(N),Vαr

)N/2−1∏
i=1

e2i

N/2∏
i=1

e2i−1


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is given by the diagram

. .

. .

. . . .. . .

. . . .
. . .

Vαl Vαr

Vαl VαrC2C2C2 C2

C2C2C2 C2

. (6.17)

where we used TL relations and isotopy to straighten the strings. Now we use an additional
property of the diagrammatic representation: we can locally pass a cap or cup through a
string without changing the overall intertwiner. This is explained by the general property
of naturality of the braiding (see more details in [43, Ch. 5.3]). In other words, we have,
graphically,

. . = . . = . .

and similarly for the cups. Passing all the caps in (6.17) through the middle loop and
bringing them together with the cups we see that this diagram can be expressed as the
product of a loop going around the whole system H2b and of the intertwiner ∏N/2

i=1 e2i−1
(recall that ei = coevC2

(i)
◦evC2

(i)
). But by (6.14), a diagram isotopic to a loop going around a

Uqsl2 module V represents CV . Applying this result to the whole spin-chain representation
H2b, we thus obtainN/2∏

i=1
e2i−1

(BVαl ,C2
(1)

BC2
(N),Vαr

)N/2−1∏
i=1

e2i

N/2∏
i=1

e2i−1

 = CH2b

N/2∏
i=1

e2i−1

 . (6.18)

Combining (6.15), (6.16) and (6.18) we finally haveN/2∏
i=1

e2i−1

 bl
N/2−1∏

i=1
e2i

 br
N/2∏
i=1

e2i−1

 = Y

N/2∏
i=1

e2i−1 (6.19)

with
Y = qαl+αr+1 + q−αl−αr−1 − CH2b

{αl}{αr}
. (6.20)
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For q a 2p-th root of unity we have an analogous result.

Proposition 4. Let q = e
iπ
p with p ∈ N\{0, 1}, αl, αr ∈ C\pZ and N ∈ 2N∗. Then

H2b = Vαl ⊗
(
C2)⊗N ⊗ Vαr , where Vαl and Vαr are two p-dimensional modules defined

in (2.15), carries a representation of the universal two-boundary Temperley-Lieb algebra
2Buni

δ,yl,yr,N
commuting with the UH

q sl2 action, with parameters

δ = [2]q , yl = [αl + 1]q
[αl]q

, yr = [αr + 1]q
[αr]q

, (6.21)

and generators

bl = 1
{αl}

(
q−1K−1 + qαl −{1}F
−q{1}K−1E −qK−1 − q−αl

)
, br = 1

{αr}

(
−qK− q−αr −q{1}KF
−{1}E q−1K + qαr

)
,

ei = −1
2

(
σxi σ

x
i+1 + σyi σ

y
i+1 + q + q−1

2 (σzi σzi+1 − 1)
)
− q− q−1

4 (σzi+1 − σzi ) , (6.22)

Y = qαl+αr+1 + q−αl−αr−1 − CH2b

{αl}{αr}
,

where CH2b is the Casimir element of UH
q sl2 acting on H2b, given by (6.6)–(6.7).

Proof. All the formalism and results that we have introduced for Uqsl2 also apply to UH
q sl2,

the only modification being that the R-matrix of UH
q sl2 [45]

R = q
H⊗H

2

p−1∑
k=0

{1}2k
{k}! q

k(k−1)/2Ek ⊗ Fk , (6.23)

is truncated at order p because of the relations Ep = Fp = 0. Apart from this, the proof is
exactly the same, up to the usual shift αl/r → αl/r + p in the definition of Vαl/r at roots of
unity.

Propositions 3 and 4 are weaker than their one-boundary counterparts, Propositions 1
and 2, because we were unable to prove that Uqsl2 (or UH

q sl2) and 2Buni
δ,yl,yr,N

are mutual
maximal centralisers, nor to compute the decomposition of H2b into irreducible 2Buni

δ,yl,yr,N
-

modules.

6.2 Decomposition of H2b into 2Bδ,yl,yr,Y,N -modules with different values of Y

Let us now relate the representation of the universal two-boundary TL algebra 2Buni
δ,yl,yr,N

that we have constructed to some representations of 2Bδ,yl,yr,Y,N for different numerical
values of Y .

To do so, we simply have to decompose H2b into C-eigenspaces. In each such eigenspace
Y will act as a complex number, and we will thus obtain a representation of the ordinary
two-boundary TL algebra 2Bδ,yl,yr,Y,N .
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Let us start with generic q. We first compute the Uqsl2-decomposition of H2b. For this,
we bring the two Verma modules Vαl and Vαr together to the left using the braiding (6.10)
and then apply the fusion rule for Verma modules of generic weights qα, qβ , qα+β /∈ ±qZ

Vα ⊗ Vβ ∼=
⊕
n≥0
Vα+β−1−2n (6.24)

which can be obtained, for example, by recursively constructing highest-weight vectors
from each Vα+β−1−2n and matching the dimensions of the weight spaces (see [66] for an
explicit construction). Then, assuming qαl , qαr , qαl+αr are generic, we have

H2b =

⊕
n≥0
Vαl+αr−1−2n

⊗ (C2)⊗N

=
⊕
n≥0

N⊕
k=0

(
N

k

)
Vαl+αr+N−1−2(n+k)

=
⊕

m≥−N/2
dmVαl+αr−1−2m =:

⊕
m≥−N/2

Hm ,

(6.25)

where the dimensions of multiplicity spaces are

dm :=
min(N,m+N/2)∑

k=0

(
N

k

)
. (6.26)

In particular, dm = 2N for m ≥ N/2.
Now, using the fact that

CVα = qα + q−α ,

we have
CHm = qα−(2m+1) + q−α+(2m+1) ,

so
Ym := YHm = qαl+αr+1 + q−αl−αr−1 − qα−(2m+1) − q−α+(2m+1)

{αl}{αr}

= [m+ 1]q[αl + αr −m]q
[αl]q[αr]q

.

Finally, notice that since Uqsl2 commutes with 2Buni
δ,yl,yr,N

, the subspace H̃m ⊂ Hm of
highest-weight vectors is stable by the action of 2Bδ,yl,yr,Ym,N . Moreover, for all k ≥ 0,
FkH̃m ∼= H̃m as 2Bδ,yl,yr,Ym,N -modules, so even though we do not know if H̃m is irreducible
we can still write

Hm = H̃m ⊗ Vαl+αr−1−2m .

To sum up:

Proposition 5. For q ∈ C\qiπQ, qαl , qαr ∈ C\{±qZ} such that qαl+αr /∈ ±qZ and N ∈ 2N∗,
H2b decomposes as a (2Buni

δ,yl,yr,N
, Uqsl2)-bimodule

H2b =
⊕

m≥−N/2
H̃m ⊗ Vαl+αr−1−2m . (6.27)
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Moreover, for all m ≥ −N/2, H̃m is a dm-dimensional representation of the two-boundary
Temperley-Lieb algebra 2Bδ,yl,yr,Ym,N with

Ym = [m+ 1]q[αl + αr −m]q
[αl]q[αr]q

. (6.28)

If q = e
iπ
p is a 2p-th root of unity some adjustments are needed. We can still use the

braidings (6.10) defined by the R-matrix (6.23) to bring Vαl and Vαr together to the left
but the fusion rule (6.24) now becomes

Vα ⊗ Vβ =
p−1⊕
n=0
Vα+β+p−1−2n (6.29)

for α, β, α+ β ∈ C\Z [45]. Second, because q2p = 1, we have

CVα+2p = −qα − q−α = CVα , (6.30)

so modules Vα with α’s differing by a multiple of 2p will have the same value of Y .
Now write N = qp+ r, q ∈ N, 0 ≤ r ≤ p− 1. Assuming αl, αr, αl +αr ∈ C\Z, we have

H2b =

p−1⊕
n=0
Vαl+αr+p−1−2n

⊗ (C2)⊗N

=
p−1⊕
n=0

N⊕
k=0

(
N

k

)
Vαl+αr+N+p−1−2(n+k) =:

p−1⊕
m=0
Hm ,

(6.31)

where

Hm :=
(

m∑
k=0

(
N

k

))
Vαl+αr+N+p−1−2m

⊕
q−1⊕
s=1

p−1∑
k=0

(
N

ps− k +m

)Vαl+αr+N+p−1−2m−2ps

⊕

r−m+p−1∑
k=0

(
N

N − k

)Vαl+αr+N+p−1−2m−2pq =:
q⊕
s=0
H(s)
m

(6.32)

for m ≥ r, and

Hm :=
(

m∑
k=0

(
N

k

))
Vαl+αr+N+p−1−2m

⊕
q⊕
s=1

p−1∑
k=0

(
N

ps− k +m

)Vαl+αr+N+p−1−2m−2ps

⊕
(
r−m−1∑
k=0

(
N

N − k

))
Vαl+αr+N+p−1−2m−2p(q+1) =:

q+1⊕
s=0
H(s)
m

(6.33)
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for m < r. From this we immediately see that dimHm = p · 2N . Moreover, assuming N
even and denoting m̄ := m−N/2 mod p, we have

Ym := YHm = qαl+αr+1 + q−αl−αr−1 − qαl+αr+N−1−2m − q−αl−αr−N+1+2m

{αl}{αr}

= [m̄+ 1]q[αr + αl − m̄]q
[αr]q[αl]q

.

Note that Y now takes only p distinct values.
As before, introducing the subspace H̃m ⊂ Hm of highest-weight vectors, we have that

FkH̃m ∼= H̃m as 2Bδ,yl,yr,Ym,N -modules for all 0 ≤ k ≤ p − 1. Note, however, that by
decompositions (6.32)–(6.33) and since UH

q sl2 commutes with 2Buni
δ,yl,yr,N

, H̃m is reducible
and decomposes into a direct sum of smaller spaces H̃(s)

m . As we do not know whether
U

H
q sl2 is the full centraliser or not, we cannot say whether the q+1 (resp. q+2) summands
H̃(s)
m within H̃m appearing in (6.32) (resp. (6.33)) are indeed the irreducible 2Bδ,yl,yr,Ym,N -

summands of H̃m or if they are further decomposed into irreducible submodules. In any
case, we can still write

H(s)
m = H̃(s)

m ⊗ Vαl+αr+N+p−1−2m−2ps .

To sum up, we have the following statement.

Proposition 6. For q = e
iπ
p with p ∈ N\{0, 1}, αl, αr ∈ C\Z such that αl + αr /∈ Z and

N = qp + r ∈ 2N∗ with q ∈ N, 0 ≤ r ≤ p − 1, H2b decomposes as a (2Buni
δ,yl,yr,N

, U
H
q sl2)-

bimodule

H2b =
p−1⊕
m=0

q+εm⊕
s=0
H̃(s)
m ⊗ Vαl+αr+N+p−1−2m−2ps , (6.34)

where εm = 0 if m ≥ r, and εm = 1 if m < r. Moreover, for all 0 ≤ m ≤ p − 1 and
0 ≤ s ≤ q + εm, H̃

(s)
m is a representation of the two-boundary Temperley-Lieb algebra

2Bδ,yl,yr,Ym,N with

Ym = [m̄+ 1]q[αl + αr − m̄]q
[αl]q[αr]q

, m̄ := m−N/2 mod p , (6.35)

and whose dimension is given by the multiplicities in (6.32)–(6.33). In particular,

H̃m :=
q+εm⊕
s=0
H̃(s)
m (6.36)

is a reducible 2N -dimensional representation of 2Bδ,yl,yr,Ym,N .

Unfortunately, the representation theory of 2Bδ,yl,yr,Y,N is not completely understood
even for generic q but non-generic values of the weights δ, yl, yr and Y , as is the case here,
where the Ym (which are functions of δ, yl and yr) take exactly the “bad” values at which
standard 2Bδ,yl,yr,Y,N -modules become reducible (see [16, Corollary 5.18] and [59, A.4.4]),
so proving stronger statements than Propositions 5 and 6 requires a special study which
we leave for another work.
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6.3 Some conjectures on Schur-Weyl duality

Let us finish by making some reasonable conjectures. It was shown in [16, Corollary 5.18]
that for generic q the 2N -dimensional vacuum moduleW0 of 2Bδ,yl,yr,Ym,N is non-irreducible
for −N/2 ≤ m ≤ N/2 − 1, and irreducible for m ≥ N/2. But we know that H̃m from
Proposition 5 is of dimension 2N exactly for m ≥ N/2. Therefore it is tempting to identify
it with the vacuum module of 2Bδ,yl,yr,Ym,N . As for the other values of m, it was shown
in [16] that the (non-irreducible) vacuum module W0 of 2Bδ,yl,yr,Ym,N contains a unique
non-trivial stable subspaceWm, of dimension equal to dm from (6.26), for−N/2 ≤ m ≤ −1,
and equal to 2N − dm, for 0 ≤ m ≤ N/2− 1, and that the quotient W0/Wm is irreducible.
This is a strong indication that H̃m is isomorphic to Wm for −N/2 ≤ m ≤ −1 and to
W0/Wm for 0 ≤ m ≤ N/2− 1.

The submodules Wm can actually be described more explicitly. Similarly to the blob
algebra, one can construct irreducible standard two-boundary modules with 2j through
lines, 1 ≤ j ≤ N/2, but for which there are now four possible choices depending on
whether the rightmost and leftmost through lines carry a blob or an anti-blob, denoted
W•�j , W◦�j , W•�j and W◦�j . As the presence of through lines prohibits the formation of
a loop touching both boundaries, these modules are independent of Y . Nevertheless, for
non-generic values of Y , they appear as stable subspaces of the vacuum module W0 (which
does depend on Y ). More precisely, it was conjectured in [16] and proven in [59, A.4.4],
that Wm

∼= W•�−m and Wm
∼= W◦�m+1 as 2Bδ,yl,yr,Ym,N -modules for −N/2 ≤ m ≤ −1 and

0 ≤ m ≤ N/2− 1 respectively.16 We thus arrive at the following conjecture.

Conjecture 1. For q ∈ C\qiπQ, qαl , qαr ∈ C\{±qZ} such that qαl+αr /∈ ±qZ and N ∈ 2N∗,
the 2Bδ,yl,yr,Ym,N -modules H̃m from Proposition 5 are given by

H̃m ∼=W•�−m for −N/2 ≤ m ≤ −1 ,
H̃m ∼=W0/W◦�m+1 for 0 ≤ m ≤ N/2− 1 ,
H̃m ∼=W0 for N/2 ≤ m.

(6.37)

In particular, they are irreducible, 2Bδ,yl,yr,Ym,N and Uqsl2 are mutual maximal centralisers
on each Hm for all −N/2 ≤ m and 2Buni

δ,yl,yr,N
and Uqsl2 are mutual maximal centralisers

on H2b.

This conjecture is definitely true for H̃−N/2 = C |0〉 ⊗ |↑〉⊗N ⊗ |0〉 and we believe it
should hold for m ≥ 1−N/2 as well. Note also that independently of its validity, we can
say for sure that the representations H̃m are not faithful, because their dimension is too
small to contain all possible irreducible 2Bδ,yl,yr,Ym,N -modules.

For q a root of unity even less is known about the representation theory of 2Bδ,yl,yr,Ym,N .
Nevertheless, the spaces H̃m are 2N -dimensional, which makes it plausible that they are
again related to the vacuum moduleW0. It is however clear that H̃m cannot be isomorphic
toW0 because according to (6.36) it decomposes into a direct sum of 2Bδ,yl,yr,Ym,N -modules,
whereas W0 is expected to have a more complicated indecomposable structure. Still, we

16There are similar isomorphisms for W◦�j and W•�j but we will not need them here.
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can consider a semi-simplified version of W0 obtained by treating all subquotients as inde-
pendent direct summands. We then arrive at the following conjecture.

Conjecture 2. For q = e
iπ
p with p ∈ N\{0, 1}, αl, αr ∈ C\Z such that αl + αr /∈ Z, the

module H̃m from Proposition 6 is isomorphic to the 2N -dimensional semi-simplified vacuum
module of 2Bδ,yl,yr,Ym,N . In particular, the 2Bδ,yl,yr,Ym,N -modules H̃(s)

m are irreducible for all
0 ≤ m ≤ p−1, 0 ≤ s ≤ q+εm, and 2Bδ,yl,yr,Ym,N and UH

q sl2 are mutual maximal centralisers
on each Hm. Consequently, 2Buni

δ,yl,yr,N
and UH

q sl2 are mutual maximal centralisers on H2b.

The representations H̃m are not expected to be faithful, but we cannot prove it rigor-
ously at present, as the classification of irreducible 2Bδ,yl,yr,Ym,N -modules is not sufficiently
known.

We believe that the appearance of non-generic 2Bδ,yl,yr,Y,N -modules in our spin chain
is not accidental, and that this phenomenon actually plays an important role in the two-
boundary model. Note also that contrary to the one-boundary model, the algebraic de-
compositions for generic q and at roots of unity differ sensibly.

Example. At q = i, the weight of a left (resp. right) blobbed loop is given by yr = cot παl2
(resp. yr = cot παl2 ). By (6.21), central element Y corresponding to the weight of a loop
with both blobs can be expressed as

Y =
2 sin

(
π(αl+αr)

2

)
+ CH2b

4 sin
(παl

2
)

sin
(παr

2
) .

By the fusion rules of UH
q sl2, assuming αl, αr, αl + αr /∈ Z,

H2b =
N+1⊕
k=0

(
N + 1
k

)
Vαl+αr+N+1−2k ,

and we have
CVαl+αr+N+1−2k = 2(−1)k+N/2 sin

(
π(αl + αr)

2

)
,

so the only eigenvalues of Y are 0 and ylr := yl + yr. The corresponding eigenspace
decomposition is given by

H2b = Ker(Y − ylr)⊕Ker(Y ) =
{
H0 ⊕H1 if N/2 is even
H1 ⊕H0 if N/2 is odd

with

H0 :=
N/2⊕
k=0

(
N + 1

2k

)
Vαl+αr+N+1−4k ,

H1 :=
N/2⊕
k=0

(
N + 1
2k + 1

)
Vαl+αr+N−1−4k .

(6.38)

Note that dimH0 = dimH1 = 2 · 2N , and that H0 (resp. H1) is the odd (resp. even)
fermionic subspace of H2b.
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Therefore, H2b decomposes into two halves, one carrying a representation of the two-
boundary TL algebra 2B0,yl,yr,0,N and the other of 2B0,yl,yr,ylr,N , or, equivalently, H2b
carries a representation of the universal two-boundary TL algebra 2Buni

0,yl,yr,N . Its image
commutes with the UH

q sl2 action.
Now, taking the highest-weight subspaces H̃0 and H̃1, we have

H0 = H̃0 ⊕ FH̃0 , H1 = H̃1 ⊕ FH̃1 (6.39)

as 2B0,yl,yr,ylr,N and 2B0,yl,yr,0,N modules respectively. Since the fermionic number operator
(and not only its parity) also commutes with 2Buni

0,yl,yr,N , we can further decompose H̃0 and
H̃1 according to (6.38) where every multiplicity space is conjecturally an irreducible module
over 2Buni

0,yl,yr,N .
Finally, we note that the centraliser of the UH

q sl2-action on H2b can be described in
terms of the blob algebra. Indeed, if αl, αr, αl + αr /∈ Z we have

H2b ∼= Vαl+αr ⊗
(
C2
)⊗(N+1)

as representations of UH
q sl2. Therefore, by Proposition 2, H2b carries a faithful action of

B0,y,N+1 with y = cot π(αl+αr)
2 , centralising the UH

q sl2-action. From these considerations
also follows the rather curious fact that all B0,y,N+1-modules can be realised as either some
2B0,yl,yr,0,N -module or some 2B0,yl,yr,ylr,N -module.

7 Summary and open questions

In this paper, we have constructed new Uqsl2-invariant boundary conditions for the
open XXZ spin chain using infinite-dimensional Verma modules or their truncated finite-
dimensional analogues at roots of unity, parametrised by a continuous parameter α ∈ C.
Using free fermions, we computed the spectra of our new one-boundary and two-boundary
Hamiltonians in the simplest case q = i. We were then able to investigate the scaling limit,
and to connect our model with the (η, ξ) ghost CFT on the upper-half plane with some
specific boundary conditions on the real axis. We equally studied the limits of α to the
special values 0 and 1 showing that α = 1 corresponds to the standard open XX chain
on an even number of sites where the Hamiltonian is known to be non-diagonalisable and
gives in the scaling limit the chiral logarithmic CFT of symplectic fermions [47].

In the remainder of the paper, we studied in full generality the symmetry properties
of our modified XXZ spin chains and, specifically, the representations of the various lattice
algebras that they give rise to. We showed that the Hilbert space of our one-boundary
system carries a representation of the blob algebra Bδ,y,N , and that the actions of Uqsl2 (or
U

H
q sl2) and Bδ,y,N are mutual centralisers. We then identified the sectors of our spin chain

with standard (irreducible) blob modules, thereby showing that this spin-chain represen-
tation is faithful and obtaining the (Bδ,y,N , Uqsl2)-bimodule decomposition of the Hilbert
space (Propositions 1–2).

As for the two-boundary spin chain, we showed that it carries a representation of the
universal two-boundary Temperley-Lieb algebra (Propositions 3–4). Expressing the central
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element Y of the weight of a loop carrying both the left and the right blob in terms of the
Casimir element, and using the Uqsl2 (or UH

q sl2) decomposition, we were able to further de-
compose the Hilbert space into representations of the (usual) two-boundary Temperley-Lieb
algebra 2Bδ,yl,yr,Y,N , with a constant value of Y in each sector (Propositions 5–6). As these
values of Y are non-generic, we could not prove complete Schur-Weyl duality and instead
conjectured on the 2Bδ,yl,yr,Y,N -modules appearing in the decomposition (Conjectures 1–2).

These algebraic results are not only of mathematical interest, but rather it is expected
that they are the key to understanding the continuum limit of our models. Indeed, it was
argued in [18, 49] that the blob modules Wj are the lattice analogues of certain Virasoro
Verma modules. More precisely, if we define — now not only for q = i but any q = e

iπ
p ,

p ∈ [2,+∞[ (not necessarily rational) — the central charge

c := 1− 6
p(p− 1)

and the conformal weights17

hr,s := (pr − (p− 1)s)2 − 1
4p(p− 1) ,

then, treating Hb as an abstract element of the blob algebra, we should have

lim
M→∞

lim
N→∞

tr<MWj
q

N
πvF

(Hb−Neb−Es) = q−
c

24

P (q)q
hα,α+2j (7.1)

with vF := p sin π
p given by (3.33), and eb and Es being respectively the new bulk energy

per site and the surface energy at q. In other words, the scaling limit of Hb|Wj can be
identified with the L0 generator of the Virasoro algebra represented on a Verma module of
conformal weight hα,α+2j . To formulate this conjecture, a different representation of the
blob algebra — the so-called cabling realisation — was used in [18].18 It is constructed
directly from the Temperley-Lieb algebra by adding r − 1 C2-sites at the leftmost bound-
ary, and then applying a Jones-Wenzl projector on them to single out the spin-(r − 1)/2
summand appearing in the Uqsl2 decomposition, or, said differently, by replacing our Vα
with a spin-(r−1)/2 representation. From our previous computations it is easy to see that
the blob weight is then given by

y = [r + 1]q
[r]q

,

and so the r in [18] can be identified with a particular choice of our α. The advantage of
our representation of the blob algebra is that it makes it possible to reach all values of y
and not only the discrete set given by r ∈ N∗. Moreover it is known [49] that the cabling
representation is not faithful while our spin chains provide a faithful representation of the
blob algebra.

17Note that for p = 2 (that is q = i) we recover c = −2 and hr,s = (2r−s)2−1
8 as in (3.35).

18In [17] yet another representation was considered, but the link with our spin chain is less straightforward.
We will not discuss it here.
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In the present paper, we have proven (7.1) rigorously for q = i, by computing the
scaling limit of an explicit spin chain (3.37)–(3.39), and then showing that its sectors
WN/2+j can by identified with standard blob modules Wj according to (5.15)–(5.16).

As for the two-boundary system, exact expressions for the partition functions in all
standard representations of 2Bδ,yl,yr,Y,N were proposed in [22]. Since we did not manage to
identify the 2Bδ,yl,yr,Y,N -modules appearing in the decomposition of H2b we cannot compare
our results with those of that paper. Let us note, however, that if we assume Conjecture 2
to be true, then, at q = i the prediction of [22] matches (4.6).

From this, the most immediate task ahead is to generalise our result for the spec-
trum of the one-boundary and two-boundary XX model to any q to prove the statements
of [17, 18, 22] for all values of the parameters. This requires the introduction of the rather
technical formalism of (boundary) Algebraic Bethe Ansatz and will be performed in the
next paper [21]. Furthermore, it seems necessary to better understand the algebraic proper-
ties of the two-boundary system— in particular regarding Conjectures 1–2 — and their link
to the spectrum of the corresponding Hamiltonian. Indeed, these conjectures suggest that
the two-boundary spin chain (1.7) contains a discrete series (infinite for generic q and finite
with p sectors for a 2p-th root of unity) of non-diagonal XXZ models, which are known to
be vacuum standard modules over the two-boundary TL algebra [16]. More precisely, using
the conventions from [22, section 3.4], the 6 parameters in the integrable non-diagonal XXZ
boundary conditions are related to the Verma module weights αl/r, couplings µl/r and val-
ues Ym of Y as follows: r1 = αl, r2 = αr, λ1 = µl, λ2 = µr, r12 = s2−s1 = αl+αr−2m−1.
As it turns out, computing the spectrum of H2b (for arbitrary q) via Algebraic Bethe Ansatz
is somewhat simpler than that of the corresponding non-diagonal XXZ models due to its
greater symmetry. In a future paper we will also see that, as for q = i, the scaling limit of
H2b together with Conjectures 1–2 are consistent with the predictions of [22].

Finally, from a physical perspective, it can be argued that the two-boundary system
“is the fusion of two one-boundary systems” — but this idea is still not totally understood.
A better grasp of this question would be relevant for a wide range of open problems, among
which understanding the fusion of Virasoro Verma modules with generic conformal weights
and the CFT properties of the periodic XXZ spin chain. Equation (4.7) suggests that the
representation theory of Uqsl2 and UH

q sl2 plays an important role. Lastly, we notice that
the Y operator from section 6 has diagrammatically the form of a hoop operator, up to
a constant term, which resembles the topological defect Y operator from [67] in periodic
models. We believe that these two operators are closely related. These topics will be
investigated in detail in a future paper.
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A General properties of the spectrum of Hb for q = i

In this appendix we provide a systematic study of the spectral equation (3.10) for all µ, y
and N . Since it is a polynomial equation of degree N , it will have N solutions λk. We want
to know for which choices of µ and y these λk, and the associated momenta pk defined by
λk = 2 cos pk, will be real. It is sufficient to consider µ and y real, since otherwise (3.10)
will obviously have complex solutions. As already discussed, we can assume without loss
of generality that µ > 0.

Recall that for real momenta, (3.10) is equivalent to (3.24)

Nξ + ϕ(ξ) = kπ , k ∈ Z, ξ ∈]0, π[ .

We are thus reduced to studying the function ϕ.
First note that ϕ(0), ϕ(π) ∈ {0, π}. Moreover (2−µy) cos ξ+µ

µy sin ξ can become infinite only
at these points, so we can work with the usual arccot function and not its multivalued
generalisation. Let us define the winding number

w := N + ϕ(π)− ϕ(0)
π

∈ N .

A simple analysis then gives the table of variations

y

w

−∞ 2−µ
µ

2+µ
µ +∞

N − 1 N N − 1

for 2 < µ, and

y

w

−∞ 0 2−µ
µ

2+µ
µ +∞

N − 1 N + 1 N N − 1

for 0 < µ < 2. Since for large N the function ξ 7→ Nξ + ϕ(ξ) is strictly increasing, this
already tells us that the number of real momenta is exactly w − 1 as N →∞ (recall that
the endpoints 0 and π are not solutions). As already discussed in section 3.3, this remains
true for all N if w = N + 1, in which case all the solutions and momenta are real.

For the other cases we have to determine if the one or two remaining solutions are
complex, or real but outside ] − 2, 2[. Since (3.10) is a polynomial equation with real
coefficients, complex solutions must come in conjugated pairs. Therefore if w = N , the
remaining solution must also be real. If w = N − 1, however, a finer analysis is needed.
By varying µ and y outside the domain w = N + 1 we can follow the real roots of P and
distinguish two cases: either two roots collide and become complex, or they leave ]−2, 2[ one
after the other. If 0 < µ < 2 and y < 0 the former is true, and if y > µ+2

µ (and any µ > 0)
— the latter, so in these domains we will have respectively N − 2 and N real solutions.
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•

µ

y
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µ

y = 2+µ
µ

y = −µ/4

Figure 1. Reality properties of the solutions and associated momenta of the spectral equation (3.10)
in terms of µ and y.

The last and most complicated case is when µ > 2 and y < µ−2
µ , because in this domain

the two colliding roots are outside ] − 2, 2[. The system Pµ,y(λ) = P ′µ,y(λ) = 0 satisfied
at the collision point then defines a non-trivial curve in (µ, y) space. Although there is no
analytic expression for it, a good enough approximation can be obtained by considering
the limit µ → +∞, y ∼ ỹµ, λ ∼ λ̃µ, with ỹ, λ̃ ∈ R. Plugging this ansatz into (3.10) and
keeping only the highest order in µ, we obtain

λ̃2 + λ̃− ỹ = 0 . (A.1)

The double root appears when the discriminant of this polynomial (in λ̃) vanishes, that
is, when ỹ = −1

4 , λ̃ = −1/2. To obtain the next-order term we now plug y ∼ −µ/4 + ỹ′,
λ ∼ −µ/2 + λ̃′ into the spectral equation. We have(

N

2 − (N − 1) + N − 2
2

)
λ̃′ + ỹ′ = 0 ⇒ ỹ′ = 0 . (A.2)

Thus the critical curve has an asymptote of equation y = −µ/4 as µ → ∞. This is
confirmed numerically.

These results for the large-N limit are summarised in figure 1. All the domains of the
graph are exact, except for the green curve close to the critical point • = (2, 0) at which
the black, red and green curves must meet, since −1 is then a double root of P .

To perform the same analysis at finite N we have to take into account the fact that
the function ξ 7→ Nξ + ϕ(ξ) can have local extrema, and so it might cross some multiple
of π more than once.

The corrections to the critical curves y = 2±µ
µ are easy to compute, since they corre-

spond to the values of µ and y for which a solution of (3.10) hits ±2. In other words, they
come from a local minimum right after ξ = 0, or to a local maximum right before ξ = π.
Then, doing this computation, we obtain the new critical curves y = 2±µ

µ
N
N−1 .
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For the other boundaries of figure 1, local extrema generate two additional real roots
and so only affect the black and green lines. If 0 < µ < 2 we have already seen in
section 3.3 that the black line will be replaced by some curve y−(µ,N) < 0 given by the
solution of the system Pµ,y(λ) = P ′µ,y(λ) = 0. The green line will also be corrected, but
since equations (A.1)–(A.2) are independent of N , its asymptote will still be y = −µ/4 for
all N . Finally, the critical point • at which the black, green and red lines meet will change.
One can compute its coordinates explicitly by solving Pµ,y(−1) = P ′µ,y(−1) = 0. Since

U ′N (−1) = (−1)N+1N(N + 1)(N + 2)
3 ,

we have
• =

(
22N + 1

2N − 1 ,−
4N

(2N − 1)(N − 1)

)
.

As expected, • → (2, 0) as N →∞.

B Proof of the anti-commutation relation (3.48)

In this appendix we prove equation (3.48),

lim
M→∞

lim
N→∞

{ξ(z)<M , η(w)<M} = 1
w

∑
k∈Z

(z/w)k+τ =: δτ (z, w) .

First, from (3.3), (3.12), and (3.14)

{θ†k, θk′} = A0B
′
0 +

N∑
j=1

AjB
′
j

= − 1
4 sin(ξk) sin(ξk′)

N−1∑
j=0

(
(eiξk − i)eijξk − (e−iξk − i)e−ijξk

)
×
(
(eiξk′ − i)eijξk′ − (e−iξk′ − i)e−ijξk′

)
+A0B

′
0

where

A0B
′
0 = −

e−
iπα

2 cos
(
πα
2
)

(i sin(Nξk) + sin((N − 1)ξk)) (i sin(Nξk′) + sin((N − 1)ξk′))(
ie−

iπα
2 + λk

µ sin πα
2

) (
ie−

iπα
2 + λk′

µ sin πα
2

)
sin(ξk) sin(ξk′)

.

Summing the series we obtain, if k 6= k′,

−i sin(ξk) sin(ξk′){θ†k, θk′} = −
cos
(
ξk+ξk′

2

)
2 sin

(
ξk−ξk′

2

) sin(N(ξk − ξk′))

+
cos
(
ξk−ξk′

2

)
2 sin

(
ξk+ξk′

2

) sin(N(ξk + ξk′))− i sin(Nξk) sin(Nξk′)

− i sin(ξk) sin(ξk′)A0B
′
0 .

If k = k′ the first term on the right-hand side is replaced by −N cos
(
ξk+ξk′

2

)
.
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For k close to N/2 we have

ξk =

(
k + α−1

2

)
π

N
+ o(1/N) .

Set ` := k −N/2. We have

−
cos
(
ξk+ξk′

2

)
2 sin

(
ξk−ξk′

2

) sin(N(ξk − ξk′)) = π

(
`+ α− 1

2

)
δ``′ +O(1/N) ,

cos
(
ξk−ξk′

2

)
2 sin

(
ξk+ξk′

2

) sin(N(ξk + ξk′))) = 1
2 sin

(
π(`+ `′ + α− 1)

)
+O(1/N)

= −(−1)`+`′

2 sin(πα) +O(1/N) ,

−i sin(Nξk) sin(Nξk′) = −i(−1)`+`′ cos(πα/2)2 +O(1/N) ,

and
−i sin(ξk) sin(ξk′)A0B

′
0 = −ie

iπα
2 cos

(
πα

2

)
e−iN(ξk+ξk′ ) +O(1/N)

= −ie
iπα

2 cos
(
πα

2

)
(−1)`+`′e−iπ(α−1) +O(1/N)

= i

2(−1)`+`′
(
1 + e−iπα

)
+O(1/N) .

Since
i

2
(
1 + e−iπα

)
− 1

2 sin(πα)− i cos(πα/2)2 = 0 ,

we finally obtain

− i sin(ξk) sin(ξk′){θ†` , θ`′} = π

(
`+ α− 1

2

)
δ``′ +O(1/N) (B.1)

or, in other words,
{χ+

k+τ , χ
−
k′−τ} = (k − τ)δk+k′ +O(1/N)

with χ±k±τ defined in (3.47), and

τ = 1− α
2 .

Using this expression, we have

lim
M→∞

lim
N→∞

{ξ(z)<M , η(w)<M} =
∑
k,k′∈Z

{χ+
k+τ , χ

−
k′−τ}

k − τ
z−k+τw−k

′−1−τ

=
∑
k,k′∈Z

δk+k′z
−k+τw−k

′−1−τ

= 1
w

∑
k∈Z

(z/w)k+τ := δτ (z, w) ,
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where δτ (z, w) is the τ -twisted delta function. This terminology is justified by the following
fact. Suppose we have a function f with expansion

f(w) =
∑
k∈Z

akw
k+τ .

Then 1
2iπ

∮
δτ (z, w)f(w)dw =

∑
k∈Z

akz
k+τ = f(z) .

Similarly, if
g(z) =

∑
k∈Z

bkz
k−τ

then 1
2iπ

∮
δτ (z, w)g(z)dz =

∑
k∈Z

bkw
k−τ = g(w) .

Notice that, unlike the usual delta function, δτ (z, w) is not symmetric under the permuta-
tion of z and w. Actually, one can easily see that

δτ (z, w) = δ−τ (w, z) and δτ+1(z, w) = δτ (z, w) .

For τ = 0 ∈ R/Z we recover δ0(z, w) = δ(z − w).
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