
HAL Id: hal-03759886
https://hal.science/hal-03759886

Submitted on 13 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Resources for bosonic quantum computational advantage
Ulysse Chabaud, Mattia Walschaers

To cite this version:
Ulysse Chabaud, Mattia Walschaers. Resources for bosonic quantum computational advantage.
Phys.Rev.Lett., 2023, 130 (9), pp.090602. �10.1103/PhysRevLett.130.090602�. �hal-03759886�

https://hal.science/hal-03759886
https://hal.archives-ouvertes.fr


Resources for Bosonic Quantum Computational Advantage

Ulysse Chabaud 1,2,* and Mattia Walschaers3,†
1DIENS, École normale supérieure, PSL University, CNRS, INRIA, 45 rue d'Ulm, Paris 75005, France

2Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA
3Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL,
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Quantum computers promise to dramatically outperform their classical counterparts. However, the
nonclassical resources enabling such computational advantages are challenging to pinpoint, as it is not a
single resource but the subtle interplay of many that can be held responsible for these potential advantages.
In this Letter, we show that every bosonic quantum computation can be recast into a continuous-variable
sampling computation where all computational resources are contained in the input state. Using this
reduction, we derive a general classical algorithm for the strong simulation of bosonic computations, whose
complexity scales with the non-Gaussian stellar rank of both the input state and the measurement setup. We
further study the conditions for an efficient classical simulation of the associated continuous-variable
sampling computations and identify an operational notion of non-Gaussian entanglement based on the lack
of passive separability, thus clarifying the interplay of bosonic quantum computational resources such as
squeezing, non-Gaussianity, and entanglement.
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Introduction.—Ever since the earliest quantum algo-
rithms [1–3], it has been clear that quantum computing
holds the potential of reaching exponential speedups as
compared to classical computers—be it for very specific
problems. The computational advantage [4] of quantum
computers was more rigorously established by connecting
the classical simulation of certain quantum sampling
problems to the collapse of the polynomial hierarchy of
complexity classes [5,6]. Boson sampling, in particular, has
drawn the attention of a part of the physics community,
because the protocol is naturally implemented with indis-
tinguishable photons and linear optics. These sampling
problems also lie at the basis of the random circuit sampling
protocol [7], which would lead to the first experimental
claim of a quantum computational advantage [8]. However,
in a game of constantly shifting goal posts, this claim has
already been challenged [9].
At the same time, the development of building blocks for

potential quantum computing hardware has drastically accel-
erated during the last decade. Even though platforms such
as superconducting circuits and trapped ions have booked
great successes, the present work mainly focuses on optical
implementations. The Knill-Laflamme-Milburn scheme [10]
provided the first proposal for a universal photonic quantum
computer, which to this day remains extremely challenging to
implement. Even though boson sampling [6] renewed the
interest in photonic quantum computing, generating, con-
trolling, and detecting sufficiently many indistinguishable
photons is still very challenging.

To circumvent the difficulties of dealing with single
photons and conserve the advantages that optics can
provide for quantum information processing, such as
intrinsic resilience against decoherence, several research
groups have explored continuous-variable (CV) quantum
optics as an alternative. Rather than detecting photons, this
approach encodes information in the quadratures of the
electromagnetic field, which can be detected through
either homodyne or double homodyne (sometimes called
heterodyne) measurements [11]. Equipped with its own
framework for quantum computing in infinite-dimensional
Hilbert spaces [12], the CV approach has the advantage of
deterministic generation of large entangled states, over
millions of subsystems [13–17]. By now, CV quantum
optics is considered a promising platform for quantum
computing [18]. Several sampling problems have also
been translated to an infinite-dimensional context [19–23].
Among these proposals, Gaussian boson sampling in
particular attracted much attention, which led ultimately
to experimental realizations beyond the reach of classical
computers [24–26].
From a complexity-theoretic point of view, it is well

understood why some of these specific sampling problems
cannot be efficiently simulated by a classical computer
[27]. From a physical point of view, several groups have
explored the required resources for reaching a quantum
computational advantage. Such endeavors typically aim to
identify a physical property without which a setup can
be efficiently simulated classically. Phase-space descrip-
tions of quantum computations, such as the Wigner
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function [28,29], are particularly useful in that respect. For
example, it has been shown that negativity of the Wigner
function is one of such necessary resources [30,31], albeit
not sufficient [32]. More recently, it became clear that
squeezing and entanglement also play an important role in
the hardness of some sampling problems, but only when
combined in the right way [33,34]. In Gaussian boson
sampling, for example, the state at hand is an entangled
Gaussian state, which can be described using a positive
Wigner function, while negativity of the Wigner function is
provided by the non-Gaussian photon detectors. This
potential resourcefulness of the measurements is one reason
why sampling problems are complicated to analyze.
In this Letter, we address this problem by introducing a

new paradigm for studying resources for bosonic compu-
tations. Our contribution is threefold: First, we show that
every bosonic sampling computation has a dual CV
sampling setup, where the measurement is performed using
double homodyne detection, which can be understood as
quasiclassical and thus nonresourceful. This means that, in
this dual sampling setup, all computational resources are
ingrained in the measured state. Second, using this con-
struction, we obtain a classical algorithm for strongly
simulating bosonic computations, whose complexity scales
with the stellar rank, a discrete non-Gaussian measure [35],
of both the input state and the measurement setup of the
original computation. Our algorithm is a generalization of
that of [36]—which applies only to a restricted set of
bosonic computations—to essentially any bosonic compu-
tation. Our result thus establishes the stellar rank as a
necessary non-Gaussian resource for reaching a quantum
computational advantage with bosonic information
processing. Third, we further show that the associated
CV sampling setup can also be efficiently simulated
classically whenever its corresponding input state is pas-
sively separable. We explain that states that are not
passively separable possess non-Gaussian entanglement,
thus showing that this type of entanglement is necessary for
reaching a quantum computational advantage. Our results
allow us to clarify the role played by different nonclassical
resources in enabling quantum computational advantage,
which we illustrate with the example of boson sampling.
Sampling tasks.—Our starting point is that of a general

sampling setup, where a quantum state ρ̂ over m
subsystems, or modes, is measured by a series of m
local detectors. We assume that the kth detector measures
an observable Ŷk with a spectral decomposition Ŷk ¼R
Yk

yP̂k;ykdy, where Yk is the spectrum of Ŷk. Here, we
limit ourselves to projective measurements, but our results
can be extended to more general positive operator-valued
measures through Naimark’s dilation theorem.
In a sampling setup, our goal is to sample detector

outcomes with respect to the probability distribution given
by the Born rule: Pðy1;…; ymjρ̂Þ ≔ Tr½ρ̂ ⊗m

k¼1 P̂k;yk �. For
simplicity, we can assume that the projectors are rank 1,

such that P̂k;yk ¼ jykihykj. The measurement can thus be
resourceful if jyki has a negative Wigner function or if it
contains squeezing. A priori, the state ρ̂ can be any
multimode mixed state, but in a typical sampling setup
it would be generated by applying a series of few-mode
gates to a set of single-mode input states.
Stellar hierarchy.—Hereafter, we describe bosonic

states using the stellar hierarchy [35] (see the Supple-
mental Material [37] for a concise review). This formalism
associates to eachm-mode pure state jψi ¼ P

n≥0 ψnjni its
stellar (or Bargmann) function F⋆

ψðzÞ ¼
P

n≥0ðψn=
ffiffiffiffiffi
n!

p Þzn,
for all z ∈ Cm, and classifies bosonic states according
to their stellar rank: pure states of finite stellar rank r⋆
are those states whose stellar function is of the form
F⋆ðzÞ ¼ PðzÞGðzÞ, where P is a multivariate polynomial
of degree r⋆ and G is a multivariate Gaussian. Such states
can be decomposed as ĜjCi, where Ĝ is a Gaussian unitary
and jCi is a core state, i.e., a finite superposition of
Fock states. The number of nonzero coefficients of jCi
is called the core state support size. For mixed states, the
stellar rank is defined by a convex roof construction:
r⋆ðρ̂Þ ¼ infpi;ψ i

sup r⋆ðψ iÞ, where the infimum is over
the decompositions ρ̂ ¼ P

i pijψ iihψ ij. The stellar rank
is a faithful and operational non-Gaussian measure [34], as
it is invariant under Gaussian unitaries, nonincreasing
under Gaussian maps, and it lower bounds the minimal
number of non-Gaussian operations (such as photon
additions or photon subtractions) necessary to prepare a
bosonic state from the vacuum, together with Gaussian
unitary operations. Moreover, any state can be approxi-
mated arbitrarily well in trace distance by states of finite
stellar rank, and an optimal approximating state of a given
stellar rank can be found efficiently [47].
To establish the duality between sampling an outcome

from the distribution Pðy1;…; ymÞ and double homodyne
sampling, we must analyze the pure states jyki. It is
convenient to use the stellar hierarchy to describe them:
we can represent any single-mode state jyki of finite stellar
rank as [35]

jyki ¼
1ffiffiffiffiffiffiffi
N k

p
� Yr⋆ðykÞ

j¼1

D̂ðβk;jÞâ†kD̂†ðβk;jÞ
�
jGki; ð1Þ

where r⋆ðykÞ ∈ N denotes the stellar rank of the state jyki,
jGki is a Gaussian state, D̂ðβk;jÞ is a displacement operator

that acts on mode k with βk;j ∈ C, â†k is the creation
operator in mode k, andN k is a normalization factor. In this
case, we can interpret jyki as an r⋆ðykÞ-photon-added
Gaussian state [when r⋆ðykÞ ¼ 0, the empty product is
the identity operator by convention]. Furthermore, since we
can approximate any state jyki by a finite-rank state to
arbitrary precision in trace distance, we assume that all jyki
have a—possibly high—finite stellar rank.
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The single-mode Gaussian states jGki can always be
obtained from the vacuum with squeezing and displace-
ment operations. This allows us to write jGki ¼ Ŝkjαki,
where Ŝk is a suitably chosen squeezing operation and
jαki ¼ D̂ðαkÞj0ivac is a coherent state. Combining this with
Eq. (1), we can now recast

Pðy1;…; ymjρ̂Þ ¼
1

N
Tr

�
Ŝ†ρ̂−Ŝ ⊗

m

k¼1
jαkihαkj

�
; ð2Þ

where Ŝ ≔⊗k Ŝk and ρ̂− is a non-normalized photon-
subtracted state, given by ρ̂− ≔ Â ρ̂ Â†, with a photon-

subtraction operator Â ≔⊗m
k¼1

Qr⋆ðykÞ
n¼1 D̂ðβk;nÞâkD̂†ðβk;nÞ.

The normalization factor N in Eq. (2) is directly related to
the detectors we use, thus we assume it to be known
a priori.
Coherent state samplers.—Double homodyne measure-

ment corresponds to a (subnormalized) projection onto
coherent states [11]. Hence, the expression in Eq. (2) shows
that sampling measurement outcomes y1;…; ym can always
be connected to performing double homodyne measure-
ments on a state that is obtained by squeezing and
subtracting photons from the initial state ρ̂. The imple-
mentation of photon subtraction generally requires
measurements on auxiliary modes. The most common
implementation involves a photon-counting measure-
ment [48], but this is not compatible with our aim of not
having any resources at the level of the measurement, since
these measurements are represented by negative Wigner
functions. Thus, we introduce a more unusual construction
inspired by sum-frequency generation [49].
To subtract a photon in a mode k from a state ρ̂, we attach

an auxiliary mode to our system, containing exactly one
photon. This state is injected in a very weak two-mode
squeezer, given by a unitary ÛðξÞ ¼ exp½iξðâ†kâ†aux þ
âkâauxÞ� (acting as identity on all except the kth and the
auxiliary modes). After having applied ÛðξÞ, we project
the auxiliary mode on the vacuum state to find
TrauxfÛðξÞ½ρ̂ ⊗ j1ih1j�Û†ðξÞ½1̂ ⊗ j0ih0j�g ≈ ξ2âkρ̂â

†
k,

where the approximation becomes exact when the approxi-
mation parameter ξ goes to zero (see Supplemental
Material [37]). Replacing each photon subtraction in
Eq. (2) by the above construction, we show in the
Supplemental Material that, for any ϵ > 0, one can pick
approximation parameters ξk;j ¼ poly½ϵ; ð1=mÞ� for all k ∈
f1;…; mg and all j ∈ f1;…; r⋆ðykÞg, such that

Pðy1;…; ymjρ̂Þ ¼
1

N
Q

m
k¼1

Qr⋆ðykÞ
j¼1 ξ2k;j

× Tr

�
ρ̂total

�
⊗
m

k¼1
jαkihαkj ⊗ j0ih0j⊗n

��

þOðϵÞ; ð3Þ

where we have set n ≔
P

m
k¼1 r

⋆ðykÞ, and where the state
ρ̂total is defined on the full Hilbert space, including all the
auxiliary modes, and is given by

ρ̂total ≔ ðŜ† ⊗ 1̂auxÞÛ†ðρ̂ ⊗ j1ih1j⊗nÞÛðŜ ⊗ 1̂auxÞ; ð4Þ

with Û given by Û≔⊗m
k¼1

Qr⋆ðykÞ
j¼1 D̂ðβk;jÞÛ†ðξk;jÞD̂†ðβk;jÞ.

We note that Ûðξk;jÞ is the two-mode squeezer that
connects the kth detection mode to the auxiliary mode
that implements the jth photon-subtraction operation asso-
ciated with it, and thus ðŜ† ⊗ 1̂auxÞÛ† is a Gaussian
unitary. In particular, r⋆ðρ̂totalÞ ¼ r⋆ðρ̂ ⊗ j1ih1j⊗nÞ ¼
r⋆ðρ̂Þ þP

m
k¼1 r

⋆ðykÞ since the stellar rank is fully additive
with respect to tensor products with pure states [34].
The projection on the vacuum is consistent with double

homodyne detection since j0ivac is also a coherent state.
The expression in Eq. (3) thus shows that any setup where
one samples a given outcome from a bosonic state can be
mapped theoretically to a larger coherent state sampling
setup, whose output probability density matches to arbi-
trary precision the output probability of that outcome, up to
a normalizing factor (see Fig. 1). Furthermore, the
stellar ranks of the projection operators translate to the
inclusion of additional single-photon Fock states in aux-
iliary modes. A similar derivation, detailed in the
Supplemental Material [37], shows that the corresponding
marginal probabilities are also reproduced by the marginal
probability densities of coherent state samplers.
Strong simulation of bosonic computations.—These

results highlight that coherent state samplers can be very
generally used to simulate other sampling setups using
similar techniques as in [36]. Strong simulation, in par-
ticular, refers to the evaluation of any output probability of
a computation or any of its marginal probabilities.
Hereafter, we rely on the following notion of approximate
strong simulation: let P be a probability distribution
(density); for ϵ > 0, approximate strong simulation of P

FIG. 1. To any bosonic computation (left, in blue) is
associated a coherent state sampling setup (right, in orange),
which takes as input the same state ρ̂, together with auxiliary
single-photon Fock states, and whose output probability density
approximates to arbitrary precision the output probability of a
given outcome up to normalization, i.e., Pðα1;…; αm; 0;…; 0Þ≈
ð1=N 0ÞPðy1;…; ymÞ. The number of auxiliary Fock states n is
the sum of the stellar ranks of the projectors associated with the
outcomes y1;…; ym.
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up to total variation distance ϵ refers to the computational
task of strongly simulating a probability distribution Q,
which is ϵ close to P in total variation distance (see
Supplemental Material for a formal definition [37]).
The classical algorithm for strong simulation of

Gaussian circuits with non-Gaussian input states from
Theorem 2 in [36] can be readily applied to coherent state
samplers. Combining this result with our construction, we
obtain a general classical algorithm for approximate strong
simulation of bosonic quantum computations, whose com-
plexity scales with the stellar rank of both the input state
and the measurement setup. We state the result in the case
of pure state input and projective measurements and refer to
Theorem 2 in the Supplemental Material [37] for the
general theorem and its proof:
Theorem 1.—Let jψi be an m-mode pure state of stellar

rank r⋆ðψÞ and core state support size s. For all
k ∈ f1;…; mg, let Ŷk be an observable with eigen-
basis fjykigyk∈Yk

, and let r⋆k ¼ supyk∈Yk
r⋆ðykÞ. Let r ≔

r⋆ψ þP
k r

⋆
k be the total stellar rank of the setup. Then, the

measurement of Ŷ1;…; Ŷm on jψi over an exponentially
large outcome space can be approximately strongly simu-
lated up to total variation distance expð−polymÞ in
time Oðs2r32r þ polymÞ.
The total variation distance in the theorem results from

the approximation used in Eq. (3). This strong simulation
algorithm competes with state-of-the art classical algo-
rithms for certain bosonic architectures [36], but applies to
a much wider class of quantum computations—essentially
any bosonic computation. The time complexity in Theorem
1 is a worst-case complexity, based on the fastest known
classical algorithm for computing the hafnian [50], and
may be reduced for particular instances. On the other hand,
due to its broad applicability, our simulation technique
may be outperformed by classical simulation algorithms
targeting specific classes of bosonic circuits [51–55].
Nonetheless, Theorem 1 may be used primarily as a tool
for identifying necessary resources for bosonic quantum
computational advantage: it establishes the stellar rank as a
necessary non-Gaussian property.
Non-Gaussian entanglement.—Now that we have shown

that any bosonic computation can be connected to a
coherent state sampler, we aim to identify physical resour-
ces that are required to reach a quantum advantage with
coherent state sampling beyond the stellar rank. We resort
to a basic model of coherent state sampler, where we
consider sampling from a given N-mode state σ̂. The
probability density corresponding to a certain set of
complex measurement outcomes α1;…; αN in the N output
detectors is given by the Husimi Q function of the state σ̂:
Qðα⃗jσ̂Þ ¼ ð1=πNÞhα⃗jσ̂jα⃗i, where α⃗ ¼ ðα1;…; αNÞ⊤. By
having put all the quantum resources of the sampling
protocol at the level of the state, the hardness of the
sampling problem can now be directly related to properties
of the resourceful state’s Q function.

Under basic assumptions, we can efficiently sample
classically from the Q function of any separable mixed
state (see Supplemental Material for a discussion [37]).
Hence, quantum entanglement of the input state is a
necessary requirement in the design of a coherent state
sampler that is hard to simulate. However, it turns out that
not all forms of entanglement are equally suitable. In
previous works [34,56], we have discussed the concept
of passive separability: a quantum state is said to be
passively separable if at least one mode basis exists in
which the state is separable. In other words, for a passively
separable state, any entanglement can be undone by an
interferometer built with beam splitters and phase shifters.
The concept of passive separability becomes essential

when we combine it with the properties of coherent states.
Let Û describe a passive N-mode linear optics interfer-
ometer in the sense that Û†âkÛ ¼ P

j Ujkâj, whereU is an

N × N unitary matrix. The action of Û on an N-mode
coherent state is given by Ûjα⃗i ¼ jUα⃗i. This simple
identity implies that, for all passive linear optics trans-
formations, Qðα⃗jτ̂Þ ¼ QðUα⃗jÛ τ̂ Û†Þ. By definition, for
any state τ̂ that is passively separable, there is at least
one transformation Û such that Û τ̂ Û† is separable. This, in
turn, means that we can efficiently sample from the
distribution Qðα⃗jÛ τ̂ Û†Þ. Hence, we can sample a vector
α⃗ from Qðα⃗jτ̂Þ by first sampling β⃗ distributed according to
Qðβ⃗jÛ τ̂ Û†Þ and subsequently identifying α⃗ ¼ U†β⃗. Thus,
we find that we can efficiently simulate the coherent state
sampling from any passively separable state.
To reach a quantum computational advantage with a

coherent state sampler, we thus have to use input states that
are not passively separable. This requirement immediately
excludes all Gaussian states, since these are always
passively separable [57]. The lack of passive separability
can therefore be seen as non-Gaussian entanglement in the
sense that it is a form of entanglement that persists in any
mode basis and cannot be extracted based solely on the
state’s covariance matrix. It thus highlights the presence of
non-Gaussian features in the state’s correlations.
We emphasize that there are other intuitive notions of

non-Gaussian entanglement. When we call states that are
separable through general Gaussian operations (i.e., a
combination of interferometers and squeezing operations)
Gaussian separable, one could say that only states that are
not Gaussian separable have non-Gaussian entanglement.
To understand what notion of non-Gaussian entanglement
is necessary for reaching a quantum computational advan-
tage with coherent state sampling, we consider the seminal
example of boson sampling. Through Eq. (3), we find that
ideal boson sampling with n input photons and an m-mode
interferometer ÛBS corresponds to coherent state sampling
from a state given by jΨi ∝ ÛðÛBS ⊗ 1auxÞjΨtotali, where
Û is a tensor product of two-mode squeezers and where the
state jΨtotali is a 2n-photon Fock state that combines the
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input state of the boson sampler with n auxiliary photons,
given by

jΨtotali ¼ ½j1i ⊗ … ⊗ j1i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

⊗ j0i ⊗ … ⊗ j0i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m−n

�

⊗ ½j1i ⊗ … ⊗ j1i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
n

�aux: ð5Þ

Boson sampling is known to be a hard problem, so exact
coherent state sampling from the state jΨi is also classically
hard [58]. The structure of this state nicely highlights the
three fundamental types of nonclassicality that are required:
non-Gaussian resources in jΨtotali, large-scale entangle-
ment through ÛBS, and squeezing through Û. Furthermore,
the order of the elements is essential: the state jΨi is not
passively separable because the squeezing operations in Û
and the non-Gaussian features in jΨtotali are local in a
different mode basis. However, ÛðÛBS ⊗ 1auxÞ is a
Gaussian operation and jΨtotali is separable. This means
that the state jΨi is thus Gaussian separable but not passive
separable. Hence, there are Gaussian-separable states
leading to coherent state sampling that cannot be efficiently
simulated. We thus propose to define non-Gaussian entan-
glement as the type of entanglement that is present in states
that are not passively separable. This amounts to defining it
operationally as a type of entanglement that is necessary to
achieve computationally hard coherent state sampling.
Conclusion.—In this Letter, we argue that any bosonic

sampling computation can be mapped to a corresponding
coherent state sampling computation. Our construction
allows us to derive a general classical algorithm for strong
simulation of bosonic computations, whose time complex-
ity scales with the stellar rank of the input state and the
measurement setup of the computation.
We see our Letter in the first instance as providing a

useful method to analyze the resources in sampling setups,
because all resources in coherent state sampling are situated
at the level of the state. As such, we also find that coherent
state sampling with passively separable states can be
simulated efficiently. We therefore find that the lack of
passive separability rather than the lack of Gaussian
separability is the operationally useful type of non-
Gaussian entanglement.
Our key reduction in Eq. (3) shows that any non-

Gaussian resource in the measurement is introduced in
the coherent state sampler through auxiliary photons. The
total number of auxiliary photons in the coherent state
sampler ultimately corresponds to the total stellar rank of
the measurement setup. These photons must be entangled
in a fundamentally non-Gaussian way to achieve the
necessary sampling complexity. For pure states, this non-
Gaussian entanglement also implies one of the previous
requirements for reaching a quantum computational ad-
vantage: Wigner negativity [30]. Yet, for mixed states, it

remains an open question how the necessity of Wigner
negativity translates to the coherent state sampler.
Typical sampling setups such as (Gaussian) boson

sampling correspond to reasonably simple coherent state
samplers that mix local non-Gaussian resources through a
multimode Gaussian transformation. However, in the multi-
mode bosonic state space, much more exotic states can be
conceived. Preparing such states would require multimode
non-Gaussian unitary transformations, and it would be
interesting to understand whether they have any additional
computational resourcefulness.
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