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Abstract. On the aim of finding the optimal solar cell structure which allows better efficiency, 
stability and reduced cost, a general study of a Methyl Ammonium lead Iodide CH3NH3PbI3 based 
perovskite solar cell is made. Three different electron transport material compounds ETMs; TiO2, 
ZnO and SnO2 are comparatively studied considering the same hole transport material HTM, Spiro-
OMeTAD. The photovoltaic parameters, i.e. the open circuit voltage (Voc), the short circuit current 
(Jsc) and the power conversion efficiency (PCE) are performed considering the ETM layer 
thicknesses, and the defect densities in both interfaces ETM/Perovskite and Perovskite/HTM. It is 
found that solar cell with SnO2 present the highest PCE for almost all configurations. Finally, the 
optimized cell is simulated with different organic and inorganic HTMs such as PEDOT: PSS, Cul 
and CuSbS2. 

Introduction 
As efficiency of traditional silicon solar cell reaches a physical saturation level about 27-28% [1] 

corresponding to the maximum theoretical power conversion efficiency (PCE) with silicon, research 
are launched in order to find alternative materials. An emerging solar cell technology appeared with 
a new family of quantum dots QDs materials, perovskite solar cells are composed from mixed 
organic-inorganic halide ABX3, where A is an organic cation, B is a lead or tin cation, and X is a 
halide anion [2]. Even if the efficiency of perovskite cells is still low compared to silicon solar cells, 
but its current increase, makes them one of the most promising for the near future, especially if we 
consider the simplicity of its manufacturing and the perspective of a low overall cost in the coming 
years. Their power conversion efficiency (PCE) has risen from 3.9% to certify 25.2% [3] during the 
last decade [4]. This large performance increase is attributed to the strong absorption coefficient of 
the perovskite material constituting the absorbing layer (~105 cm-1), the long carrier diffusion length 
(1µm) [5] and the low exciton binding energy (~2meV).  

However, there are several limiting factors that would affect the photovoltaic conversion. The 
main critical issue consists in the poor crystalline quality and the environmental instability [6]. 
Many researches are focused in order to overcome these problems and to achieve higher power 
conversion efficiency in PSC (Perovskite solar cells). 

 
Best performances of perovskite solar cells are obtained with TiO2 as electron transport material 

(ETM). Unfortunately, TiO2 presents many limits, since it needs high temperature of 500°C during 
the annealing step to catch the crystalline rutile phase[7]. In addition, TiO2 have low conductivity 
and a large amount of defects leading to inevitable huge amount of carrier fast recombination 
degrading the efficiency. Consequently, many researches are done to find an alternative to TiO2. Ko 
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et al. used sol-gel ZnO ETM based PSC and showed a PCE equal to about 16.5 % at 1 sun 
illumination [8]. In 2015, Ke et al. reach a higher efficiency of 17.2% with a low-temperature 
solution-processed nanocrystalline SnO2 in planar PSC [9], and in 2018, Yang et al. achieved an 
efficiency of 20.79% for a PSC with SnO2  as ETM layer [10]. 
Anaraki et al. developed a chemical bath post-treatment SnO2 PSC which brought an efficiency of 
21% [11]. On the other hand, the most popular HTM used, spiro-OMeTAD allows for a performing 
PSC to reach 15.98% of efficiency with open circuit voltage higher than 1.05 V as reported by 
Wang et al. [12].  Despite, this HTM presents a low hole mobility, low conductivity [13] and a high 
synthetic cost. Moreover, to improve the charge carrier mobility in the Spiro-OMeTAD layer, some 
authors considered the possibility to dope it with hygroscopic elements such as Li-TFSI or TBP, but 
this solution unfortunately leads to device instability under temperature [14]. To overcome those 
drawbacks, many HTMs with proper electronic structure can replace Spiro-OMeTAD such as 
PTAA [15], PEDOT: PSS [16], NiO [25], CuSCN [17]. Inorganic HTMs are characterized by a 
high transparency and low temperature solution processed which make them the most compatible 
materials for flexible PSC devices as demonstrated by Zhang et al. [18]. We can report results 
obtained with a structure built with P3HT as HTM layer and TiO2 as ETM layer that brought a PCE 
of 12.4% [19]. In 2015, poly-triaylamine (PTAA) gave an interesting efficiency of 20.1% [20]. 
Elbohy et al. used PEDOT:PSS as HTM layer in an inverted MAPbI3 perovskite solar cell to get an 
efficiency of 18.8% [21]. Other inorganic materials not expensive and with high efficiency are used, 
Seok et al. produced a spin-coated CuSCN layer as an HTM layer in mesoscopic PSCs leading to a 
PCE of 18.0% [22]. In order to provide a better understanding of the effect of HTM and ETM layers 
on the perovskite solar cell performances, we present in this contribution a comparative study 
pointing out the influence of electron transport materials TiO2, ZnO and SnO2 considering both the 
nature of material in terms of its physical and electronic properties and the influence of the 
thickness of the deposited layer. These simulations were also extended for HTMs Spiro-OMeTAD, 
PEDOT: PSS, Cul and CuSbS2 using SnO2 as ETM layer. Moreover, it is well-known that defect at 
the absorber interface in a PSC plays an important role in the global performance of solar cells. For 
that reason and in order to analyze their effects on the performances of the PSC, the defect densities 
at both interfaces ETM/Perovskite and Perovskite/HTM are finally considered in the simulation and 
discussion. 

Basic Device Structure 
The perovskite photovoltaic solar cell structure considered in this work is presented in Fig.1, It 

possesses a typical solar cell structure in a n-i-p planar configuration with Methyl Ammonium lead 
Iodide CH3NH3PbI3 as perovskite layer sandwiched between HTM and ETM layers and external 
electrodes, i.e. an Au back contact layer and an ITO front contact layer. 

In a first part of the modelling process, we have considered a Spiro-OMeTAD hole transport 
material (HTM) and analyzed the role of the electron transport material (ETM) on the performance 
of the cell. Three types of ETMs, TiO2, ZnO and SnO2 are comparatively studied. In a second part 
of the optimization process, we analyzed the influence of the HTM layer on the performance of the 
cell by keeping SnO2 as ETM layer, and by changing the compound of the HTM layer respectively 
by Spiro-OMeTAD, PEDOT: PSS, Cul and CuSbS2 allowing a complete analysis of the respective 
role of both transport layers in the performances of the perovskite solar cell. 

Simulation is done under standard AM1.5 spectrum with an incident power density of  
100/mW cm2 at room temperature (300 K). Pre-factor Aα is 105 to obtain absorption coefficient (α) 
curve calculated by α= Aα (hv - Eg)1/2. 

The device input electronic parameters (band gap energy, dielectric, affinity, thermal velocity…) 
introduced in Table 1 and Table 2 and used in this simulation are obtained from reported works 
[23], [24], [25]. Thermal velocity of electron and hole is 107 cm/s. Bulk defect density, 2.5 ×  
1013 cm−3 is used in both perovskites with Gaussian distribution having characteristic energy of  
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0.1 eV and situated in the middle of the bandgap. The type of defect is neutral defect with the 
capture cross section of electrons and holes are 2.0 × 10−14 cm−2. 

   
 

Table 1. Simulation parameters of the ETMs and the perovskite layers. 

 
Table 2. Simulation parameters of the HTMs layer. 

Parameters Spiro-OMeTAD PEDOT PSS Cul CuSbS2 
Thickness(nm) 200 200 200 200 
Eg (eV) 3 2.2 2.98 1.58 
χ (ev) 2.45 2.9 2.1 4.2 
Ɛr 3 3 6.5 14.6 
Nc (1/cm3) 2.2*1018 2.2*1018 2.5*1019 2*1018 

Nv (1/cm3) 1.8*1019 1.8*1019 2.5*1019 1019 

μn (cm2 /Vs) 0.0002 0.01 1.69*10-4 49 
μp (cm2 /Vs) 0.0002 0.003 1.69*10-4 49 
NA (1/cm3) 2*1018 1021 1018 1018 

ND (1/cm3) _ _ _ _ 
Nt (1/cm3) 1015 1015 1015 1015 

Influence of ETM composition and thickness on PSC functional parameters 
As previously mentioned, we first consider a PSC composed by a 400nm thick absorber layer of 

CH3NH3PbI3, a 200nm thick HTM layer of Spiro-OMeTAD and analyze the role of the ETM layer 
on the performance of the cell through the consideration of three types of ETM, TiO2, ZnO and 
SnO2, respectively. We report the results of simulations for these three ETM types as function of the 

Parameters TIO2 SnO2 ZnO IDL2 MAPbI3 IDL1 
Thickness(nm) 100 100 100 10 400 10 

Eg (eV) 3.2 3.6 3.3 1.55 1.55 1.55 
χ (ev) 4 4 4 3.9 3.9 3.9 
Ɛr 100 8 9 10 10 10 
Nc (1/cm3) 2.2*1018 3.16*1018 2.2*1018 2.76*1018 2.76*1018 2.76*1018 

Nv (1/cm3) 1.8*1019 2.5*1019 1.8*1019 3.9*1018 3.9*1018 3.9*1018 

μn (cm2 /Vs) 0.006 15 300 15 15 15 
μp (cm2 /Vs) 0.006 0.1 1 15 15 15 
NA (1/cm3) _ _ _ 1011 1011 1011 

ND (1/cm3) 1019 1019 1019 _ _ _ 
Nt (1/cm3) 1015 1015 1015 1017 2.5*1013 1017 

Figure 1. Schematic structure of 
simulated perovskite solar cell. 
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thickness of the ETM layer in Fig. 2. The presented results are the open circuit voltage (Voc), short 
circuit current density (Jsc) and PCE. The range of the thickness of the ETM layer, varying between 
90nm and 450nm matches to the standard thickness generally considered in researches and pre-
industrial PSC. 

 
 

 

 

(a) 

 

 

 

 

(b) 

 

 
 

 

 

(c) 

 

Figure 2. Photovoltaic parameters as function of ETM thickness (a) Open circuit voltage Voc (b) 
photo-current density Jsc (c) The solar cell efficiency. 

 
We observe that whatever is the thickness of the ETM layer, Voc, Jsc and PCE are favor with 

SnO2 ETM layer, the worst being for the TiO2 one. Moreover, the behavior of these functional 
parameters with the thickness of the ETM layer is not the same for the three compounds: it 
decreases with the increase of the thickness in case of TiO2 and ZnO, but is quasi-constant in SnO2. 
All numerical results proved that TiO2 is more sensitive compared to ZnO and SnO2. The particular 
behavior of TiO2 compared to the two other ones is attributed to its lower transmittance and lower 
electron mobility. Thus, the increase of the ETM thickness degrades the performance of the solar 
cells with TiO2 and ZnO ETM layers. The absorption of incident solar energy by TiO2 or ZnO ETM 
layers drops the rate of charge generation and collection inducing a decrease of Jsc. However, in 
case of SnO2 ETM layer, and due to its higher transparency, the active layer keeps a quasi-constant 
absorption level in the considered thickness range of the ETM layer, thus having no significant 
influence in the behavior of Jsc. Moreover, owing to the high mobility and carrier concentration of 
SnO2, by increasing the thickness of ETM, the series resistance decreases. Our results match with 
different experimental works and numerical simulations [26] [27] [28] showing the same behavior 
of the three ETMs used. 
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Impact of defect density on solar cell performances 
The structural mismatch of two different materials leads to initiate the interfacial defects, which 

cause the charge recombination in the PSCs. In the current contribution, we consider defects at both 
ETM/absorber and absorber/HTM interfaces allowing our simulation to approach the real behavior 
of cells. For that, we introduce two layers, named IDL1 and IDL2 with a fixed thickness equal to 
10nm, and analyze the influence of the defect density in the range 1013 cm-1 to 1021 cm-1, which 
corresponds to the range of defect density commonly experimentally admitted in this type of cells 
[29]. In the modeling PSC structure, TiO2, ZnO and SnO2 are respectively considered as ETM 
layers, with a Spiro-OMeTAD as HTM layer having a thickness equal to 200nm. The behavior of 
the functional parameters obtained by simulations of such structures as function of defect 
concentrations in IDL1 and IDL2 is reported in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3. Effect of defect density in a) ETM/absorber IDL1 with [IDL2]=1017cm-3  and b) 
absorber/HTM IDL2 with [IDL1]=1017cm-3 on PSC parameters. 

As it can be understood from Fig. 3, the interface quality at ETM/absorber has the biggest impact 
on the solar cell parameters than the absorber/HTM interface. This behavior confirmed results of 
simulations published by Minemoto et al. using the same type of cell structure [30]. In fact, the cell 
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being illuminated on the front side where the ETM layer is located, the generation of electron - 
holes pairs is maxima in this region. Gradually through the layers, mainly due to the high absorption 
of the absorber, the possibilities of generation of carriers decrease by going toward the back side. 
Thus, in an optimization process of the efficiency of a solar cell, wider possibilities are offer when 
special care are brought to the ETM/absorber interface, hugely dependent of the defect density, 
compared with the improvement possibilities offer by a change in the parameters of the 
absorber/HTM interface. 

Finally, the results presented in Figs. 3 confirm that PSC integrating SnO2 ETM layer have the 
highest performances compared to PSC with TiO2 or ZnO ETM layer, even if the relative changes 
of these parameters are in the same amplitude range with defect densities. This behavior is closely 
link to the better energy band alignment between SnO2 and perovskite, providing low interface 
states resistances in the global structure of the PSC.  
Influence of HTM composition and thickness on PSC functional parameters 

In both previous sections, we notice that the performance is higher in PSC with SnO2 ETM layer 
than in PSC with ZnO or TiO2 ETM layer, and this, regardless the thickness of this layer or of the 
absorber layer. Moreover, we also know that HTM layers should have some specifications in order 
to obtain the optimum efficiency. We can cite high hole mobility that allows to reduce series 
resistances, energy levels that should match with HOMO and LOMO of perovskite used and HTM 
work function that should be matching with valence band of perovskite which helps obtaining high 
Voc [31]. 

Thus, in this section, we continue the process of optimizing the performance of the PSC by 
discussing, now, the influence of the HTM composition and thickness on the functional parameters 
of the cell. Thus, taking into account the previous results, we retain a CH3NH3PbI3 PSC with SnO2 
ETM layer. The various compounds for HTM layers that we consider are Spiro-OMeTAD, 
PEDOT:PSS, Cul and CuSbS2, currently suggested in literature. The results of the simulation 
process with these four compounds as function of the thickness of the HTM layer in the range 50-
250 nm are presented in Fig. 4. 

We clearly see in Fig. 4 that the responses of the considered functional parameters depend on the 
thickness and the type of HTM used in the device.  

HTMs used in this simulation belong in two material families, i.e. organic (Spiro-OMeTAD and 
PEDOT:PSS), and inorganic (Cul and CuSbS2). Each one exhibits different behaviors in the photo-
conversion process and thus in the response and performance of the resulting solar cell. In case of 
organic solar cells, Voc increases by raising the HTM thickness while Jsc and PCE decrease. These 
behaviors are attributed to the relatively low conductivity and charge carriers mobility of those 
materials responsible of the increase of the resistance of the layer. In contrast, inorganic materials 
have high hole mobility and conductivity, and in this case, HTM layer allows a high Voc for the 
PSC. In term of layer thickness, we can note that for the case of Spiro-OMeTAD, PEDOT:PSS and 
Cul, the power conversion efficiency is improved in thinner HTM due to lower series resistances 
and reduced time for holes to move toward Au electrode. We note that this observed behavior was 
also obtained by Raoui et al. in PSC structures with different HTM candidates [24]. 
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Figure 4. Influence of the HTM layer compound and thickness on PSC functional parameters with 
SnO2 ETM layer. 

Final Applicable Guidelines 
Following the study made above by analyzing the different effects of the ETM, HTM absorber 

thicknesses as well as the defect densities at the interfaces IDL1 and IDL2 on the solar cell 
parameters, we can obtain the optimized values of the three layers that allow the best efficiency of 
the PSC. The device was simulated using the three ETMs (100 nm), the Spiro-OMeTAD (200 nm) 
as HTM layer, CH3NH3PbI3 (400 nm) as absorber layer and by fixing the defect density of IDL1 
and IDL2 at 1017 cm-3. The I-V curve of the three ETMs is shown in Fig. 5 and the solar cell 
performances obtained are mentioned in Table 4, SnO2 shows the best power conversion efficiency. 

Even if TiO2 has been intensively used as ETM layer for CH3NH3PbI3 perovskite based solar 
cells in commercial devices, thanks to its good efficiency in a planar n-i-p structure, the current 
study proves that new alternatives exist to replace TiO2 by ZnO or SnO2 with an improved 
efficiency. 

 

 

 

 

 

 

Figure 5. Simulated J-V curves of perovskite 
solar cells with 100 nm thick ZnO, TiO2, and 

SnO2 ETL layer. 
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Table 4. Comparative photovoltaic properties of TiO2, ZnO and SnO2 ETMs for MAPbI3 perovskite 
based solar cell with optimized thickness. 

ETM Voc (V) Jsc (mA/cm2) FF (%) PCE (%) 
TiO2 1.08 21.59 83.7 19.53 
ZnO 1.08 22.13 83.68 20.01 
SnO2 1.85 22.17 83.85 20.16 

However, TiO2 based PSC are more expensive and requires a highest annealing temperature 
which doesn’t allow its deposition on flexible support [32]. Thus, we can cite, at first, the 
development of ETM layer in ZnO with higher electron mobility than TiO2 [33] [34] and better 
photon transmission to the perovskite absorber layer [35] and also with capability to be applied to 
flexible perovskite solar cells. At second, we can cite layer based on SnO2 being the subject of 
recent studies owing to its high electron mobility, its matching energy level with mixed perovskite 
including MAPbI3. Moreover, SnO2 layer can be deposited at low temperature (<200°C) with 
excellent electrical properties [36] and stable cell performance [37]. In addition, the presence of this 
layer reveals a supplementary advantage as shown by Jiang et al. [38] and Song et al. [39] being the 
low acidity resistance of SnO2 assumed the best ETM durability of the perovskite solar cell device. 

Conclusion 
The functional parameters resulting in the efficiency of CH3NH3PbI3 perovskite solar cells, was 

analyzed as function of the nature of compounds used, as well as the thickness of the ETM and 
HTM layers of the considered structure. Since in real devices, the important defect is located at the 
perovskite front and back interfaces, we have introduced two layers ETM/absorber (IDL1) and 
absorber/HTM (IDL2). Defect density in IDL1 interface influence more than IDL2 interface on the 
solar cell parameters. All discussions are based on a comparison with results obtained in literature. 

For the ETM layer, we have considered three different electron transport materials (ZnO, TiO2 
and SnO2), corresponding to real solutions experimentally and commercially tested. Among these 
possibilities for the ETM layer of the cell, results show that SnO2 based ETM layer, 100nm thick, 
allows obtaining the best PSC performances. The efficiency, achieving 20.16% is attributed to the 
higher transparency and higher carrier mobility in the ETM layer and a complete photon absorption 
in the perovskite layer. 

The effect of different organic and inorganic HTM layers has also been studied. Outcomes 
proves that inorganic HTM layers are most effective with a high mobility of holes and a best 
matching energy level with the valence band of perovskite. SnO2 based device shows the most 
promising results proved by the invariance of solar cell efficiency due to interface states. 
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