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Abstract

This work addresses the stability analysis of linear aperiodic sampled-data systems under saturating inputs. A method to generate an
increasing sequence of polyhedral estimates of the region of attraction of the origin of the closed-loop system is proposed. An impulsive
system representation, given by a linear flow and a nonlinear jump dynamics due to the saturation term, is employed. From this
representation, a convenient partition of the admissible interval for the intersampling time and an appropriate model of the saturation
term, the computation of polyhedral contractive sets is carried out considering a convex embedding of the behaviour of the system at
the sampling instants. It is then shown that the computed polyhedra are included in the region of attraction of the continuous-time plant
driven by the sampled-data control. A numerical example validates the theoretical developments and compares the method presented in
this work with other approaches from the literature.
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1 Introduction

Aperiodic sampled-data systems are commonly employed
to model the effect of imperfections on the communica-
tion channel of networked control systems, like sampling
jitters, fluctuations and packet dropouts [15]. In this con-
text, several methods were developed to perform the sta-
bility analysis of systems subject to a time-varying sam-
pling interval. In [10,21], for instance, a time-delay systems
framework is considered and the resulting method is based
on Lyapunov-Krasovskii functionals. Similar ideas are con-
sidered in [25,26], where the looped-functional method is
presented. In [24,5], the problem is tackled using a hybrid
system framework. In [29,17], an uncertain discrete-time
model that describes the behavior of the state at the sam-
pling instants is considered. Numerical tractable criteria for
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this approach can be obtained using polytopic embeddings
for the system transition matrix [6,22]. Alternatively, norm-
bounded approximations can be employed [11,12,20]. A sur-
vey on the subject can be found in [16].

In presence of control input saturation, the situation is more
complex. In particular, for exponentially unstable open-loop
plants it is not possible to ensure the global asymptotic sta-
bility of the origin and hence only local stability properties
can be guaranteed [27,23]. It is then useful to characterize
and compute estimates of the region of attraction of the ori-
gin (RAO) of the closed-loop system. Moreover, even if the
open-loop system is exponentially stable, to satisfy perfor-
mance criteria around the origin, it may be interesting to use
a control law that ensures only local stability of the origin
and to compute the corresponding RAO [28]. In this case,
one can also use a switched control law, starting with a global
stabilizing control law and, as the state approaches the ori-
gin, switching to a more performing one. The estimate of the
RAO will then define the switching region. To compute this
estimate in the periodic sampling case, an exact discretiza-
tion is possible and the problem can be treated in a discrete-
time framework (see [28] and the references therein). For
aperiodic sampled-data systems, we can cite, for instance,
[26,19], where results based on quadratic functions, leading
to ellipsoidal estimates of the RAO, are proposed.

On the other hand, the use of methods based on polyhedral
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sets to address the stability analysis of dynamical systems is
quite appealing [3,7,4,9]. Because of their flexibility, adopt-
ing polyhedra instead of ellipsoids allows a reduction of
conservativeness [3, Pg. 188]. In this context, in [18], an ap-
proach to generate polyhedral estimates of the RAO of linear
systems under sampled-data saturating controls is proposed.
The main drawback of the method in [18] concerns the nu-
merical execution of the proposed algorithm, which can be-
come prohibitively complex before its stopping criterion is
reached. This is due to the fact that the algorithm computes
a decreasing sequence of nested polytopes whose complex-
ity tends to increase at each iteration, and then the execu-
tion time related to each iteration also increases. Moreover,
the polytopes generated at each intermediate iteration of the
proposed algorithm cannot be considered as estimates of the
RAO, i.e. regions of safe behavior for the closed-loop sys-
tem. Thus, in practice, the method in [18] may fail to pro-
vide an estimate of the RAO of the system in an acceptable
amount of time.

In this work we adopt a different strategy and propose a
method which does not have the aforementioned drawbacks.
It is based on the computation of an increasing sequence of
polytopes, where at each step a new polyhedral estimate of
the RAO (larger than the previous one) is obtained. In this
case the trade-off between number of iterations and com-
plexity of the resulting polytope can be managed. Differently
from [18], to derive our results, an impulsive system rep-
resentation is employed, with a linear flow and a nonlinear
(due to the saturation term) jump dynamics, as shown in Sec-
tion 2. Some concepts on set invariance theory are recalled
in Section 3. Section 4, in turn, introduces the saturated and
nonsaturated (SNS) embedding of the saturation function
[1], which is used in this work. Next, Section 5 presents the
main theoretical results, which lead to the proposition of an
algorithm to generate polytopic estimates of the RAO of the
closed-loop system. The results are then applied in a numer-
ical example in Section 6, where our approach is compared
to other ones from the literature. Some concluding remarks
end the paper.

Notation. For x :R→Rn, x(t−) = lim
τ 7→t,τ<t

x(τ) and similarly

for x(t+). A C-set is a convex and compact set containing the
origin in its interior. For λ ∈ R,Λ ∈ Rm×n,Ω ⊆ Rn, λΩ =
{λx : x ∈ Ω} and similarly for ΛΩ; ∂Ω is the boundary of
Ω and Ω◦ its interior. For v,s ∈ Rn, the operators |v| and
v ≤ s must be interpreted component-wise. For M ∈ Rm×n,
M(i) is its i-th row, M(i) its i-th column, M(i, j) its (i, j)-entry
and MT its transpose. For x ∈Rn, ∥x∥ is its Euclidean norm.
For A∈Rm×n, ∥A∥= σmax(A) is its induced 2-norm (largest
singular value) and σmin(A) is its smallest singular value.
For Ω,Θ ⊆ Rn, Ω+Θ =

⋃
ω∈Ω,θ∈Θ ω + θ , Ω \Θ = {ω ∈

Ω : ω /∈ Θ}. Br = {x ∈ Rn : ∥x∥ ≤ r}, B = B1, ek is the
k-th canonical base vector of the Euclidean space and 1 =
[1 . . .1]T . N+ = {i∈N : i≥ 1}, Nm = {i∈N : 1≤ i≤m} and
S = 2Nm is the set of all subsets of Nm. For instance: 2N2 =
{ /0,{1} ,{2} ,{1,2}}. P(H,h) = {x ∈ Rn : Hx ≤ h},H ∈
Rnh×n,h ∈ Rnh , is the H-representation of a polyhedron.

2 Problem formulation

Consider the following continuous-time system:

ẋp(t) = Apxp(t)+Bpu(t) (1)

where xp ∈ Rnp and u ∈ Rm are the state and the input of
the plant, respectively, and Bp has full column rank. At each
sampling instant tk, k∈N, the state is used to compute the in-
put u(t), which is kept constant until the next sampling time
(i.e. on the interval [tk, tk+1)) by a zero order hold (ZOH). A
linear saturated stabilizing state feedback is considered, i.e.

u(tk) = sat(Kpxp(t−k )), ∀k ∈ N (2)

where sat(·) denotes the standard saturation function accord-
ing to the constraint u(t) ∈ {u ∈ Rm : |u| ≤ 1}. By conven-
tion t0 = 0 and the difference between two successive sam-
pling instants, given by δk ≜ tk+1− tk, is considered to be
lower and upper bounded by scalars τm,τM > 0:

δk ∈ ∆ ≜ [τm,τM], ∀k ∈ N, (3)

i.e. we assume an aperiodic sampling strategy. Defining the
overall system state x ≜ [xT

p uT ]T ∈Rn, with n ≜ np+m, the
system can then be represented by the impulsive model:

ẋ(t) = Acx(t), ∀t ̸= tk, t ≥ 0,

x(t+k ) = Arx(t−k )+Brsat(Kx(t−k )),

x(0)≜ x0 ∈ Rn,

(4)

as in [8], where x0 = [xT
p (0) satT (Kpxp(0))]T and Ac,Ar ∈

Rn×n, Br ∈ Rn×m and K ∈ Rm×n are given by

Ac =

[
Ap Bp

0 0

]
, Ar =

[
I 0

0 0

]
, Br =

[
0

I

]
, K =

[
Kp 0

]
. (5)

The representation (4) allows to model the sampled-data
system between two consecutive sampling instants as the
trajectory of a LTI system. This is a key element to derive
our results and an important modeling difference w.r.t. [18].

In this paper we deal with the stability analysis of the
sampled-data system (4), providing polyhedral estimates of
its RAO, denoted as Γc ⊆ Rn, which is defined as the set
of initial conditions x(0) ∈ Rn such that x(t) t→∞→ 0 for all
sequences {tk}k∈N satisfying (3). From (4), one gets [8]:

x(t+k+1) = Arx(t−k+1)+Brsat(Kx(t−k+1))

∈ {AreAcδ x(t+k )+Brsat(KeAcδ x(t+k )) : δ ∈ ∆}.

Then, with xk ≜ x(t+k ), A(δ )≜ AreAcδ and K(δ )≜ KeAcδ :

xk+1 ∈ {A(δ )xk +Brsat(K(δ )xk) : δ ∈ ∆}
≜ {F (xk,δ ) : δ ∈ ∆}≜ F (xk,∆). (6)
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It also follows that ∥x(t)∥ ≤ maxδ∈[0,τM ] ∥eAcδ∥∥xk∥,∀t ∈
[tk, tk+1). Hence, the stability of the origin of the closed-loop
system (4) is implied by the one of the discrete-time system
(6) [8]. Moreover, the RAO of (6), denoted by Γd , coincides
with the RAO of (4), i.e. Γd = Γc.

3 Basic concepts on set invariance

Given a C-set Ω⊂Rn, its Minkowski function ΨΩ : Rn→R
is defined as: ΨΩ(x)≜ min{α ≥ 0 : x ∈ αΩ}. This function
satisfies the following properties.

Lemma 1 ([3]) (Minkowski function properties)

• It is positive definite, continuous and convex
• ΨΩ(λx) = λΨΩ(x) for λ ≥ 0
• ΨΩ(x1 + x2)≤ΨΩ(x1)+ΨΩ(x2)
• Its unitary level set corresponds to the set Ω

Given a C-set Ω⊂Rn, the Minkowski function of a compact
set S⊂ Rn can also be defined as ΨΩ(S)≜ maxx∈S ΨΩ(x).

Given a set Ω, its (positive) invariance/contractivity w.r.t. a
discrete-time system is defined below.

Definition 1 Given λ ∈ [0,1), the set Ω⊆Rn is said to be λ -
contractive for a generic difference inclusion xk+1 ∈F (xk)
if F (xk) ⊆ λΩ for all xk ∈ Ω. If λ = 1, Ω is an invariant
set for xk+1 ∈F (xk).

For simplicity, in the continuous-time case we will present
the concept of invariance directly for the system of interest:

ẋ(t) = Acx(t). (7)

Definition 2 ([3]) Given β ∈R, the C-set Ω⊂Rn is said to
be β -invariant for (7) if for all x ∈ ∂Ω:

D+
ΨΩ(x)≜ limsup

h→0+

ΨΩ(x+hAcx)−ΨΩ(x)
h

≤ β (8)

Notice that the set is invariant in the usual sense only if β ≤
1, but it will be useful afterwards to consider also the case
β > 1. Condition (8) is rather technical. The lemma below
presents a concrete consequence of it, giving a bound to the
potential expansion of Ω along the trajectories of (7). This
result will be used in the proof of Theorem 2 in Section 5.

Lemma 2 ([9]) If the C-set Ω is β -invariant for (7) then
eAcτ Ω⊆ αΩ,∀τ ∈ [0, τ̄], where α ≜ max{1,eβ τ̄}.

An important feature of β -invariance is that it can be char-
acterized in terms of a linear programming problem for LTI
systems and polyhedral sets, as shown below. The proof of
this lemma is analogous to the one of [3, Th. 4.33] without
negativity constraint on β .

Lemma 3 ([3]) Consider the C-set Ω = P(H,1),H ∈
Rnh×n. The following statements are equivalent.

(1) Ω is β -invariant for the system ẋ(t) = Acx(t)
(2) There exists T ∈ Rnh×nh such that

HAc = T H, T 1≤ β1, T(i, j) ≥ 0, ∀i ̸= j (9)

Moreover, the following technical result, which will be use-
ful later, holds, where the index set I is in general not finite.
For the proof see Appendix A.

Lemma 4 Given a family of C-sets {Ωi}i∈I belonging to
Rn, where I is the corresponding index set, such that

Br1 ⊆Ωi ⊆Br2 , ∀i ∈ I (10)

where r1,r2 > 0, there exists β ∈ R such that Ωi is β -
invariant for (7) for all i ∈ I.

4 SNS contractive sets

We define the one-step set for system (6) as follows.

Definition 3 Given Ω⊆Rn, the one-step set P(Ω) w.r.t. (6)
is given by P(Ω)≜ {x ∈ Rn : F (x,∆)⊆Ω}.

Notice that P(Ω) is the set of all xk ∈Rn such that xk+1 will
belong to Ω for all possible values of the intersampling time.
It is well known that Ω is an invariant set for (6) if and only
if Ω ⊆ P(Ω) [3]. Given an invariant C-set Ω0 for (6) that
belongs to its RAO, the increasing sequence of nested sets

Ωi+1 = P(Ωi), i ∈ N, (11)

gives approximations of increasing accuracy of Γd = Γc.
However, the computation of such sets is in general not pos-
sible in practice. In particular, P(Ω) may be nonconvex even
if Ω is a C-set because of the saturation function. That is
why we use in this paper the concepts of SNS (saturated and
nonsaturated) invariance and SNS RAO according to the def-
initions presented next [1]. In particular, it is known that the
SNS model is less conservative than classical polytopic em-
beddings of the saturation function [1, Section 5],[28, Chap-
ter 1]. The SNS system that corresponds to (6) has, besides
δ , an additional parameter S ∈S = 2Nm which is related to
the saturation function and indicates which components of
this function are activated or not. Define satS : Rm→Rm as

satS(z)≜ ∑
i∈Sc

eiz(i)+∑
i∈S

eisat(z(i)), (12)

where S ∈S and Sc = Nm \S. Define also

FSNS(xk,δ ,S)≜ A(δ )xk +BrsatS(K(δ )xk)
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The SNS system related to (6) is then given by

xk+1 ∈FSNS(xk,∆,S )≜ {FSNS(xk,δ ,S) : δ ∈ ∆, S ∈S }.
(13)

Notice that the difference inclusion above takes into account
all 2m possible combinations of saturated/nonsaturated in-
puts given by S ∈S = 2Nm simultaneously.

Definition 4 A SNS invariant (contractive) set for system (6)
is an invariant (contractive) set for (13).

Definition 5 (SNS Region of Attraction of the Origin) The
SNS RAO of system (6), denoted by ΓSNS, is the RAO of (13).

The dynamics of (13) encompasses the one of (6), i.e.

F (xk,∆) = {A(δ )xk +Brsat(K(δ )xk) : δ ∈ ∆}
= {A(δ )xk +BrsatS(K(δ )xk) : δ ∈ ∆, S = Nm}
⊆ {A(δ )xk +BrsatS(K(δ )xk) : δ ∈ ∆, S ∈S }
= FSNS(xk,∆,S ).

Therefore, ΓSNS ⊆ Γd . This fact will be exploited by the
method presented here. Actually, to obtain a numerical
tractable procedure, the idea is to compute polyhedral esti-
mates of Γd through the computation of estimates of ΓSNS.

As in Definition 3, the one-step set related to (13) is given
by Q(Ω)≜ {x ∈ Rn : FSNS(x,∆,S )⊆Ω}. Moreover, anal-
ogously to (11), we can consider the recursion:

Ωi+1 = Q(Ωi), i ∈ N (14)

The next theorem states some properties of the sequence
{Ωi}i∈N defined above.

Theorem 1 Consider the recursion (14) where Ω0 ⊆ ΓSNS
is an initial SNS invariant C-set for (6). Then:

• Ωi is a SNS invariant set for (6) for all i ∈ N;
• Ωi ⊆Ωi+1, ∀i ∈ N;
• Ωi ⊆ ΓSNS, ∀i ∈ N;
• The sequence {Ωi}i∈N converges to ΓSNS.

Proof: The proof is analogous to the one of [1, Th. 2]. The
only difference is that, besides S, there is an additional degree
of freedom δ in the difference inclusion (13). ■

Unfortunately, as discussed in [9] for the linear case, under
aperiodic sampling the one-step set Q(Ω) is in general not
polyhedral even if Ω is a polytope. This is due to the de-
pendence of the discrete-time model (13) on an uncertain
matrix exponential term eAcδ , where the value of δ varies
within an interval ∆. A common approach to deal with this
term consists in obtaining convex embeddings for it, which
can be polytopic [6,22] or norm-bounded [11,12,20]. In this
work, in order to obtain numerically tractable conditions for

the stability analysis, it will be convenient to adopt a differ-
ent strategy as in [9,19,18], which consists in considering
the following grid of the interval ∆:

∆J ≜ {τm +( j−1)τJ : j ∈ NJ}, τJ ≜
τM− τm

J
, (15)

where J ∈ N+ is the number of points of ∆J . In this case,
consider the following approximation of Q(Ω):

Definition 6 Given Ω⊆ Rn and J ∈ N+,

QJ(Ω)≜ {x ∈ Rn : FSNS(x,∆J ,S )⊆Ω} . (16)

Notice that QJ(Ω) takes into account only the finite subset ∆J
of possible values for the intersampling time δk. So Q(Ω)⊆
QJ(Ω) but these sets are different in general. In the next
section we will see how to deal with this fact. Notice also
that, using (15), (13) can be expressed as:

xk+1 ∈
⋃

τ∈[0,τJ ]

FSNS(eAcτ xk,∆J ,S ). (17)

The lemma below, derived straightforwardly from [1, Th. 1],
provides a polyhedral characterization of QJ(Ω).

Lemma 5 Given Ω = P(H,h),H ∈ Rnh×n,h ∈ Rnh ,

QJ(Ω) =
⋂

δ∈∆J

⋂
S∈S

P

(
H
(

A(δ )+ ∑
i∈Sc

B(i)
r K(i)(δ )

)
,h+ ∑

i∈S
|HB(i)

r |
)

(18)

The following two lemmas, which will be used later and
whose proofs are in Appendices B and C, respectively, pro-
vide some properties of the operators Q(·) and QJ(·).

Lemma 6 Assume that ∆= [τm,τM]with τm < τM and define
J⋆ as the number of elements of the finite set

∆
⋆ ≜ {τm,τM}∪ ({τm +2πr/ωl : l ∈ Nnω

,r ∈ Z}∩∆)

where ± jωl is the l-th pair of pure imaginary eigenvalues
of Ap with l = 1, . . . ,nω . Given a polyhedral C-set Ω,

a) Q(Ω) and QJ(Ω) are both C-sets for all J ≥ J⋆;
b) For γ > 0 satisfying Ω⊆Bγ , ∃r = r(γ)> 0 such that

Q(Ω)⊆ QJ(Ω)⊆Br,∀J ≥ J⋆.

Among all properties that QJ(Ω) has to satisfy to be a C-
set, the requirement J ≥ J⋆ in the lemma above is important
only to guarantee that QJ(Ω) is bounded, avoiding some
“pathological” cases where it would be unbounded even if
Ω is bounded. In the simplest case, where Ap has no pure
imaginary eigenvalues, ∆⋆ = {τm,τM} and J⋆ = 2. Other-
wise, it is possible to show that J⋆ = 2 if the frequencies
fs,k ≜ 2π/δk ∈ [2π/τM,2π/τm] are larger than the natural
frequencies ωl of the open-loop system.
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Given two C-sets Θ1,Θ2 such that Θ1 ⊂ Θ◦2, it follows
straightforwardly that Q(Θ1) ⊆ Q(Θ◦2). However, it is not
trivial to see if the set inclusion still holds inverting the or-
der of the operators Q(·) and (·)◦, i.e. Q(Θ1)⊂Q(Θ2)

◦. The
role of Lemma 7 below is to prove this relation.

Lemma 7 Given two C-sets Θ1, Θ2 such that Θ1 ⊂ Θ◦2, it
follows that Q(Θ1)⊂ Q(Θ2)

◦.

5 Computation of estimates of the RAO

We want to obtain estimates of the RAO of (6) through the
computation of polyhedral estimates of the SNS RAO. As
explained before, it is not possible to simply replace the
operator Q(·) by QJ(·) in the recursion (14) and use the
result of Theorem 1 since QJ(·) does not take into account
all possible values of δk, unless in the trivial case where
τm = τM . Thus, from now on, we will only deal with the
nontrivial case τm < τM , i.e. δk is uncertain. For technical
reasons, we will also consider that the number of partitions
J of ∆ satisfies J ≥ J⋆, where J⋆ is defined in Lemma 6, in
which case QJ(·) is a C-set.

The objective of this section is to show how to construct, in a
numerically tractable way, an increasing sequence {Ωi}i∈N
of SNS λi-contractive polyhedral C-sets for (6) using an
initial SNS λ0-contractive polyhedral C-set Ω0. From the
contractivity property, it follows that these sets are included
in ΓSNS ⊆ Γd = Γc, being therefore estimates of Γc. This
statement is a direct consequence of the lemma below.

Lemma 8 If the C-set Ω⊂Rn is SNS λ -contractive for (6):

a) εΩ also is SNS λ -contractive for (6) for all ε ∈ [0,1];
b) All trajectories of (13) have the following property:

xk ∈ εΩ ⇒ xk+p ∈ λ
p
εΩ, ∀ε ∈ [0,1], ∀p∈N. (19)

c) All trajectories of (6) have property (19).

Proof: The proof of a) follows the one of [18, Lemma 1]
mutatis mutandis; b) is implied by the recursive application
of a); and c) follows directly from b) and the fact that every
trajectory of (6) is also a trajectory of (13). ■

Corollary 1 If the C-set Ω⊂Rn is SNS contractive for (6),
then Ω⊆ ΓSNS ⊆ Γd = Γc.

Proof: Follows from item b) of Lemma 8 and the fact that
λ ∈ [0,1) and Ω is bounded by definition. ■

In order to construct the sequence {Ωi}i∈N, the operator
Q(Ω) in (14) will be replaced not by QJ(Ω) (as already ex-
plained, this strategy would not work) but by the set Q̂J(Ω)
defined below. The main difference is that Q̂J(Ω) corre-
sponds to an inner approximation of Q(Ω) while QJ(Ω) cor-
responds to an outer approximation of Q(Ω). The set Q̂J(Ω)
will be obtained by scaling down QJ(Ω).

Definition 7 Given the polyhedral C-set Ω ⊂ Rn, J ≥ J⋆
and the H-representation 1 QJ(Ω) = P(H,1),H ∈ Rnh×n,

β
J(Ω)≜ inf

T,β
β s.t.


HAc = T H
T 1≤ β1
T(i, j) ≥ 0, ∀i ̸= j

(20)

α
J(Ω)≜max{1,eβ J(Ω)τJ} (21)

Q̂J(Ω)≜QJ(Ω)/α
J(Ω) (22)

where T ∈Rnh×nh ,β ∈R, Ac is defined in (5) and τJ in (15).

Remark 1 According to Lemma 3, the constraints in (20)
are feasible for some β ∈ R if and only if the polyhedral
C-set QJ(Ω) = P(H,1) is β -invariant for ẋ(t) = Acx(t).
Therefore, β J(Ω) is the smallest number β such that QJ(Ω)
(or equivalently Q̂J(Ω)) is β -invariant for this system.

The theorem below guarantees that Q̂J(Ω)=QJ(Ω)/αJ(Ω)⊆
Q(Ω). The motivation for choosing the scale factor αJ(Ω)
will become clear in the proof of this theorem. The number
αJ(Ω) is related to the possible expansion of the set Q̂J(Ω)
along the trajectories of (7) in a time interval [0,τ]⊆ [0,τJ ].

Theorem 2 Given a polyhedral C-set Ω ⊂ Rn and J ≥ J⋆,
it follows that

Q̂J(Ω)⊆ Q(Ω) (23)

Proof: Given xk ∈ Q̂J(Ω), we have to prove that xk ∈Q(Ω).
This is equivalent to show that xk+1 ∈ Ω for all possible
values of δk ∈ ∆ and Sk ∈S , where xk+1 is given by (13).
Given δk ∈ ∆ and Sk ∈ S , we know from (17) that there
exists τ ∈ [0,τJ ] such that

xk+1 ∈FSNS(eAcτ xk,∆J ,S ) (24)

Consider now that xk ∈ Q̂J(Ω) = QJ(Ω)/αJ(Ω) where
Q̂J(Ω) is β J(Ω)-invariant for ẋ(t) = Acx(t). Applying
Lemma 2 (with Ω = Q̂J(Ω), β = β J(Ω), τ̄ = τJ and
α = αJ(Ω)), we conclude that eAcτ xk ∈ eAcτ Q̂J(Ω) ⊆
αJ(Ω)Q̂J(Ω) = QJ(Ω).

Since eAcτ xk ∈QJ(Ω) it follows that FSNS(eAcτ xk,∆J ,S )⊆
Ω (see (16)). Combining this set inclusion with (24) we
conclude that xk+1 ∈Ω, proving the result. ■

Considering the result below it is possible to conclude that
the set Q̂J(Ω)⊆ Q(Ω) converges to Q(Ω) as J→ ∞.

Lemma 9 Given a polyhedral C-set Ω⊂ Rn and c ∈ [0,1),
there exists J̄ ∈ N, J̄ ≥ J⋆, such that

cQ(Ω)⊂ Q̂J(Ω)◦, ∀J ≥ J̄ (25)

1 QJ(Ω) is a polyhedral C-set according to Lemmas 5 and 6 and
we can assume without loss of generality that h = 1 in the H-
representation QJ(Ω) = P(H,h) because 0 ∈ QJ(Ω)◦.
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Proof: See Appendix D. ■

The lemma above leads directly to the next theorem.

Theorem 3 Given a SNS contractive polyhedral C-set Ω⊂
Rn for (6), there exists J̄ ∈ N, J̄ ≥ J⋆, such that

Ω⊂ Q̂J(Ω)◦, ∀J ≥ J̄ (26)

Proof: Since Ω is contractive for (13), there exists λ ∈ (0,1)
such that Ω ⊆ Q(λΩ). Moreover, using the relation λΩ ⊂
Ω◦, Lemma 7 guarantees that Q(λΩ)⊂Q(Ω)◦. Combining
these two set inclusions we conclude that Ω ⊂ Q(Ω)◦, so
there exists c ∈ (0,1) such that Ω⊆ cQ(Ω). Combining this
relation with the result from Lemma 9, it follows that Ω⊆
cQ(Ω)⊂ Q̂J(Ω)◦ for J sufficiently large. ■

Figure 1 presents a geometrical interpretation of Theorems 2
and 3 and Lemma 9. As the value of J increases, the set
Q̂J(Ω) converges to Q(Ω) from the inside, while QJ(Ω)
converges to Q(Ω) from the outside. Therefore, for J suffi-
ciently large, Ω⊂ Q̂J(Ω)◦, as illustrated in the right image.
The complexity of sets QJ(Ω) and Q̂J(Ω) will, in princi-
ple, increase as J→ ∞ (as reasonable from the expression
(18)). Theorem 4 combines the results of Theorems 2 and 3
in order to guarantee the contractivity of the set Q̂J(Ω).

Theorem 4 Given a polyhedral C-set Ω ⊂ Rn and J ≥ J⋆,
if Ω⊂ Q̂J(Ω)◦ then Q̂J(Ω)⊂Rn is a SNS contractive poly-
hedral C-set for (6).

Proof: Relation Ω ⊂ Q̂J(Ω)◦ guarantees the existence of
λ̂ ∈ (0,1) such that Ω⊆ λ̂ Q̂J(Ω). Then, from (23), Q̂J(Ω)⊆
Q(Ω)⊆Q(λ̂ Q̂J(Ω)) and we conclude from the definition of
contractivity that Q̂J(Ω) is SNS λ̂ -contractive for (6). ■

Relatively small J

QJ(Ω)

Q(Ω)

Q̂ J(
Ω
)

Ω

Relatively large J

QJ(Ω)

Q(Ω)

Q̂
J(

Ω
)

Ω

Fig. 1. Interpretation of Theorems 2 and 3 and Lemma 9.

The properties above are used in Algorithm 1, which ap-
plies them recursively to provide an increasing sequence
of estimates of the (SNS) RAO of the system. The MPT
toolbox [14], which has functions to manipulate poly-
hedral sets, can be used. Moreover, an initial SNS con-
tractive polyhedral C-set Ω0 ⊂ Rn for (6) is required. It

is suggested to obtain this set in the region of linearity
L ≜ {x ∈ Rn : K(δ )x ∈U , ∀δ ∈ ∆} of (6), i.e. the re-
gion where the control input does not saturate, using the
method proposed in [9], which is able to compute a con-
tractive polyhedral C-set for the linear difference inclusion
xk+1 ∈ {(A(δ )+BrK(δ ))xk : δ ∈ ∆} provided that it is
exponentially stable.

Algorithm 1 Increasing sequence of estimates of ΓSNS ⊆ Γc

Input: Initial SNS contractive polyhedral C-set Ω0 ⊂Rn for
(6), ī ∈ N, J0 ≥ J⋆
i← 0, J← J0
while i < ī do

Compute Q̂J(Ωi) according to Definition 7
if

Ωi ⊂ Q̂J(Ωi)
◦ (27)

then

Ωi+1 ≜ Q̂J(Ωi), Ji+1 ≜ J (28)
i← i+1

end if
Increment J

end while
Output: Estimate of the RAO: Ωī

Remark 2 Algorithm 1 generates a sequence {Ωi}ī
i=0 of

polyhedral C-sets and a corresponding strictly increasing
sequence of integers {Ji}ī

i=1 that satisfy for all i:

Ωi+1 ⊆ Q(Ωi) (from (28) and Theorem 2) (29a)
Ωi ⊂Ω

◦
i+1 (from (27) and (28)) (29b)

Ωi+1 is SNS λi+1-contractive for (6)
(from (27),(28) and Theorem 4)

(29c)
Ωi+1 ⊆ ΓSNS ⊆ Γc (from (29c) and Corollary 1) (29d)

Ωi+1 = Q̂Ji+1(Ωi) (from (28)) (29e)

where in (29c) the sets Ωi have not necessarily the same
contraction factor λi since λ ∈ (0,1) in Theorem 4 depends
on Ω and J.

Theorem 3 guarantees that the test (27) (the if statement)
will eventually be true since J is always incremented, thus
the algorithm has a finite execution time. Moreover, the es-
timate Ωī of the RAO is related to x0 = [xT

p (0) uT (0)]T but
xp(0) and u(0) are actually coupled by the relation u(0) =
sat(Kpxp(0)). Hence, considering the H-representation Ωī =
P(H,h) = {x ∈Rn : Hx≤ h}, the “safe” set of plant initial
states corresponds to the union of 3m polytopes [13]:

Ωī,xp
≜

{
xp ∈ Rnp : H

[
xp

sat(Kpxp)

]
≤ h

}
. (30)

Notice that the bigger ī is, the bigger will be the estimate
Ωī,xp

of the RAO of the system. However, the polytopes Ωi
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computed by Algorithm 1 tend to become more complex
at each iteration. Then, the execution time of the computer
code also grows at each iteration and, in practice, the maxi-
mum number of iterations ī cannot be arbitrarily large. The
method of [18] has a similar problem. The main difference
between these two approaches is that the method of [18]
will only provide a valid estimate of the RAO upon termi-
nation of the algorithm presented in [18], while the method
proposed in this work provides, at each iteration of Algo-
rithm 1, a new estimate Ωi,xp of the RAO which encompasses
the preceding one Ωi−1,xp . The numerical example of Sec-
tion 6 presents a case where the execution of the algorithm
in [18] becomes prohibitively complex before its stopping
criterion is reached. That is, the algorithm fails to provide
an estimate of the RAO. On the other hand, the application
of Algorithm 1 is successful, even if ī is relatively small.

5.1 Convergence properties

Consider the non-truncated version of the sequence {Ωi}
generated by Algorithm 1 (i.e. with ī ≡ ∞), which satisfies
(29). We will show that {Ωi}i∈N converges to the SNS RAO
ΓSNS of (6) under the following assumption.

Assumption 1 ΓSNS is bounded, i.e. there exists γ > 0 such
that ΓSNS ⊆Bγ .

The convergence will be proved starting with the lemma
below, whose proof is in Appendix E.

Lemma 10 Given the sequence {Ωi}i∈N generated by Al-
gorithm 1 and i1 ∈ N, ∃i2 ≥ i1 such that Q(Ωi1)⊆Ωi2 .

It is worth saying that, according to the authors’ experience,
the result above may also be true even if Assumption 1 does
not hold. Using this lemma we obtain the following theorem.

Theorem 5 The sequence {Ωi}i∈N generated by Algo-
rithm 1 converges to ΓSNS.

Proof: Denote the sequence generated by (14) as {Θi}i∈N
to avoid confusion with {Ωi}i∈N, generated by Algorithm 1.
The initial SNS contractive polyhedral C-set Ω0 ⊂ Rn for
(6) satisfies the hypothesis of Theorem 1. Thus, Theorem 1
guarantees the convergence of {Θi}i∈N with Θ0 = Ω0 to
ΓSNS. Therefore, since {Θi}i∈N and {Ωi}i∈N are both in-
creasing sequences of nested sets, it suffices to show that
for each iA ≥ 0 there exists iB ≥ 0 such that ΘiA ⊆ΩiB . Let
us prove it by induction. The case iA = 0 is clearly true
since Θ0 = Ω0. Let us assume that ΘiA ⊆ΩiB for iA, iB ∈ N
and show that there exists iC ∈ N such that ΘiA+1 ⊆ ΩiC .
From Lemma 10, ∃iC ∈ N satisfying Q(ΩiB) ⊆ ΩiC . Thus,
from (14), ΘiA+1 = Q(ΘiA)⊆Q(ΩiB)⊆ΩiC , that proves the
result. ■

6 Numerical example

Consider the system taken from [26], where ∆ = [0.5,2] and

Ap =

[
1.1 −0.6

0.5 −1

]
, Bp =

[
1

1

]
, Kp =

[
−1.7491

0.5417

]T

. (31)

The initial set Ω0 required by Algorithm 1 was obtained us-
ing the method in [9] and, at each iteration, the value of
J is incremented using the rule J← ⌈1.05J⌉, where ⌈c⌉ is
the smallest integer greater than or equal to c. Considering
J0 = 20 and ī = 9, Figure 2 shows the increasing sequence
{Ωi,xp}ī

i=0 of estimates of the RAO, computed from {Ωi}ī
i=0

according to (30). For ease of viewing we performed in
the plot the transformation of coordinates zp ≜ T xp, where
matrix T corresponds to a contraction in the direction of
[cos(72◦) sin(72◦)]T by a factor of 20. Notice that Ω6,xp is
considerably close to the last 3 sets of the sequence. How-
ever, its complexity is significantly smaller, since the H-
representation of Ω6 has 154 hyperplanes, while the one of
Ω9 has 302 hyperplanes, which shows the trade-off between
number of iterations and complexity.

Fig. 2. Sequence {Ωi,xp}9
i=0, where Ω5,xp is in red.

In Figure 3, the estimate Ωī,xp
of the RAO is compared

to other ones from the literature. We plotted the piecewise
quadratic estimate obtained with the method from [8] and
the ellipsoidal estimate obtained with the one from [19]. The
approach presented here resulted in an estimate of the RAO
that encompasses these other two. On the other hand, it was
not possible to obtain a valid estimate using the method
in [26] since the corresponding matrix inequalities are not
feasible for this example. Moreover, the stopping criterion
of the algorithm presented in [18] was not satisfied after
nearly 3 days of execution on a computer with a Intel®

CoreTM i7 processor, i.e. it was not possible to obtain a
valid estimate of the RAO using the method in [18] either.

An approximation of the RAO is shown in Figure 3 through
black circles, where, for each point of a grid of the state
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Fig. 3. Estimates of the RAO of (31) obtained with the proposed
approach (filled in green) and with the methods of [19] (blue–
dashed line) and [8] (red-dotted line). A numerically evaluated
approximation of the RAO is depicted by black circles.

space, 2000 trajectories of the closed-loop system starting
at it were simulated, considering {δk}k∈N to be a sequence
of independent, identically distributed (i.i.d.) random vari-
ables with uniform distribution on the interval ∆. As it can
be seen, the proposed approach provided a considerably ac-
curate estimate of the RAO (specially if compared to the
methods of [19,8]).

Fig. 4. Trajectories starting at the boundary of Ωī,xp
.

Figure 4 shows several continuous-time trajectories of sys-
tem (31) with xp(0)∈ ∂Ωī,xp

and δk randomly chosen in the
interval ∆. It should be noticed that the set Ωī,xp

is not in-
variant for the continuous-time system. It is only invariant
with respect to the discrete-time trajectory {xp(tk)}k∈N that
models the behavior of xp(t) at the sampling instants tk, rep-
resented in the figure by black circles. Nevertheless, it is en-
sured that for all initial conditions in Ωī,xp

the corresponding
continuous-time trajectories converge to the origin. Figure 4
also shows the division of Ωī,xp

in 3m = 3 polytopes. Notice

that, even if Ωī is convex, Ωī,xp
is not convex in general.

7 Conclusions

A new method to obtain estimates of the RAO of linear ape-
riodic sampled-data systems subject to input saturation was
developed. It relies on the use of a convex embedding of the
difference inclusion that models the behavior of the system
state between consecutive sampling instants, leading to a
computational algorithm based on linear programming only.
As shown by the numerical example, the application of our
method outperformed the ones in [26,8,19,18]. In particu-
lar, compared to the method in [18], the main advantage of
the one presented in this work is related to the numerical
applicability of the corresponding algorithm, where at each
iteration a valid estimate of the RAO is generated. Hence,
it is possible to manage the trade-off between number of
iterations and complexity of the resulting polytope.

Since the proposed method does not rely on the special struc-
ture of the matrices in (4) (with the exception of Lemma 6,
which would possibly have to be adapted depending on the
case), it is in principle possible to extend the approach to
cope with other types of sampling, as in the case of impul-
sive inputs. Moreover, since the method computes invariant
polyhedral sets for the discrete-time model that describes the
trajectory of the system’s state at the sampling instants, our
method could also be useful to guarantee state constraints
satisfaction along the continuous-time trajectories. This fact
has not been exploited in this work but it could be the fo-
cus of future research related to model predictive control,
for instance.
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A Proof of Lemma 4

First notice that a C-set Ω is always γ-invariant for (7) with
γ = ΨΩ(AcΩ), since for x ∈ ∂Ω one has (using Lemma 1):

D+
ΨΩ(x) = limsup

h→0+

ΨΩ(x+hAcx)−ΨΩ(x)
h

≤ limsup
h→0+

ΨΩ(x)+hΨΩ(Acx)−ΨΩ(x)
h

=ΨΩ(Acx)≤ΨΩ(AcΩ) = γ.

The result of the lemma follows directly from the fact that

(10) implies, for β =
∥Ac∥r2

r1
, that:

ΨΩi(AcΩi)≤ β , ∀i ∈ I. (A.1)

To see this, consider i ∈ I arbitrary. For all x ∈ Ωi ⊆Br2 ,
∥Acx∥ ≤ ∥Ac∥∥x∥ ≤ ∥Ac∥r2. Thus,

Acx ∈ ∥Ac∥r2B =
∥Ac∥r2

r1
Br1 ⊆

∥Ac∥r2

r1
Ωi = βΩi.

B Proof of Lemma 6

We will show the result only for QJ(Ω), ∀J ≥ J⋆. The
proof for Q(Ω) is analogous (it suffices to replace ∆J by ∆).
From (18) it follows that QJ(Ω) is an intersection of closed
and convex sets. Hence it is also closed and convex. Let us
show that the origin is in the interior of QJ(Ω). Notice that
the set-valued map Rn ∋ x 7→FSNS(x,∆J ,S ) ⊂ Rn is con-
tinuous (according to Definition 1.4.3 of [2]). In particular,
it is upper semicontinuous [2, Def. 1.4.1] at the origin. Thus,
since Ω is a neighborhood of FSNS(0,∆J ,S ) = {0} (recall
that 0 ∈ Ω◦), there exists by definition of upper semiconti-
nuity c > 0 such that FSNS(x,∆J ,S ) ⊆ Ω for all x ∈Bc.
That is, Bc ⊆ QJ(Ω) and the conclusion follows.

To guarantee that QJ(Ω) is a C-set, we still have to show
it is bounded. So let us prove the existence of r = r(γ)> 0
satisfying the statement of the lemma. Using the definitions
of A(δ ) and K(δ ), we deduce from (13) that

FSNS(xk,δk,Sk) = xk+1(xk,δk,Sk) =

[
xp,k+1(xk,δk)

uk+1(xk,δk,Sk)

]

=

[
xp,k+1(xk,δk)

satSk

(
Kpxp,k+1(xk,δk)

)]
xp,k+1(xk,δk) =

[
eApδk

∫ δk
0 eApsdsBp

]
xk

9



Given δA,δB ∈ ∆J , notice that[
xp,k+1(xk,δA)

xp,k+1(xk,δB)

]
=

[
eApδA

∫ δA
0 eApsdsBp

eApδB
∫ δB

0 eApsdsBp

]
xk ≜ Λ(δA,δB)xk

Then

max{∥xp,k+1(xk,δA)∥,∥xp,k+1(xk,δB)∥}≥
1√
2
∥Λ(δA,δB)xk∥

≥ 1√
2

σmin (Λ(δA,δB))∥xk∥. (B.1)

Claim 1 σmin (Λ(τm,δ ))> 0 if δ ∈ ∆\∆⋆

Proof: This is equivalent to the full column rank property of
Λ(τm,δ ) because np ≥ m. Since

Λ(τm,δ ) =

[
Inp

∫
τm
0 eApsds

Inp

∫
δ

0 eApsds

]
︸ ︷︷ ︸

≜Λ0(τm,δ )

[
Inp 0

Ap Inp

][
Inp 0

0 Bp

]

(recall that
∫

δ

0 AeAsds =
∫

δ

0
d
ds [e

As]ds = [eAs]|δ0 for a matrix
A) and Bp has full column rank by assumption, it suffices
to prove that Λ0(τm,δ ) is nonsingular. Assume by contra-
diction that v = [vT

1 vT
2 ]

T ,v ̸= 0, with v1,v2 ∈ Rnp , satis-
fies Λ0(τm,δ )v = 0. Then v2 ̸= 0 and

∫
δ

τm
eApsdsv2 = 0, i.e.∫

δ

τm
eApsds is singular. But the eigenvalues of this matrix are

given by λ̄ =
∫

δ

τm
eλ sds, where λ is the corresponding eigen-

value of Ap, and δ ∈ ∆\∆⋆, i.e. we are excluding the case
δ = τm +2πz/ωl ,z ∈ Z, which would lead to λ̄ = 0. △

Consider now an ordering of the elements of ∆⋆, i.e.
τm = p1 < p2 < .. . < pJ⋆−1 < pJ⋆ = τM , and take
i⋆ ∈ argmax

i∈NJ⋆−1

(pi+1− pi). Notice in particular that

pi⋆+1− pi⋆ ≥
τM− τm

J⋆−1
>

τM− τm

J⋆
= τJ⋆ . (B.2)

From (B.2) it follows that

∆̄≜ [
pi⋆+1 + pi⋆ − τJ⋆

2
,

pi⋆+1 + pi⋆ + τJ⋆

2
]⊂ (pi⋆ , pi⋆+1)⊆∆\∆

⋆

(B.3)
Moreover, since the length of ∆̄ is equal to τJ⋆ and the ele-
ments of ∆J are equally spaced by the distance τJ ≤ τJ⋆ ,∀J≥
J⋆, one has

∆J ∩ ∆̄ ̸= /0, ∀J ≥ J⋆. (B.4)
Define σ̄ ≜ inf

δ∈∆̄

σmin (Λ(τm,δ )). It follows from the contin-

uous dependence of δ 7→ σmin (Λ(τm,δ )), the compactness
of ∆̄ and Claim 1 (which can indeed be applied since (B.3)
holds) that σ̄ > 0. Define now r = r(γ)≜

√
2

σ̄
γ . Given arbi-

trary J ≥ J⋆ and xk /∈Br, let us show that xk /∈ QJ(Ω), that
is, QJ(Ω)⊆Br,∀J ≥ J⋆, as stated by the lemma.

In (B.1) choose δA = τm ∈∆J and δB = δ̄ for some δ̄ ∈∆J∩∆̄

(∆J ∩ ∆̄ ̸= /0 from (B.4)). Then, since ∥xk+1∥ ≥ ∥xp,k+1∥ and
xk /∈Br, it follows that

max{∥xk+1(xk,τm,Sk)∥,∥xk+1(xk, δ̄ ,Sk)∥} ≥
1√
2

σmin
(
Λ(τm, δ̄ )

)
∥xk∥ ≥

1√
2

σ̄∥xk∥>
1√
2

σ̄r = γ

Recalling that Ω ⊆ Bγ , this inequality means that
FSNS(xk,δk,Sk) = xk+1(xk,δk,Sk) /∈ Ω at least for δk = τm
or δk = δ̄ (independently of Sk). Since τm, δ̄ ∈ ∆J , it follows
from Definition 6 that xk /∈ QJ(Ω), as we wanted to show.

C Proof of Lemma 7

Since the set-valued map Rn ∋ x 7→FSNS(x,∆,S )⊂ Rn is
continuous, it follows that the one-step set Q(Ω) of any
open set Ω ⊆ Rn is also open [2, Proposition 1.4.4] 2 . In
particular, Q(Θ◦2) = Q(Θ◦2)

◦ and we conclude that

Q(Θ1) ⊂︸︷︷︸
Θ1⊂Θ◦2

Q(Θ◦2) = Q(Θ◦2)
◦ ⊆ Q(Θ2)

◦

where the first inclusion is strict being Q(Θ1) a C-set
(Lemma 6).

D Proof of Lemma 9

Let us consider the nontrivial case c ̸= 0. Since by definition
QJ(Ω)⊇Q(Ω),∀J ∈N+, and 0∈Q(Ω)◦, there exists r1 > 0
such that

Br1 ⊆ QJ(Ω), ∀J ∈ N+. (D.1)

Moreover, from Lemma 6, there exists r2 > 0 such that

QJ(Ω)⊆Br2 , ∀J ≥ J⋆. (D.2)

Combining (D.1) and (D.2), Lemma 4 guarantees the exis-
tence of β ∈ R such that QJ(Ω) is β -invariant for ẋ(t) =
Acx(t) for all J ≥ J⋆. It then follows from Remark 1 that
β J(Ω)≤ β ,∀J ≥ J⋆. Thus, since τJ → 0 as J→ ∞,

1≤ α
J(Ω) = max{1,eβ J(Ω)τJ} ≤max{1,eβτJ} J→∞→ 1.

(D.3)
That is, given c ∈ (0,1), there exists J̄ ≥ J⋆ such that
αJ(Ω) < 1/c,∀J ≥ J̄. Thus, cQ(Ω) ⊂ Q(Ω)◦/αJ(Ω) ⊆
QJ(Ω)◦/αJ(Ω) = Q̂J(Ω)◦, ∀J ≥ J̄, where the first set in-
clusion holds since Q(Ω) is a C-set (Lemma 6) and the
equality follows from the definition of Q̂J(Ω).

2 Q(Ω) is called the core of Ω by FSNS(·,∆,S ) in [2].
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E Proof of Lemma 10

Consider first the claim below.

Claim 2

{αJ(Ωi)}∞
J=J⋆ → 1 uniformly in i ∈ N (E.1)

Proof: The proof follows the same reasoning of Appendix D:

• Since Q(Ω0)⊆QJ(Ω0)⊆QJ(Ωi),∀J ∈N+,∀i ∈N, there
exists r1 > 0 such that Br1 ⊆ QJ(Ωi),∀J ∈ N+,∀i ∈ N.
Moreover, from Assumption 1, Ωi ⊆ ΓSNS ⊆Bγ ,∀i ∈ N.
Thus, using Lemma 6, it follows that there exists r2 =
r2(γ)> 0 such that QJ(Ωi)⊆Br2 ,∀J ≥ J⋆,∀i ∈N. Then,
from Lemma 4, there exists β ∈ R such that QJ(Ωi) is
β -invariant for ẋ(t) = Acx(t), ∀J ≥ J⋆,∀i ∈ N.
• It follows that β J(Ωi) ≤ β ,∀J ≥ J⋆,∀i ∈ N (see Re-

mark 1).
• As shown in (D.3), the sequence {αJ(Ωi)}J≥J⋆ is lower

and upper bounded for all i ∈ N by sequences that do not
depend on i and converge to 1. △

Since, from (29b), Ωi1 ⊂ Ω◦i1+1, it follows that Q(Ωi1) ⊂
Q(Ωi1+1)

◦ (Lemma 7). Thus, recalling that Q(Ωi1),Q(Ωi1+1)
are C-sets (Lemma 6), there exists c1 ∈ (0,1) such that

Q(Ωi1)⊆ c1Q(Ωi1+1). (E.2)

Consider now c2 ∈ (c1,1). Applying Lemma 9, there exists
J̄ ≥ J⋆ such that

c2Q(Ωi1+1)⊆ Q̂J(Ωi1+1), ∀J ≥ J̄. (E.3)

We can split the rest of the proof into two cases depending
on the value Ji1+2 of J used by the algorithm to generate the
set Ωi1+2, according to (29e).

a) Ji1+2 ≥ J̄: the proof end here with i2 = i1 +2 because

Q(Ωi1) ⊂︸︷︷︸
(E.2),c2>c1

c2Q(Ωi1+1) ⊆︸︷︷︸
(E.3)

Q̂Ji1+2(Ωi1+1) =︸︷︷︸
(29e)

Ωi1+2 = Ωi2

b) Ji1+2 < J̄: from (E.1), there exists Ĵ ≥ J⋆ such that

α
J(Ωi)< c2/c1, ∀i ∈ N, ∀J ≥ Ĵ. (E.4)

Notice now that the sequence {Ji}i∈N+ generated by
the algorithm is strictly increasing (see Remark 2), so
sooner or later the value of Ji will reach max{J̄, Ĵ}, i.e.
there exists i2 > i1 +2 such that Ji2 ≥max{J̄, Ĵ}. Then

c2Q(Ωi1+1) ⊆︸︷︷︸
(E.3)

Q̂Ji2
(Ωi1+1) ⊆︸︷︷︸

α
Ji2 (Ωi1+1)≥1

QJi2
(Ωi1+1)

⊆︸︷︷︸
Ωi1+1⊆Ωi2−1 since i1+1<i2−1

QJi2
(Ωi2−1) (E.5)

Multiplying (E.5) by c1/c2 and combining it to (E.2)
we conclude that

Q(Ωi1) ⊆︸︷︷︸
(E.2)

c1Q(Ωi1+1) ⊆︸︷︷︸
(E.5)

c1

c2
QJi2

(Ωi2−1)

⊂︸︷︷︸
Ji2≥Ĵ,(E.4)

QJi2
(Ωi2−1)/α

Ji2 (Ωi2−1) = Q̂Ji2
(Ωi2−1) =︸︷︷︸

(29e)

Ωi2 .
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