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Abstract—Whether 128-bit architectures will some day hit
the market or not is an open question. There is however a
trend towards that direction: virtual addresses grew from 34
to 48 bits in 1999 and then to 57 bits in 2019. The impact of a
virtually infinite addressable space on software is hard to predict,
but it will most likely be major. Simulation tools are therefore
needed to support research and experimentation for tooling and
software. In this paper, we present the implementation of the
128-bit extension of the RISC-V architecture in the QEMU
functional simulator and report first performance evaluations.
On our limited set of programs, simulation is slowed down by a
factor of at worst 5 compared to 64-bit simulation, making the
tool still usable for executing large software codes.

I. INTRODUCTION

According to [1, Chapter 7], should today’s super-computer
trend continue, single address space 64-bit computers could
be short of physical addresses by 2030. Computer history has
taught us that while temporary PAE-like [2] solutions might
exist for some time, the flat 128-address design will eventually
emerge as the best solution. In that situation, naturally, the
general purpose registers of a processor will end up being
128-bit wide. Clearly, not all computers will be 128-bit, and
we are speaking here of a huge number of machines sharing a
huge amount of memory, such as high-performance computing
clusters.

Making the move towards 128-bit registers and addresses is
a micro-architectural and architectural challenge, given the fact
that transistor technology scaling as we knew it has been over
for a decade or so [3]. But it is also a system level challenge:
the impact on memory hierarchy organization, compilation
flows, operating systems, and so on have to be studied and
understood. It is this latter level that the work we present in
this paper addresses. Indeed, we believe that having tools to
help grasping the system level issues that 128-bit addresses
pose is critical. That is why we report here our work on fast
simulation of 128-bit instruction set architectures (ISA), a
necessary step towards more general, full system, simulation
environments.

For the sake of concreteness, we choose RISC-V as ISA
given that it already features a clean-sheet 128-bit extension
proposal, and the QEMU [4] dynamic binary translator (DBT)
as fast simulation engine. Our contribution is thus the design,
implementation, and performance analysis of the support for
128-bit operations in a DBT engine. Although not fundamental,
such an experiment has not been reported yet as far as we
know.
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II. BACKGROUND

A. Summary of the RISC-V specification relevant to 128-bit

To the best of our knowledge, the RISC-V specification is
the first one to introduce accurately, although informally, what
could be a 128-bit processor. It has interesting assets: it is
simple; has 32 general purpose registers all of the same size;
makes instructions working by default on the natural size of
the processor registers (e.g. the add instruction has the same
opcode whether the processor has 32, 64 or 128-bit registers);
naturally extends existing instructions when necessary (e.g.
the shift immediate instructions have an immediate on 5, 6 or
7 bits depending on the registers size); and provides specific
instructions for narrower computations (e.g. the w suffixed
instructions operate on 32-bit data, and the d suffixed ones
on 64-bit data). Memory accesses are originally suffixed by
the size of the access, so the 128-bit version simply adds the
lq and sq instructions to access quad-words.

This specification however has also an unusual property:
the size of the registers, called xlen in the specification,
might be run-time configurable. The machine-mode (highest-
privilege level in RISC-V parlance) register size, MXLEN, can
be defined by setting the two upper bits of the Machine ISA
(misa) register. If running a 128-bit machine, it might be set
to 128, 64 or 32, and if running a 64-bit machine, it might
be set to 64 or 32. In addition, supervisor-mode and user-
mode xlens (SXLEN and UXLEN) can also be set dynamically,
by changing bitfields in the processor status register of the
appropriate modes.

B. More than 64-bit address initiatives

Multiple usages of addresses larger than 64-bit have been
envisioned. The first one is to associate meta-data to pointers.
Pointer tagging was introduced on early machines by using
the lower bit(s) on addresses of naturally aligned 16-bit or
32-bit data for which these bits where forced to zero in
hardware. Quickly, the size of the address would be such
that it could address more than the available memory. On
machines with 24-bit addresses but only 64 KB of memory, the
upper 8-bit were available for various usages, and in particular
protection. This paved the way for associating "capability"
to a pointer [5], which is a generalization of this principle.
Modern and efficient "capability" implementations provide
type safety (dynamic size and permissions) to pointers by
resorting to 128-bit addresses [6], [7] that include a base
virtual address, a bound, and permissions.

The second one is related to operating systems (OS).
Interestingly enough, when going to 64-bit addresses, the
operating system community considered how this vast space
could be used [8] and proposed, among others, to access
external objects transparently through the network. This idea



is currently being pursued with larger address spaces in mind,
e.g., [9], although ad-hoc extensions are used rather than going
all the way to a flat 128-bit space.

We speculate that addresses might yet again become
scarce resources again in supercomputers, in a context where
integration technology allows huge memory sizes, numerous
devices, and even access to resources external to a chip at
reasonable performance, hence we predict a growing interest
for 128-bit in the near future

C. Retargetable dynamic binary translation in a nutshell

Given this context, accessing an environment for the fast
execution of 128-bit based code is of interest for compiler
writers, operating system designers, and even applications
programmers. Although many simulation technologies exist,
the one most suited to large scale full system software
execution is undoubtedly dynamic binary translation. We now
briefly remind the reader of its main characteristics. DBT
aims to transform instructions from a target, i.e., simulated
CPU, into host instructions, i.e., CPU on which the simulation
runs, during execution. DBT based simulators are generally
retargetable, to avoid having to model a target for each host.
As seen Fig. 1, the translator fetches target instructions until
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Fig. 1: Dynamic binary translation principle [10]

a branch is found, translating each instruction in a set of
micro-operations, the intermediate representation (IR) of the
engine that resembles a 3-address RISC ISA. On a branch, the
aggregated set of micro-operations is optimized and translated
into host instructions terminated by a return to the simulator
run-time with the value of the program counter of the next
target instruction to execute.1 The set of translated micro-
ops is called a translation block. It is then executed until it
gives back control to the simulator, which will then lookup an
already translated block. If the block is found, the execution
resumes, otherwise, the translation process is executed starting
at the new instruction address. The strength of this strategy
compared to naïve instruction per instruction execution is
first that it decodes the instructions once and for all, second
that it executes code at the granularity of the translation
block, and third that powerful intra- and inter-translation
block optimizations can be performed. Its drawback is the
associated complexity, hence the interest of extending existing
DBT engines. Given its stability, performance, and extensive
supported processor list, we selected QEMU to work with.

1This explanation is greatly simplified and describes only the overall
principle.

III. DESIGN AND IMPLEMENTATION

A. Processor state representation

A processor simulator, independently of its implementation,
has to maintain the state of the processor in the host memory.
Assuming a 64-bit host, the register file for a 64-bit RISC-V
will typically be declared as an array of 32 64-bit unsigned
integers. As there is no standard type for 128-bit data in
C, a 128-bit data will be stored as two 64-bit values, and
instructions will operate on these two values. From a storage
point of view, we have two alternatives: either two arrays of
32 entries each (noted "2a"), or a single array with 64 entries.
In the former case, fetching a 128-bit data corresponds to
an access to each array at the same index. In the latter case,
either we access data at position i and i + 32 (noted "1a"),
leading more or less to the same solution than the previous
one, or we access position 2×i and 2×i+1 (noted "1c"). The
advantage for the first and second solutions is that there is no
computation overhead when generating the code performing
the access to the registers for the 32-bit and 64-bit versions
of the ISA, while for the last one we might benefit from
better cache locality during execution. We implemented the
three solutions in QEMU, compiled with default optimization
(-O2) using gcc version 10.2. We executed QEMU on an
AMD EPYC 7702P processor, and measured performance
using Linux perf tool [11] on 3 synthetic programs written
in 128-bit assembly. The programs are executed 100 times
each, and Fig. 2 reports the results (average, minimum and
maximum execution times) normalized to the "2a" solution.
We also computed the normalized standard deviation, which
is small enough for us to trust our measures. No solution
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Fig. 2: Normalized QEMU run-times for the 3 possible register
array access strategies

clearly outperforms the others, given the execution time
variations. This is not really a surprise as the overhead of the
registers addresses computation in the "1c" case occurs only
at translation time. The fact that the two registers addresses
are not contiguous (they are 512 bytes apart) for solution
"2a" and "1a" does not slow down execution, most probably
because the cache capacity is large enough to hold the often
needed parts of the CPU state. Since speed of execution is
similar, we opted for solution "2a" as it is the least intrusive
in QEMU existing code.

B. Instructions implementation

QEMU contains a skeleton generator, the "decodetree" [12],
which produces the instruction decoder that calls a function
with the appropriate arguments (context of execution at



the time of the translation, register numbers, value of an
immediate, etc) for each instruction. Therefore, from a
practical point of view, implementing an instruction consists
of writing the code that generates the IR whose behavior is
equivalent to the one of the instruction.

Most instructions are simple enough to be translated in
a handful of 64-bit micro-ops, as the base instructions are
only loads, stores, arithmetic and logic operations, shifts and
branches, none having side effects. For instance, denoting
(ah, al) and (bh, bl) two 128-bit values made each of two
64-bit values, the result r of an addition is computed as
rl ← al + bl; rh ← ah + bh + rl

u
<al. This shows that 128-bit

instructions will in average more than double the number
of micro-ops compared to 64-bit ones, which in turn will
increase both code size and execution time. Loads and stores
are straightforward as long as addresses stay on 64-bit to
benefit from the existing address translation mechanism: we
use only the 64 lower bits currently. Algorithms for shifts
instructions are relatively simple too, and need around five
to six 64-bit instructions in average. Comparison predicates
use various bitwise logic tricks [13, Section 2.12] and in
average less than double the number of instructions compared
to 64-bit.

Finally, we also support the M-extension, that includes
multiplication, division and remainder. If the various 128-bit
multiplications can be generated with around ten micro-ops,
the division and remainder are too complex and we resorted
to helpers, i.e. calls to C functions from within the translation
block. Our implementation is based on the quite efficient
algorithm proposed by Kanthak [14], or uses the non-standard
compiler support for 128-bit operations when it exists, as it
is the case for gcc.

IV. PERFORMANCE EVALUATION

We conduct several experimentations to characterize our
simulator. To that aim, we developed 3 simple synthetic
programs in assembly, in such a way that they can be executed
for an xlen of 32, 64 and 128-bit. As most of the instructions
have the same encoding independently of xlen, it suffices to
use dedicated macros for the loads and stores that produce
binary directly (thanks to the support of the .insn directive
in the RISC-V assembler), and have the assembler compute
addresses and offsets using the data type size. This guaranties
that the algorithms are identical but for one thing: the data-
type size. We validated this property by checking (thanks
to QEMU -d in_asm option) that the code fetched during
simulation is identical for our 3 programs, which is the case
except for the load and store instructions and offset factors.

The algorithms are naïve implementations of a selection
sort, the search for the largest prime factor in a number
using a brute force approach, and a binary tree search. The
parameters for the algorithms are somewhat arbitrary, but
allow simulations in the range of 0.1 s to 60 s, to capture a
wide range of behavior.

We start by gathering size information on the translation
blocks for each of the programs, compared to 64 and 32 bit
versions, to better understand how the translated code increases
in size when handling 128-bit registers. We measure both the
average number of micro-ops (before and after optimization

by QEMU) and the average number of x86-64 instructions and
size in bytes per translation block. The results are presented
Table I. We can see that for the 32-bit and 64-bit ISA, the

TABLE I: AVERAGE SIZE OF THE TRANSLATION BLOCKS
micro-ops x86-64

before/after optim. nb. of insns/size in bytes
Program 32 64 128 32 64 128
Largest Prime Factor 20/15 21/15 35/20 34/149 36/163 53/243
Selection Sort 26/18 27/18 51/31 51/223 53/246 81/357
Binary Tree Search 19/14 18/14 34/20 37/167 39/181 61/273

resulting number of micro-operations and x86-64 instructions
is very close, while the 64-bit version leads to slightly bigger
translation blocks, which might lead to a marginally less
efficient instruction cache utilization. In average, the number
of micro-operations is approximately 1.5x larger with 128-bit,
and it is a similar factor compared to the x86-64 metrics. This
might seem lower than expected, but:

1) QEMU already provides some 128-bit operations as
micro-operations, such as the heavily used add and
sub, but also various mult flavors,

2) QEMU performs deadcode elimination, and since the
loads and stores use only the lower 64-bit of the
addresses, only few additional instruction are necessary
compared to 64-bit,

3) each translation block contains a prologue and an
epilogue consisting of 6 to 8 micro-operations, which
decreases the overhead of the 128-bit implementation
by construction,

4) the x86-64 has an add with carry instruction, which
makes adding two pairs of 64-bit registers just two
instructions. QEMU is able to take benefit of that
instruction in its backend.

Given this bigger code size, it can be expected that the
instruction cache misses more often. Furthermore, as the data
are also twice larger (remember that the instructions work on
the xlen register size), we might expect larger slowdowns
due to the lower relative data-cache capacity.

We now focus on the wall-clock time of QEMU execution
for the 3 possible register sizes. We first check that our add-
ons do not increase execution times for the 32 and 64 xlens:
the comparison between vanilla QEMU and ours leads to less
than 3% execution time variations in average over all the
executions, positively and negatively, hence there is no visible
impact.

Then we run simulations for different values of the main
parameter of each of our programs. Fig. 3 plots the run-
times of the Largest Prime Factor, using a log-log scale. This
program makes an heavy use of the M-extension, in particular
division and remainder that are realized through calls to helpers
(implemented with gcc internal support for 128-bit arithmetic).
The 128-bit xlen execution time is on average around 4 to 5
times slower than its 64 and 32-bit counterparts, both having
similar run-times.

Fig. 4 reports the Selection Sort run-times. This mainly
computes addresses, needing shifts and adds, makes compar-
isons, and memory accesses. Interestingly enough, the ratio
between 128-bit and 64 (or 32)-bit execution times is still
around 5, for the bigger arrays. We might have expected a
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Fig. 6: Execution times ratios

bit better performances, given that we do not use instructions
that call helpers in this program.

Finally, Fig. 5 reports the same metric for Binary Tree
Search. The program dereferences pointers and performs
equality comparisons. The ratio over 64-bit execution is much
lower, around 1.2× and 1.3×. This can be explained by the
fact that the addresses are on 64-bit, and QEMU eliminates
the code that computes the upper part of the address during
translation. Thus the overhead is dominated by having to
read 2 times 64-bit from memory and do a 2 times 64-bit
comparison per node.

Fig. 6 gathers the 128/64 execution times ratios for the three
programs, using a arbitrary unified x-axis unit corresponding
to the experiment number on the previous figures.

For a small number of computations, the time is dominated
by QEMU loading and starting time, then it steadily increases

until it reaches a plateau. The asymptotic value is clearly
application dependent, and its upper bound on our examples
is around 5.

V. CONCLUSION AND FUTURE WORK

This paper presents the design and implementation of a fast
128-bit RISC-V processor simulator based on QEMU. The
performance evaluation of our solution indicates a slowdown
of a factor of 4 to 5 compared to the 64-bit version, which
is explained by the additional logic required to work on
two 64-bit double words for each instruction. Nevertheless,
simulation speed is largely sufficient to boot an OS or run
large applications

There are two immediate follow-ups to this work: (a) opti-
mize the backend by using e.g., SIMD instructions working
on larger bitwidth, and (b) change address translation so that
it handles 128-bit guest virtual addresses. Both are quite
challenging from a technical standpoint.

As a final note, the code has recently been upstreamed in
QEMU and is readily available for public use.
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