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Relaxed-Inertial Proximal Point Type Algorithms

for Quasiconvex Minimization

S.-M. Grad∗ F. Lara† R. T. Marcavillaca ‡

August 22, 2022

Abstract We propose a relaxed-inertial proximal point type algorithm for
solving optimization problems consisting in minimizing strongly quasicon-
vex functions whose variables lie in finitely dimensional linear subspaces.
A relaxed version of the method where the constraint set is only closed
and convex is also discussed, and so is the case of a quasiconvex objective
function. Numerical experiments illustrate the theoretical results.

Keywords: Proximal point algorithms, Relaxed methods, Inertial me-
thods, Generalized convexity, Strong quasiconvexity.

1 Introduction

Initially introduced by Martinet in [23] and afterwards extended (first by Ro-
ckafellar in [24]) to other contexts, the proximal point algorithm was quickly
extended from simple unconstrained convex optimization problems to dealing
with various classes of problems, including the minimization of structured con-
vex and even nonconvex functions. Currently there exist various proximal point
type algorithms for minimizing generalized convex functions, weakly convex,
DC (difference of convex), Kurdyka- Lojasiewicz functions, and even ratios with
certain properties (see [10,12,15,20,22] and the references therein).

Studied both for theoretical reasons and due to concrete applications, for
instance in economic theory, financial theory and approximation theory, quasi-
convex functions belong to the most investigated classes of generalized convex
functions, see, for instance, [6, 13, 14, 26]. Although quasiconvex functions in-
herit some important features from convex functions, they have some stability
properties that convex functions do not. For example, for any constant θ ∈ R,
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the truncation min{h, θ} is quasiconvex when h : Rn → R ∪ {±∞} is quasicon-
vex, however it may fail to be convex when h is convex. Hence the importance
of the quasiconvex functions.

There are already several proximal point type algorithmic schemes for min-
imizing such functions in works like [12, 15, 20, 22]. An important subclass of
quasiconvex functions is the strongly quasiconvex ones (not to be confused with
the semistrictly quasiconvex functions, as it sometimes happened in the litera-
ture), see e.g., [19,21,25]. It has only very recently been shown in [21] that the
classical proximal point algorithm converges under standard assumptions when
employed for minimizing a strongly quasiconvex function.

The extension of proximal point algorithms from convex functions to genera-
lized convex functions (in particular quasiconvex and strongly quasiconvex) may
provide new tools for dealing with applications in machine learning and stochas-
tic optimization problems beyond convexity (see for instance [7,18] for strongly
convex functions). Further, such investigations could as well serve for developing
splitting methods for minimizing sums involving quasiconvex and/or strongly
quasiconvex functions.

Motivated by works like [1,5,15,22], where inertial effects and relaxations of
the iterative steps were added to classical proximal point algorithms for solving
convex optimization problems in order to improve them in terms of velocity
and efficiency, we augment in this paper the study from [21] by considering a
relaxed-inertial proximal point type algorithm from [5] for solving optimization
problems consisting in minimizing strongly quasiconvex functions whose varia-
bles lie in finitely dimensional linear subspaces. Moreover, leaving aside the
inertial steps and taking convenient relaxation parameters, the constraint set
can be taken only closed and convex, and the algorithm remains well-defined.
We provide convergence statements for the iterative sequences generated by
these algorithms and, in the more general case of a quasiconvex objective func-
tion, for the values of the objective function at these points. Moreover, we
discuss different conditions which guarantee the fulfillment of the hypotheses
of the convergence statements. Numerical experiments illustrate the theoreti-
cal results, as the computational results show that the relaxed-inertial proximal
point type algorithm considered in this work minimizes a strongly quasiconvex
function faster than the classical proximal point algorithm investigated in [21].

The structure of the paper is as follows. Section 2 contains notations, preli-
minaries and basic definitions concerning generalized convexity functions and
proximal point algorithms. In Section 3 we present a relaxed-inertial proximal
point algorithm for solving nonconvex minimization problems, in particular, we
study the convergence of the generated sequence for minimizing strongly quasi-
convex functions and the general case of quasiconvex functions is revisited. In
Section 4 we present different sufficient conditions for ensuring the convergence
of the considered algorithm. Finally, in Section 5, numerical implementations
are presented in order to show the advantages of the considered method with
respect to its “pure” proximal point counterpart.
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2 Preliminaries and Basic Definitions

The inner product of Rn and the Euclidean norm are denoted by 〈·, ·〉 and ‖·‖,
respectively. Given a convex and closed set K ⊆ Rn, the projection of x ∈ Rn
on K is denoted by PK(x), and the indicator function on K by ιK : Rn → R :=
R ∪ {±∞}.

Given any x, y, z ∈ Rn and any β ∈ R, the following relations hold:

〈x− z, y − x〉 =
1

2
‖z − y‖2 − 1

2
‖x− z‖2 − 1

2
‖y − x‖2, (2.1)

‖βx+ (1− β)y‖2 = β‖x‖2 + (1− β)‖y‖2 − β(1− β)‖x− y‖2. (2.2)

Given any extended real-valued function h : Rn → R, the effective domain
of h is defined by dom h := {x ∈ Rn : h(x) < +∞}. It is said that h is proper
if dom h is nonempty and h(x) > −∞ for all x ∈ Rn. We denote by epi h :=
{(x, t) ∈ Rn×R : h(x) ≤ t} the epigraph of h, by Sλ(h) := {x ∈ Rn : h(x) ≤ λ}
the sublevel set of h at the height λ ∈ R and by arg minRn h the set of minimal
points of h. The function h is lower semicontinuous at x ∈ Rn if for any sequence
{xk}k ∈ Rn with xk → x, h(x) ≤ lim infk→+∞ h(xk). Furthermore, the usual
convention sup∅ h := −∞ and inf∅ h := +∞ is adopted.

A function h : Rn → R with convex domain is said to be

(a) convex if, given any x, y ∈ dom h, then

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y), ∀ λ ∈ [0, 1]; (2.3)

(b) semistrictly quasiconvex if, given any x, y ∈ dom h, with h(x) 6= h(y),
then

h(λx+ (1− λ)y) < max{h(x), h(y)}, ∀ λ ∈ ]0, 1[; (2.4)

(c) quasiconvex if, given any x, y ∈ dom h, then

h(λx+ (1− λ)y) ≤ max{h(x), h(y)}, ∀ λ ∈ [0, 1]. (2.5)

It is said that h is strictly convex (resp. strictly quasiconvex ) if the inequa-
lity in (2.3) (resp. (2.5)) is strict whenever x 6= y.

Every (stricly) convex function is (stricly) quasiconvex and semistrictly qua-
siconvex, and every semistrictly quasiconvex and lower semicontinuous function
is quasiconvex (see [13, Theorem 2.3.2]). The function h : R→ R, with h(x) :=
min{|x|, 1}, is quasiconvex without being semistrictly quasiconvex. Recall that

h is convex⇐⇒ epi h is a convex set;

h is quasiconvex⇐⇒ Sλ(h) is a convex set for all λ ∈ R.

For algorithmic purposes, the following notions from [25] are useful.
A function h : Rn → R with a convex domain is said to be:
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(a) strongly convex if there exists γ ∈ ]0,+∞[ such that for all x, y ∈ dom h
and all λ ∈ [0, 1], we have

h(λy + (1− λ)x) ≤ λh(y) + (1− λ)h(x)− λ(1− λ)
γ

2
‖x− y‖2; (2.6)

(b) strongly quasiconvex if there exists γ ∈ ]0,+∞[ such that for all x, y ∈
dom h and all λ ∈ [0, 1], we have

h(λy + (1− λ)x) ≤ max{h(y), h(x)} − λ(1− λ)
γ

2
‖x− y‖2. (2.7)

In these cases, it is said that h is strongly convex (resp. strongly quasiconvex )
with modulus γ > 0. When relations (2.6) or (2.7) hold only for all x, y ∈ K ⊂
dom h it is said that h is strongly convex (quasiconvex) on K.

Note that every strongly convex function is strongly quasiconvex, and every
strongly quasiconvex function is strictly quasiconvex. The Euclidean norm ‖·‖ is
strongly quasiconvex without being strongly convex on any bounded convex set
K ⊆ Rn (see [19, Theorem 2]) and the function x 7→ x3 is strictly quasiconvex
without being strongly quasiconvex on R.

Summarizing, we have the following implications between the (generalized)
convexity notions introduced above (quasiconvex is denoted by qcx in the follo-
wing scheme)

strongly convex =⇒ strictly convex =⇒ convex =⇒ qcx
⇓ ⇓ ⇓

strongly qcx =⇒ strictly qcx =⇒ semistrictly qcx
⇓

qcx

Remark 2.1. There is no relationship in general between convexity and strong
quasiconvexity of functions. Indeed, the function h : Rn → R given by h(x) =√
‖x‖ is strongly quasiconvex on any bounded and convex set K in Rn with-

out being convex, while the function h(x) ≡ 1 is convex without being strongly
quasiconvex. However, strongly convex functions are both convex and strongly
quasiconvex.

A proper function h : Rn → R is said to be coercive, if Sλ(h) is bounded for
all λ ∈ R, or equivalently, if

lim
‖x‖→+∞

h(x) = +∞. (2.8)

The following existence result is the starting point of our investigations.

Lemma 2.1. (cf. [21, Corollary 3]) Let K ⊆ Rn be a closed and convex set
and h : Rn → R be a proper, lower semicontinuous, and strongly quasiconvex
function such that K ⊆ dom h. Then, arg minK h is a singleton.

4



The above result ensures that every lower semicontinuous and strongly quasi-
convex function has exactly one minimizer on every closed and convex subset K
of Rn. Therefore, Lemma 2.1 is useful for analyzing proximal point algorithms
for classes of quasiconvex functions (see [21]).

Let K be a closed and convex set in Rn and h : Rn → R be a proper function
with K ∩ dom h 6= ∅. The proximity operator on K of parameter β > 0 of h at
x ∈ Rn is defined as Proxβh : Rn ⇒ Rn where

Proxβh(K,x) = arg miny∈K

{
h(y) +

1

2β
‖y − x‖2

}
, (2.9)

whenever the minimum in (2.9) exists. If K = Rn, then we simply write
Proxβh(Rn, x) = Proxβh(x). Consequently, Proxβh(K, ·) = Proxβh+ιK (·) for
all closed and convex K ⊆ Rn. The fixed points set of Proxβh(K, ·) is denoted
by Fix(Proxβh(K, ·)). When h is proper, lower semicontinuous and convex,
Proxβh turns out to be a single-valued operator (see, for instance, [8, Propo-
sition 12.15]). Although in most of the literature the proximity operator of a
function is considered (in the spirit of “full splitting”) on the whole space, there
are works like [10, 16, 17] where the employed functions are not split from the
corresponding sets, as defined above.

The following results will be useful in the sequel. Note that quasiconvexity
can be seen as strong quasiconvexity with modulus γ = 0.

Lemma 2.2. (cf. [21, Proposition 7]) Let K ⊆ Rn be a closed and convex set,
h : Rn → R be a proper, lower semicontinuous, strongly quasiconvex function
with modulus γ ≥ 0 and such that K ⊆ dom h, β > 0 and x ∈ K. If x ∈
Proxβh(K,x), then

h(x)−max{h(y), h(x)} ≤ λ

β
〈x− x, y − x〉+

λ

2

(
λ

β
− γ + λγ

)
‖y − x‖2,

∀ y ∈ K, ∀ λ ∈ [0, 1]. (2.10)

Lemma 2.3. (cf. [21, Proposition 9]) Let K ⊆ Rn be a closed and convex set,
h : Rn → R be a proper, lower semicontinuous and strongly quasiconvex function
with modulus γ > 0 such that K ⊆ dom h, and β > 0. Then

Fix (Proxβh(K, ·)) = arg minK h. (2.11)

The following lemma was essentially proven in [2, Theorem 2.1] (see also [4,
Lemma A.4] for a short and direct proof) and will be used in the next section
to analyze the convergence of the proposed algorithm.

Lemma 2.4. Let the sequences {ηk}k, {sk}k, {αk}k and {δk}k in [0,+∞[ and
let α ∈ R be such that η0 = η−1, 0 ≤ αk ≤ α < 1 and

ηk+1 − ηk + sk+1 ≤ αk(ηk − ηk−1) + δk, ∀ k ≥ 0. (2.12)

Then the following assertions hold.
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(a) For all k ≥ 1,

ηk +

k∑
j=1

sj ≤ η0 +
1

1− α

k−1∑
j=0

δj . (2.13)

(b) If
∑∞
k=0 δk < +∞, then limk→∞ ηk exists, i.e., the sequence {ηk}k con-

verges to some element in [0,+∞[.

Finally, we also consider the following lemmata for our convergence analysis.

Lemma 2.5. Consider an arbitrary parameter ρ ∈]0, 2[.

(a) Let φ1 : ]ρ/(1 + ρ), 2[→ ]0, 1[ be a real function given by

φ1(x) =
2ρ (2− x)

2ρ+ 2x− ρx+
√

4x2 − 4x2ρ− 7x2ρ2 + 8xρ+ 20xρ2 − 12ρ2
.

Then its inverse function φ−11 : ]0, 1[→ ]ρ/(1 + ρ), 2[ is given by

φ−11 (x) =
2ρ(x2 − x+ 1)

2ρx2 + (2− ρ)x+ ρ
.

(b) Let φ2 : ]2ρ/(2 + ρ), 2[→ ]0, 1[ be a real function given by

φ2(x) =
2(2− x)

( 4
ρ − 1)x+

√[
( 4
ρ − 1)2 − 8

]
x2 + 24x− 16

.

Then its inverse function φ−12 : ]0, 1[→ ]2ρ/(2 + ρ), 2[ is given by

φ−12 (x) =
2ρ(x2 + 1)

2ρx2 + (4− ρ)x+ ρ
.

(c) Let φ3 : ]0, 2[→ ]0, 1[ be a real fuction given by

φ3(x) =
2(2− x)

4− x+
√

16x− 7x2
.

Then its inverse φ−13 : ]0, 1[→ ]0, 2[ is given by

φ−13 (x) =
2(x− 1)2

2(x− 1)2 + 3x− 1
.

A proof for item (c) of the previous lemma can be found in [3, Lemma A.2].
The other two statements can be shown in the same lines.
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Lemma 2.6. (cf. [3, Lemma A.3]) Let q : R → R be given by q(x) := ax2 −
bx+ c. Assume that b, c > 0, b2 − 4ac > 0 and define

β :=
2c

b+
√
b2 − 4ac

> 0. (2.14)

(a) If a = 0, then q(·) is a decreasing affine function and β > 0 is its unique
root.

(b) If a > 0 (resp. a < 0), then q(·) is a convex (resp. concave) quadratic
function and β > 0 is its smallest (resp. largest) root.

In both cases (a) and (b), β > 0 is a root of q(·), and q(·) is decreasing on the
interval [0, β].

For a further study regarding strong quasiconvexity and generalized conve-
xity we refer to [13,19,21,25], while for applications in economics and financial
theory of quasiconvex and strongly quasiconvex functions we refer to [6, 14]
among others.

3 A Relaxed Inertial Proximal Point Algorithm

Let K be a closed and convex set in Rn, and h : Rn → R be a proper function
such that K ∩ dom h 6= ∅. We consider the constrained optimization problem

min
x∈K

h(x). (COP)

In order to provide a relaxed-inertial proximal point algorithm (RIPPA hence-
forth) for solving problem (COP) when it has a strongly quasiconvex or a quasi-
convex objective function, we take K ⊆ Rn to be a linear subspace, and consider
the following assumptions on h

(A) h : K → R is a continuous and strongly quasiconvex function with modu-
lus γ > 0;

(B1) h : Rn → R is a proper, continuous and quasiconvex function on K ⊆
dom h;

(B2) h is 2-weakly coercive on K, that is,

lim inf
x∈K, ‖x‖→+∞

h(x)

‖x‖2
≥ 0. (3.1)

Remark 3.1. We need to take K ⊆ Rn to be a linear subspace because of
the extrapolation step in the algorithm proposed below. We opted to work in
the most general framework (i.e. by taking K to be a linear subspace instead
of the whole space Rn like in the literature) because if the extrapolation step
is omitted and convenient relaxation parameters are considered the resulting
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algorithm is capable of minimizing a strongly quasiconvex function over a closed
convex set. Moreover, this setting might turn out to be relevant at some point to
some application we are not yet aware of, as, for instance, quasiconvex functions
over linear subspaces were considered in works like [26].

In order to make assumption (A) comply with the general situation consi-
dered in this work we can take h : Rn → R and K = dom h. Before continuing,
we note the following.

Remark 3.2. (i) Clearly, (A) implies (B1) and (B2) (see [21, Theorem 1]),
while the converse implications do not hold even for continuous convex
functions. Indeed, the function h(x) = α, with α ∈ R, satisfies assump-
tions (B1) and (B2), but does not satisfy (A).

(ii) If h satisfies assumptions (B1) and (B2), then Proxβh(K, ·) is nonempty
since h(·) + (1/(2β))‖·‖2 is lower semicontinuous and coercive on K for
all β > 0. If in addition, given w ∈ K and c > 0, the function h(·) +
(1/(2c))‖w − ·‖2 is strongly quasiconvex on K, then Proxch(K,w) is a
singleton by Lemma 2.1.

(iii) Assumption (3.1) is not too restrictive. Indeed, every convex function sa-
tisfies assumption (3.1) as it has an affine minorant. Furthermore, every
coercive function satisfies assumption (3.1).

(iv) The continuous quasiconvex function h : R→ R given by h(x) =
√
|x| for

x < 0, and h(x) = −
√
x for x ≥ 0, satisfies assumption (3.1) and is not

bounded from below by an affine minorant.

The algorithm that we propose can be found in the convex case in [5] and it
is based on the ones proposed in [1, 15, 22]. Note that it uses at each iteration
an extrapolation, a proximal step and a relaxation step.

The precise statement of Algorithm 1 is given below.

8



Algorithm 1 RIPPA for Strongly Quasiconvex Functions (RIPPA-SQ)

Step 0. (Initialization). Let x0 = x−1 ∈ K, α ∈ [0, 1[, 0 < ρ′ ≤ ρ′′ < 2,
{ck}k∈N be a sequence of positive numbers and k = 0.

Step 1. Choose αk ∈ [0, α] and set

yk = xk + αk(xk − xk−1), [extrapolation step] (3.2)

and compute

zk ∈ Proxckh(K, yk) [proximal step]. (3.3)

Step 2. If zk = yk, then Stop, and yk ∈ arg minK h. Otherwise, choose ρk ∈
[ρ′, ρ′′] and update

xk+1 = (1− ρk)yk + ρkz
k [relaxation step]. (3.4)

Step 3. Let k = k + 1 and go to Step 1.

Before continuing, we make some remarks regarding Algorithm 1.

Remark 3.3. (i) The iterative steps are well-defined by Lemma 2.1 and the
stopping criterion follows from Lemma 2.3, because zk = yk in relation
(3.3) implies that yk is a fixed point of the proximity operator, and hence
an optimal solution to (COP).

(ii) The extrapolation step in (3.2), which is controlled by the parameter αk,
introduces inertial effects in Algorithm 1, while the parameter ρk at step
(3.4) represents the relaxation parameter.

(iii) In virtue of relation (3.2) and of (3.4) when ρk ∈ [1, 2], K should be
assumed as a linear subspace and not only as a closed and convex set. We
note that the authors in [1–3, 15, 22] considered their algorithms on the
whole space.

(iv) Note that if zk 6= yk, then h(zk) < h(yk). Indeed, if h satisfies (A) (γ > 0)
or if h satisifies (B1) and (B2) (γ = 0), then by (3.3) and Lemma 2.2,
we have (for γ ≥ 0)

h(zk)−max{h(y), h(zk)} ≤ λ

ck
〈zk − yk, y − zk〉

+
λ

2

(
λ

ck
− γ + λγ

)
‖y − zk‖2, ∀ y ∈ K, ∀λ ∈ [0, 1].

Take y = yk ∈ K. Then,

h(zk)−max{h(yk), h(zk)} ≤ λ

2ck
(λ− 2 + γck(λ− 1)) ‖yk − zk‖2, ∀λ ∈ [0, 1].

9



Since yk 6= zk, by taking λ = 1
2 , we have

h(zk)−max{h(yk), h(zk)} ≤ 1

4ck

(
−3

2
− γck

2

)
‖yk − zk‖2 < 0

=⇒ h(zk) < max{h(yk), h(zk)} = h(yk).

Therefore, if zk 6= yk, then h(zk) < h(yk).

Let us consider the set

Ω := {x ∈ K : h(x) ≤ h(zk), ∀ k ∈ N}. (3.5)

A similar construction was used in [9] where the proximal point algorithm was
extended for vector optimization problems. Note that under assumption (A),
arg minK h is a singleton by Lemma 2.1, hence Ω 6= ∅. Therefore, in order to
encompass both cases in our analysis, quasiconvexity and strong quasiconvexity
separately, we consider the following assumptions on h

(C1) h satisfies assumption (A).

(C2) h satisfies assumptions (B1), (B2) and Ω 6= ∅.

We start the convergence analysis of Algorithm 1 by proving the following
result.

Proposition 3.1. Let K ⊆ Rn be a linear subspace, h : Rn → R be a function
such that assumption (C1) or (C2) holds, 0 < ρ′ ≤ ρ′′ < 2, {ρk}k ⊆ [ρ′, ρ′′] and
{xk}k, {yk}k and {zk}k be the sequences generated by Algorithm 1. Then, for
every x∗ ∈ Ω, we have

||xk+1 − x∗||2 + ρk(2− ρk)||yk − zk||2 ≤ ||yk − x∗||2, ∀ k ∈ N. (3.6)

Proof. From the relaxation step (3.4) of Algorithm 1 we have

xk+1 − x∗ = (1− ρk)(yk − x∗) + ρk(zk − x∗).

Now, using identity (2.2), we have

||xk+1 − x∗||2 = (1− ρk)||yk − x∗||2 + ρk||zk − x∗||2 − ρk(1− ρk)||yk − zk||2,

or equivalently,

‖xk+1 − x∗‖2 − ‖yk − x∗‖2= ρk(‖zk − x∗‖2 − ‖yk − x∗‖2)

− ρk(1− ρk)‖yk − zk‖2. (3.7)

Furthermore, it follows from relation (2.1) that

‖zk − x∗‖2 − ‖yk − x∗‖2 = ‖zk − yk‖2 + 2〈zk − yk, yk − x∗〉. (3.8)
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On the other hand, from the proximal step (3.3) and Lemma 2.2, we have for
every k ≥ 0 that

h(zk)−max{h(y), h(zk)} ≤ λ

ck
〈zk − yk, y − zk〉

+
λ

2

(
λ

ck
− γ + λγ

)
‖y − zk‖2, ∀ y ∈ K, ∀λ ∈ [0, 1]. (3.9)

Take y = x∗ ∈ Ω in relation (3.9). Then,

0 ≤ 2〈zk − yk, x∗ − zk〉+ ck

(
λ

ck
− γ + λγ

)
‖x∗ − zk‖2

= 2〈zk − yk, x∗ − yk〉 − 2‖zk − yk‖2 + ck

(
λ

ck
− γ + λγ

)
‖x∗ − zk‖2. (3.10)

We have two cases.

(i) If h satisfies (C1), then γ > 0, thus by taking λ such that 0 < λ <
γck/(1 + γck) in (3.10), we have

2〈zk − yk, yk − x∗〉 ≤ −2‖zk − yk‖2

(3.8)
=⇒ ‖zk − x∗‖2 − ‖yk − x∗‖2 ≤ −‖zk − yk‖2. (3.11)

Using inequality (3.11) in relation (3.7), we obtain (3.6).

(ii) If h satisfies (C2), then γ = 0, thus we obtain relation (3.10) with γ = 0.
Then, by taking λ ↓ 0 in (3.10), we have

2〈zk − yk, yk − x∗〉 ≤ −2‖zk − yk‖2

(3.8)
=⇒ ‖zk − x∗‖2 − ‖yk − x∗‖2 ≤ −‖zk − yk‖2. (3.12)

Similarly to (i), using inequality (3.12) in relation (3.7), we obtain (3.6).

Therefore, in both cases, we obtain (3.6) and the proof is complete.

As a consequence of the previous result, we have the following.

Proposition 3.2. Let K ⊆ Rn be a linear subspace, h : Rn → R be such that
one of conditions (C1) and (C2) holds, 0 < ρ′ ≤ ρ′′ < 2, {ρk}k ⊆ [ρ′, ρ′′], α ∈
[0, 1[, {αk}k ⊆ [0, α], and {xk}k, {yk}k and {zk}k be the sequences generated by
Algorithm 1. Given any x∗ ∈ Ω, we set ηk := ||xk − x∗||2 for all k ≥ 0. Then,

ηk+1 − ηk − αk(ηk − ηk−1) +
2− ρk
ρk
||xk+1 − yk||2

≤ (α2
k + αk)||xk − xk−1||2, ∀ k ∈ N. (3.13)

11



Proof. Observe that, from (3.2), for every x∗ ∈ Ω, we have

xk − x∗ =
1

1 + αk
(yk − x∗) +

αk
1 + αk

(xk−1 − x∗), (3.14)

yk − xk−1 = (1 + αk)(xk − xk−1). (3.15)

Using identities (2.2) and (3.14), we obtain

||xk − x∗||2 =
||yk − x∗||2

1 + αk
+

αk
1 + αk

||xk−1 − x∗||2 − αk
(1 + αk)2

||yk − xk−1||2,

which combined with (3.15) gives

||yk − x∗||2 = (1 + αk)||xk − x∗||2 − αk||xk−1 − x∗||2 + αk(1 + αk)||xk − xk−1||2

= ηk + αk(ηk − ηk−1) + (α2
k + αk)||xk − xk−1||2.

Hence, relation (3.13) follows immediately from Proposition 3.1 and the last
equality.

We give now our first main result, which shows that the sequences {xk}k,
{yk}k and {zk}k, generated by Algorithm 1 converge to an optimal solution to
problem (COP) considering that h satisfies assumption (C1).

Theorem 3.1. Let K ⊆ Rn be a linear subspace, h : Rn → R be a function
such that assumption (C1) holds, 0 < ρ′ ≤ ρ′′ < 2, {ρk}k ⊆ [ρ′, ρ′′], α ∈ [0, 1[,
{αk}k ⊆ [0, α] and {xk}k, {yk}k and {zk}k, be the sequences generated by
Algorithm 1. If

∞∑
k=0

αk||xk − xk−1||2 < +∞, (3.16)

then the following assertions hold.

(a) For every x∗ ∈ Ω, the limit limk→∞‖xk − x∗‖ exists and

lim
k→+∞

‖xk+1 − yk‖= lim
k→+∞

‖zk − yk‖= 0. (3.17)

(b) If in addition ck ≥ c′ > 0 for every k ≥ 0, then the sequence {xk}k
converges to x = arg minK h and limk→+∞ h(xk) = minK h. Moreover,
the sequences {yk}k and {zk}k converge both to x, too.

Proof. (a): Let x∗ ∈ Ω. Defining δk = (α2
k + αk)||xk − xk−1||2, by Proposi-

tion 3.2 we observe that condition (2.12) in Lemma 2.4 is fulfilled with sk+1 =
((2− ρk)/ρk)||xk+1 − yk||2. Hence, using assumption (3.16) and Lemma 2.4(b),
we conclude that the limit limk→∞ ||xk − x∗|| exists. In particular, {xk}k is
bounded. Moreover, from assumption (3.16) and Lemma 2.4(a), we conclude
that

∑∞
k=0 sk+1 < +∞, and so, sk+1 → 0 as k → +∞, thus due to the bound-

edness of {ρk}k it holds limk→+∞‖xk+1 − yk‖= 0.

12



Finally, since xk+1− yk = ρk(zk− yk) by relation (3.4) and 0 < ρ′ ≤ ρk < 2,
it follows that limk→+∞‖zk − yk‖= 0.

(b): By part (a), the sequence {xk}k is bounded, i.e., it has cluster points.
Let x̂ ∈ K be a cluster point of {xk}k. Then, there exists a subsequence {xkl}l
of {xk}k such that xkl → x̂ as l → +∞. Applying (3.17) to the subsequence
{xkl}l and since liml→+∞ xkl = x̂, we conclude that

lim
l→+∞

ykl = lim
l→+∞

zkl = x̂. (3.18)

Now, by the construction of the sequence, (3.3) and Lemma 2.2, we have

h(zk)−max{h(y), h(zk)} ≤ λ

ck
〈zk − yk, y − zk〉

+
λ

2

(
λ

ck
− γ + λγ

)
‖y − zk‖2, ∀ y ∈ K, ∀λ ∈ [0, 1]. (3.19)

Replace k by kl in the previous inequality. Then, by taking lim inf l→+∞, relation
(3.18), xkl → x̂ and the continuity of h, we obtain

h(x̂)−max{h(y), h(x̂)} ≤ λ

2

(
λ

c′
− γ + λγ

)
‖y − x̂‖2, ∀ y ∈ K, ∀λ ∈ [0, 1].

Take λ < (γc′)/(1 + γc′) < 1, thus

h(x̂)−max{h(y), h(x̂)} < 0, ∀ y ∈ K\{x̂}.

Therefore, x̂ ∈ arg minK h and every cluster point of the sequence {xk}k be-
longs to arg minK h. Since h is strongly quasiconvex, arg minK h = {x}, that
is, x̂ = x and the whole sequence {xk}k converges to x = arg minK h and
limk→+∞ h(xk) = minK h.

Finally, since xk → x = arg minK h, it follows from relation (3.17) that
yk → x and zk → x.

By taking α = 0, we obtain αk = 0 for every k ≥ 0. Hence, as a consequence
of Theorem 3.1, we have the following convergence statement involving a relaxed
proximal point algorithm (RPPA henceforth) for solving (COP). Note that
its convergence statement does not require K to be a linear subspace when
ρk ∈ ]0, 1] for every k ≥ 0.

Corollary 3.1. Let K ⊆ Rn be closed and convex, h be a function such that
assumption (C1) holds, {ck}k∈N be a sequence of positive numbers and ρk ∈ ]0, 1]
for every k ≥ 0. Then, for any sequence {xk}k generated by

(RPPA)


k = k + 1

zk ∈ Proxckh(K,xk)

xk+1 = (1− ρk)xk + ρkz
k,

(3.20)

we have
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(a)

+∞∑
k=1

2− ρk
ρk
‖xk+1 − xk‖2< +∞;

(b) for every x∗ ∈ Ω, the limit limk→+∞‖xk − x∗‖ exists, and hence {xk} is
bounded;

(c) if in addition ck ≥ c′ > 0 for every k ≥ 0, then the sequence {xk}k, gene-
rated by (RPPA), converges to {x} = arg minK h and limk→+∞ h(xk) =
minK h.

The statement of Corollary 3.1 remains valid when ρk ∈ ]0, 2[ for every k ≥ 0
if K ⊆ Rn is a linear subspace. If in addition to α = 0, we consider ρk = 1
for all k ≥ 0 in Algorithm 1, we obtain a variant of [21, Theorem 10] for the
strongly quasiconvex minimization problem (COP).

Corollary 3.2. Let K ⊆ Rn be a closed and convex set, h be a function such
that assumption (C1) holds, and ck ≥ c′ > 0. Then the sequence {xk}k, gene-
rated by

xk+1 ∈ Proxckh(K,xk), (3.21)

is a minimizing sequence of h, i.e., h(xk) ↓ minx∈K h(x).

Proof. Since xk+1 ∈ Proxckh(K,xk), by Lemma 2.2, we have

h(xk+1)−max{h(y), h(xk+1)} ≤ λ

ck
〈xk+1 − xk, y − xk+1〉

+
λ

2

(
λ

ck
− γ + λγ

)
‖y − xk+1‖2, ∀ y ∈ K, ∀λ ∈ [0, 1]. (3.22)

Take y = xk in (3.22). Then, for all λ ∈ [0, 1],

h(xk+1)−max{h(xk), h(xk+1)} ≤ λ

2

(
λ

ck
− γ + λγ − 2

ck

)
‖xk − xk+1‖2.

Take λ = 1/2. Then

1

4
(

1

2ck
− γ +

γ

2
− 2

ck
) =

1

8ck
(−3− γck) < 0,

thus

h(xk+1)−max{h(xk), h(xk+1)} < 0 ⇐⇒ h(xk+1) < h(xk), ∀ k ∈ N.

Hence, {h(xk)}k∈N is a decreasing sequence. The rest of the proof follows from
Theorem 3.1.

Remark 3.4. A similar result to Corollary 3.2 is provided in [21, Theorem 10],
where h is assumed to be only lower semicontinuous, instead of continuous. In-
specting the proof of Corollary 3.2 reveals that the mentioned weaker hypothesis
on h is sufficient to guarantee the assertion. However, for the convergence of
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Algorithm 1 it seems to be necessary to take h continuous (and also K a linear
subspace in order to ensure that the algorithm is well-defined), these additional
assumptions being the price to pay for the accelerations and flexibility provided
by this method in comparison with the classical proximal point algorithm con-
sidered in [21] for solving the same optimization problem.

For the general quasiconvex case, we have the following statement.

Proposition 3.3. Let K ⊆ Rn be a linear subspace, h : Rn → R be a function
such that assumption (C2) holds, 0 < ρ′ ≤ ρ′′ < 2, {ρk}k ⊆ [ρ′, ρ′′], α ∈ [0, 1[,
{αk}k ⊆ [0, α], {xk}k, {yk}k and {zk}k be the sequences generated by Algorithm
1. Suppose that Ω 6= ∅. Then the following assertions hold.

(a) If condition (3.16) hold, then for every x∗ ∈ Ω, the limit limk→∞ ||xk−x∗||
exists and

lim
k→+∞

‖xk+1 − yk‖= lim
k→+∞

‖zk − yk‖= 0. (3.23)

(b) If in addition h is bounded from below and ck ≥ c′ > 0 for any k, then the
sequence {h(xk)}k is convergent.

Proof. (a): Since Ω 6= ∅ by assumption, we take x∗ ∈ Ω and ηk := ‖xk − x∗‖2
for all k ≥ 0. Then we simply repeat the proof of Theorem 3.1(a).

(b): See the proof of [22, Lemma 3.2(j1)].

Remark 3.5. Supposing that Ω 6= ∅ and assumption (B1) holds, and if in addi-
tion h is bounded from below, Algorithm 1 recovers all the properties from [22,
Lemma 3.2 and Theorem 3.1] with the same proofs, hence even the convergence
of the iterative sequence {xk}k towards the minimal point of h can be achieved
under additional hypotheses.

4 Sufficient Conditions

In this section, we provide sufficient conditions for ensuring the fulfillment of
assumption (3.16). To that end, we prove the following result.

Proposition 4.1. Let K ⊆ Rn be a linear subspace, h : Rn → R be such that
assumption (C1) or (C2) holds, 0 < ρ′ ≤ ρ′′ < 2, {ρk}k ⊆ [ρ′, ρ′′], α ∈ [0, 1[,
{αk}k ⊆ [0, α], and {xk}k, {yk}k and {zk}k be the sequences generated by
Algorithm 1. Given any x∗ ∈ Ω, we set ηk := ‖xk − x∗‖2 for all k ≥ 0.
Then,

ηk+1 − ηk − αk(ηk − ηk−1)−
(

2α2
k

(
1− 1

ρk

)
+

2

ρk
αk

)
‖xk − xk−1‖2

≤ (2− ρk)

ρk
(αk − 1)||xk+1 − xk||2, ∀ k ∈ N. (4.1)
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As a consequence,

ηk+1 − ηk − αk(ηk − ηk−1)− νk‖xk − xk−1‖2

≤ 2− ρ′′

ρ′′
(αk − 1)||xk+1 − xk||2, ∀ k ∈ N, (4.2)

where νk := 2

(
1− 1

ρ′′

)
α2
k +

2

ρ′
αk for all k ≥ 0.

Proof. To show (4.1), we investigate the boundedness of ||xk+1 − yk||2 from
below in relation (3.13) of Proposition 3.2. A direct calculation using definition
of yk and the Cauchy-Schwartz inequality yield

||xk+1 − yk||2 = ||xk+1 − xk||2 + α2
k||xk − xk−1||2 − 2αk〈xk+1 − xk, xk − xk−1〉

≥ ||xk+1 − xk||2 + α2
k||xk − xk−1||2 − 2αk||xk+1 − xk|| ||xk − xk−1||.

From this and the well-known inequality 2pq ≤ p2 + q2 with p = ||xk+1 − xk||
and q = ||xk − xk−1||, we conclude

||xk+1 − yk||2 ≥ (1− αk)||xk+1 − xk||2 + (α2
k − αk)||xk − xk−1||2. (4.3)

By assumption (C1) or (C2), Ω 6= ∅. Then, for every x∗ ∈ Ω, we set ηk :=
‖xk − x∗‖2 for all k ≥ 0. Hence, by replacing (4.3) in relation (3.13), we have

ηk+1 − ηk − αk(ηk − ηk−1) ≤
(

2α2
k

(
1− 1

ρk

)
+

2

ρk
αk

)
‖xk − xk−1‖2

+
(2− ρk)

ρk
(αk − 1)||xk+1 − xk||2, ∀ k ∈ N,

which proves relation (4.1).
Finally, since α ∈ [0, 1[, {αk}k ⊆ [0, α], {ρk}k ⊆ [ρ′, ρ′′] and ρ′′ < 2, from

relation (4.1) we obtain (4.2).

The following result is a variant of [1, Proposition 2.5] which was proved
for the relaxed-inertial proximal point algorithm for solving monotone inclusion
problems. We emphasize that this result is valid under assumption (C1).

Theorem 4.1. Let K ⊆ Rn be a linear subspace, h : Rn → R be a function
such that assumption (C1) holds, 0 < ρ′ ≤ ρ′′ < 2, {ρk}k ⊆ [ρ′, ρ′′], α ∈ [0, 1[,
{αk}k ⊆ [0, α] and {αk}k is nondecreasing satisfying the following (for some
β > 0)

0 ≤ αk ≤ αk+1 ≤ α < β < 1, ∀ k ≥ 0, (4.4)

and

ρ′′ = ρ′′(β, ρ′) :=
2ρ′(β2 − β + 1)

2ρ′β2 + (2− ρ′)β + ρ′
. (4.5)
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If {xk}k is the sequence generated by Algorithm 1, then

∞∑
k=1

||xk − xk−1||2 < +∞. (4.6)

As a consequence, if ck ≥ c′ > 0 for every k ≥ 0, then {xk}k converges to
x = arg minK h and limk→+∞ h(xk) = minK h.

Proof. Since assumption (C1) holds, arg minK h 6= ∅, i.e., Ω 6= ∅ too. Then, for
any x∗ ∈ Ω, we set ηk := ‖xk − x∗‖2 for all k ≥ 0. Define

µk := ηk − αkηk−1 + νk||xk − xk−1||2, ∀ k ≥ 0, (4.7)

Since ηk ≥ 0, αk ≤ αk+1 for all k ≥ 0 and identity (4.2) of Proposition 4.1, we
have

µk+1 − µk =
(
ηk+1 − ηk − αk(ηk − ηk−1)− νk‖xk − xk−1‖2

)
+ νk+1||xk+1 − xk||2

≤
(

(
2

ρ′
− 1)αk −

2

ρ′′
+ 1 + νk+1

)
||xk+1 − xk||2

≤
(

(
2

ρ′
− 1)αk+1 −

2

ρ′′
+ 1 + νk+1

)
||xk+1 − xk||2

= −
[
2

(
1

ρ′′
− 1

)
α2
k+1 −

(
2

ρ′
+

2

ρ′′
− 1

)
αk+1 +

2− ρ′′

ρ′′

]
||xk+1 − xk||2

= −q(αk+1)||xk+1 − xk||2, (4.8)

where q : R→ R is a quadratic function defined by

q(x) := 2

(
1

ρ′′
− 1

)
x2 −

(
2

ρ′
+

2

ρ′′
− 1

)
x+

(
2

ρ′′
− 1

)
. (4.9)

Note that q(αk+1) admits a uniform positive lower bound. Indeed, from
(4.5) and Lemma 2.5(a) with ρ = ρ′ and x = ρ′′, after some arrangements we
have

β =

2

(
2

ρ′′
− 1

)
2

ρ′
+

2

ρ′′
− 1 +

√(
2

ρ′
+

2

ρ′′
− 1

)2

− 8

(
1

ρ′′
− 1

)(
2

ρ′′
− 1

) . (4.10)

From this and Lemma 2.6 with with q(·) as in (4.9), a = 2(1/ρ′′ − 1), b =
2/ρ′ + 2/ρ′′ − 1 and c = 2/ρ′′ − 1, we conclude that q(β) = 0 and q(·) is
decreasing on [0, β]. Then in view of (4.4), we conclude

q(αk+1) ≥ q(α) > q(β) = 0.

Combining this with (4.8), we deduce

µk+1 − µk ≤ −q(αk+1)||xk+1 − xk||2 ≤ −q(α)||xk+1 − xk||2 ≤ 0. (4.11)
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Hence, µk+1 ≤ µk for all k ≥ 0, so the sequence {µk}k is non increasing and
bounded from above by µ0 = (1−α0)η0. So, equation (4.7) and the monotonicity
of {µk}k yield ηk − αkηk−1 ≤ µk ≤ µ0 for all k ≥ 0. From the latter and (4.4)
we recursively obtain

ηk ≤ αηk−1 + µ0 ≤ · · · ≤ αkη0 + µ0

k−1∑
j=0

αj ≤ αkη0 +
µ0

1− α
.

By using relation (4.11), the above inequality, and taking into account that
µk+1 ≥ −αηk, we have

k∑
j=0

||xj+1 − xj ||2 ≤ 1

q(α)
(µ0 − µk+1) ≤ 1

q(α)
(µ0 + αηk)

≤ 1

q(α)

(
µ0 + α

(
αkη0 +

µ0

1− α

))
=

1

q(α)

(
µ0

1− α
+ αk+1η0

)
.

Taking k → +∞ in the previous inequality, we obtain

+∞∑
k=0

||xk+1 − xk||2 ≤ 1

q(α)

µ0

1− α
< +∞.

The remainder follows directly from Theorem 3.1.

Let us now particularize Theorem 4.1 to the case ρk = 1 for every k ≥
0, which corresponds to the absence of relaxation effects in Algorithm 1. In
this case, when replacing ρk = ρ′ = ρ′′ = 1 into (4.5), we obtain β = 1/3,
recovering the condition on the inertial parameters in [2, Proposition 2.1] in our
inertial proximal point method for solving the strongly quasiconvex minimization
problem (COP) proposed below.

Corollary 4.1. Let K ⊆ Rn be a linear subspace, h : Rn → R be a function such
that assumption (C1) holds. Assume that α ∈ [0, 1[, and {αk}k is nondecreasing
satisfying 0 ≤ αk ≤ αk+1 ≤ α < 1/3, and {ck}k∈N is a sequence of positive
numbers. Then for any sequence {xk}k generated by

(IPPA)


k ← k + 1

yk = xk + αk(xk − xk−1)

xk+1 ∈ Proxckh(K, yk),

(4.12)

we have

(a)

+∞∑
k=1

‖xk − xk−1‖2< +∞;
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(b) for {x} = arg minK h, the limit limk→+∞‖xk − x‖ exists, and hence {xk}
is bounded;

(c) if in addition ck ≥ c′ > 0 for every k ≥ 0, then the sequence {xk}k,
generated by (IPPA), converges to x = arg minK h and limk→+∞ h(xk) =
minK h.

Remark 4.1. Note that if we consider α = 0 in Corollary 4.1, we rediscover
Corollary 3.2.

Next we propose alternatives for the choice of the sequence {ρk}k. To that
end, we consider different upper bounds in Proposition 3.2 (see equation (3.13)).
We resume this in the following remark.

Remark 4.2. (i) Since (2− ρk)/ρk(αk− 1) ≤ (2/ρ′ − 1)αk− 2/ρ′′+ 1, from
relation (3.13), by following the proof of Theorem 4.1, we obtain in (4.9)
that q(·) is given by

q(x) := 2

(
1

ρ′′
− 1

)
x2 −

(
4

ρ′
− 1

)
x+

(
2

ρ′′
− 1

)
. (4.13)

Hence, relation (4.10) should be replaced by

β =
2 (2− ρ′′)(

4

ρ′
− 1

)
ρ′′ +

√√√√[( 4

ρ′
− 1

)2

− 8

]
ρ′′2 + 24ρ′′ − 16

. (4.14)

Therefore, condition (4.5) (the inverse of (4.10) by Lemma 2.5(b)) be-
comes

ρ′′ = ρ′′(β, ρ′) :=
2ρ′(β2 + 1)

2ρ′β2 + (4− ρ′)β + ρ′
. (4.15)

A quadratic function similar to q(·), as defined in (4.13), was also consid-
ered by Alvarez in [1], where for the fulfillment of a condition like (4.6) it
is sufficient that {αk}k is nondecreasing and q(α) > 0.

(ii) Since (2−ρk)/ρk ≥ 2/ρ′′−1 from relation (3.13), we have (in Proposition
4.1) νk = 2 (1− 1/ρ′′)α2

k + 2αk/ρ
′′ for all k ≥ 0. Hence, by following the

proof of Theorem 4.1, we obtain in (4.9) that q(·) is given by

q(x) := 2

(
1

ρ′′
− 1

)
x2 −

(
4

ρ′′
− 1

)
x+

(
2

ρ′′
− 1

)
. (4.16)

Hence, relation (4.10) is replaced by

β =
2(2− ρ′′)

4− ρ′′ +
√

16ρ′′ − 7ρ′′2
. (4.17)
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Therefore, condition (4.5) (the inverse of (4.10) by Lemma 2.5(c)) is

ρ′′ = ρ′′(β) :=
2(β − 1)2

2(β − 1)2 + 3β − 1
. (4.18)

A similar approach considered here has been addressed in [4, Theorem 3.5]
(see also [3, Theorem 2] for aplications to splitting methods in the convex
setting).

(iii) To summarize, we have considered three different types of upper bounds of
the relaxation parameters as a function of the upper bound of the inertial
parameters as shown in Figure 1 below.
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(a) ρ′ = 0.6
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(c) ρ′ = 1.4

Figure 1: Upper bound of the relaxation parameters ρ′′i (β) (i = 1, 2, 3) given in
(4.5), (4.15) and (4.18) as functions of inertial step upper bound β > 0.

Finally we provide the following result for the general quasiconvex case.

Proposition 4.2. Let K ⊆ Rn be a linear subspace, h : Rn → R be a function
such that assumption (C2) holds, and {xk}k and {zk}k be sequences generated
by Algorithm 1. Suppose that α ∈ [0, 1[, 0 < ρ′ ≤ ρ′′ < 2 and {αk}k is nonde-
creasing satisfying the following (for some β > 0):

0 ≤ αk ≤ αk+1 ≤ α < β < 1, ∀ k ≥ 0, (4.19)
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and

ρ′′ = ρ′′(β, ρ′) :=
2ρ′(β2 − β + 1)

2ρ′β2 + (2− ρ′)β + ρ′
. (4.20)

Then,

∞∑
k=1

||xk − xk−1||2 < +∞. (4.21)

If in addition ck ≥ c′ > 0 for every k ≥ 0 and h is bounded from below, then the
sequence {h(xk)}k, generated by Algorithm 1, is convergent.

Proof. Since assumption (C2) holds, for any x∗ ∈ Ω, we set ηk := ‖xk − x∗‖2
for all k ≥ 0. Then we repeat the proof of Theorem 4.1 invoking at the end
Proposition 3.3 instead of Theorem 3.1.

Remark 4.3. The above proposition is complementary to [22, Theorem 3.2]
in the finite dimensional setting and under more flexible assumptions (without
both differentiability and Lipschitz continuity (of the gradient) of the objective
function).

5 Numerical Experiments

In the following we present some computational results obtained in matlab
2019b-Win64 on a Lenovo Yoga 260 Laptop with Windows 10 and an Intel Core
i7 6500U CPU with 2.59 GHz and 16GB RAM by implementing Algorithm 1
and, for comparison, [21, Algorithm 1]. The example treated below does not
stem from a concrete application and is merely meant to present a situation
where the relaxed-inertial proximal point algorithm has a superior performance
to the one of its “simple” proximal point counterpart. As stopping criterion
of the proposed algorithm we considered the situation when the norm of the
differences between the generated sequences {yk}k and {zk}k is not larger than
an a priori given error ε > 0, i. e., ‖zk − yk‖ < ε. The strongly quasiconvex
function we minimized is introduced below.

Example 5.1. Let q ∈ N and h1, h2 : Rn → R, h1(x) =
√
‖x‖ and h2(x) =

‖x‖2 − q. Both h1 and h2 are continuous functions. It is known that h2 is
strongly convex, hence also strongly quasiconvex, while according to [21, Theo-
rem 16] the function h1 is strongly quasiconvex on any convex and bounded set
K ⊆ Rn.

Then the function h : Rn → R defined by h(x) := max{h1(x), h2(x)} is con-
tinuous and strongly quasiconvex (as the maximum of two strongly quasiconvex
functions), without being convex. Note also that arg minRn h = {0}.

Consider the optimization problem (COP) with the objective function h
introduced in Example 5.1 for various values of q ∈ N, and K = Rn. The
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parameter sequences {αk}k, {ρk}k and {ck}k were taken in order to comply
with the theoretical results.

We implemented both the relaxed-inertial proximal point method (Algo-
rithm 1) and the basic proximal point one [21, Algorithm 1] for the same con-
stellations of initial values and parameters. In each case the proximal step
(that occurs in both methods) was computed by employing the Matlab func-
tion fmincon because, as it is unfortunately often the case when dealing with
nonconvex functions, a closed form of the proximity operator of h (even when
K = Rn) is not available yet. Possible ways for determining it could be by
direct calculation or by adapting the method considered in [11] for providing
the one of the root function.

In order to verify the convergence of Algorithm 1 and to compare its per-
formance with the one of [21, Algorithm 1] we considered several constellations
as follows. When n = 3 the differences between the best performance of Algo-
rithm 1 and [21, Algorithm 1] were mostly minimal, the first one turning for
instance to deliver slightly faster an approximate optimal solution to (COP) for
α < β ≈ 0.065 (in order to comply with (4.4) and (4.10), and one could also
use the upper bounds given in Remark 4.2), {αk}k constant, ρ′ = 0.8, ρ′′ = 1.7
and ρk = (1− 1/k)ρ′ + (1/k)ρ′′, k ≥ 0.

Increasing the dimension to n = 5, considering ε = 0.0000001, q = 133, x0 =
[7,−8, 5, 2, 55]>, ρ′ = 0.9, ρ′′ = 1.5, α = 0.125 (in order to comply with (4.4) and
(4.10)), as β ≈ 0.126), c1 = 1, ck+1 = 100/k2 + ck, αk+1 = αk + 1/(900(k+ 1)2)
and ρk = (1 − 1/k)ρ′ + (1/k)ρ′′, k ≥ 0, Algorithm 1 stopped when k = 11,
after 0.9306 seconds, by delivering an approximate optimal solution to (COP),
while [21, Algorithm 1] required 43 iterations and 0.9885 seconds for a similar
output.

In a similar constellation for n = 50 and x0 randomly chosen, Algorithm
1 delivered an approximate optimal solution to (COP) after 13 iterations and
1.1360 seconds, while the basic proximal point algorithm stopped when k = 46,
after 1.5866 seconds.

Increasing the dimension to n = 500, in a similar constellation, when ε =
0.0001 Algorithm 1 stopped after 23 iterations and 4.9289 seconds, while [21, Al-
gorithm 1] needed 43 iterative steps and 9.4276 seconds. Improving the accuracy
of solving (COP) to ε = 0.00001, our algorithm delivered an approximate opti-
mal solution at k = 63 after 15.5450 seconds, in contrast to k = 93 and a time
of 24.7519 required by the basic proximal point algorithm for the same purpose.
The improvements brought by the newly proposed algorithm are best noticed
when the accuracy increases to ε = 0.000001, as it required only 68 iterations
and 16.3472 seconds for solving the problem, while the classical proximal point
method stopped only when k = 1105 after 294.0988 seconds.

Shrinking the bounded set where h is not convex by taking q = 25, when
n = 500 and ε = 0.00001 Algorithm 1 provided the sought approximate optimal
solution to (COP) in 14 iterative steps after 7.8103 seconds, while [21, Algorithm
1] iterated 59 times during 14.6288 seconds to the same end. Tables 1 and 2
summarize the performance of Algorithm 1 compared with [21, Algorithm 1] as
was described above.
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Table 1: Running time (in seconds) and number of iterations performed by
Algorithm 1 and [21, Algorithm 1] to reach the stopping criterion ‖zk−yk‖ < ε,
for n ∈ {5, 50, 500}, where x0 = [7,−8, 5, 2, 55]> for n = 5 and randomly chosen
for the other two cases.

n = 5, ε = 10−6 n = 50, ε = 10−6 n = 500, ε = 10−3

q = 133 Alg. 1 [21, Alg. 1] Alg. 1 [21, Alg. 1] Alg. 1 [21, Alg. 1]

Time (s) 0.9306 0.9885 1.1360 9.4276 4.9289 9.4276
Iterations 11 43 13 46 23 43

Table 2: (Table 1 continued.) Here, we show the comparison of the performance
between Alg. 1 and [21, Algorithm 1] while reaching the stopping criterion
‖zk − yk‖ < ε for n = 500, where x0 is randomly chosen.

ε = 10−4 ε = 10−5 ε = 10−4(q = 25)

n = 500 Alg. 1 [21, Alg. 1] Alg. 1 [21, Alg. 1] Alg. 1 [21, Alg. 1]

Time (s) 15.5450 24.7519 16.3472 294.0988 7.8103 14.6288
Iterations 63 93 68 1105 14 59

Given the flexibility provided by the (sequences of) parameters involved in
Algorithm 1, better results (in terms of both number of iterations and time)
than the one presented above are safe to be expected by fine tuning it, the role
of our experiments being merely to show that this method is indeed faster and
cheaper (with respect to the number of iterations) than the basic proximal point
method. Note also that taking {αk}k as indicated in [5] for the convex case did
not improve the velocity of Algorithm 1 in comparison to the outcomes listed
above. Last but not least, since the optimal solution to (COP) is actually the
origin of the considered Euclidean space, we repeated some of these numerical
experiments by taking as an alternate stopping criterion the situation when the
norm of xk was not larger than ε, i.e., ‖xk‖ < ε. The results were only slightly
different to the ones presented above, exhibiting the same tendency, that is,
Algorithm 1 worked cheaper and faster than [21, Algorithm 1].

6 Conclusions

We have shown that the relaxed-inertial proximal point algorithm proposed
by Attouch and Cabot for solving convex optimization problems remains con-
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vergent when employed for minimizing strongly quasiconvex functions whose
variables lie in finitely dimensional linear subspaces. Numerical experiments
show that this method solves such a problem faster and cheaper than the basic
proximal point algorithm. We also discuss some special cases of the consi-
dered algorithm, where some connections to the existing literature are noted,
and provide some preliminary results on the convergence of the method in the
case of a quasiconvex objective function, that is planned to be approached in
a subsequent work (in order to complement the existing literature on inertial
type proximal point algorithms for minimizing quasiconvex functions). Another
direction worth exploring concerns splitting proximal point methods for mini-
mizing structured (strongly) quasiconvex functions.
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