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Morphological semigroups and corresponding Partial Dierential Equations are equivalent respectively to Hopf-Lax semigroups and the Cauchy problem of a family of rst-order HamiltonJacobi equations. They are related to Maslov idempotent analysis too. The OrnsteinUhlenbeck operator and OrnsteinUhlenbeck semigroup play the role of the Laplacian and the heat kernel semigroup if the Lebesgue measure is replaced by the standard Gaussian measure. In this paper we revisit some contributions on the idempotent analogue of the semigroups associated with the OrnsteinUhlenbeck semigroup, which are based on a Maslov measure, as well as the associated rst-order HamiltonJacobi equation. We study the relevance of the corresponding semigroups in the context of morphological erosions and dilations.

Introduction

Morphological semigroups and corresponding Partial Dierential Equations (PDEs) are equivalent respectively to Hopf-Lax semigroups and the Cauchy problem of a family of rst-order Hamilton-Jacobi equations. More precisely, the following canonic morphological PDE plays a central role in continuous mathematical morphology [START_REF] Alvarez | Axioms and fundamental equations of image processing[END_REF][START_REF] Arehart | Mathematical morphology: The Hamilton-Jacobi connection[END_REF][START_REF] Brockett | Evolution equations for continuous-scale morphology[END_REF][START_REF] Maragos | Dierential morphology and image processing[END_REF]:

∂u ∂t = ± 1 2 ∇u 2 , x ∈ R n , t > 0 u(x, 0) = f (x), x ∈ R n (1) 
such that the corresponding viscosity solutions are given by u(x, t) = sup

y∈R n f (y) - x -y 2 2t (for + sign), (2) 
u(x, t) = inf y∈R n f (y) +

x -y 2 2t (forsign),

which correspond to a dilation (f ⊕ p t ) and an erosion (f p t ) of function f (x) dened as

(f ⊕ p t )(x) = sup y∈R n {f (y) + p t (y -x)} , (4) 
(f p t )(x) = inf y∈R n {f (y) -p t (y -x)} , (5) 
using as structuring function p t (x) the so-called multiscale quadratic (or parabolic) structuring function:

p t (x) = - x 2 2t . (6) 
Due to its properties of semigroup, dimension separability and invariance to transform domain [START_REF] Maragos | Slope Transforms: Theory and Application to Nonlinear Signal Processing[END_REF][START_REF] Jackway | Scale-Space Properties of the Multiscale Morphological Dilation-Erosion[END_REF][START_REF] Van Den Boomgaard | The morphological equivalent of Gaussian scalespace[END_REF], the structuring function p t (x) can be considered as the canonic one in morphology, playing a similar role to the Gaussian kernel in linear ltering [START_REF] Burgeth | An Explanation for the Logarithmic Connection between Linear and Morphological System Theory[END_REF]. An alternative interpretation of the quadratic structuring function as the equivalent of the Gaussian kernel is based on Maslov's idempotent analysis [START_REF] Maslov | Méthodes opératorielles[END_REF][START_REF] Litvinov | Idempotent Functional Analysis: An Algebraic Approach[END_REF].

Other variations of that family of HamiltonJacobi models cover the at morphology by disks [START_REF] Maragos | Dierential morphology and image processing[END_REF]; i.e., u t = ± ∇u , as well as operators with more general P -power concave structuring functions, i.e., u t = ± ∇u P , P > 1. For the application of the latter model to adaptive morphology, see [START_REF] Diop | Multiscale Image Analysis Based on Robust and Adaptive Morphological Scale-Spaces[END_REF]. In the most general case, this family of morphological PDEs and semigroups are formulated in the framework of length spaces [START_REF] Angulo | Morphological PDE and dilation/erosion semigroups on length spaces[END_REF] and a similar counterpart in ultrametric spaces [START_REF] Angulo | Morphological semigroups and scale-spaces on ultrametric spaces[END_REF]. A general theory of morphological counterparts of linear shift-invariant scalespaces based on the Cramér-Fourier transform has been proposed [START_REF] Schmidt | Morphological Counterparts of Linear Shift-Invariant Scale-Spaces[END_REF]. We note that the case considered here is not shift-invariant and therefore it is outside of the scope of that theory.

The OrnsteinUhlenbeck operator and OrnsteinUhlenbeck semigroup play the role of the Laplacian and the heat kernel semigroup if the Lebesgue measure is replaced by the standard Gaussian measure. In this paper we revisit a series of contributions by Avantaggiati and Loreti [START_REF] Avantaggiati | HopfLax type formulas and hypercontractivity[END_REF][START_REF] Avantaggiati | Idempotent aspects of HopfLax type formulas[END_REF][START_REF] Avantaggiati | Lax type formulas with lower semicontinuous initial data and hypercontractivity results[END_REF][START_REF] Avantaggiati | An approximation of Hopf-Lax type formula via idempotent analysis[END_REF], where the idempotent analogue of the semigroups associated with the OrnsteinUhlenbeck semigroup has a simple Maslov measure equivalent of the Gaussian measure, and they are the viscosity solution of a rst-order HamiltonJacobi equation.

Aim and organisation of the paper. In the paper we study and formalise the relevance of the corresponding semigroups in the context of morphological multiscale erosions and dilations for nonlinear signal and image processing. The rest of the paper is organized as follows. Section 2 provides a background on OrnsteinUhlenbeck semigroups and its stochastic interpretation. In Section 3, we introduce OrnsteinUhlenbeck morphological operators and study their properties, in particular the corresponding semigroups. The OrnsteinUhlenbeck morphological PDE is considered in Section 4. Section 5 presents some preliminary experiment on the application of these semigroups. Conclusions and perspectives close the paper in Section 6.

2 Background: OrnsteinUhlenbeck operator and semigroups OrnsteinUhlenbeck (OU) semigroups can be introduced from either a functional analysis viewpoint or a stochastic dierential equation viewpoint. We briey revisit the main elements of both theories, see classical references [START_REF] Davies | Heat kernels and spectral theory[END_REF][START_REF] Bogachev | Gaussian Measures[END_REF].

Working on X = L 2 (R n ), the Laplacian of a function f ∈ X, ∆f (x) = (div • ∇f ) (x), is the innitesimal generator of the heat semigroup P t . Namely, given any function f , there exists the limit lim

t→0 + Ptf -f t = ∆f .
We recall that the heat semigroup is just given by the convolution of f with a Gaussian kernel, i.e.,

P t (f )(x) = 1 (4πt) n/2 R f (y)e -x-y 2 /4t dy, t > 0.
The OU operator and semigroup play the role of the Laplacian and the heat kernel semigroup if the Lebesgue measure dµ is replaced by the standard Gaussian measure dγ α , with parameter α > 0:

dγ α (y) = (2π) -n/2 exp(-(α y 2 )/2)dy.
Let us consider that we are working on the space of the bounded and continuous functions C b (X). The OU semigroup is dened by the family of scale operators

N α t f (x) = X f e -αt x + 1 -e -2αt y dγ α (y), t ≥ 0, α > 0.
The OU semigroup {N α t } t≥0 is a linear operator satisfying the following properties: For any function f ∈ C b (X) and any α > 0, t, s ≥ 0,

(Preservation of positivity)

N α 0 = Id. 2. (Conservative) N α t 1 = 1 and N α t f ≥ 0 if f ≥ 0. 3. (Contractive) N α t f ∞ ≤ f ∞ . 4. (Additive semigroup) N α t • N α s = N α t+s . 5. (Continuity and convergence) The map t → N α t f is continuous from R + to L 2 (R n , dγ α ) and lim t→0 + N α t f (x) = f (x), ∀x ∈ X. 6. (Invariant measure) The Gaussian measure is the unique invariant probabil- ity measure, i.e., X N α t f dγ α = X f dγ α . More generally, for f, g ∈ C b (X), one has X g(x)N α t f (x)dγ α (x) = X f (x)N α t g(x)dγ α (x).
The OU dierential operator is a generalization of the Laplace operator ∆:

L α f (x) := ∆f (x) -αx • ∇f (x), α > 0.
This operator is the innitesimal generator of the OU semigroup. Namely,

∂ ∂t N α t f (x) = L α (N α t f ) (x) = N α t (L α f ) (x) = ∆N α t f (x) -αx • ∇N α t f (x), with ∂ ∂t N α t f (x)| t=0 = ∆f (x) -αx • ∇f (x).
Let us now consider the stochastic viewpoint. The OU process is a stochastic Markov process viewed as a modication of the random walk which tends to drift back towards its long-term mean (mean reverting), with a greater attraction when the process is further from the central location. It can be physically viewed as the model of the velocity of a massive Brownian particle under the inuence of friction. More precisely, an OU process X t satises the following SDE:

dX t = θ (µ -X t ) dt + σdB t ,
where the parameters are θ > 0, µ and σ > 0 and B t is a Brownian process.

There is also a relationship with the FokkerPlanck equation representation, which provides the linear parabolic PDE for the probability density function p(x, t) of the random variable described by a SDE. In the particular case of the OU SDE, the FokkerPlanck equation is

∂p ∂t = θ ∂p ∂x [(x -µ)p] + σ 2 2 ∂ 2 p ∂x 2 .
Its Green function for an initial condition consisting of a unit point mass at location x 0 is given by a Gaussian distribution with mean: µ + (x 0 -µ)e -θt = x 0 e -θt + 1 -e -θt µ and variance:

σ 2 2θ 1 -e -2θt
. The stationary solution of this equation is the limit for t → +∞, which is the Gaussian distribution with mean µ and variance σ 2 /(2θ).

OrnsteinUhlenbeck Erosion and Dilation semigroups

Theoretical foundations of Maslov idempotent measure theory [START_REF] Moral | Maslov Optimization Theory: Optimality versus Randomness[END_REF][START_REF] Akian | Densities of idempotent measures and large deviations[END_REF] are based on replacing in the structural axioms of probability theory the role of the classical semiring S (+,×) = (R + , +, ×, 0, 1, ≤) of positive real numbers by the idempotent semiring: S (max,+) = ( R, max, +, -∞, 0, ≤). In this context, a change of the measure involves a consistent counterpart to the standard probability theory.

Indeed, we can start by considering that the counterpart of the Gaussian measure dγ α (x) in standard (+, ×)-analysis is the quadratic one in (max, +)analysis:

dγ α (x) = (2π) -n/2 exp(-(α x 2 )/2)dx analogy -------→ idempotent dm α (x) = α x 2 , α > 0

OU erosion, adjoint dilation and complement dilation

It seems natural to conjecture that the multiscale OU erosion for any f : X → R is given by

E α t f (x) = inf z∈X f e -αt x + 1 -e -2αt z + dm α (z) = inf z∈X f e -αt x + 1 -e -2αt z + α z 2 = inf y∈X f (y) + α 1 -e -2αt e -αt x -y 2 . ( 7 
)
The last step is just based on the change of variable

y = e -αt x + 1 -e -2αt z ⇐⇒ z = 1 -e -2αt -1/2 y -e -αt x .
The erosion E α t can be seen as a generalization of the quadratic canonic operators when α → 0, i.e., e -2αt ≈ 1 -2αt, then α 1-e -2αt → 1 2t . From an algebraic viewpoint, one can say that E α t , t ≥ 0, α > 0, is an erosion since the following two properties hold:

1. (Increaseness) If f (x) ≤ g(x), ∀x ∈ X, then E α t f (x) ≤ E α t g(x), ∀x ∈ X.
2. (Commutation with inmum) For any f, g : X → R,

E α t (f ∧ g) (x) = E α t f (x) ∧ E α t g(x), ∀x ∈ X.
The proof is obvious from the property of the inmum. The second one is a particular case of the linearity in the sense of the (min, +) of semiring of

R min = R ∪ {+∞}: ∀λ ∈ R min , E α t (λ + (f ∧ g)) = λ + [E α t f ∧ E α t g].
We can now introduce the corresponding multi-scale dilation by means of the adjunction property. Proposition 1. For every function f : X → R, and for any t ≥ 0 and α > 0, the adjoint OU dilation to E α t is given by

D α t f (x) = sup y∈X f (y) - α 1 -e -2αt e -αt y -x 2 , (8) 
Therefore, the duality by adjunction is satised, i.e., for any two functions f and g, the pair (D α t , E α t ) provides the relationship

D α t f (x) ≤ g(x) ⇐⇒ f (x) ≤ E α t g(x), ∀x ∈ X. (9) 
It is easy to prove that the operator D α t is increasing; i.e., if f (x) ≤ g(x), ∀x ∈ X, then D α t f (x) ≤ D α t g(x) and commutates with the supremum; i.e., for any f and g,

D α t (f ∨ g) (x) = D α t f (x) ∨ D α t g(x)
. Therefore we state that it is dilation.

The composition of the adjoint pair (D α t , E α t ) provides morphological multiscale opening and closing. The study of the corresponding OU morphological lters is out of the scope of this paper.

There is another dilation associated to E α t which can be introduced by the duality associated to the complement (involution by negative, i.e., f → -f ), named here OU complement dilation Dα t and given by

Dα t f (x) = -E α t (-f ) (x) = -inf y∈X -f (y) + α 1 -e -2αt e -αt x -y 2 = sup y∈X f (y) - α 1 -e -2αt e -αt x -y 2 .
(10)

Semigroup property

The property of additive semigroup of the OU erosion and the complement O U dilation gives us the basics to use these operators in the context of scale-space signal and image processing.

Proposition 2. For any function f : X → R, and for any pair of scale parameters t, s ≥ 0, we have a semigroup for the OU erosion and the OU complement dilation:

E α t E α s f (x) = E α t+s f (x) (11) Dα t Dα s f (x) = Dα t+s f (x) (12) 
A proof for the semigroups associated to more general Hamiltonians is provided in [START_REF] Avantaggiati | HopfLax type formulas and hypercontractivity[END_REF]. For the sake of understanding of their behaviour, we provide here a proof for the one-dimensional case.

Proof. Let's consider X ⊆ R. For any t and s and given α, starting from s+t) x + e -αs 1 -e -2αt z + 1 -e -2αs w + αw 2 + αz 2 .

E α s f (x) = inf w∈X f e -αs x + 1 -e -2αs w + αw 2 , one has that E α t E α s f (x) = inf z∈X inf w∈X f e -αs xe -αt + 1 -e -2αt z + 1 -e -2αs w + αw 2 + αz 2 = inf z∈X inf w∈X f e -α(
The following change of variable (z, w) → (u, v) is considered

e -αs √ 1 -e -2αt z + √ 1 -e -2αs w = √ 1 -e -2α(s+t) u - √
1 -e -2αs z + e -αs √ 1 -e -2αt w = v

Squaring and adding gives

1 -e -2α(t+s) (z 2 + w 2 ) = (1 -e -2α(t+s) )u 2 + v 2 ,
and thus

z 2 + w 2 = u 2 + 1 1 -e -2α(t+s) v 2 .
Introducing the new variables, one has

inf z∈X inf w∈X f e -α(s+t) x + e -αs 1 -e -2αt z + 1 -e -2αs w + αw 2 + αz 2 = inf u∈X inf v∈X f e -α(s+t) x + 1 -e -2α(s+t) u + αu 2 + α 1 -e -2α(t+s) v 2 .
We note that the sum of the rst two terms does not depend on v and the minimum with respect to v will correspond to v = 0. So in conclusion we obtain:

inf u∈X f e -α(t+s) x + 1 -e -2α(t+s) u + αu 2 = E α t+s f (u).
Similarly for Dα t just using its denition by complement.

Other properties

Coming back to the link with Maslov's measures, we have the following result.

Proposition 3 [START_REF] Avantaggiati | Idempotent aspects of HopfLax type formulas[END_REF]. The Maslov measure dm α (x) = α x 2 is (min, +) idempotent invariant with respect to the OU erosion in the sense that for any f, g : X → R min we have

inf x∈X {g(x) + E α t f (x) + dm α (x)} = inf x∈X {f (x) + E α t g(x) + dm α (x)} , (13) 
with the particular case g(x) = +∞, ∀x ∈ X, which yields

inf x∈X E α t f (x) + α x 2 = inf x∈X f (x) + α x 2 . ( 14 
)
The invariance of the idempotent measure with respect to the erosion semigroup consistently provides an additional feature of the major role played by dm α (x) = α x 2 as counterpart of the Gaussian measure in morphological operators. Finally, let us consider a property of regularization for Lipschitz functions which is another fundamental aspect of morphological semigroups [START_REF] Angulo | Lipschitz Regularization of Images supported on Surfaces using Riemannian Morphological Operators[END_REF]. Proposition 4. Let f : K → R be a Lipschitz function of constant L dened on a compact set K. Then there exists a constant K such that for any t > 0 and α > 0 one has

|E α t f (x) -f (x)| ≤ K 1 -e -αt (15) 
where K depends on L, α, t and the diameter of the set K. A similar result is obtained for the OU dilation semigroup.

The proof is provided in [START_REF] Avantaggiati | HopfLax type formulas and hypercontractivity[END_REF] as part of other results.

OrnsteinUhlenbeck morphological PDE

The OrnsteinUhlenbeck morphological PDE with parameter α > 0 as a Cauchy problem is given by

∂u ∂t = -1 2 ∇u 2 -αx • ∇u, x ∈ R n , t > 0 u(x, 0) = f (x), x ∈ R n (16) 
such that the corresponding viscosity solutions are given by

u(x, t) = inf y∈X f (y) + α 1 -e -2αt e -αt x -y 2 ,
which thus corresponds to the OU erosion E α t ; i.e., u(x, t) = E α t f (x). We note that α = 0 provides the canonic morphological PDE (1).

Heuristic derivation using the semigroup property

Without providing a rigorous proof of the viscosity solution, let us sketch a heuristic derivation. First, we note that u(x, t + s) = inf y∈X u(y, t) + α 1 -e -2αs e -αs x -y 2 .

Thus, using the same semigroup property, one has for 0 ≤ s < t and for all

y ∈ R n u(x, t) ≤ u(y, s) + α 1 -e -2α(t-s) y -e -α(t-s) x 2 u(x, t) -u(y, s) ≤ α 1 -e -2α(t-s) y -e -α(t-s) x 2 .
We set now h = 1 -e -α(t-s) ; y -e -α(t-s) x = -hz which implies

s = t - 1 α log 1 1 -h ; y = x -h(x + z).
Using that change of variable, we have

u(x, t) -u x -h(x + z), t - 1 α log 1 1 -h ≤ α 1 -(1 -h) 2 hz 2 u(x, t) -u x -h(x + z), t -1 α log 1 1-h h ≤ αh 1 -(1 -h) 2 z 2 Noticing that lim h→0 + h 1 -(1 -h) 2 = 1 2
we can consider the limit when h → 0 and to introduce the gradient and get

∇u(x, t)(x + z) + 1 α ∂u ∂t (x, t) ≤ α 2 z 2 .
For any

z ∈ R n , z • ∇u(x, t) -α 1 2 z 2 = 1 α αz • ∇u(x, t) - 1 2 αz 2 .
Finally, using the LegendreFenchel transform of the quadratic norm 

General Hamiltonian

The previous OU morphological PDE is just a particular case of a family of Cauchy problems for that class of HamiltonJacobi equations, with a Hamiltonian which will depend on a parameter p > 1, such that p = 2 corresponds to [START_REF] Jackway | Scale-Space Properties of the Multiscale Morphological Dilation-Erosion[END_REF]. This PDE has been formulated and studied for initial data fullling the Lipschitz condition in [START_REF] Avantaggiati | HopfLax type formulas and hypercontractivity[END_REF] and for initial data being lower semicontinuous in [START_REF] Avantaggiati | Lax type formulas with lower semicontinuous initial data and hypercontractivity results[END_REF]. We provide their main original result.

Theorem 1 [START_REF] Avantaggiati | HopfLax type formulas and hypercontractivity[END_REF]. Let us assume a Lipschitz continuous function f : R n → R, which will be the initial condition for the following initial-value HamiltonJacobi rst-order partial dierential equation

u t (x, t) + H (Du(x, t)) + αx • Du(x, t) = 0, in R n × (0, +∞), u(x, 0) = f (x), in R n , (17) 
Let us assume that the Hamiltonian H : R n → R is an even, non-negative, convex function and positively homogenous of degree p, with p > 1. Then the viscosity solution of the Cauchy problem [START_REF] Maragos | Slope Transforms: Theory and Application to Nonlinear Signal Processing[END_REF] is given by the following HopfLaxOleinik semigroup:

u(x, t) = inf z∈R n f e -αt x + 1 -e -αpt αp 1/p z + L(z) (18) 
= inf

y∈R n f (y) + αp 1 -e -αpt q-1 L y -e -αt x , (19) 
where the Lagrangian L(q) is the one-dimensional LegendreFenchel transform of the function H(p), i.e., L(q) = H * (q) = sup

p∈R+ {p q -H(p)} , q ∈ R + . (20) 
We note that, by standard results on the LegendreFenchel transform, L is also an even, non-negative, convex function and positively homogenous of degree q, with 1 p + 1 q = 1. The corresponding semigroups have therefore a more general form which depends on the shape parameter p.

Preliminary experiments

For the preliminary experiments of this paper, we are illustrating the eects of the morphological semigroups on 1D signals; i.e., X ⊂ R. Let us rst consider the shape of the multiscale structuring functions of the OU erosion and associated dilations. We dene the OU structuring function as

q α t (x, y) = - α 1 -e -2αs e -αs x -y 2 , x, y ∈ X, (21) 
such that E α t f (x) = inf y∈X {f (y) -q α t (x, y)} and Dα t f (x) = sup y∈X {f (y) + q α t (x, y)}. We remind from (6) that lim α→0 q α t (x, y) = p t (x -y). In Fig. 1, the structuring functions q α t (x, y) and p t (x -y) are compared with respect to variations on α, with xed scale t = 1. In the plots, we x the point x where the structuring function is centered. As expected for α close to zero, Fig. 1(a), one has just parabolic structuring functions which are translated. When α increases, Fig. 1(b)-(c), the structuring function is attracted to the origin which involves that the maximum of the concave function is not located at x and therefore the OU erosion is not anti-extensive. For large α, Fig. 1(d), structuring functions are deformed and introduced a signicantly higher eect of penalization for the same t. 

Conclusions and Perspectives

The OU morphological semigroups satisfy the dimensionality separability property on the space, with potentially dierent parameters α 1 , • • • , α n for each dimension of X. Using this property, we will explore the formulation of spatiotemporal morphological semigroups with appropiate α for space and time.

We will consider the stochastic viewpoint of OU semigroups to formalize the morphological counterpart. Our starting viewpoint will be similar to that of BellmanMaslov random walks that was proposed in [START_REF] Angulo | Stochastic Morphological Filtering and Bellman-Maslov Chains[END_REF].

Finally, the evolution of shape of the generalized OU structuring functions including a power parameter p with respect to α should be studied.
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 12 Fig. 1. OU structuring function q α t (x, y) compared with respect to variations on α, with xed scale t = 1: (a) α = 0.01, (b) α = 1, (c) α = 1.5, (d) α = 2. We x the point x where the structuring function is centered.