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Abstract. Morphological semigroups and corresponding Partial Di�er-
ential Equations are equivalent respectively to Hopf-Lax semigroups and
the Cauchy problem of a family of �rst-order Hamilton�Jacobi equations.
They are related to Maslov idempotent analysis too.

The Ornstein�Uhlenbeck operator and Ornstein�Uhlenbeck semigroup
play the role of the Laplacian and the heat kernel semigroup if the
Lebesgue measure is replaced by the standard Gaussian measure.

In this paper we revisit some contributions on the idempotent analogue
of the semigroups associated with the Ornstein�Uhlenbeck semigroup,
which are based on a Maslov measure, as well as the associated �rst-order
Hamilton�Jacobi equation. We study the relevance of the corresponding
semigroups in the context of morphological erosions and dilations.

Keywords: Ornstein�Uhlenbeck operator; Hamilton�Jacobi pde; math-
ematical morphology; morphological semigroups

1 Introduction

Morphological semigroups and corresponding Partial Di�erential Equations (PDEs)
are equivalent respectively to Hopf-Lax semigroups and the Cauchy problem of
a family of �rst-order Hamilton-Jacobi equations. More precisely, the follow-
ing canonic morphological PDE plays a central role in continuous mathematical
morphology [2,7,13,18]:{

∂u
∂t = ± 1

2‖∇u‖
2, x ∈ Rn, t > 0

u(x, 0) = f(x), x ∈ Rn (1)

such that the corresponding viscosity solutions are given by

u(x, t) = sup
y∈Rn

{
f(y)− ‖x− y‖

2

2t

}
(for + sign), (2)

u(x, t) = inf
y∈Rn

{
f(y) +

‖x− y‖2

2t

}
(for − sign), (3)



which correspond to a dilation (f ⊕ pt) and an erosion (f 	 pt) of function f(x)
de�ned as

(f ⊕ pt)(x) = sup
y∈Rn

{f(y) + pt(y − x)} , (4)

(f 	 pt)(x) = inf
y∈Rn

{f(y)− pt(y − x)} , (5)

using as structuring function pt(x) the so-called multiscale quadratic (or parabolic)
structuring function:

pt(x) = −‖x‖
2

2t
. (6)

Due to its properties of semigroup, dimension separability and invariance to
transform domain [17,16,12], the structuring function pt(x) can be considered
as the canonic one in morphology, playing a similar role to the Gaussian kernel
in linear �ltering [14]. An alternative interpretation of the quadratic structuring
function as the equivalent of the Gaussian kernel is based on Maslov's idempotent
analysis [22,21].

Other variations of that family of Hamilton�Jacobi models cover the �at mor-
phology by disks [18]; i.e., ut = ±‖∇u‖, as well as operators with more general
P -power concave structuring functions, i.e., ut = ±‖∇u‖P , P > 1. For the appli-
cation of the latter model to adaptive morphology, see [15]. In the most general
case, this family of morphological PDEs and semigroups are formulated in the
framework of length spaces [5] and a similar counterpart in ultrametric spaces [6].
A general theory of morphological counterparts of linear shift-invariant scale-
spaces based on the Cramér-Fourier transform has been proposed [24]. We note
that the case considered here is not shift-invariant and therefore it is outside of
the scope of that theory.

The Ornstein�Uhlenbeck operator and Ornstein�Uhlenbeck semigroup play
the role of the Laplacian and the heat kernel semigroup if the Lebesgue measure
is replaced by the standard Gaussian measure. In this paper we revisit a series
of contributions by Avantaggiati and Loreti [8,9,10,11], where the idempotent
analogue of the semigroups associated with the Ornstein�Uhlenbeck semigroup
has a simple Maslov measure equivalent of the Gaussian measure, and they are
the viscosity solution of a �rst-order Hamilton�Jacobi equation.

Aim and organisation of the paper. In the paper we study and formalise
the relevance of the corresponding semigroups in the context of morphological
multiscale erosions and dilations for nonlinear signal and image processing. The
rest of the paper is organized as follows. Section 2 provides a background on
Ornstein�Uhlenbeck semigroups and its stochastic interpretation. In Section 3,
we introduce Ornstein�Uhlenbeck morphological operators and study their prop-
erties, in particular the corresponding semigroups. The Ornstein�Uhlenbeck mor-
phological PDE is considered in Section 4. Section 5 presents some preliminary
experiment on the application of these semigroups. Conclusions and perspectives
close the paper in Section 6.



2 Background: Ornstein�Uhlenbeck operator and

semigroups

Ornstein�Uhlenbeck (O�U) semigroups can be introduced from either a func-
tional analysis viewpoint or a stochastic di�erential equation viewpoint. We
brie�y revisit the main elements of both theories, see classical references [20,19].

Working on X = L2(Rn), the Laplacian of a function f ∈ X, ∆f(x) =
(div ◦ ∇f) (x), is the in�nitesimal generator of the heat semigroup Pt. Namely,
given any function f , there exists the limit lim

t→0+

Ptf−f
t = ∆f . We recall that the

heat semigroup is just given by the convolution of f with a Gaussian kernel, i.e.,
Pt(f)(x) = 1

(4πt)n/2

∫
R f(y)e−‖x−y‖

2/4tdy, t > 0.

The O�U operator and semigroup play the role of the Laplacian and the
heat kernel semigroup if the Lebesgue measure dµ is replaced by the standard
Gaussian measure dγα, with parameter α > 0:

dγα(y) = (2π)−n/2 exp(−(α‖y‖2)/2)dy.

Let us consider that we are working on the space of the bounded and continuous
functions Cb(X). The O�U semigroup is de�ned by the family of scale operators

Nα
t f(x) =

∫
X

f
(
e−αtx+

√
1− e−2αty

)
dγα(y), t ≥ 0, α > 0.

The O�U semigroup {Nα
t }t≥0 is a linear operator satisfying the following prop-

erties: For any function f ∈ Cb(X) and any α > 0, t, s ≥ 0,

1. (Preservation of positivity) Nα
0 = Id.

2. (Conservative) Nα
t 1 = 1 and Nα

t f ≥ 0 if f ≥ 0.
3. (Contractive) ‖Nα

t f‖∞ ≤ ‖f‖∞.
4. (Additive semigroup) Nα

t ◦Nα
s = Nα

t+s.
5. (Continuity and convergence) The map t→ Nα

t f is continuous from R+ to
L2(Rn,dγα) and lim

t→0+
Nα
t f(x) = f(x), ∀x ∈ X.

6. (Invariant measure) The Gaussian measure is the unique invariant probabil-
ity measure, i.e.,

∫
X
Nα
t fdγα =

∫
X
fdγα. More generally, for f, g ∈ Cb(X),

one has
∫
X
g(x)Nα

t f(x)dγα(x) =
∫
X
f(x)Nα

t g(x)dγα(x).

The O�U di�erential operator is a generalization of the Laplace operator ∆:

Lαf(x) := ∆f(x)− αx · ∇f(x), α > 0.

This operator is the in�nitesimal generator of the O�U semigroup. Namely,
∂
∂tN

α
t f(x) = Lα (Nα

t f) (x) = Nα
t (Lαf) (x) = ∆Nα

t f(x) − αx · ∇Nα
t f(x), with

∂
∂tN

α
t f(x)|t=0 = ∆f(x)− αx · ∇f(x).

Let us now consider the stochastic viewpoint. The O�U process is a stochastic
Markov process viewed as a modi�cation of the random walk which tends to drift
back towards its long-term mean (mean reverting), with a greater attraction



when the process is further from the central location. It can be physically viewed
as the model of the velocity of a massive Brownian particle under the in�uence
of friction. More precisely, an O�U process Xt satis�es the following SDE:

dXt = θ (µ−Xt) dt+ σdBt,

where the parameters are θ > 0, µ and σ > 0 and Bt is a Brownian process.
There is also a relationship with the Fokker�Planck equation representation,

which provides the linear parabolic PDE for the probability density function
p(x, t) of the random variable described by a SDE. In the particular case of the
O�U SDE, the Fokker�Planck equation is

∂p

∂t
= θ

∂p

∂x
[(x− µ)p] +

σ2

2

∂2p

∂x2
.

Its Green function for an initial condition consisting of a unit point mass at
location x0 is given by a Gaussian distribution with mean: µ + (x0 − µ)e−θt =

x0e
−θt +

(
1− e−θt

)
µ and variance: σ

2

2θ

(
1− e−2θt

)
.

The stationary solution of this equation is the limit for t → +∞, which is
the Gaussian distribution with mean µ and variance σ2/(2θ).

3 Ornstein�Uhlenbeck Erosion and Dilation semigroups

Theoretical foundations of Maslov idempotent measure theory [23,1] are based
on replacing in the structural axioms of probability theory the role of the classical
semiring S(+,×) = (R+,+,×, 0, 1,≤) of positive real numbers by the idempotent
semiring: S(max,+) = (R̄,max,+,−∞, 0,≤). In this context, a change of the
measure involves a consistent counterpart to the standard probability theory.

Indeed, we can start by considering that the counterpart of the Gaussian
measure dγα(x) in standard (+,×)-analysis is the quadratic one in (max,+)-
analysis:

dγα(x) = (2π)−n/2 exp(−(α‖x‖2)/2)dx
analogy−−−−−−−→

idempotent
dmα(x) = α‖x‖2, α > 0

3.1 O�U erosion, adjoint dilation and complement dilation

It seems natural to conjecture that the multiscale O�U erosion for any f : X → R̄
is given by

Eαt f(x) = inf
z∈X

{
f
(
e−αtx+

√
1− e−2αtz

)
+ dmα(z)

}
= inf
z∈X

{
f
(
e−αtx+

√
1− e−2αtz

)
+ α‖z‖2

}
= inf
y∈X

{
f(y) +

α

1− e−2αt
‖e−αtx− y‖2

}
. (7)



The last step is just based on the change of variable

y = e−αtx+
√

1− e−2αtz ⇐⇒ z =
(
1− e−2αt

)−1/2 (
y − e−αtx

)
.

The erosion Eαt can be seen as a generalization of the quadratic canonic operators
when α→ 0, i.e., e−2αt ≈ 1− 2αt, then α

1−e−2αt → 1
2t .

From an algebraic viewpoint, one can say that Eαt , t ≥ 0, α > 0, is an erosion
since the following two properties hold:

1. (Increaseness) If f(x) ≤ g(x), ∀x ∈ X, then

Eαt f(x) ≤ Eαt g(x), ∀x ∈ X.

2. (Commutation with in�mum) For any f, g : X → R̄,

Eαt (f ∧ g) (x) = Eαt f(x) ∧ Eαt g(x), ∀x ∈ X.

The proof is obvious from the property of the in�mum. The second one is a
particular case of the linearity in the sense of the (min,+) of semiring of Rmin =
R ∪ {+∞}: ∀λ ∈ Rmin, E

α
t (λ+ (f ∧ g)) = λ+ [Eαt f ∧ Eαt g].

We can now introduce the corresponding multi-scale dilation by means of the
adjunction property.

Proposition 1. For every function f : X → R̄, and for any t ≥ 0 and α > 0,
the adjoint O�U dilation to Eαt is given by

Dα
t f(x) = sup

y∈X

{
f(y)− α

1− e−2αt
‖e−αty − x‖2

}
, (8)

Therefore, the duality by adjunction is satis�ed, i.e., for any two functions f
and g, the pair (Dα

t , E
α
t ) provides the relationship

Dα
t f(x) ≤ g(x)⇐⇒ f(x) ≤ Eαt g(x), ∀x ∈ X. (9)

It is easy to prove that the operator Dα
t is increasing; i.e., if f(x) ≤ g(x),

∀x ∈ X, then Dα
t f(x) ≤ Dα

t g(x) and commutates with the supremum; i.e., for
any f and g, Dα

t (f ∨ g) (x) = Dα
t f(x) ∨ Dα

t g(x). Therefore we state that it is
dilation.

The composition of the adjoint pair (Dα
t , E

α
t ) provides morphological multi-

scale opening and closing. The study of the corresponding O�U morphological
�lters is out of the scope of this paper.

There is another dilation associated to Eαt which can be introduced by the
duality associated to the complement (involution by negative, i.e., f 7→ −f),
named here O�U complement dilation D̄α

t and given by

D̄α
t f(x) = −Eαt (−f) (x) = − inf

y∈X

{
−f(y) +

α

1− e−2αt
‖e−αtx− y‖2

}
= sup
y∈X

{
f(y)− α

1− e−2αt
‖e−αtx− y‖2

}
. (10)



3.2 Semigroup property

The property of additive semigroup of the O�U erosion and the complement O�
U dilation gives us the basics to use these operators in the context of scale-space
signal and image processing.

Proposition 2. For any function f : X → R̄, and for any pair of scale parame-
ters t, s ≥ 0, we have a semigroup for the O�U erosion and the O�U complement
dilation:

Eαt E
α
s f(x) = Eαt+sf(x) (11)

D̄α
t D̄

α
s f(x) = D̄α

t+sf(x) (12)

A proof for the semigroups associated to more general Hamiltonians is provided
in [8]. For the sake of understanding of their behaviour, we provide here a proof
for the one-dimensional case.

Proof. Let's consider X ⊆ R. For any t and s and given α, starting from

Eαs f(x) = inf
w∈X

{
f
(
e−αsx+

√
1− e−2αsw

)
+ αw2

}
,

one has that Eαt E
α
s f(x) =

inf
z∈X

{
inf
w∈X

[
f
(
e−αs

(
xe−αt +

√
1− e−2αtz

)
+
√

1− e−2αsw
)

+ αw2
]

+ αz2
}

=

inf
z∈X

{
inf
w∈X

[
f
(
e−α(s+t)x+ e−αs

√
1− e−2αtz +

√
1− e−2αsw

)
+ αw2

]
+ αz2

}
.

The following change of variable (z, w)→ (u, v) is considered{
e−αs

√
1− e−2αtz +

√
1− e−2αsw =

√
1− e−2α(s+t)u

−
√

1− e−2αsz + e−αs
√

1− e−2αtw = v

Squaring and adding gives(
1− e−2α(t+s)

)
(z2 + w2) = (1− e−2α(t+s))u2 + v2,

and thus

z2 + w2 = u2 +
1

1− e−2α(t+s)
v2.

Introducing the new variables, one has

inf
z∈X

{
inf
w∈X

[
f
(
e−α(s+t)x+ e−αs

√
1− e−2αtz +

√
1− e−2αsw

)
+ αw2

]
+ αz2

}
=

inf
u∈X

{
inf
v∈X

[
f
(
e−α(s+t)x+

√
1− e−2α(s+t)u

)
+ αu2

]
+

α

1− e−2α(t+s)
v2
}
.

We note that the sum of the �rst two terms does not depend on v and the
minimum with respect to v will correspond to v = 0. So in conclusion we obtain:

inf
u∈X

{
f
(
e−α(t+s)x+

√
1− e−2α(t+s)u

)
+ αu2

}
= Eαt+sf(u).

Similarly for D̄α
t just using its de�nition by complement.



3.3 Other properties

Coming back to the link with Maslov's measures, we have the following result.

Proposition 3 (Avantaggiati and Loreti, 2009). The Maslov measure dmα(x) =
α‖x‖2 is (min,+) idempotent invariant with respect to the O�U erosion in the
sense that for any f, g : X → Rmin we have

inf
x∈X
{g(x) + Eαt f(x) + dmα(x)} = inf

x∈X
{f(x) + Eαt g(x) + dmα(x)} , (13)

with the particular case g(x) = +∞, ∀x ∈ X, which yields

inf
x∈X

{
Eαt f(x) + α‖x‖2

}
= inf
x∈X

{
f(x) + α‖x‖2

}
. (14)

The invariance of the idempotent measure with respect to the erosion semigroup
consistently provides an additional feature of the major role played by dmα(x) =
α‖x‖2 as counterpart of the Gaussian measure in morphological operators.

Finally, let us consider a property of regularization for Lipschitz functions
which is another fundamental aspect of morphological semigroups [4].

Proposition 4. Let f : K → R̄ be a Lipschitz function of constant L de�ned
on a compact set K. Then there exists a constant K such that for any t > 0 and
α > 0 one has

|Eαt f(x)− f(x)| ≤ K
(
1− e−αt

)
(15)

where K depends on L, α, t and the diameter of the set K. A similar result is
obtained for the O�U dilation semigroup.

The proof is provided in [8] as part of other results.

4 Ornstein�Uhlenbeck morphological PDE

The Ornstein�Uhlenbeck morphological PDE with parameter α > 0 as a Cauchy
problem is given by{

∂u
∂t = − 1

2‖∇u‖
2 − αx · ∇u, x ∈ Rn, t > 0

u(x, 0) = f(x), x ∈ Rn (16)

such that the corresponding viscosity solutions are given by

u(x, t) = inf
y∈X

{
f(y) +

α

1− e−2αt
‖e−αtx− y‖2

}
,

which thus corresponds to the O�U erosion Eαt ; i.e., u(x, t) = Eαt f(x). We note
that α = 0 provides the canonic morphological PDE (1).



4.1 Heuristic derivation using the semigroup property

Without providing a rigorous proof of the viscosity solution, let us sketch a
heuristic derivation. First, we note that

u(x, t+ s) = inf
y∈X

{
u(y, t) +

α

1− e−2αs
‖e−αsx− y‖2

}
.

Thus, using the same semigroup property, one has for 0 ≤ s < t and for all
y ∈ Rn

u(x, t) ≤ u(y, s) +
α

1− e−2α(t−s)
‖y − e−α(t−s)x‖2

u(x, t)− u(y, s) ≤ α

1− e−2α(t−s)
‖y − e−α(t−s)x‖2.

We set now

h = 1− e−α(t−s); y − e−α(t−s)x = −hz

which implies

s = t− 1

α
log

1

1− h
; y = x− h(x+ z).

Using that change of variable, we have

u(x, t)− u
(
x− h(x+ z), t− 1

α
log

1

1− h

)
≤ α

1− (1− h)2
‖hz‖2

u(x, t)− u
(
x− h(x+ z), t− 1

α log 1
1−h

)
h

≤ αh

1− (1− h)2
‖z‖2

Noticing that

lim
h→0+

h

1− (1− h)2
=

1

2

we can consider the limit when h→ 0 and to introduce the gradient and get

∇u(x, t)(x+ z) +
1

α

∂u

∂t
(x, t) ≤ α

2
‖z‖2.

For any z ∈ Rn,

z · ∇u(x, t)− α1

2
‖z‖2 =

1

α

(
αz · ∇u(x, t)− 1

2
‖αz‖2

)
.

Finally, using the Legendre�Fenchel transform of the quadratic norm 1
2‖ · ‖

2, it
is obtained

∂u

∂t
(x, t) + αx · ∇u(x, t) +

1

2
‖∇u‖2 ≤ 0.



4.2 General Hamiltonian

The previous O�U morphological PDE is just a particular case of a family of
Cauchy problems for that class of Hamilton�Jacobi equations, with a Hamil-
tonian which will depend on a parameter p > 1, such that p = 2 corresponds
to (16). This PDE has been formulated and studied for initial data ful�lling the
Lipschitz condition in [8] and for initial data being lower semicontinuous in [10].
We provide their main original result.

Theorem 1 (Avantaggiati and Loreti, 2008). Let us assume a Lipschitz
continuous function f : Rn → R, which will be the initial condition for the
following initial-value Hamilton�Jacobi �rst-order partial di�erential equation{

ut(x, t) +H (Du(x, t)) + αx ·Du(x, t) = 0, in Rn × (0,+∞),
u(x, 0) = f(x), in Rn, (17)

Let us assume that the Hamiltonian H : Rn → R is an even, non-negative, convex
function and positively homogenous of degree p, with p > 1. Then the viscosity
solution of the Cauchy problem (17) is given by the following Hopf�Lax�Oleinik
semigroup:

u(x, t) = inf
z∈Rn

[
f

(
e−αtx+

(
1− e−αpt

αp

)1/p

z

)
+ L(z)

]
(18)

= inf
y∈Rn

[
f(y) +

(
αp

1− e−αpt

)q−1
L
(
y − e−αtx

)]
, (19)

where the Lagrangian L(q) is the one-dimensional Legendre�Fenchel transform
of the function H(p), i.e.,

L(q) = H∗(q) = sup
p∈R+

{p q −H(p)} , q ∈ R+. (20)

We note that, by standard results on the Legendre�Fenchel transform, L is also
an even, non-negative, convex function and positively homogenous of degree q,
with 1

p + 1
q = 1.

The corresponding semigroups have therefore a more general form which
depends on the shape parameter p.

5 Preliminary experiments

For the preliminary experiments of this paper, we are illustrating the e�ects of
the morphological semigroups on 1D signals; i.e.,X ⊂ R. Let us �rst consider the
shape of the multiscale structuring functions of the O�U erosion and associated
dilations. We de�ne the O�U structuring function as

qαt (x, y) = − α

1− e−2αs
‖e−αsx− y‖2, x, y ∈ X, (21)



such that Eαt f(x) = infy∈X {f(y)− qαt (x, y)} and D̄α
t f(x) = supy∈X {f(y) + qαt (x, y)}.

We remind from (6) that lim
α→0

qαt (x, y) = pt(x− y).

In Fig. 1, the structuring functions qαt (x, y) and pt(x− y) are compared with
respect to variations on α, with �xed scale t = 1. In the plots, we �x the point
x where the structuring function is centered. As expected for α close to zero,
Fig. 1(a), one has just parabolic structuring functions which are translated.
When α increases, Fig. 1(b)-(c), the structuring function is attracted to the
origin which involves that the maximum of the concave function is not located
at x and therefore the O�U erosion is not anti-extensive. For large α, Fig. 1(d),
structuring functions are deformed and introduced a signi�cantly higher e�ect
of penalization for the same t.

(a) (b)

(c) (d)

Fig. 1. O�U structuring function qαt (x, y) compared with respect to variations on α,
with �xed scale t = 1: (a) α = 0.01, (b) α = 1, (c) α = 1.5, (d) α = 2. We �x the point
x where the structuring function is centered.

A comparison of the e�ect of O�U erosions Eαt and complement dilations
D̄α
t on two signals is provided in Fig. 2. For the periodic f(x), Fig. 2(a) depicts

the erosions at scale t = 0.1 and three values of α. We note that the e�ect of
drift back towards the origin by increasing α involves a delay of the location of



the minima with respect to their position in the signal f . The case Fig. 2(b) of
α = 1 and three values of t shows the typical multiscale e�ect of semigroups. In
Fig. 2(c) and (d) provides multiscale operators for α = 0.01 (equivalent to shift
invariant parabolic ones) and α = 5.

(a) (b)

(c) (d)

Fig. 2. O�U erosion Eαt and complement dilation D̄α
t on two signals f(x), compared

with respect to variations on α and t: (a) t = 0.1 and three values of α, (b) α = 1 and
three values of t, (c) α = 0.01 and three values of t, (d) α = 5 and three values of t.

6 Conclusions and Perspectives

The O�U morphological semigroups satisfy the dimensionality separability prop-
erty on the space, with potentially di�erent parameters α1, · · · , αn for each di-
mension of X. Using this property, we will explore the formulation of spatio-
temporal morphological semigroups with appropiate α for space and time.

We will consider the stochastic viewpoint of O�U semigroups to formalize
the morphological counterpart. Our starting viewpoint will be similar to that of
Bellman�Maslov random walks that was proposed in [3].

Finally, the evolution of shape of the generalized O�U structuring functions
including a power parameter p with respect to α should be studied.
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