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ABSTRACT  40 

Developmental and epileptic encephalopathies are a heterogeneous group of disorders 41 

characterized by early-onset, often severe epileptic seizures, EEG abnormalities, on a background 42 

of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result 43 

from both non-genetic and genetic etiologies. Genetic DEEs have been associated with mutations 44 

in many genes involved in different functions including cell migration, proliferation, and 45 

organization, neuronal excitability, and synapse transmission and plasticity. Functional studies 46 

performed in different animal models and clinical trials on patients have contributed to elucidate 47 

pathophysiological mechanisms underlying many DEEs and explored the efficacy of different 48 

treatments. Here, we provide an extensive review of the phenotypic spectrum included in the 49 

DEEs, of the genetic determinants and pathophysiological mechanisms underlying these 50 

conditions. We also provide a brief overview of the most effective treatment now available and of 51 

the emerging therapeutic approaches. 52 

 53 

Keywords: developmental and epileptic encephalopathies; epileptogenesis; channellopathies; 54 

synaptopathies; personalized treatment approaches. 55 

 56 

CLINICAL HIGHLIGHTS 57 

Epilepsy is the third leading contributor to the global burden of neurological disorders and affects 58 

65 million people worldwide. Based on the clinical and EEG features, etiologies, and comorbidities, 59 

different categories of epilepsy types and syndromes are recognized. Among them, developmental 60 

and epileptic encephalopathies (DEEs) represent the most severe end of the spectrum. This review 61 

will help Physiological Reviews’ readership to increase their knowledge about the different types 62 

of DEEs, their etiologies and pathophysiological mechanisms, and available and emerging 63 

treatments. 64 

65 
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I. INTRODUCTION TO THE CONCEPT AND PATHOPHYSIOLOGY OF DEVELOPMENTAL AND 66 

EPILEPTIC ENCEPHALOPATHY (DEE) 67 

Epilepsy is the third leading contributor to the global burden of neurological disorders, and affects 68 

65 million people worldwide (1). Based on the clinical and EEG features, etiologies, and 69 

comorbidities, different categories of epilepsy types and syndromes are recognized (2). 70 

Developmental encephalopathies (DEs) are a group of severe disorders with early onset of signs of 71 

developmental impairment, associated with other neurological symptoms such as autonomic 72 

dysfunction, behavioral disorders, and motor impairment (3). In DEs, developmental 73 

delay/impairment is a prominent feature, whilst the epileptic activity (seizures and EEG 74 

abnormalities) does not appear to be causally associated with developmental delay, stagnation, or 75 

regression. Epileptic encephalopathies (EE) comprise a large, heterogeneous group of severe 76 

epilepsy syndromes characterized by several seizure types, frequent epileptiform activity on EEG, 77 

and developmental delay or regression (4). In EE, no pre-existing developmental delay is observed, 78 

and the cause of delay is attributed to an interference that epilepsy has on physiological brain 79 

processes. However, when severe epilepsy has a very early onset, it is often impossible to know 80 

whether the underlying cause of the epileptic encephalopathy would not in itself have caused 81 

developmental delay, even in the absence of epilepsy. For this reason, recent definitions refer to 82 

‘developmental and epileptic encephalopathies (DEEs)’ to designate a heterogeneous group of 83 

disorders characterized by early-onset, often severe epileptic seizures, EEG abnormalities, on a 84 

background of developmental impairment that tends to worsen  as a consequence of epilepsy (2). 85 

This generates a complex clinical picture in which both developmental abnormalities and severe 86 

epilepsy/EEG discharges contribute to the observed impairment, each to an extent that it is hard 87 

to measure. The spectrum of DEEs by age of onset is described in TABLE 1, adopting the latest 88 

proposal for the classification of epilepsy syndromes by the International League Against Epilepsy 89 
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(ILAE) Task Force on Nosology and Definitions (5–7). In certain DEEs, specific gene defects may 90 

create recognizable etiology-specific syndromes, whereas, in others, a variety of genetic variants 91 

may be associated with the same epilepsy syndrome. Such genetic heterogeneity is characteristic 92 

of the infantile spasms syndrome (ISS) and Lennox-Gastaut syndromes (LGS), where genetic 93 

variants affecting distinct molecular or signaling pathways may lead to similar electroclinical 94 

syndromes (8–12). Moreover, DEEs may also result from nongenetic etiologies, including 95 

structural, toxic/metabolic, infectious, or immune, which may appear either independent of or in 96 

the setting of certain genetic etiologies (TABLE 1). Despite the advances in diagnostic tools, the 97 

underlying etiology may remain unknown in a significant portion of patients with specific 98 

syndromes. For example, in ISS, a third of the patients have unknown etiology, ~24% have genetic 99 

or genetic-structural, and almost half have structural/metabolic or other acquired etiologies (13). 100 

Similar distributions of etiologies are also encountered in Lennox-Gastaut syndrome, although, as 101 

discussed above, increasing numbers of genetic variants and associations have emerged, as use of 102 

genetic tests becomes more widespread (14). 103 

In DEEs, the co-occurrence of epilepsy and intellectual disability (ID) can involve at least two non-104 

exclusive mechanisms. These mechanisms include uncontrolled, frequent or prolonged seizures 105 

that can interfere with brain developing programs, resulting into inadequate construction of 106 

cortical networks and poor cognitive outcomes (15), as well as genetic mutations or adverse 107 

environmental factors that can induce both seizures and cognitive impairment. For example, 108 

genetic mutations inducing specific synaptic defects might cause seizures because of aberrant 109 

connectivity, as well as intellectual disability because of altered synaptic plasticity (16). In many 110 

DEEs, epilepsy co-exists with other comorbidities, both neurological and extra-neurological. 111 

Neurological comorbidities differ in type and severity, and span from subtle learning difficulties to 112 
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psychiatric features, such as autism spectrum disorder (ASD) or depression to psychosocial 113 

concerns (2).  114 

In spite of their apparent phenotypic continuum, DEEs include a large collection of specific 115 

neurogenetic disorders. Several studies have been performed over the last two decades to identify 116 

molecular determinants and characterize pathophysiological mechanisms underlying DEEs, 117 

contributing to a greater understanding of their neurobiological and clinical aspects. 118 

Next generation molecular testing has boosted gene discovery for many human disorders. 119 

According to the Online Mendelian Inheritance in Man catalogue (OMIM, https://www.omim.org),  120 

172 genes have been identified as causative for epileptic encephalopathy and, among them, 90 121 

have been recognized to date as a cause of DEEs (TABLE 2 and SUPPLEMENTAL TABLE S1,  122 

https://figshare.com/articles/dataset/Guerrini_et_al_Supplemental_Table_S1/19666521). 123 

However, this list may not be exhaustive, as the concept of DEEs is wide and encompasses a large 124 

number of conditions and, in up to 8% of individuals are caused by de novo copy number variants 125 

(CNVs) (17, 18).  126 

The study of large cohorts of affected individuals with variable but related phenotypes performed 127 

using next generation sequencing (NGS) approaches including targeted gene panels, whole exome 128 

and whole genome sequencing, has now demonstrated that 30-50% of DEEs can be attributed to 129 

de novo pathogenic variants in single genes (9, 16, 19). Low-level somatic mosaicism is observed in 130 

about 10% of parents of probands with DEEs (20, 21), with important consequences for recurrence 131 

risk estimation. In addition to single de novo variants, DEEs pathogenesis has also been associated 132 

with recessive mutations in 11-38% of patients (22, 23). Additional genetic mechanisms, that are 133 

often not detectable by standard NGS methodology, might also contribute to DEE 134 

pathophysiology, including non-exonic variants, brain mosaicism in the patient, oligogenic 135 

inheritance, and epigenetic changes.  136 
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The contribution of non-exonic variants is mainly related to ‘poison’ exons that, when spliced into 137 

an RNA transcript, trigger nonsense mediated decay (NMD), a surveillance system that detects and 138 

degrades RNAs harboring premature termination codons (PTCs) (FIGURE 1). An example of how 139 

such mechanism is associated with DEEs has been described by Carvill and collaborators who 140 

sequenced 11 non-coding candidate regions of the SCN1A gene in 640 individuals with unsolved 141 

DEE, selected based on their evolutionary conservation and functional features. The authors 142 

identified five variants in intron 20 that promoted inclusion of a “poison” exon and caused a 143 

reduction of the amount of full-length SCN1A protein (24). Since transcriptome studies on purified 144 

neural progenitor cells (NPCs) have identified hundreds of differentially-spliced exons (25), 145 

reduced gene expression due to inclusion of poison exons may represent an etiological mechanism 146 

of a broad range of neurological diseases, including DEEs.  147 

Somatic mosaicism is the result of a variant arisen at postzygotic level, which is inherited by 148 

daughter cells via mitotic division, and results in genetically distinct subsets of cells in the same 149 

individual. Based on the timing when the variant arises, it can affect one or multiple tissues. Deep 150 

sequencing studies in dysplastic brain/blood paired samples have correlated brain-confined 151 

mutations with focal malformations of cortical development (MCDs). Mutations in the mTOR 152 

pathway genes AKT1, AKT3, DEPDC5, MTOR, NPRL2, NPRL3, PIK3CA, PIK3R2, TSC1, and TSC2 can 153 

now be considered as the major known cause of focal cortical dysplasia type II (FCDII) and 154 

hemimegalencephaly (HME) (26), while somatic mutations in SLC35A2, encoding a UDP-galactose 155 

transporter, have been identified in a limited number of patients with FCD type I, mild 156 

malformations of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE), 157 

and with non-lesional focal epilepsy (NLFE) (27–31). In addition, somatic variants - either 158 

microdeletions in SCN1A or point mutations in CDKL5, PCDH19, SCN1A, and SCN2A - have been 159 

identified in 1-3.5% of patients with DEE who were mutation-negative to single gene, multigene 160 
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epilepsy panel or whole-exome sequencing (WES) performed in a clinical diagnostic setting (32, 161 

33). Despite this evidence, the impact of somatic mutations in DEEs is likely to be underestimated, 162 

as the major challenge in detecting causative somatic mutations is to analyze the right target brain 163 

tissue which, for many DEE patients, is not easily accessible. For this reason, recent assays 164 

developed from noninvasive protocols for tumor diagnosis and progression monitoring have been 165 

attempted to identify low level mosaicism for known or recurrent mutations associated with 166 

lesional refractory epilepsy in free DNA extracted from cerebrospinal fluid biopsies (34, 35).  167 

Oligogenic inheritance refers to the concept that, in some cases, diseases with complex 168 

phenotypes are not inherited as simple single-gene Mendelian disorders, nor they are classic 169 

complex traits, but rather fit a model in which mutations in a small number of genes may interact 170 

genetically to manifest a phenotype (36). In oligogenic conditions, one of the genes is the major 171 

disease-causing gene, while the others act as modifiers. Some DEEs can be attributed to this type 172 

of inheritance. Indeed, various studies have demonstrated that co-occurrence of two or more 173 

mutations in distinct ion-channel genes can contribute to the epileptic phenotype in both patients 174 

and animal models. (37–42). Performing targeted and whole exome sequencing in a boy who 175 

presented with profound developmental delay, failure to thrive, ataxia, hypotonia, and tonic-176 

clonic seizures that caused his death, Hasan and collaborators identified a pathogenic variant in 177 

KCNJ10, encoding the inward rectifying K+ channel Kir4.1 and a pathogenic variant in KCNT1, 178 

encoding Na+-activated K+ channel known as Slo2.2 or SLACK. Functional studies performed in in 179 

Xenopus laevis oocytes confirmed the functional effects of the two variants. This finding revealed 180 

that, when co-occur, pathogenic variants in Kir4.1 and SLACK result in a fatal disease (40). To gain 181 

support for the hypothesis that genetic modifiers can influence clinical presentation in patients 182 

with SCN1A-derived genetic epilepsy with febrile seizures plus (GEFS+), Hawkins and collaborators 183 

(38) combined the Scn1a-R1648H allele with either Scn2aQ54, which causes spontaneous, adult-184 
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onset partial motor seizures or Kcnq2V182M/+, which causes increased susceptibility to induced 185 

seizures. Double heterozygous mice exhibited early-onset, generalized tonic–clonic seizures and 186 

juvenile lethality. These results demonstrate that variants in Scn2a and Kcnq2, can dramatically 187 

worsen the phenotype of mice carrying the Scn1a-R1648H mutation (38). 188 

A digenic inheritance based on somatic mutations in two mTOR pathway genes (mTOR and RPS6) 189 

has also been demonstrated in association with hemimegalencephaly and intractable epilepsy 190 

(43). 191 

Aberrant chromatin states leading to altered gene expression patterns (epimutations) have been 192 

detected in several conditions. Epimutations can occur secondary to a DNA mutation in a cis- or 193 

trans-acting factor (secondary epimutations), or as “true” or primary epimutations in the absence 194 

of any DNA sequence change (44). In the brain, such alterations can impair the transfer of 195 

information that bind short-lived cellular signals to the whole neuronal activity and the global 196 

gene expression (45). Emerging findings in animal models and human brain tissue have 197 

demonstrated that DEEs could be ascribed to both classes of epimutations. A classic example of 198 

DEE associated with secondary epimutations is Rett syndrome, which can be caused by both 199 

nucleotide mutations in, and duplications of MECP2, encoding a methylated DNA-binding protein 200 

(46). 201 

Alterations in DNA methylation have not been explored much in epilepsy yet, but they represent a 202 

good example of primary epimutations related to DEEs. Indeed, in the brain, this epigenetic 203 

modification regulates cell fate determination and maturation, and plays a fundamental role in the 204 

induction of activity-dependent synaptic plasticity, memory, and cognition (47–49). Dynamic 205 

alterations in DNA methylation can also contribute to epileptogenesis. For example, various 206 

studies have shown that the brain-derived neurotrophic factor (BDNF), whose expression is 207 

regulated by a variety of cellular processes, including methylation of its promoter (50), results 208 
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upregulated in areas implicated in epileptogenesis (51). In addition, in hippocampal neurons, the 209 

inhibition of DNA methyltransferases, which mediate demethylation of the BDNF promoter, 210 

results in the suppression of neuronal excitability and network activity (52).  211 

Various nongenetic etiologies have also been associated with certain DEEs, including hypoxic-212 

ischemic encephalopathy (HIE), cerebrovascular, infectious, or autoimmune disorders, tumors, 213 

brain trauma, or metabolic disorders (5–7, 13, 53). While the molecular pathogenesis of these 214 

etiologies is more complex and multifactorial than genetic etiologies, they offer a setting where 215 

questions of “common pathways or mechanisms” in disease pathogenesis, network dysfunction, 216 

and drug-refractoriness can be explored to develop therapies with broader applications. For 217 

example, interneuronopathies, as well as mTOR dysregulation, have been implicated in both 218 

genetic and nongenetic etiology DEEs (54, 55). 219 

Many pathophysiological mechanisms underlie epilepsy and cognitive phenotypes in DEEs, leading 220 

to either dysfunction of specific cortical networks or to more generalized epileptogenic changes. 221 

These multiple and intersecting mechanisms make genotype/functional phenotype correlations 222 

difficult. Cortical and subcortical neuronal networks may interact with each other, and in turn, can 223 

cause widespread functional changes in otherwise normal cortex (56). The firing of excitatory 224 

cortical neurons is finely regulated by the interplay of sodium and potassium channel activity, 225 

which is mediated by chemical and ionic gradients across the cell membrane. If the balance 226 

between sodium and potassium gradients is perturbed (for example due to mutations in genes 227 

encoding Na+ or K+ ion channels or for components of the Na+/K+ pump) (TABLE 2) abnormal 228 

depolarization arises, which in turn causes abnormal neuronal activity and cortical excitability (57). 229 

Altered interconnections of glutamatergic neurons are another possible cause of abnormal 230 

depolarization and mutations in various genes encoding for glutamate receptors or carriers (TABLE 231 

2) have been associated with different DEEs (58–63). In addition to altered firing in excitatory 232 
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neurons, epileptogenesis in DEEs may be related to dysfunctions in interneuron networks. An 233 

archetype of genetic lesions associated with such mechanism is represented by SCN1A mutations, 234 

which are associated with Dravet syndrome and a broad category of other epilepsy phenotypes. A 235 

series of functional studies have highlighted how changes in membrane properties of one specific 236 

cellular population result in altered neuronal network dynamics and widespread cortical 237 

dysfunction, in turn leading to an epileptic phenotype. SCN1A mutations are mainly associated 238 

with loss of function in a subtype of voltage-gated sodium channel, the NaV1.1 channel, mainly 239 

expressed in inhibitory neurons (64). This functional alteration would be expected to predispose to 240 

decreased neuronal activity. However, in vivo, it is actually associated with increased 241 

epileptogenicity as it results in severely impaired sodium currents and action potential (AP) firing 242 

in gamma-aminobutyric acid (GABA)ergic inhibitory neurons, without detectable effects on 243 

excitatory pyramidal neurons (64, 65). Therefore, the epileptogenic effects of SCN1A mutations 244 

are primarily mediated by an altered activity of inhibitory interneurons in the cortex rather than 245 

by abnormal firing of excitatory neurons (66). Recent single cell RNAseq studies performed in 246 

postmortem adult human and rodent brain tissues have confirmed that SCN1A (Scn1a) is 247 

predominantly expressed in inhibitory neurons (67). Conversely, SCN2A/3A/8A (Scn2a/3a/8a), 248 

which also encode for voltage-gated sodium channels, are preferentially expressed in excitatory 249 

neurons in multiple brain regions, suggesting that epilepsy due to mutations in these genes is 250 

mainly associated with direct alterations of the excitatory conductance (67). Expression and in 251 

vitro and in vivo electrophysiological studies are therefore crucial to establish the functional 252 

effects of channel mutations which may differ to same genes families or, as we shall see, even 253 

with same gene. 254 

Mutations in genes encoding glutamate receptors or ion channels can also cause epileptogenic 255 

structural brain abnormalities. Using the DREADD (designer receptor exclusively activated by a 256 
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designer drug) approach, Hurni and collaborators showed that transient embryonic activation of 257 

migrating projection neurons (PNs) induced transcriptional changes in a variety of activity-258 

dependent receptors including glutamatergic metabotropic, kainate, NMDA, and AMPA receptors, 259 

that were accompanied by premature branching and persistent laminar mispositioning of 260 

superficial layer PNs into deep cortical layers, without affecting expression of layer-specific 261 

molecular identity markers (68). These findings support the hypothesis that increased intrinsic 262 

activity during migration, a condition that can be caused also by mutations in DEE-causing genes, 263 

acts as a stop signal for migrating cortical PNs (68). 264 

Using a similar DREADD-based approach it has been demonstrated that in the developing mouse 265 

neocortex ventricular zone progenitors become more hyperpolarized as they generate successive 266 

subtypes of neurons (69). Experimental in vivo hyperpolarization shifted the transcriptional 267 

programs and division modes of these progenitors to a later developmental status, with 268 

precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, 269 

morphological, and circuit features of their neuronal progeny (69). These findings indicate that, 270 

during development, altered bioelectrical processes can also affect non-excitable cells, including 271 

neuronal progenitors. 272 

Genetic background may also alter the genotype-phenotype associations. This is well known in 273 

humans and has also been demonstrated in mouse models from different labs. A striking example 274 

was presented by Glasscock and collaborators whereby combination of a Kcna1 knockout and a 275 

Cacna1a missense mutation masked the absence epilepsy associated with Cacna1a and 276 

attenuated limbic seizures and death expected from the Kcna1-null mutation (37). The C57BL/6 277 

background also confers a more severe phenotype in Nav1.1+/- mice with targeted deletion of the 278 

last encoding exon, than the 129/SvJ background (70). In the C57BL/6 background, Nav1.1+/- mice 279 

manifest hyperthermia-induced and spontaneous seizures, cognitive and behavioral deficits, early 280 
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mortality. In contrast, in the 129/SvJ background have hyperthermia-induced seizures, less severe 281 

spontaneous seizures and no cognitive deficits. 282 

II. GENERAL CONCEPTS OF EPILEPTOGENESIS AND EPILEPSY  283 

Epileptogenesis is the chronic process by which a brain network is functionally altered toward 284 

increased seizure susceptibility, thus having an enhanced probability to generate spontaneous and 285 

recurrent seizures. For this reason, epileptogenesis has been traditionally considered in the 286 

context of a “latent period” between the causative insult and the first clinical seizure (71). This 287 

concept, however, although applicable to several acquired conditions, especially post-traumatic, 288 

post-stroke or post-infectious epilepsy, appears to be less apt to describe what happens in the 289 

context of genetically determined DEEs where the bases for epileptogenesis are most often 290 

imbricated with the altered dynamics of brain development and neural networking. Irrespective 291 

from its causes, however, epilepsy is defined by recurrent and unprovoked seizures, and can be 292 

divided into different categories, which are defined as generalized, focal (formerly called partial), 293 

and combined generalized (57, 71), according to how the epileptogenic process is distributed in 294 

the brain. These categories are defined based on the predominant types of seizures, including 295 

generalized- or focal-onset (1, 2, 72).  296 

A seizure can be conceptualized as the result of a distortion of the normal balance between 297 

excitation (E) and inhibition (I), resulting from factors that may alter brain function at many levels, 298 

from subcellular signaling cascades to widespread neuronal circuits (1). Genetic factors (i.e., 299 

mutations in specific genes) can affect brain function at any level, from ion channels to receptor 300 

function and synaptic connectivity. Acquired cerebral insults (e.g., stroke or traumatic brain injury) 301 

are mainly associated with alterations in circuit function (1). Excessive neuronal firing alone does 302 

not necessarily cause a seizure, which also requires synchronization of a network of neurons. 303 

Glutamatergic interconnections can promote such synchronization. Application of a pro-304 
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convulsant agent to hippocampal slices in a feline model precipitates interictal discharges whose 305 

intracellular correlate is the paroxysmal depolarizing shift (PDS). PDS is a network-driven burst 306 

associated with a sudden depolarization of the membrane potential which lasts hundreds of 307 

milliseconds and usually triggers a series of APs on its rising phase. Since cortical pyramidal cells 308 

are richly interconnected by excitatory glutamatergic synapses, it has been proposed that the 309 

mechanism underlying PDS is a “giant” excitatory postsynaptic potential (73). 310 

Gap junctions (GJ) are another possible promoter of neuron synchronization. These specialized 311 

intercellular connections allow a ‘low-resistance’ pathway of current flow from one cell to another 312 

which, in neurons, may determine a rapid and effective synchronization. In addition, GJ located 313 

between proximal axons of principal neurons (axon-axon gap junctions) can promote 314 

epileptogenesis by providing pathways for direct spread of APs across neurons. A by-product of 315 

such spread is the ability of axonally coupled neurons to generate oscillations at very high 316 

frequencies (≥70 Hz) (74). Seizure activity, both in vivo and in vitro, begins with very high-317 

frequency oscillations, suggesting that axon-axon gap junctions may play a major role in seizure 318 

initiation (74). Besides interneuronal GJ, inter-glial GJ can also be considered an important 319 

mechanism for seizure generation (75). Studying mice with coupling-deficient astrocytes, obtained 320 

by crossing conditional connexin-43 deficient mice (connexin-43Cx43fl/fl:hGFAP-Cre) with connexin-30-/- 321 

mice, Wallraff and collaborators showed how gap junctions in the impaired astrocytes accelerated 322 

potassium clearance, limited potassium accumulation during synchronized neuronal firing, and 323 

reduced the threshold for the generation of epileptiform events (76). Other studies, conducted in 324 

a similar in vivo model, demonstrated that impaired glucose metabolism through astroglial 325 

networks can contribute to epileptiform activity (77).  326 

A third mechanism of enhanced synchronization is based on impaired inhibition. Individual 327 

GABAergic interneurons can effectively phase spontaneous firing in hippocampal pyramidal cells 328 
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due to the interaction between GABAA receptor-mediated hyperpolarizing synaptic events and 329 

intrinsic oscillatory mechanisms in the pyramidal cells. Since interneurons make numerous 330 

connections to pyramidal cells in local areas, a single discharging interneuron can synchronously 331 

hyperpolarize a large number of pyramidal cells. Once GABAergic inhibition ceases, there is 332 

activation of voltage-dependent currents in pyramidal cells, resulting in a synchronous 333 

depolarization of a number of cells which might be high enough to trigger seizures (78). 334 

Certain signature seizures and EEG patterns in DEEs also highlight the importance of the 335 

corticothalamic network (SWD/atypical absences, generalized seizures) or brainstem structures 336 

(tonic seizures, spasms) in the generation or development of generalized seizure activity. 337 

The thalamus serves as a gate in trafficking sensory information to and from the cerebral cortex, 338 

and its activity is controlled by the basal ganglia (79). The sensory relay thalamic neurons (TC) form 339 

reciprocal glutamatergic connections with the cortex, but also project to the GABAergic neurons of 340 

the nucleus thalami reticularis (nRT). The nRT neurons receive excitatory input from both the 341 

cortex and TC neurons and send inhibitory projections to TC neurons (FIGURE 2A). Additional 342 

inhibitory input to the TC relay neurons is also stemming from the local GABAergic interneurons 343 

(FIGURE 2A). The SWDs are generated after a burst of excitatory postsynaptic potentials (EPSPs) 344 

from the TC neurons excite the nRT interneurons which in turn send bursts of inhibitory input to 345 

the TC neurons causing pronounced inhibitory postsynaptic potentials (GABAAR and GABABR IPSPs, 346 

FIGURE 2A) leading to activation of hyperpolarization-activated cyclic nucleotide-gated cation 347 

channels (HCN), and low threshold calcium channels (T) which cause a calcium spike that triggers a 348 

burst of APs. The re-excitation of TC neurons gives rise to a new cycle by eventually engaging also 349 

cortical neurons. The typical SWD in humans is ~3 Hz, whereas in models of absence and in many 350 

control rodents, typical SWD are 7-8 Hz (79). 351 



16 
 

Atypical absence seizures (AAS) are slower (<2.5 Hz in humans, usually 3-6 Hz in rodents), may 352 

have atypical morphology and may not necessarily impair awareness. AAS utilize also the 353 

corticothalamic network, although there may be more inputs from the limbic structures which 354 

result in augmented cortical excitation. Certain forms of atypical SWD may also be generated from 355 

isolated cortex or thalamus (80, 81). The utilization of existing circuitry and networks for the 356 

generation of these seizures allows for transitional states, during which SWD may arise from 357 

physiological rhythms, such as sleep spindles, when cortical neurons become hyperresponsive to 358 

the thalamocortical excitatory input (82). 359 

While our knowledge about the functional bases of generalized epileptogenesis and seizures are 360 

largely based on experimental models, studies on focal epileptogenesis have taken advantage of 361 

intracranial recordings in the setting of neurosurgery for epilepsy patients. These studies have 362 

contributed to shape the now widely accepted concept that clinical seizures in focal epilepsies 363 

originate in the ‘seizure-onset zone’ (SOZ), while epileptic seizure activity is generated in the 364 

epileptogenic zone (EZ), i.e. the cortical area which is indispensable for seizure generation 365 

independent of their clinical manifestation (83). Additional specific cortical areas that can be 366 

identified in the epileptic brain are the irritative zone (IZ), representing the area of the cortex 367 

generating interictal spikes, the epileptogenic lesion (EL), which may correspond to either a 368 

macroscopic epileptogenic lesion (e.g., focal cortical dysplasia) or the hyperexcitable adjacent 369 

cortex, and the functional deficit zone (FDZ), representing the area of cortex that does not 370 

function normally in the interictal period (84) (FIGURE 2B). The EZ may be either more or less 371 

extensive than the SOZ. If the EZ is smaller than the SOZ, even its partial resection or 372 

disconnection may result in seizure disappearance, as the remaining SOZ could not be sufficient to 373 

generate further epileptic seizures. Conversely, if the EZ is larger than the SOZ, total removal of 374 

the SOZ cannot ensure seizure disappearance because multiple SOZs with different thresholds 375 
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may coexist in the same EZ. Indeed, in this case, after the resection of the first SOZ, another SOZ 376 

with higher threshold may become clinically evident (83). However, this picture is simplistic. 377 

Although seizures tend to have preferential spreading patterns, cortical connections spread in all 378 

directions, from any given cortical point, through cortico-cortical and subcortical connections 379 

(FIGURE 2A, B). Consequently, disconnection of specific networks does not guarantee that seizure 380 

activity does not progress via alternative pathways, resulting in a modified clinical semiology, but 381 

not in their disappearance (84). Only the complete disconnection or removal of all the potential 382 

SOZs can guarantee that seizures disappear.  383 

Some of the seizure types observed in epileptic encephalopathies are almost exclusively seen 384 

within this category of severe epilepsies and do not fall within the categorization of generalized or 385 

focal epileptogenesis. Epileptic spasms and tonic seizures, which are some of the signature 386 

seizures in ISS and LGS, are considered to be bilateral seizures. The possible involvement of the 387 

brainstem in generating these seizures was demonstrated in 1958 by Kreindler and collaborators 388 

who reported bilateral tonic convulsions in cats and rats when stimulating the reticular substance 389 

and periaqueductal substance (85). These certainly may explain reports of epileptic spasms in 390 

infants with hydranencephaly (86), although they do not certainly exclude the contribution of 391 

other higher structures which could activate a broader network generating these tonic seizures. 392 

Animal models of ISS for example, have provided evidence that cortical or cortico-hippocampal 393 

lesions may suffice to trigger spasms (87, 88). Seizures and epileptic activity may also be 394 

multifocal, as in Epilepsy of Infancy with Migrating Focal Seizures (EIMFS), as an expression of a 395 

widespread, genetically determined epileptogenesis in immature brains with incomplete 396 

myelination and poorly functioning connections (89). 397 

III. MAIN (KNOWN) DETERMINANTS OF NORMAL AND ABNORMAL BRAIN DEVELOPMENT THAT 398 

INFLUENCE EPILEPTOGENESIS 399 
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Normal brain development is a dynamic process that proceeds asynchronously and at different 400 

tempos and trajectories across brain regions, cell types and sexes, and is further modified by 401 

biological or environmental factors (FIGURE 3). This asynchronous and timed maturation also 402 

extends to key developmental processes that potentially control the susceptibility to seizures and 403 

epileptogenesis: migration and differentiation of progenitors of excitatory and inhibitory neurons, 404 

neurogenesis and synaptogenesis of excitatory and inhibitory synapses, morphological changes of 405 

various brain regions (FIGURE 3A), signaling modes of molecular or electrophysiological signaling 406 

cascades that control neuronal excitability, differentiation, function or communication, and 407 

survival (FIGURE 3B) (90). 408 

It is generally considered that around postnatal day 10 (PN10), a rodent is equivalent to a full term 409 

human neonate, an assumption based on studies of brain growth spurt (91). Brain growth spurt in 410 

these studies included gross brain growth, DNA, cholesterol, and water content. Puberty onset 411 

occurs around PN32-36 in female rats and PN35-45 in male rats, whereas in humans it starts 412 

around 10-11 years in girls and 11-12 years in boys (92). Distinct processes, such as neurogenesis 413 

and migration, synaptogenesis and synaptic pruning, myelination follow different time courses 414 

(FIGURE 3B) (90, 93–100). For studies that specifically target or relate to specific developmental 415 

processes it is therefore important to consider the maturational trajectories of the specific 416 

developmental processes of interest across species, when these are known. 417 

There are extensive and continuous molecular, morphological or functional changes through 418 

development that significantly diversify the effects of epileptogenic processes in the brain, thus 419 

rendering the immature brain more amenable to developing the intense and sometimes multifocal 420 

epileptic activity associated with DEEs (90). Ontogenetic studies with kindling, a method of 421 

repetitive electrical stimulations of limbic structures that results in a progressively more severe 422 

seizure phenotype, demonstrated that post-ictal refractoriness to manifest another seizure is 423 
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shorter in developing animals, which is likely a factor that predisposes them to develop clusters of 424 

seizures (101). In addition, kindling antagonism, whereby kindling stimulation at one limbic 425 

structure inhibits the kindling development in another, is not operative in immature pups (102). 426 

Although the immature brain is more prone to seizures and seizure clusters than adults, it is also 427 

more resilient, demonstrating no or less severe injury after prolonged seizures (103, 104). 428 

The trajectories of maturation of these developmental processes often follow age, sex, and region-429 

specific patterns. These have been extensively studied for GABAA receptors (GABAAR) and include 430 

changes in receptor composition and kinetics of, depolarizing/hyperpolarizing postsynaptic GABAA 431 

receptor (GABAAR) responses or network effects (105–111) (FIGURE 4). GABAAR signaling is usually 432 

depolarizing in immature neurons with relatively high intracellular Cl- content and elicits 433 

hyperpolarizing responses in mature neurons which have low intracellular Cl- (112–117). The 434 

polarity of GABAAR responses depends upon the relative abundance of cation chloride 435 

cotransporters and channels that import [e.g., NKCC1, abundant early on, decreases later in life 436 

(118–120)] or export [e.g. KCC2, expression increases postnatally (121, 122)] Cl-, in a process that 437 

requires energy generated by Na+/K+ ATPase (FIGURE 4). Depolarizing GABA can have 438 

neurotrophic effects in immature neurons and is a normal physiological phenomenon needed for 439 

normal development (123–125). The developmental shift of GABAAR signaling from depolarizing in 440 

immature neurons to hyperpolarizing in mature neurons has been proposed to follow a rostro-441 

caudal gradient, with earlier maturation in the most caudal regions. In reality, there are significant 442 

cell type-, region-, and sex-specific factors that create a more complex temporo-spatial pattern of 443 

maturation not only of GABAARs, but also of other neurotransmitter and signaling pathways. For 444 

example, hyperpolarizing GABAAR responses may occur earlier in rat CA1 pyramidal neurons than 445 

in substantia nigra pars reticulata GABAergic neurons (111, 126); GABAAR mediated 446 

hyperpolarizing responses are already seen in neonatal thalamic neurons, in contrast to cortical 447 
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neurons which mature later on (127). The maturation to hyperpolarizing GABAAR signaling may 448 

occur earlier in females than in males in certain brain regions (hippocampus, substantia nigra) 449 

(108, 111, 125, 126, 128), whereas it may emerge later in females in others (cerebellar Purkinje 450 

cells) (129). Premature cessation of depolarizing GABAAR signaling may disrupt the excitatory 451 

synapse formation and dendritic arborization of cortical neurons, leading to neurodevelopmental 452 

deficits (130–132). Disruptions of the GABAAR-sensitive patterns of communication across cells or 453 

brain regions may also occur with seizures or epileptogenesis, stressors, genetic variants, drugs or 454 

metabolic disorders, altering threshold for ictogenesis or epileptogenesis and predisposing to 455 

behavioral or cognitive impairments (109, 125, 126, 133). Depolarizing GABA can also be seen 456 

under pathological conditions, e.g. after axonal injury, hypoxia/hypoglycemia, during prolonged 457 

seizures, or in epileptic tissue and its significance there can be dual: partly protective to promote 458 

neuronal healing, but also potentially epileptogenic as it may promote neuronal excitability and 459 

epileptogenesis (133). Further, KCC2 effects are not strictly upon Cl- regulation; the C-terminus of 460 

KCC2 may promote synapse formation (134) and the N-terminus can affect neuroprotection (135, 461 

136). Loss of function mutations in KCC2 have been found in epilepsy syndromes, including 462 

Epilepsy of Infancy with Migrating Focal Seizures (EIMFS) (137–139).  463 

GABA signaling is also an important regulator of cortical-subcortical networks that control 464 

fundamental physiological functions, such as learning and memory, but also seizures (110, 140–465 

142). The modus operandi of these networks undergoes significant age- and sex-dependent 466 

changes through development. The substantia nigra pars reticulata (SNR), largely composed of 467 

GABAergic interneurons, acts as a gate through which the cortico-striatal input may activate or 468 

inhibit the activity of thalamo-cortical neurons. In adults, activation of GABAARs in the SNR exerts 469 

anticonvulsant effects in a variety of seizure models (143–145). However, in developing rodents, 470 

the outcome of GABAAR-sensitive SNR-mediated seizure control (anticonvulsant vs proconvulsant 471 
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vs no effect) varies by region, age, and sex (110, 141, 142). All this knowledge remains too 472 

fragmentary, but it represents a promising field to fully understand the human pathology. 473 

Excitatory neurotransmitters also undergo significant developmental changes in expression and 474 

subunit composition (FIGURE 3), which modify their biological effects in regard to both seizure 475 

susceptibility and control (110, 146) and neuronal survival (147).  476 

An important concept in developmental epileptogenesis is the existence of critical or sensitive 477 

periods for the development of specific traits. The effects of biological factors or exogenous insults 478 

can be time-locked to specific developmental periods that render the brain sensitive, as shown for 479 

the hormonal regulation of the differentiation of seizure-controlling subcortical networks (148). 480 

The biological roles of channels may also be age-dependent, as demonstrated for example for M 481 

channels (149). M channel activity is essential for the normal morphological development of 482 

hippocampus but only during the first postnatal weeks of murine development. Loss of M channel 483 

activity at later periods does not have overt morphological sequalae in the hippocampus, although 484 

cognitive deficits as well as increased neuronal excitability can still be observed. The therapeutic 485 

effects of a treatment can be specific for certain developmental periods when they can modify 486 

their desired targets, as shown for neonatal estradiol given to prevent interneuronopathy in an 487 

Arx knock-in mouse model of epileptic spasms (150). The effects of genetic mutations may differ 488 

depending upon the developmental period when these are expressed, as shown for the 489 

GABAARγ2(R43Q) epilepsy mutation (151). 490 

Beyond gene effects, critical developmental periods are also important in determining the severity 491 

of dysfunction conferred by the abnormal excitability. Using bicuculline and penicillin application 492 

in the visual cortex of rabbits to induce sporadic epileptiform discharges, Chow and colleagues had 493 

shown that the ensuing epileptic activity disrupted the appearance of complex and oriented–494 

directional type cells at the lateral geniculate nucleus in developing, but not in adult, rabbits (152). 495 
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More recent studies also demonstrated that the induction of epileptiform discharges by electrical 496 

stimulation of the hippocampus in developing animals disrupts place cell formation (153, 154). 497 

IV. NON-GENETIC DETERMINANTS OF THE EPILEPTOGENIC RISK 498 

Inflammation and cytotoxic injury may trigger a chronic and evolving ISS phenotype in the multiple 499 

hit model, suggesting that the cortical-subcortical network disruption due to the structural lesion, 500 

in tandem with neuroinflammation, may trigger spasms and epileptogenesis with 501 

neurodevelopmental deficits (88, 155–161). In the same model, dysregulation of the mTOR 502 

(mechanistic target of rapamycin) pathway was a critical pathogenic feature and restoration of its 503 

activity with rapamycin resulted in partial improvement of the cognitive deficits and reduced 504 

epilepsy development, lending further support for the central role of mTOR in epileptogenesis 505 

(155, 161). This model also provides evidence for sleep-epilepsy interplay with most adult motor 506 

seizures emerging from sleep, as well as evolution to a slow spike-wave EEG, reminiscent of 507 

Lennox-Gastaut syndrome (LGS) in adulthood (155). 508 

The deficit in parvalbumin (PV) positive interneurons from the contralateral cortex (159) is 509 

reminiscent of the interneuronopathy seen in ARX-related ISS (150, 162, 163), although the quality 510 

of the interneuronopathy under these conditions is different. Mechanistically, these also seem 511 

different, since the neonatal estradiol treatment that corrected the ARX-related 512 

interneuronopathy and epilepsy (150, 163) did not improve the phenotype of the multiple-hit rats 513 

(157).  514 

Stress has been long advocated as a key pathogenic mechanism of ISS (164, 165). Administration 515 

of corticotrophin releasing hormone (CRH) in the cortex or hippocampus of pups induced seizures, 516 

but not spasms (166). Exposure to conditions that mimic aspects of early life stressors or stress 517 

response, such as prenatal betamethasone or stress (167–169), or that disrupt adrenal function 518 

aggravated NMDA induced spasms (170), although some of these conditions (such as prenatal 519 
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betamethasone) enhanced responsiveness of NMDA-induced spasms to ACTH (168). A more 520 

recent model of chronic early life stress due to fragmented nurturing behaviors was reported to 521 

manifest a mild spasms phenotype (171). 522 

V. GENETIC DETERMINANTS OF DEE: EXPERIMENTAL MODELS 523 

DEEs causing genes can be grouped into broad functional categories involved in different cellular 524 

processes including ions/transmitters/small molecules transport, regulation of synaptic function, 525 

cell growth, division and proliferation, cell metabolism, intracellular trafficking and signaling, gene 526 

transcription, and protein biosynthesis/degradation. (TABLE 2 and SUPPLEMENTAL TABLE S1, 527 

https://figshare.com/articles/dataset/Guerrini_et_al_Supplemental_Table_S1/19666521).  528 

We will focus upon gene products which have been extensively studied for their effects on 529 

neuronal excitability and epileptogenesis in in vitro and in vivo studies, using relevant natural or 530 

genetically engineered models. They offer clearer targets to design rational therapies to restore 531 

normal function in dysfunctional networks which can be easily assessed using physiological tests. 532 

We will also discuss more succinctly other genes that emerged as genes of interest for certain 533 

DEEs, particularly those associated with migration disorders; however, their mechanisms of action 534 

are more complex, involving multiple cellular processes that need to be disentangled before 535 

designing safe and effective therapies. 536 

Neuronal circuits are formed by principal glutamatergic excitatory neurons and inhibitory 537 

GABAergic neurons (FIGURE 5). It is thought that in cortical circuits glutamatergic neurons perform 538 

computational tasks, whereas GABAergic neurons control and organize the activity of the network 539 

and are important for the generation of rhythms of activities, which are the substrate of brain 540 

rhythms. Glial cells are important not only for neuron homeostasis and protection but are 541 

implicated in synaptic functions. In neurons, the somato-dendritic compartment receives most of 542 

the synaptic inputs that are computed in the dendritic tree and integrated in the axon initial 543 
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segment, where APs are generated. Forward-propagating APs reach presynaptic terminals, where 544 

they evoke neurotransmitter release. Back-propagating APs in the somato-dendritic compartment 545 

are implicated in dendritic computation and modulation of synaptic inputs. Ion channels are 546 

essential in all neuronal sub-compartments and for neuronal signaling. Thus, it is not surprising 547 

that channelopathies are implicated in numerous DEEs (172) (FIGURE 5). 548 

Functional analysis of mutations using a variety of experimental systems is essential for shedding 549 

light on the detailed pathomechanisms and clarifying genotype-phenotype correlations, which can 550 

in turn facilitate diagnosis, genetic counselling, management, and development of therapeutic 551 

approaches. Functional analysis using electrophysiological techniques identifies even subtle 552 

modifications in the properties of ion channels. Experimental methods include both in vitro and in 553 

vivo systems (173, 174), (FIGURE 6).  554 

In vitro experimental systems often use cells that do not endogenously express the protein of 555 

interest, thus simplifying the functional analysis of its properties. They are in general human cell 556 

lines (e.g., transfected human embryonic kidney, HEK, cells) or, less frequently, oocytes of the 557 

clawed frog Xenopus laevis injected with the cRNA of interest that allow massive expression, 558 

although a human cellular background is generally preferable. Transfected/transduced neurons in 559 

primary cultures are a further in vitro system that provides a true neuronal cellular background to 560 

evaluate effects on neuronal and network properties. In vivo/ex vivo systems are organisms or 561 

preparations obtained from them (e.g., brain slices), which should better model the complexity of 562 

brain circuits and the actual pathophysiological conditions, as well as provide information of in 563 

vivo phenotypes. The animals more frequently used for generating in vivo models of genetic 564 

variants are mice and rats (TABLE 3), because early site directed mutagenesis techniques 565 

exploiting homologous recombination in embryonic stem cells allows easy genetic manipulation of 566 

these mammals. The mouse is still the organism of choice for generating animal models of genetic 567 



25 
 

variants, although more recent methods of genome editing (e.g., CRISPR-Cas9) can be used to 568 

generate mutant models with other mammals. It is not possible to perform high throughput 569 

studies with mammalian models, neither for studying functional effects of variants nor for drug 570 

screens. Simpler animal models make it possible to perform relatively large screens, in particular 571 

the zebrafish, which has vertebrate features (175). However, findings obtained with these simple 572 

systems need to be validated in mammalian models. Neurons differentiated from induced 573 

pluripotent stem cells (iPSCs) generated from patients' biopsies are increasingly used to study 574 

mutations in human neurons as they bear the patient’s genetic background. They can be used for 575 

investigations of neuronal properties at the single cell level or can be induced to generate in vitro 576 

miniature organs resembling the brain (brain organoids) that represent an excellent integrated 577 

experimental system to study brain development (176). However, large variability in the 578 

properties of these neurons makes studies difficult and reproducibility is still an issue, as observed 579 

in studies of SCN1A mutations (177–184). 580 

VI. DYSFUNCTIONS IN NEURAL CELL MIGRATION, PROLIFERATION, AND SYNAPTOGENESIS  581 

Mutations in distinct DEE genes can trigger different molecular and biochemical alterations which, 582 

depending on the developmental stage involved and the type of alteration, may result in a brain 583 

with a grossly abnormal morphology or structurally normal, but functionally abnormal (FIGURE 584 

7A-BB). Disruption of any of the overlapping steps that contribute to the development of the 585 

human cerebral cortex that can be recognized as malformations in studies of brain imaging is 586 

designated as “malformation of cortical development” (MCD). MCDs can be broadly classified into 587 

three major groups that recapitulate the main developmental steps, i.e., malformations of cell 588 

proliferation, neuronal migration, or post-migrational cortical organization (185). 589 

Among brain morphological abnormalities, MCDs are those most frequently associated with 590 

recurrent seizures. In MCDs, altered processes of development involve cells that, under normal 591 
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circumstances, would participate to the formation of the normal cerebral cortex, and seizures can 592 

arise because of neuronal malpositioning, abnormal proliferation or differentiation, or abnormal 593 

cortical organization (186). 594 

Neuronal malpositioning is the result of altered neuronal migration during brain development. A 595 

classic example of DEE associated with neuronal migration deficit is caused by mutations in the 596 

aristaless-related homeobox (ARX) gene, located on chromosome Xp21, which can result in a 597 

phenotypic spectrum comprising a nearly continuous series of neurodevelopmental disorders 598 

including lissencephaly with ambiguous genitalia (XLAG) (FIGURE 7A), Proud syndrome, Partington 599 

syndrome, infantile spasms without brain malformations, and syndromic and non-syndromic 600 

intellectual disability with epilepsy. 601 

The ARX protein belongs to the Aristaless-related subset of the paired (Prd) class of homeodomain 602 

proteins. Homeodomain transcription factors play crucial roles in cerebral development and 603 

patterning (187). In particular, ARX is involved in the normal tangential migration of GABAergic 604 

neurons and the occurrence of seizures in most patients carrying mutations in this gene can be 605 

ascribed to mislocalization or malfunction of this class of neurons and loss of inhibitory 606 

neurotransmission (188). For this reason, ARX-related DEEs is considered a “developmental 607 

interneuronopathy”, a term coined to differentiate developmental brain disorders caused by 608 

impaired development, migration, or function of interneurons from functional deficits or 609 

secondary loss of interneurons and from the more common channelopathies (189). 610 

Developmental interneuronopathies may also include Dravet syndrome, as discussed above, and 611 

classical lissencephaly due to mutations in PAFAH1B1, also known as LIS1 (FIGURE 7B, C), or DCX 612 

(FIGURE 7D). The PAFAH1B1 gene encodes for the regulatory beta-subunit of the cytosolic type I 613 

platelet-activating factor (PAF) acetylhydrolase, which is involved in interneuronal migration and 614 

survival, whilst DCX encodes for a microtubule-associated protein essential for both radial and 615 
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non-radial interneuronal migration into the cerebral cortex (55). Interneuronopathies have also 616 

been described in models of acquired DEEs, such as the multiple hit model of ISS (159), although 617 

the underlying interneuronal deficits and mechanisms are likely distinct, requiring different 618 

targeted therapeutic approaches (157).  619 

The phenotypic continuum of MCDs, which includes focal cortical dysplasia type II (FCDII), 620 

hemimegalencephaly (HME), megalencephaly (MEG), and dysplastic megalencephaly (DMEG), is 621 

mainly caused by constitutional and somatic mutations in mTOR pathway genes, i.e., AKT1, AKT3 622 

(FIGURE 7E), DEPDC5, MTOR (FIGURE 7F, G), NPRL2 (FIGURE 7H), NPRL3, PIK3CA, PIK3R2 (FIGURE 623 

7I, J), PTEN (FIGURE 7K, L), TSC1, and TSC2 (FIGURE 7M, N), and represents the paradigm of DEEs 624 

caused by abnormal neuronal proliferation or differentiation, in addition to abnormal neuronal 625 

migration. FCD is the cause of seizures in almost half of children referred for surgical treatment of 626 

medically refractory epilepsy, roughly estimated to near 400,000 people in the United States 627 

(Wolters Kluwer UpToDate website - https://www.uptodate.com/contents/evaluation-and-628 

management-of-drug-resistant-epilepsy). In addition to abnormal cortical lamination, FCDII also 629 

features large dysmorphic neurons without (type IIa) or with (type IIb) balloon cells (190). HME, a 630 

condition in which one hemisphere is abnormally larger than the contralateral, and DMEG, a 631 

condition in which cortical dysplasia is associated with segmental brain overgrowth, exhibit 632 

histopathological features similar to FCDII (185). Tuberous sclerosis complex (TSC), a congenital 633 

syndrome characterized by the development of benign tumors (hamartomas) in multiple organs, 634 

including the brain, and a neurological phenotype consisting mainly of early-onset seizures, 635 

intellectual disability, and at times, autism, is also caused by mTOR pathway dysregulation due to 636 

mutations in the tumor suppressor genes TSC1 or TSC2 (191). 637 

Balloon cells in FCDIIb and TSC exhibit features of both neurons and glia. On histopathological 638 

analysis, dysmorphic or cytomegalic neurons are often associated with increased proliferation of 639 
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normal-appearing glia or abnormal reactive astrocytes, which overexpress specific intermediate 640 

filaments and other immature molecular markers. Taken together, these findings strongly 641 

implicate primary defects in cellular proliferation and differentiation in the pathogenesis of 642 

mTORopathies (192).  643 

Electrophysiological recordings in neocortical samples surgically removed from patients with FCD 644 

have demonstrated that, under reduced K+ conductance, dysmorphic cytomegalic neurons, but 645 

not balloon cells, generate large Ca2+ currents when stimulated, indicating that this aberrant cell 646 

type plays an important role in epileptogenesis (193). Both the morphology and size of dysmorphic 647 

cytomegalic neurons have been implicated with the origin of aberrant electrical discharges. By 648 

using electrophysiology, calcium imaging, morphological analyses, and modeling studies, Williams 649 

and collaborators demonstrated that Pten (an mTOR pathway inhibitor) knock-out neurons exhibit 650 

rapid-onset hypertrophy and higher density of synapses proximal to the soma and that these 651 

phenotypic abnormalities promote firing at more hyperpolarized membrane potentials, with 652 

greater peak spike rates, and higher sensitivity to depolarizing synaptic input (194). 653 

Using mouse models with cell-type-specific mTOR pathway activation obtained by electroporating 654 

the Pik3ca p.H1047R mutation, which is associated with both FCD and HME, D’Gama and 655 

collaborators demonstrated that mTOR pathway activation in excitatory neurons and glia, but not 656 

in interneurons, is sufficient to cause abnormal cortical lamination and overgrowth (195). In FCD, 657 

epileptic seizures appear to be triggered by a peculiar mechanism which we detail below. By 658 

treating in vitro-maintained organotypic slice cultures of resected FCD lesions with 4-659 

aminopyridine, a potent convulsant agent acting as potassium channel blocker, Avoli and 660 

collaborators demonstrated intrinsically generated ictal-like epileptiform events (196). These 661 

epileptiform events were triggered by an amino acid receptor-mediated mechanism which was 662 

glutamatergic-independent and mainly attributable to a GABAA receptor-mediated conductance 663 
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(196). These findings are in line with the observation that, in some cases, dysplastic tissue of 664 

FCDIIb and cortical tubers retain features of immature tissue (197, 198).  665 

VII. DYSFUNCTIONS IN INTRINSIC EXCITABILITY  666 

1. VOLTAGE-GATED Na+ CHANNELS 667 

Na+ channels are clustered at high density at the axonal initial segment (AIS), which is, for this 668 

reason, the primary site for generation of APs in neurons (FIGURE 5). In myelinated axons, Na+ 669 

channels are clustered at high density also at the nodes of Ranvier to allow saltatory axonal 670 

conduction. Voltage-gated Na+ channels are essential for the generation of neuronal excitability 671 

because they generate the depolarizing Na+ current that initiate and propagate APs. These Na+ 672 

currents have fast activation and inactivate within few milliseconds after opening, although a small 673 

fraction of slowly inactivating (persistent) current remains for longer periods during 674 

depolarizations (199, 200). NaV are composed by a principal pore-forming α subunit (nine 675 

isoforms: NaV1.1-NaV1.9 for the proteins, SCN1A-SCN11A for the genes) and auxiliary β subunits 676 

(four isoforms: β1-β4 for the proteins, SCN1B-SCN4B for the genes) (199, 201). The primary 677 

sequence of the α subunits contains four homologous domains (DI-DIV), each comprising six 678 

predicted transmembrane segments (S1-S6) that form voltage-sensing modules (S1-S4; S4 is the 679 

voltage sensor) and pore modules (S5-S6 and their connecting extracellular loop) in each domain. 680 

The β subunits contain a single transmembrane segment. SCNs/NaVs are targets of clinically used 681 

sodium channel blockers, among them several anti-seizure medications (ASMs) (202). Mutations in 682 

SCN1A/NaV1.1, SCN2A/NaV1.1, SCN3A/NaV1.1 and SCN8A/NaV1.6 as well as of SCN1B/ β1, which 683 

are expressed in the central nervous system, are important causes of DEEs (199, 203–205). 684 

Patients carrying variants in voltage gated Na+ channels also exhibit an increased risk of sudden 685 

unexpected death in epilepsy (SUDEP) (206). Mutations implicated in DEEs have been found also in 686 

genes encoding proteins that can modulate Nav properties, like FGF12/FHF1 (207, 208). 687 
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1.1. NaV1.1 channels (SCN1A) 688 

SCN1A, encoding the NaV1.1 α subunit, is one of the most clinically relevant epilepsy genes, with 689 

hundreds of mutations reported thus far, whose associated phenotypes range from Dravet 690 

syndrome, a severe form of DEE, to milder GEFS+ and other diseases, such as hemiplegic migraine 691 

(4, 209, 210).  692 

Dravet syndrome is caused by often de novo heterozygous SCN1A mutations (211, 212), of which 693 

approximately half are missense, and half are predicted to give rise to a truncated non-functional 694 

protein. The clinical spectrum of Dravet syndrome does not have firmly established boundaries, 695 

but the core phenotype is characterized by intractable seizures precipitated by increased body 696 

temperature with onset between six months and one year of age, and subsequent appearance of 697 

multiple hyperthermia-induced and hyperthermia-independent seizures. Development is normal 698 

in the first year of life but plateaus rapidly, with most patients showing cognitive impairment. In 699 

patients with Dravet syndrome, SCN1A mutations can also be inherited from a parent with less 700 

severe clinical manifestations, at times carrying somatic mosaicism (213). It has been proposed 701 

that mutations in other genes can cause Dravet syndrome-like phenotypes (including SCN1B, 702 

HCN1, KCN2A, GABRA1, GABRG2, and STXBP1), but with a specific clinical pictures (see below). 703 

Thus, the association between SCN1A mutations and Dravet syndrome is highly specific. The 704 

familial epilepsy GEFS+ syndrome can be also caused by heterozygous missense SCN1A mutations 705 

and is characterized by febrile seizures plus (FS+: febrile/hyperthermic seizures that extend 706 

beyond six years of age) and afebrile generalized tonic-clonic seizures (GTCS), at times including 707 

absence, myoclonic, atonic, or focal seizures, and Dravet syndrome. Missense SCN1A mutations 708 

can also cause sporadic/familial hemiplegic migraine type3 (S/FHM3), a rare form of migraine with 709 

aura and onset in adolescence, characterized by hemiparesis as part of the aura phase. Moreover, 710 

two missense mutations with gain of function have been associated with an extremely severe 711 
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early infantile DEE with earlier seizure onset, profound cognitive and motor impairments, and a 712 

hyperkinetic movement disorder (214–216).  713 

The functional effect of truncating mutations causing Dravet syndrome has since their 714 

identification thought to be haploinsufficiency: 50% reduction of functional NaV1.1 protein in 715 

heterozygotes, with complete loss-of-function (LoF) (211), which has been verified in functional 716 

studies (217). The effect of missense mutations studied in transfected cell lines has been more 717 

controversial, but most of the results point to a LoF, whose severity tends to correlate with that of 718 

the phenotype (199, 218). Thus, the severity spectrum of SCN1A-related epilepsies could be a 719 

continuum and depend on the amount of LoF of the mutant. Some SCN1A missense mutations 720 

cause LoF because of folding/trafficking defects that lead to channel degradation (219) that can at 721 

least partially be rescued by interacting proteins stabilizing the correct folding conformation (220–722 

223).  723 

NaV1.1 is the predominant Na+ channel of GABAergic interneurons whose decreased excitability 724 

induced by SCN1A epileptogenic mutations reduces GABAergic inhibition and causes network 725 

hyperexcitability (64). A study with a knock-in model expressing a truncating nonsense DS 726 

mutation reported a similar phenotype, showing that Nav1.1 localizes to the axon initial segment 727 

of GABAergic interneurons, in particular fast-spiking parvalbumin (PV)–positive ones (65). 728 

Subsequent studies have shown that these mice display also co-morbidities including cognitive 729 

and behavioral deficits, ataxia, SUDEP, dysregulated circadian rhythms and sleep dysfunctions 730 

(199, 218, 224, 225). Several other studies, including those performed with conditional mouse 731 

models that expresses the mutations in specific neuronal subtypes (199, 218) and with a knock-in 732 

model of a GEFS+ mutation (Scn1aR1648H/+) (226, 227) have confirmed that hypoexcitability of 733 

GABAergic neurons is the initial pathological mechanism in Dravet syndrome models and that the 734 

amount of LoF can determine the severity of the phenotype. Notably, Scn1a mouse models have 735 
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also allowed to disclose genetic modifiers and cellular remodeling induced by the initial effect of 736 

the Scn1a mutation, which can modulate the phenotype implementing homeostatic or pro-737 

pathologic modifications, including homeostatic upregulation of Na+ channels in GABAergic 738 

neurons and seizure-induced hyperexcitability of glutamatergic neurons (199, 218). For instance, 739 

the interaction between seizures and the genetic mutation can induce remodeling in the 740 

Scn1aR1648H/+ mouse model transforming a basically asymptomatic phenotype into a Dravet 741 

syndrome-like one, because of increased excitability of excitatory glutamatergic neurons (228). 742 

Overall, these results show that the initial pathological mechanism in mouse models of human 743 

epileptogenic SCN1A mutations is LoF and hypoexcitability of at least some subtypes of GABAergic 744 

neurons. However, this initial dysfunction triggers both homeostatic and pathologic remodeling, 745 

depending on the neuronal types, age, genetic background, and interactions between SCN1A 746 

mutations and experienced seizures. 747 

Although some drugs like stiripentol (229), fenfluramine (230) or cannabidiol (231) have been 748 

shown to be partially effective in some patients, Dravet syndrome still remains drug-resistant for 749 

most of the patients. Scn1a gene targeted mice have been used for testing therapeutic 750 

approaches, both classical pharmacological treatments and novel methods, including gene 751 

therapy, in some cases obtaining significant amelioration of the phenotype (199, 232). Some novel 752 

approaches have shown particularly effective results and have led to clinical trials. For example, an 753 

antisense oligonucleotide-based targeted augmentation of nuclear gene output (TANGO) 754 

approach has been used to increase the expression of functional Nav1.1 channels in Dravet 755 

syndrome mice, observing a substantial decrease in spontaneous seizures and SUDEP when 756 

specific antisense oligonucleotides were injected in newborn mice (233). 757 

Mutations causing sporadic/familial hemiplegic migraine (S/FHM) cause NaV1.1 gain-of-function 758 

(GoF) by inducing gating modifications and increasing the slowly inactivating “persistent” Na+ 759 
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current (199, 218). Gene targeted mouse models of S/FHM mutations have been generated and 760 

they show facilitated/spontaneous generation of cortical spreading depression (CSD), a proposed 761 

pathological mechanism of migraine with aura, but no seizures (234, 235). Genetic and acute 762 

models have shown that these mutations induce hyperexcitability of GABAergic neurons leading to 763 

increase of extracellular K+ and clamped depolarizing block of neuronal activity (236). A very mild 764 

GoF has also been observed for the p.T226M mutation causing an extremely severe early infantile 765 

SCN1A DEE (216), but it is not clear yet how such a mild change could induce the severe 766 

phenotype.  767 

1.2. NaV1.2 channels (SCN2A) 768 

SCN2A encodes the NaV1.2 sodium channel, which is widely expressed in the central nervous 769 

system, particularly in cortical and hippocampal glutamatergic neurons (199). These are the main 770 

Na+ channels of the axonal initial segment (AIS) and the nodes of Ranvier in the first 10 days of 771 

postnatal life in rodents, then they are partially replaced by SCN8A/NAV1.6. It is thought that 772 

NaV1.2 channels in the proximal AIS promote backpropagation to the soma. In the adult brain, 773 

NaV1.2 is also present in thin processes, presumably distal unmyelinated portions of preterminal 774 

axons. 775 

The first epilepsy syndrome clearly associated with SCN2A mutations was benign familial 776 

neonatal/infantile seizures (BFNIS) (237), characterized by a mild phenotype. Subsequently, it has 777 

been shown that mutations in SCN2A cause a wide range of neurodevelopmental disorders, 778 

including DEE of varying severity. DEE mutations generally arise de novo, and about 80% are 779 

missense. About 60% of SCN2A DEE have onset in the first three months of life (238, 239). All 780 

neonatal-early infantile DEE patients display intellectual disability. About 50% of them have 781 

variable seizure types, whereas the others have Ohtahara syndrome (neonatal-onset spasms or 782 

tonic seizures and EEG with burst suppression pattern), sometimes evolving into West syndrome, 783 
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Lennox–Gastaut phenotypes or epilepsy with early infantile migrating focal seizures (EIMFS). DEE 784 

with infantile and childhood onset are about 40% of the total (238, 239). The phenotype can be 785 

correlated to the age of onset. Patients with onset between three months and one year of age in 786 

general have West syndrome, with possible evolution into a Lennox–Gastaut phenotype. Patients 787 

with onset after one year of age often show variable seizure phenotypes with 788 

developmental/cognitive delay and autistic traits that can appear before seizure onset. 789 

Functional analysis in transfected cell lines has shown some genotype-phenotype correlations 790 

(199, 240). GoF mutations are related to mild benign neonatal/infantile epilepsy and to 791 

neonatal/early infantile DEE, which can be responsive to treatment with Na+ channel blockers 792 

(239), whereas LoF mutations are linked to infantile/childhood epileptic encephalopathy or 793 

neurodevelopmental disorders (autism and intellectual disability) without seizures. However, 794 

identifying genotype-phenotype correlations within these GoF and LoF mutants is difficult due to 795 

partially overlapping phenotypes. 796 

Recordings in brain slices of heterozygous knock-out Scn2a (Scn2a+/-) mice have shown that 797 

Nav1.2, besides its established axonal role, has important dendritic functions in pyramidal neurons 798 

of the prefrontal cortex, where its haploinsufficiency impairs synaptic plasticity and synaptic 799 

strength, even when Scn2a expression is reduced in single neurons late in postnatal development 800 

(241). However, these studies have shown that Scn2a+/- mice, differently than Scn1a models, have 801 

a relatively mild phenotype, including short absence-like seizures, spatial memory deficits but 802 

enhanced fear memory, plus autistic traits (199, 242). A Scn2a mouse model carrying the severe 803 

hypomorphic mutation Δ1898 shows a more severe phenotype, with robust autistic-like features 804 

(243). Two additional studies have shown that either complete deletion (244) or reduced 805 

expression of Scn2a (244, 245) can paradoxically induce hyperexcitability of glutamatergic 806 

neurons. Overall, these findings suggest that reduction of SCN2A to more than haploinsufficiency 807 
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could be needed to induce severe phenotypes. A knock-in mouse model of the recurrent GOF 808 

mutation R1882Q has been generated (246) showing that heterozygous mice display 809 

hyperexcitability of cortical pyramidal neurons, and develop spontaneous seizures at P1 and 810 

premature death between P13 and P30. Interestingly, reduction of NaV1.2 expression by specific 811 

antisense oligonucleotides reduced seizures and extended lifespan.  812 

1.3. NaV1.3 channels (SCN3A) 813 

SCN3A encodes the NaV1.3 Na+ channel, whose functions have not been completely determined 814 

yet. SCN3A is widely expressed in the brain at high levels during embryonic development and is 815 

downregulated afterwards (199). 816 

SCN3A-related clinical phenotypes comprise a wide spectrum, including mild epilepsy with 817 

intellectual dysfunction, early infantile DEE often associated with polymicrogyria, as well as speech 818 

and oral motor dysfunctions associated with polymicrogyria without epilepsy. Relatively mild 819 

neonatal-childhood onset focal epilepsy (247), would be the mildest phenotype in the spectrum 820 

(248, 249). Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets 821 

expressing the mutant SCN3A (249). Functional studies in transfected human cell lines have shown 822 

that most of the SCN3A mutations associated with severe human phenotypes exhibit prominent 823 

GoF, inducing, in particular, large increases of persistent Na+ current (248–250). LoF caused by 824 

reduced current density has been reported for some SCN3A variants. Heterozygous adult Scn3a+/- 825 

knock out mice were investigated as a model of SCN3A LoF mutations, but they do not show 826 

features of DEE (251). 827 

1.4.  NaV1.6 channels (SCN8A) 828 

SCN8A encodes NaV1.6, the main Na+ channel in the axon initial segment and nodes of Ranvier of 829 

myelinated axons in mature excitatory neurons (199). 830 
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De novo heterozygous mutations in SCN8A have been identified in a range of phenotypes. Most 831 

patients show a DEE with multiple seizure types and early onset, severe intellectual disability and 832 

movement disorders and have an increased risk of SUDEP (252). Other patients exhibit milder 833 

phenotypes, including benign familial infantile seizures (BFIS) and epilepsies with intermediate 834 

phenotypes, or generalized epilepsy with absence seizures (253, 254). Some patients show 835 

intellectual disability, autism, or movement disorders without epilepsy (255, 256). About 20% of 836 

patients have recurrent mutations. 837 

Mutations that cause DEE or milder epilepsy induce GoF with negative shifts of voltage-838 

dependence of activation, positive shifts of voltage-dependence of inactivation, slowed channel 839 

inactivation, or increased persistent or resurgent current. These functional changes are all 840 

consistent with neuronal hyperexcitability, which has been confirmed in transfected cultured 841 

neurons (255, 257). Other mutations causing intellectual disability, autism, or movement disorders 842 

without epilepsy induce LoF, which can be complete (255, 256). Massive GoF can induce reduced 843 

generation of APs, mimicking LoF mutations (255). LoF mutations have been identified in patients 844 

with absence seizures (254), a phenotype reproduced by heterozygous loss of function mouse 845 

models. 846 

A standard global knock-in (258) and a conditional floxed knock-in (259) mouse models of SCN8A 847 

DEE mutations are available. Overall, knock-in mice indicate that SCN8A GoF mutations are 848 

sufficient to induce hyperexcitability of some subtypes of excitatory neurons, generating severe 849 

seizures and a lethal phenotype. In contrast, spontaneous mouse models carrying LoF SCN8A 850 

mutations (260) show a phenotype similar to that of patients with intellectual disability and/or 851 

movement disorders without epilepsy. 852 

Some patients with SCN8A GoF mutations respond to high doses of sodium channel blockers (254, 853 

261), but available blockers are not isoform-specific and chronic therapy at high doses can induce 854 
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adverse effects. A recent study has used antisense oligonucleotides that reduce Scn8a expression 855 

by 25–50%, showing a delay of seizure onset and lethality in a knock-in Scn8a mouse model (262). 856 

These genetic approaches are highly specific for SCN8A, but problems of oligonucleotide delivery 857 

and half-life need to be solved before a translational use. 858 

1.5 Auxiliary subunits of Na+ channels 859 

SCN1B encodes the “auxiliary” β1 Na+ channel subunit that is widely expressed in different organs, 860 

including the central nervous system. β-subunits were originally named auxiliary because they do 861 

not directly form the channel but modulate the properties and the membrane delivery of α-862 

subunits. We now know that they are multifunctional molecules implicated, besides direct 863 

modulation of α subunits, in diverse and essential roles in multiple tissues, including cell adhesion 864 

and migration, neuronal pathfinding, fasciculation and neurite outgrowth (204). Mutations in β-865 

subunits can alter numerous functions, including modulations of all the α-subunits, and thereby 866 

they are involved in epilepsy, neurodegenerative disorders, neuropathic pain, cardiac arrhythmias 867 

and cancer (204). Mutations in SCN1B have been identified in a range of epilepsy phenotypes. 868 

Homozygous SCN1B mutations have been identified in DEE patients that were initially included in 869 

the Dravet syndrome spectrum (263). However, it is now clear that their clinical features are 870 

distinct from Dravet syndrome, showing earlier onset seizures and more severe 871 

neurodevelopmental phenotype, including psychomotor, stagnation or regression, and 872 

microcephaly (264, 265).  873 

Functional analysis of SCN1B DEE mutations in transfected cell lines have identified either LoF 874 

modulation of co-expressed α subunits or induction of complex gating modifications in different 875 

co-expressed α subunits (263–265). Homozygous knock-out null Scn1b-/- mice show spontaneous 876 

seizures and a high mortality rate (266). Cortical neurons in brain slices obtained from these mice 877 

have shown dysfunctions in the excitability of both pyramidal excitatory neurons and GABAergic 878 
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fast-spiking interneurons. GABAergic interneurons were hypoexcitable, whereas dysfunctions of 879 

pyramidal neurons were more complex, with subsets of them exhibiting hyperexcitability at low 880 

current injections, as well as hypoexcitability at high stimulation intensities. 881 

2. VOLTAGE-GATED K+ CHANNELS 882 

K+ channels are the most diverse group of ion channels and can be classified into different families 883 

depending on the number of transmembrane domains in each subunit and the gating 884 

mechanisms. Voltage-gated K+ channels (KV) are composed by four subunits, each with six 885 

transmembrane segments, a voltage sensor module formed by segments S1 to S4, and the pore 886 

region formed by S5, S6 and their connecting loop, as in NaV channels. They generate repolarizing 887 

currents that oppose the action of depolarizing currents and are involved in different epileptic 888 

encephalopathies. 889 

2.1. M-current K+ channels (KV7, KCNQ) 890 

Five KCNQ genes have been identified that encode KV7 K+ channels, which can form both homo- 891 

and hetero-tetramers (267, 268). Of the four channels expressed in the nervous system (KCNQ2-892 

5), three (particularly KCNQ2, but also KCNQ3 and KCNQ5) host DEE mutations. KCNQ2 and KCNQ3 893 

are expressed in many brain areas, whereas expression of KCNQ5 is more limited (269). They 894 

generate the M (muscarinic receptor inhibited)-current, a slow non-inactivating K+ current that 895 

activates at subthreshold membrane potentials (270). KCNQ2-linked DEE has its onset in early 896 

infancy and features motor impairment and variable intellectual disability (271). Often, the EEG 897 

initially shows a burst suppression pattern that may later evolve to multifocal epileptiform activity. 898 

KCNQ3 and KCNQ5 DEEs display a variable degree of severity and some patients show intellectual 899 

disability apparently without epilepsy (9, 267). Mutations in the three KCNQ genes can also cause 900 

“benign familial neonatal seizures” (BFNS), which is mild and self-limited (268). 901 
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According to their subcellular localization, KV channels can regulate specific features of neuronal 902 

excitability. Somato-dendritic channels are strongly activated by back-propagating APs, attenuate 903 

repetitive firing and contribute to the medium and slow components of the afterhyperpolarization 904 

(AHP), determining the refractory period and regulating spiking frequency. In the perisomatic 905 

region, slow activation of the M current decreases neuronal firing in response to sustained stimuli, 906 

inducing spike-frequency adaptation (269, 272, 273). Axonal KV channels mostly function by 907 

stabilizing the resting membrane potential, leading to increased activation of axonal NaV channels 908 

(274–276) and of presynaptic Ca2+ channels, modulating synaptic release (277, 278). Both KCNQ2 909 

and KNCQ3 are also expressed in GABAergic interneurons (279).  910 

Numerous in vitro studies have investigated functional effects of KCNQ DEE mutations in cell lines 911 

or Xenopus oocytes (267). Most studies agree that LoF, often leading to haploinsufficiency, is the 912 

pathophysiologic mechanism of mild and self-limited BFNS (267, 268). DEE mutations can induce 913 

more severe LoF consistent with a dominant negative effect. A single report showed that the 914 

recurrent p.A294V KV7.2 pore mutation does not modify the properties of the current, but induces 915 

LoF altering the subcellular localization of KV channels (280). DEE can also be caused by GoF, in 916 

which case, disease severity correlates with that of functional alteration (267). The first transgenic 917 

mouse model expressing a KCNQ2 dominant-negative mutant (149), showed spontaneous focal 918 

and generalized tonic-clonic seizures, impaired hippocampus-related memory and pronounced 919 

hyperactivity, but also cell loss in the hippocampus, which is not observed in patients. The first 920 

knock-in model of KCNQ2-DEE (281) carrying the p.T274M mutation displayed an overall 70–80% 921 

reduction of the M-current (282). KCNQ2T274M/+ mice show spontaneous generalized seizures and 922 

impairment of spatial learning and memory, and do not show major structural brain defects or 923 

neuronal mortality, which is consistent with the clinical features observed in patients. The 924 

selective deletion of KCNQ2 and KCNQ3 in parvalbumin-positive interneurons increased their 925 
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firing, leading to homeostatic potentiation of excitatory synaptic activity. Consistently this model 926 

shows reduced latency for picrotoxin-induced seizures (283).  927 

2.2. Delayed rectifier K+ channels (KV1.1/KCNA1; KV1.2/KCNA2; KV2.1/KCNB1; KV8.2/KCNV2) 928 

KV1.1 (KCNA1) and KV1.2 (KCNA2).  KCNA2 encodes the KV1.2 shaker-type voltage-gated K+ channel 929 

subunit, which is highly expressed in both excitatory and inhibitory neurons, particularly in the 930 

axon (284–286). The KV1.2 channel generates the delayed rectifier K+ current, an important 931 

component of the repolarizing currents during APs. KV1.2 channels have high homology to KV1.1 932 

channels but require stronger depolarization to activate. KV1.1 and KV1.2 subunits can produce 933 

heteromeric potassium channels with intermediate properties between the respective homomers 934 

(287). KV1.1 and KV1.2 subunits are associated with cell adhesion molecules (CAMs), including 935 

LGI1, which contributes to their subcellular localization (288). KCNA2-DEE clinical features have 936 

been correlated with effects of mutations studied in vitro and can result in strong GoF, mixed GoF 937 

and LoF, and LoF with negative dominance (289, 290). Patients with strong GoF variants have 938 

onset between five and 15 months of age with intellectual disability, ataxia, and cerebellar 939 

atrophy, often with generalized seizures. Patients with variants showing mixed GoF and LoF effects 940 

have onset from the neonatal period to six months of age with refractory generalized and focal 941 

seizures and developmental delay. Patients with dominant negative LoF variants can have less 942 

severe features. The LoF mechanism is consistent with the classical role of K+ channels and the 943 

phenotype of KV1.2 mutant mice. Homozygous knock-out mice show severe seizures and early 944 

mortality, and heterozygous knock-out mice are more sensitive to convulsants, although they do 945 

not show spontaneous seizures (291). Both heterozygous and homozygous “Pingu” mice, which 946 

carry a chemically induced LoF missense mutation, show motor abnormalities (292). Since KV1.2 947 

channels are expressed in both excitatory and inhibitory neurons, the cellular mechanism of 948 

KCNA2 mutations is not completely clear. Their repolarizing role can help both sustaining high 949 
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firing rates and setting the resting membrane potential. Recordings from LoF mouse models have 950 

shown contrasting modifications of neuronal firing, with hypoexcitability of glycinergic neurons in 951 

Kcna2 knock-out (291) and hyperexcitability of cerebellar basket cells in Pingu mice (292). 952 

Although the detailed pathological mechanism is still elusive, the identification of GoF or LoF 953 

effects can provide important information for orienting the therapy in a precision medicine 954 

approach. In fact, it has been recently shown that the K+ channel blocker 4-aminopyridine 955 

antagonized GoF defects caused by variants in KCNA2 in vitro and was effective in reducing 956 

symptoms in patients carrying GoF KCNA2 mutations (293). KCNA1 LoF mutations have also been 957 

identified in some DEE patients (294, 295) extending the pathological spectrum of this gene to 958 

severe epilepsy.  959 

KV2.1 (KCNB1) and KV8.2 (KCNV2). KCNB1 encodes the KV2.1 pore-forming and voltage-sensing α-960 

subunit, which contributes to generate the delayed-rectifier K+ current (268). It is expressed in 961 

both excitatory and inhibitory neurons of the mammalian brain, and is localized to the soma, 962 

proximal dendrites, and axon initial segments (296). KV2.1 is important for sensing and 963 

homeostatically regulating excitability, because its activity can be inhibited by phosphorylation; 964 

increased neuronal activity induces dephosphorylation, which results in increased delayed rectifier 965 

current leading to reduced neuronal excitability (297, 298). Mutations in KCNB1 have been 966 

recently reported in patients with early-onset DEE (299–301). KCNB1-related DEEs encompass a 967 

wide spectrum of neurodevelopmental disorders with different types of epileptic seizures, 968 

predominant language difficulties and behavioral impairment. Most variants occur de novo and 969 

mainly consist of missense variants located on the voltage sensor and the pore domain. Truncating 970 

variants in the C-terminal domain are associated with a less-severe epileptic phenotype, although 971 

cognitive/behavioral impairment is still severe. Functional studies in transfected cells have shown 972 

a variety of defects, including loss of ion selectivity, reduced conductance, and dominant negative 973 
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effects, as well as milder effects on gating properties (299, 302, 303), which induce reduced 974 

function and increased neuronal excitability. Kcnb1−/− mice show hyperexcitable hippocampal 975 

circuits but do not show spontaneous seizures, although they exhibit increased seizure 976 

susceptibility (298). The voltage-gated K+ channel subunit KV8.2, encoded by the KCNV2 gene, is a 977 

silent subunit when expressed as a homotetramer, but it increases the KV2 current when co-978 

assembled as a hetero-tetramer with other KV2 channels, for example in hippocampal pyramidal 979 

neurons, in which it co-localize with Kv2.1 and contributes to the generation of the delayed-980 

rectifier K+ current (304, 305).   De novo LoF variants in the KCNV2 gene, encoding the voltage-981 

gated K+ channel subunit KV8.2, have been identified in few DEE patients and contribute to 982 

epilepsy susceptibility in mice (305).  983 

2.3. Fast K+ channels 984 

KV3.1 (KCNC1) and KV4.1-4.3 (KCND). KCNC1 encodes the KV3.1 channel, which is preferentially 985 

expressed in neurons that generate high frequency firing, including parvalbumin-containing 986 

GABAergic interneurons in the cerebral cortex, hippocampus and amygdala, auditory brainstem 987 

neurons, cerebellar granule cells, and neurons of the reticular nucleus of the thalamus (306). In 988 

fast spiking GABAergic neurons, KV3.1 channels are localized to the proximal dendrites, somata, 989 

axon hillock, and synaptic terminals, but are not found in distal dendrites (306, 307). Specific 990 

functional properties that distinguish KV3.1 channels from other KV channels are the very fast 991 

kinetics of activation and deactivation, and the voltage dependence of activation shifted towards 992 

depolarized potentials (306). These properties are optimized for promoting the generation of high 993 

firing rates, up to hundreds of Hz (308). Mutations in KCNC1 have been identified in early onset 994 

DEE and in patients with intellectual disability without seizures (309, 310). Mutants have been 995 

functionally characterized in the Xenopus laevis oocytes. All characterized mutations resulted in 996 

partial or complete LoF, with some of them inducing negative dominance leading to >50% 997 
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reduction of current in heterozygosis (309–311). These results are consistent with hypo-998 

excitability of fast spiking neurons as the main pathogenic mechanism of KCNC1 DEE. Knock-out 999 

Kcnc1-/- mice have a subtle phenotype (312) and there are no mouse models engineered to carry 1000 

human KCNC1 mutations. 1001 

KCND1-3 encode the KV4.1-3 alpha subunits of the Shal family of the A-type voltage-gated K+ 1002 

channels, which generate a rapidly inactivating outward K+ current and are important in 1003 

membrane repolarization in excitable cells (313). The de novo heterozygous missense variant 1004 

p.V404M of KCND2 has been associated with DEE with onset at 2 months (314). Functional 1005 

analysis in Xenopus laevis oocytes showed modified current kinetics and reduced inactivation, 1006 

consistent with GoF, but effects on neuronal excitability were not investigated (314).  1007 

2.4. Non-inactivating K+ channels 1008 

The ether-a-go-go (EAG) K+ channel family is formed by KCNH1 and KCNH5, which encode the 1009 

KV10.1 (EAG1) and KV10.2 (EAG2) channels, respectively. They generate non-inactivating voltage-1010 

dependent K+ currents and in expression systems can form heteromeric channel complexes, in 1011 

which the slow activation of KV10.1 is dominant (315). KCNH1 heterozygous missense mutations 1012 

have been identified in patients with Zimmermann-Laband and Temple-Baraitser syndromes, as 1013 

well as in patients with unclassified syndromes and a broad phenotypic spectrum with intellectual 1014 

disability and epilepsy (316–320). Epilepsy is a key phenotypic feature in most patients with 1015 

KCNH1-related syndromes, who show both generalized and focal tonic-clonic seizures (319, 320). 1016 

Functional studies of KCHN1 mutants in cell lines have shown left-shifted voltage-dependence of 1017 

activation and slower deactivation kinetics, consistent with GoF (316, 317), although it is not clear 1018 

how this effect could cause the observed phenotypes. De novo heterozygous missense variants of 1019 

KCNH5 have been identified in few DEE patients (321, 322). Functional analysis in transfected cell 1020 
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lines has shown a strong hyperpolarizing shift of voltage-dependence of activation and an 1021 

acceleration of activation, consistent with GoF.  1022 

2.5. Ca2+ activated K+ channels 1023 

KCNMA1 encodes the pore-forming α-subunit of the large-conductance KCa1.1 Ca2+ activated K+ 1024 

channel (“Big K+”, BK), which is activated by depolarizations and intracellular Ca2+ (323). KCa1.1 is 1025 

widely distributed in excitable and non-excitable cells. Expression levels are highest in brain and 1026 

muscle, where BK channels are critical regulators of neuronal excitability and muscle contractility. 1027 

In both excitatory and inhibitory neurons, BK channels are implicated in AP repolarization and 1028 

after-hyperpolarization, influencing the shape, frequency, and propagation of APs (323). 1029 

Heterozygous de novo missense mutations in KCNMA1 are associated with a wide phenotypic 1030 

spectrum primarily defined by brain and muscle dysfunction (324–326). KCNMA1-linked DEE is 1031 

characterized by a heterogeneous combination of epilepsy, dyskinesia, and intellectual disability.  1032 

Functional analysis in cell lines transfected with KCNMA1 mutations have shown both LoF and GoF 1033 

effects that correlate with  phenotypic features (325). While seizures do not show differential 1034 

distribution between patients carrying GoF and LoF variants, neurodevelopmental and structural 1035 

brain abnormalities are prevalent in patients with LoF mutations. There are no animal models 1036 

carrying mutations identified in patients. Kcnma1−/− mice show ataxia, tremor, impaired 1037 

coordination and spatial learning (327, 328). Pharmacological inhibition of KCa1.1 channels induce 1038 

tremor and ataxia in animals (329), but they might be used for treatment of GoF mutations.  1039 

2.6. Na+-activated K+ channels  1040 

KCNT1 encodes the KNa1.1 subunit, which has a classical six transmembrane segments structure 1041 

and forms a tetrameric Na+-activated K+ channel (also called Slack, KCa4.1 or Slo2.2). KNa1.1 is 1042 

activated by both intracellular Na+ and voltage and is expressed in different organs, including the 1043 

nervous system, heart, and kidney. In the central nervous system, it has a distinct expression 1044 
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pattern with respect to KNa1.2 (encoded by the gene KCNT2), but the two subunits can co-localize 1045 

and form heteromeric channels (330, 331). KNa channels can modulate intrinsic excitability and 1046 

firing properties of different types of neurons. In particular, they contribute to generate the slow 1047 

after-hyperpolarization that follows AP discharges, which induce Na+ influx through NaV channels 1048 

(332). 1049 

Mutations in KCNT1 cause different phenotypes, including DEEs. De novo heterozygous mutations 1050 

were first identified in epilepsy of infancy with migrating focal seizures (EIMFS) also called 1051 

malignant migrating partial seizures of infancy (MMPSI) (333). EIMFS is characterized by refractory 1052 

focal seizures arising and status epilepticus with onset in the first six months of life. The 1053 

neurological status progressively deteriorates, with progressive hypotonia, and severe 1054 

development arrest. De novo heterozygous mutations have been also identified in severe 1055 

autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), sleep-related hypermotor epilepsy 1056 

SHE (334) and other less common DEE phenotypes (335). 1057 

The identified mutations induce large GoF, increasing the KNa1.1 current amplitude (333, 336), 1058 

while one heterozygous LoF variant (p.F932I) from a patient with severe generalized seizures and 1059 

delayed myelination causes impaired KNa1.1 trafficking (337). Knock-in mice of the p.Y796H GoF 1060 

KCNT1 mutation show early-onset seizures (338). Although KNa1.1 increases KNa currents in both 1061 

excitatory and inhibitory cortical neurons in primary cultures, an increase of the current in the 1062 

subthreshold voltages is only found in inhibitory neurons, resulting in inhibitory neuron-specific 1063 

impairments in excitability and AP generation. GoF KCNT2 mutations also cause DEE (339). 1064 

Blocking KCNT GoF mutants with quinidine, a class I antiarrhythmic drug, has shown variable 1065 

success in patients because of dose-limiting off-target effects, poor blood-brain barrier (BBB) 1066 

penetration, and low potency (335). 1067 

3. Ca2+ CHANNELS 1068 
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Voltage-gated Ca2+ channels are important for numerous physiological functions; in neurons, they 1069 

contribute to neuronal excitability and, at the synaptic level, mediate synchronous transmitter 1070 

release. The voltage-dependent Ca2+ currents are generated by monomeric α1 subunits that have 1071 

the canonical four domains of six transmembrane segments, (340, 341). The 10 cloned α1-subunits 1072 

can be grouped into three families according to the membrane potential range at which the 1073 

channel is activated and the sensitivity to drugs: the high-voltage activated dihydropyridine-1074 

sensitive channels (L-type; CACNA1S/CaV1.1, CACNA1C/CaV1.2, CACNA1/CaV1.3, and 1075 

CACNA1F/CaV1.4), the high/moderate-voltage activated dihydropyridine-insensitive channels 1076 

(P/Q-, N- and R- type; CACNA1A/CaV2.1, CACNA1B/CaV2.2 and CACNA1E/CaV2.3), and the low-1077 

voltage-activated (T-type; CACNA1G/CaV3.1, CACNA1H/CaV3.2 and CACNA1I/CaV3.3) channels. It 1078 

has been proposed that L-type channels may be implicated in the generation of epileptiform 1079 

paroxysmal depolarization shifts (342) and that they may be therapeutic targets for epilepsy (343). 1080 

However, besides Timothy syndrome, a severe multiorgan disorder caused by CACNA1A/CaV2.1 1081 

GoF mutations (in which surviving patients can develop epilepsy and autism) (344), there are no 1082 

reports of their direct involvement in DEE. At least for high-voltage activated channels, functional 1083 

properties, and intracellular trafficking of α1 subunits can be modulated by accessory subunits, 1084 

including the β-, α2δ-, and γ-subunits (345).  1085 

3.1 T-type channels  1086 

T-type channels (CACNA1G/H/I, CaV3.1-3) are widely expressed throughout the nervous system 1087 

(346). Voltage-dependent opening of T-type channels occurs at comparatively negative membrane 1088 

potentials and, depolarizing the cell membrane, facilitates the generation of APs. This function is 1089 

especially relevant in several central neurons in which T-type channels are particularly abundant in 1090 

dendrites, where they enhance subthreshold postsynaptic potentials and facilitate the 1091 

propagation of the electrotonic signal to the cell body (347). They are also involved in the firing of 1092 
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rebound burst of APs that support various forms of neuronal pacemaking, particularly in the 1093 

thalamocortical network, whose dysfunction is implicated in absence seizures (348). 1094 

Polymorphisms in CACNA1G/CaV3.1 and CACNA1H/CaV3.2 causing in general mild GoF have been 1095 

identified as risk factors for idiopathic generalized epilepsy (349). De novo heterozygous missense 1096 

variants in CACNA1G/CaV3.1 and CACNA1I//CaV3.1 have been recently identified in patients with 1097 

infantile-onset DEE (350, 351) and variable neurodevelopmental phenotypes including DEE with 1098 

cognitive impairment, hypotonia, and epilepsy (352). Functional effects are consistent with GoF 1099 

(including persistent Ca2+ current at resting membrane potential for CACNA1I//CaV3.1 variants), or 1100 

mixed GoF and LoF. Evidence for the involvement of CACNA1H/CaV3.2 in DEE is more limited. 1101 

Gene targeted animal models of T-type channels DEE mutations are not available yet. 1102 

3.2. P/Q-type Ca2+ channels  1103 

CACNA1A encodes the Cav2.1 Ca2+ channel, which generates the high voltage-activated P/Q-type 1104 

Ca2+ current with moderate voltage-dependent inactivation. CACNA1A is widely expressed in the 1105 

central nervous system and is essential for fast and synchronous neurotransmitter release in 1106 

numerous neuronal subtypes (353). CACNA1A mutations have been associated with episodic 1107 

ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6), familial hemiplegic migraine type 1 1108 

(FHM1) (354–356) and, more recently, with severe intellectual disability, motor impairment, and 1109 

episodic ataxia (61, 357). Functional characterization of CACNA1A DEE mutations performed in 1110 

transfected cell lines has generated controversial results because both LoF (decreased channel 1111 

targeting at the cell membrane) and GoF (hyperpolarized shift of the activation curve) effects were 1112 

reported (358). A mouse model of CACNA1A DEE has not been generated yet. 1113 

3.3. N-type Ca2+ channels  1114 

CACNA1B encodes the Cav2.2 N-type Ca2+ channel, which generates the high voltage-activated Ca2+ 1115 

current with moderate voltage-dependent inactivation. CACNA1B is expressed throughout the 1116 
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central nervous system and acts synergistically or complementarily with CACNA1A for generating 1117 

presynaptic Ca2+ fluxes that mediate neurotransmitter release (353). Expression of CACNA1B is 1118 

thought to be crucial for neurotransmission in the early postnatal period as Cav2.2 channels are 1119 

replaced by CaV2.1 channels in most mature synapses (353). In particular, Cav2.2 is implicated in 1120 

asynchronous synaptic release, which occurs up to tens of seconds after the AP (353). Cav2.2 may 1121 

also have a role in synaptic plasticity, synaptogenesis, gene transcription, neuronal survival, and 1122 

migration of immature neurons (340). CACNA1B variants have been identified in a severe form of 1123 

autosomal recessive DEE featuring developmental delay, microcephaly, inability to walk or speak, 1124 

early onset refractory seizures, myoclonus/dyskinesia, frequent feeding difficulties and high risk of 1125 

premature demise (359). The identified variants are predicted to truncate the Cav2.2 protein, 1126 

leading to LoF and haploinsufficiency, although the genotype/phenotype relationships are not 1127 

clear. There are no gene targeted mouse models of the identified human variants, but Cacna1b-/- 1128 

mouse models show overt neurodevelopmental abnormalities, including abnormal locomotor 1129 

activity and memory impairment (360). 1130 

3.4. R-type Ca2+ channels 1131 

CACNA1E encodes the moderate voltage-activated CaV2.3 Ca2+ channel, which generates the R-1132 

type Ca2+ current with fast voltage-dependent inactivation. It is highly expressed in the central 1133 

nervous system and involved in generating the Ca2+ influx in synaptic terminals that initiates rapid 1134 

release of neurotransmitters. Mutations in CACNA1E cause severe autosomal dominant DEE with 1135 

macrocephaly, hypotonia, early-onset refractory seizures, profoundly impaired neurodevelopment 1136 

and hyperkinesia (361). Functional analysis of CACNA1E variants in transfected cell lines mostly 1137 

showed GoF effects with facilitated activation and slowed inactivation (361), consistent with 1138 

increased neurotransmitter release and network hyperexcitability. Other variants were predicted 1139 
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to generate truncated non-functional proteins and haploinsufficiency. Cacna1e-/- null knock-out 1140 

mice do not show overt neurological phenotypes (362). 1141 

4. OTHER CATION CHANNELS 1142 

4.1 Voltage-independent Na+ channels  1143 

The sodium leak NALCN channel (NaVI2.1) is predominantly expressed in neurons where it is 1144 

important for setting resting potential and controlling neuronal excitability. NALCN encodes for a 1145 

voltage-independent, non-inactivating cation channel permeable to Na+, K+, and Ca2+ that 1146 

generates the background TTX resistant Na+ leak current (363, 364). Autosomal-recessive missense 1147 

and nonsense NALCN mutations have been identified in a DEE with onset at birth or in early 1148 

infancy, characterized by variable degrees of hypotonia, speech impairment and intellectual 1149 

disability (infantile hypotonia with psychomotor retardation and characteristic facies, IHPRF) (365). 1150 

A subsequent study found heterozygous de novo NALCN missense variants to cause congenital 1151 

contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD) (366, 367). 1152 

Functional studies in transfected cell lines have generated controversial results, showing GoF, LoF 1153 

or dominant-negative effects for both syndromes (367, 368). Nalcn-/- knock-out mice show 1154 

severely disrupted respiratory rhythm and die within 24 hours of birth. 1155 

4.2 Hyperpolarization-activated cyclic nucleotide-gated channels (HCN) 1156 

HCN are Na+/K+ permeable channels that are activated by hyperpolarization at voltages more 1157 

negative than -50 mV (369). cAMP and cGMP directly bind to the intracellular cyclic nucleotide-1158 

binding domain and shift the activation curve of HCN channels to more positive voltages, 1159 

increasing channel activity. The four known HCN isoforms (HCN1-4) have secondary structure that 1160 

resembles that of K+ channels. HCN1 and HCN2 are the main isoforms expressed in the brain with 1161 

a predominant somato-dendritic expression. The hyperpolarization-activated currents generated 1162 

by HCN channels in neurons, named Ih or Iq, are depolarizing and contribute to set the resting 1163 
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membrane potential, shape synaptic inputs and generate rhythmic and synchronized neuronal 1164 

activity implicated in pacemaking and somato-dendritic oscillations (370).  1165 

De novo dominant missense HCN1 variants were initially identified in DEE patients with a Dravet-1166 

like phenotype (371), but have subsequently been related to a wider phenotypic spectrum ranging 1167 

from mild generalized epilepsy or GEFS+ to severe early onset DEE (372). Functional studies in cell 1168 

lines identified GoF as the major pathophysiological mechanism and a LoF with dominant negative 1169 

effect for a limited number of variants (371). Knock-out HCN-/- mice show deficits in motor 1170 

learning and modifications of spatial memory, but not a DEE phenotype (373) while the knock-in 1171 

mouse for the p.M305L mutation shows DEE (374). Functional analysis in CHO cells and pyramidal 1172 

neurons demonstrated that the p.M305L mutation causes a constitutive activation of the channel 1173 

(372). 1174 

5. The Na+/K+-ATPase pump 1175 

The Na+/K+-ATPase (NKA) ion pump is a ubiquitous transmembrane enzyme responsible for active 1176 

exchange of Na+ and K+ ions across the plasma membranes in higher eukaryotic cells and is 1177 

composed of a large catalytic α-subunit and smaller β- and γ-subunits that modulate the 1178 

membrane exposure and activity of α-subunits (375, 376). In neural tissue, NKA generates an 1179 

outward current that contributes to the resting membrane potential, and powers secondary active 1180 

transports, including Na+/H+ and Na+/Ca2+ exchanges, K+/Cl- cotransport, and Na+-dependent 1181 

neurotransmitter uptake (375).  1182 

The four known human isoforms of the α-subunit (α1-4), encoded by four paralogous genes 1183 

(ATP1A1-4) have developmental and tissue expression specificity. The α2- and α3-isoforms, 1184 

encoded by ATP1A2 and ATP1A3, are predominantly expressed in the central nervous system. 1185 

Constitutional heterozygous mutations in ATP1A2/A3 have been associated with several 1186 

autosomal dominant neurological disorders including familial hemiplegic migraine (FHM), rapid-1187 
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onset dystonia-parkinsonism (RDP), alternating hemiplegia of childhood (AHC), cerebellar ataxia-1188 

areflexia-progressive optic atrophy (CAPOS), and relapsing encephalopathy with cerebellar ataxia 1189 

(RECA) (377–379). Epilepsy and intellectual disability may co-occur with FHM and AHC, and severe 1190 

epilepsies have been described in rare patients with ATP1A2 or ATP1A3 mutations (380, 381). 1191 

Early lethal hydrops fetalis, intrauterine growth restriction, arthrogryposis, microcephaly, 1192 

polymicrogyria, and lack of respiratory drive have been associated with homozygous truncating 1193 

mutations in ATP1A2 (382, 383). Investigating the genetic causes of DEEs variably associated with 1194 

malformations of cortical development in a large cohort of patients, Vetro and collaborators 1195 

identified 22 patients carrying de novo or inherited heterozygous ATP1A2/A3 mutations. Most 1196 

patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A 1197 

distinctive, ‘profound’ phenotype, featuring polymicrogyria or progressive brain atrophy and 1198 

epilepsy, resulted in early lethality. Neuropathological analysis of the whole brain in two 1199 

individuals with polymicrogyria revealed a mainly neural pathogenesis, compounded by vascular 1200 

and leptomeningeal abnormalities (384). Functional studies performed in COS-1 cells transfected 1201 

with different mutations demonstrated a LoF mechanism, with a wide continuum of severity 1202 

distributed across mutations that variably impaired NKA pump activity. Mutations associated with 1203 

most severe phenotypes cause lack of COS-1 cell-survival (384). Interestingly, PRRT2, a gene 1204 

whose deficiency is associated with paroxysmal disorders including epilepsy (see next section) is 1205 

co-expressed with and is a physiological activator of α3-NKA in several brain areas (385). 1206 

VIII. DYSFUNCTIONS IN SYNAPTIC TRANSMISSION AND PLASTICITY 1207 

Although the most straightforward causes of hyperexcitability have been historically and widely 1208 

associated with mutations in ion channel genes, dysfunctions of synaptic transmission are 1209 

emerging as primary causes of epilepsy and DEE. That is why the term “synaptopathies” was 1210 

coined, inherently meaning that anomalies of information transfer at the synapse can profoundly 1211 
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affect network excitability, excitatory/inhibitory (E/I) balance and nervous system development, 1212 

triggering epileptogenesis. 1213 

In the last 30 years, the machinery of synaptic transmission has been largely clarified in the most 1214 

subtle molecular details. Several physiologically important molecular actors orchestrate 1215 

neurotransmitter (NT) release at the presynaptic side and decode its message into a biological 1216 

response at the postsynaptic side. Biology teaches that the more important a process is, the higher 1217 

the complexity is involved in its control. Thus, there is a relatively large probability that gene 1218 

mutations hits some of these numerous actors. 1219 

Neurotransmitter release evoked by APs reaching nerve terminals is based on the exocytotic 1220 

fusion of small organelles, synaptic vesicles (SVs), real nanomachines that sense Ca2+ entry through 1221 

presynaptic voltage-dependent channels and trigger exocytosis by activating a SNARE-mediated 1222 

fusion machine that incorporates the SV in the presynaptic membrane and releases its content 1223 

into the synaptic cleft. The SV-competent membrane patch is eventually retrieved by distinct 1224 

endocytotic mechanisms that take place at distinct activity patterns. Endocytosis regenerates new 1225 

SVs that are loaded by NT by an active proton gradient generated by the SV-associated vacuolar 1226 

H+-adenosine triphosphatase (vATPase) (386, 387). Synaptic vesicles are organized into distinct 1227 

functional pools, including (i) the Readily Releasable Pool (RRP), comprising SVs immediately 1228 

recruited for exocytosis, (ii) a Recycling Pool (RP) made by SVs that can be rapidly recruited to 1229 

replenish the RRP depleted upon activity, and (iii) a Resting Pool (ResP) representing a reserve of 1230 

SVs that are not immediately releasable upon activity (388, 389). 1231 

When referring to alterations in synaptic transmission and plasticity, some issues should be 1232 

considered. Except for postsynaptic receptors and scaffolding proteins, the presynaptic 1233 

components of excitatory and inhibitory synapses share most of the actuators of NT release and, 1234 

in principle, should be equally affected by mutation-induced protein dysfunction, without net 1235 
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changes in the excitatory/inhibitory balance. However, differentially expressed proteins or the 1236 

different impact of protein dysfunction in excitatory and inhibitory neurons very often imply an 1237 

overt phenotype affecting network excitability and/or the excitatory/inhibitory balance. For 1238 

example, a protein involved in SV recycling and refilling of RRP will be more essential for the 1239 

proper functionality of high-frequency firing neurons (e.g., the PV-positive interneurons) than for 1240 

excitatory neurons. 1241 

Another important issue is the respective weight of basal synaptic strength and short-term 1242 

plasticity mechanisms. Short-term plasticity is a fundamental determinant of network activity and 1243 

excitability and thereby plays a central role in epileptogenesis. As neurons do not fire single action 1244 

potentials (APs), but rather trains of APs, short-term plasticity phenomena, such as depression or 1245 

facilitation, have a strong impact on the network computational activities, including frequency 1246 

band filtering of synaptic inputs or pattern detection activities (390, 391). 1247 

Synaptic transmission is a major determinant of excitability at the neuronal network level. Intrinsic 1248 

excitability at single neuron level is mostly affected by the size of the neuron and its input 1249 

resistance, and by the level of expression and functionality of voltage-dependent ion channels, 1250 

particularly at the axon initial segment, the AP initiation spot. However, at the level of a 1251 

population of synaptically connected neurons, intrinsic excitability is not the only factor defining 1252 

the firing and bursting behavior of the network, as well as its synchrony. While inhibitory synapses 1253 

act to confine the excitation waves temporally and spatially, excitatory synaptic connections play a 1254 

prominent role in establishing the activity of the network, owing to their short-term plasticity 1255 

properties (392). 1256 

Mutations in numerous genes affect synaptic functions, and the number of so-called 1257 

“synaptopathies” is continuously raising. Strong evidence, accumulated in the last two decades, 1258 

has shown that mutations in fundamental actors of the complex process of NT release can result in 1259 
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neurodevelopmental disorders with epilepsy (FIGURE 8). In this section, we will only consider 1260 

mutations that affect purely synaptic genes, leaving mutations in the genes of presynaptic and 1261 

postsynaptic ion channels to the dedicated chapter. Among genes encoding for bona fide synaptic 1262 

proteins, a distinction should be made between expression/function alterations affecting 1263 

fundamental proteins for the synaptic transmission machinery, and genes that play a modulatory 1264 

action on the process by impacting more on synaptic plasticity than on the essential synaptic 1265 

machinery. In addition, the targets of mutations can participate in distinct processes contributing 1266 

to synaptic transmission. According to the view of the tetrapartite synapse, four distinct entities 1267 

are involved in the physiological regulation of synaptic transmission: the presynaptic neuron, the 1268 

target postsynaptic neuron, the extracellular matrix and the perisynaptic astrocyte. While the 1269 

impact of mutations in astrocyte-specific genes is still poorly understood, we can consider three 1270 

main classes of synaptopathies, namely: (i) presynaptic synaptopathies, including defects of the 1271 

post-docking SV priming/fusion processes, as well as defects in the processes regulating SV 1272 

trafficking or NT synthesis and loading into SVs; (ii) postsynaptic synaptopathies, including defects 1273 

in postsynaptic receptors and their scaffold/transduction systems; and finally (iii) extracellular 1274 

synaptopathies, including defects in trans-synaptic and extracellular matrix (ECM) proteins at the 1275 

synaptic cleft and secreted synaptic proteins (FIGURE 8). For all these classes of synaptic 1276 

pathologies, the identification of gene mutations in patients has catalyzed an extensive research 1277 

activity that often contributed to clarifying the pathomechanism of the disease and elucidating the 1278 

physiological role of the synapse-specific gene products. A substantial contribution to 1279 

physiopathology of synapse-bases DEEs came from the exploitation of murine knockout or knock-1280 

in experimental models, recapitulating at least some traits of the clinical phenotypes, as well as 1281 

from mutation studies in transfected cell lines and primary neurons, up to the studies performed 1282 

in iPSC-derived neurons either containing the patient’s mutation in the patient’s own genetic 1283 
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background or in which the mutation under study has been reproduced by CRISPR-Cas9 gene 1284 

editing in WT cells. There is a wide spectrum of phenotypic DEE features stemming from 1285 

alterations of synaptic function, although genotype-phenotype correlations are not always 1286 

straightforward (393). We will follow the aforementioned classification to list the main DEE-1287 

related genes. 1288 

1. Presynaptic synaptopathies 1289 

Mutations in many genes encoding proteins involved in the multi-step process of NT release cause 1290 

epilepsy. Starting from the machinery essential for regulated exocytosis, mutations in genes 1291 

encoding t-SNARE proteins Syntaxin 1B, SNAP25b and VAMP/synaptobrevin, the SNARE-associated 1292 

proteins STXBP1 (Munc18-1) and PRRT2, the a-subunit of the P/Q type voltage-dependent Ca2+ 1293 

channel, and the critical SV Ca2+ sensor synaptotagmin have been identified and associated with 1294 

epilepsy and DEEs (9, 358, 359, 394–400). In mice, constitutive knockout of these genes greatly 1295 

hinders AP-driven NT release, with a compensatory increase of spontaneous release and synaptic 1296 

facilitation (401–407). However, it remains unclear how an impairment of ubiquitous players of 1297 

evoked NT release can trigger epileptogenesis, presumably by their different impact on distinct 1298 

neuronal populations, resulting in E/I imbalance and circuit instability. Similar mechanisms are 1299 

likely to take place in case of mutations in genes encoding proteins not directly actuating NT 1300 

release, but supporting trafficking, maintenance, and integrity of the SV pools. Loss of function in 1301 

these proteins, which include the SV proteins synapsins and SV2 and the proteins actuating the 1302 

endocytotic retrieval of SVs after each round of exocytosis, such as dynamin or amphiphysin, may 1303 

induce network hyperexcitability by affecting, to a larger extent, neurons undergoing high 1304 

frequency activity, such as parvalbumin (PV)-positive inhibitory neurons. 1305 

1.1. Perturbation of priming/fusion event and of Ca2+ sensitivity  1306 
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SNARE PROTEINS. Mutations in the large family of genes encoding membrane proteins mediating 1307 

vesicle fusion, the so-called SNARE proteins SNAP-25, Syntaxin-1 and VAMP2, constituting the 1308 

fusion machine actuating exocytosis have been reported. Mutations in the two SNARE motifs of 1309 

SNAP-25, particularly in its splicing isoform SNAP-25b cause a combination of epilepsy and 1310 

cognitive deficits that are reproduced by the selective KO of SNAP-25b in mice (395, 408–410). The 1311 

second presynaptic SNARE protein, syntaxin-1, has been less implicated in epilepsy and DEE. 1312 

However, some mutations associated with febrile epilepsy have been mapped to the Habc region of 1313 

the Syntaxin-1b isoform (STX1B) that controls its open/close conformation permitting the 1314 

assembly of the SNARE complex. In mice, the a and b isoforms of Syntaxin-1 are redundant, so that 1315 

the single KO mice are viable. However, the genetic “freezing” of the b isoform in the open 1316 

conformation in the syntaxin-1a KO generates severe seizure activity and premature death (402, 1317 

411). Mutations in the SNARE motif of VAMP2 were also identified in patients with intellectual 1318 

disability, epilepsy and hyperkinetic movement disorder (396). While it is conceivable that 1319 

inactivation of SNARE proteins, profoundly altering neuronal signaling at the synapse, can cause 1320 

neurodevelopmental deficits, the mechanism of the frequently associated hyperexcitability and 1321 

epilepsy is more elusive. Notably, the three SNARE proteins are the specific targets of Tetanus and 1322 

Botulinum neurotoxins (412) and either toxin-mediated or genetic inactivation of either SNARE 1323 

protein irreversibly blocks evoked neurotransmitter release. The different sensitivities of 1324 

excitatory and inhibitory neurons to SNARE inactivation is believed to generate an E/I imbalance 1325 

resulting in the developmental deficits. 1326 

CALCIUM SENSING/TRIGGERING MACHINERY. Synaptotagmin1/2 is the fundamental Ca2+-binding 1327 

sensor for evoked fast and synchronous NT release. Synaptotagmin binds to SNARE proteins 1328 

together with complexins limiting spontaneous release and, bearing two C2 domains, acts as a low 1329 

affinity Ca2+ sensor that is exposed to high concentrations of Ca2+ entering through activated 1330 
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voltage-gated Ca2+ channels and upon Ca2+ binding trigger membrane deformation and fusion 1331 

(413, 414). Five heterozygous mutations were reported in Synaptotagmin-1 located at the Ca2+ and 1332 

phospholipid binding motifs of the second C2 domain (C2B) in patients presenting with various 1333 

degrees of developmental delay and EEG abnormalities, but no epilepsy (415). Synaptic 1334 

transmission was impaired in neurons expressing the synaptotagmin mutants, with graded 1335 

dominant-negative effects that could be rescued by K+ channel antagonists (400). Presynaptic 1336 

voltage-gated Ca2+ channels (VGCC) Cav2.1 and Cav2.2, corresponding to the P/Q- and N-type 1337 

VGCCs are the essential electro-chemical transducers concentrated in the nano- and micro-1338 

domains of the active zones and converting APs into synchronous exocytosis of SVs.  1339 

PRRT2 is a neuron-specific, type-2 membrane protein with a C-terminal anchor that concentrates 1340 

in synaptic and axonal domains, where it interacts with key components of the fusion/Ca2+ sensing 1341 

machinery (synaptotagmin 1/2, SNAP-25 and VAMP2) boosting the Ca2+ sensitivity of NT release 1342 

and suggesting a function in the Ca2+-dependent transition from SV priming to fusion (398). As a 1343 

consequence, the probability of release at excitatory synapses is dramatically decreased, with a 1344 

parallel marked increased synaptic facilitation that results in an E/I imbalance and lack of network 1345 

stability (406, 416, 417). This role of PRRT2 has recently been supported by the discovery of a 1346 

direct interaction of PRRT2 and P/Q VGCCs that contributes to concentrate them at the 1347 

nanodomain where the machinery for synchronous release is assembled. In the absence of PRRT2, 1348 

membrane targeting and concentration of P/Q channels at active zones is impaired, decreasing 1349 

Ca2+ influx in response to APs (418). PRRT2 has been identified as the causative gene for several 1350 

paroxysmal neurological disorders including epilepsy, paroxysmal kinesigenic dyskinesia, but also 1351 

migraine and ataxia. These disturbances have been associated with a severe encephalopathic 1352 

phenotype with intellectual disability in the few patients with homozygous or compound 1353 

heterozygous mutations (398). 1354 
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Another SV protein playing an important role in regulating the initial release probability of SVs and 1355 

neural network synchronous activity is the Synaptic Vesicle glycoprotein-2 (SV2). SV2 is encoded 1356 

by three paralog genes (SV2A, SV2B, SV2C) with distinct patterns of expression in neuronal 1357 

populations. SV2 plays multiple roles as a catalyzer of evoked NT release: it accelerates SV priming, 1358 

increases the size of the RRP, regulates the stability and trafficking of synaptotagmin, boosting the 1359 

Ca2+ sensitivity of release. Interestingly, SV2A is essentially expressed in inhibitory neurons and its 1360 

loss-of-function impairs synaptic inhibition. Accordingly, individuals bearing point mutations in the 1361 

SV2A gene experience epilepsy and cognitive deficits (419, 420). 1362 

SV PRIMING MACHINERY. The preparation of SVs for fusion after docking is an essential 1363 

mechanism for allowing fast and synchronous release. Two proteins are essential for this 1364 

progression, Munc-18 (STXBP1) and Munc-13 (UNC13A), while other nerve terminal proteins such 1365 

as RIM1, SV2 and synapsin I have a modulatory role. The Munc-18 and Munc-13 tandem is needed 1366 

for a correct assembly of the SNARE complex, whereby Munc-18 regulates the participation of 1367 

syntaxin-1 to the complex, while Munc-13 activates syntaxin-1, stabilizes the active zone-SNARE-1368 

SV assembly and protects the SNARE complex from disassembly by the ATPase NSF (421, 422). 1369 

While a nonsense mutation in UNC13A was identified in a single patient with microcephaly and 1370 

interictal multifocal epileptiform EEG activity (423), mutations in STXBP1 were repeatedly 1371 

identified in a series of epileptic encephalopathies including Ohtahara, West, and Rett syndromes. 1372 

Over 85 distinct STXBP1 mutations are known and de novo STXBP1 mutations are among the most 1373 

frequent causes of DEEs of synaptic origin with severe intellectual disability (424). 1374 

ORGANELLE ACIDIFICATION AND NT LOADING. As mentioned above, vATPase plays a fundamental 1375 

role in the active loading of SVs with the surprisingly reproducible amount of NT that constitute 1376 

the “quantum”. Quantal reproducibility relies on the fact that the amount of NT is an important 1377 

determinant of the probability of release, so that only fully filled SVs are likely to be released (425, 1378 
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426). This mechanism is based on the dissociation of the V1 catalytic cytosolic domain from the V0 1379 

transmembrane proton transfer domain upon complete build-up of the proton gradient and 1380 

corresponding NT loading. The synaptic protein encoded by the DMXL2 gene, rabconnectin-3a, is 1381 

strictly involved in the assembly and incorporation of vATPase into SVs (427, 428). The role of v-1382 

ATPase in pH homeostasis and intracellular signaling pathways is ubiquitous, with a prominent role 1383 

in the nervous system. In humans, mutations in 16 of the 22 genes encoding for vATPase subunits 1384 

are associated with a variety of congenital disorders with neurological impairment. Recently, four 1385 

different de novo missense mutations in ATPV1A have been associated with a clinical spectrum of 1386 

DEE ranging from rapidly progressive early encephalopathies to mild intellectual disability with 1387 

epilepsy (429). Unexpectedly, rather than NT loading, the identified pathomechanism involves 1388 

dysfunctions of lysosomal homeostasis impacting on neuronal connectivity. Missense pathogenic 1389 

variants of ATPV0A1, which participates in the transmembrane proton pumping machinery of 1390 

vATPase, are also associated with DEE (430). Heterozygous copy number variations and loss-of-1391 

function biallelic mutations in DMLX2, regulating the trafficking and activity of v-ATPase, are 1392 

associated with a severe DEE (Ohtahara syndrome) with a superimposable pathomechanism 1393 

consisting of defective endolysosomal homeostasis and autophagy resulting in synaptic loss (431). 1394 

1.2. Perturbation of synaptic vesicle trafficking within nerve terminals 1395 

Synaptic vesicles undergo a restless cycle within nerve terminals aimed at preserving their 1396 

availability in a sufficient amount in the RRP and maintaining synaptic transmission also during 1397 

high frequency activity. Thus, loss-of-function of any of the vast cohort of nerve terminal proteins 1398 

operating SV endocytosis and maintaining the recycling pool of SVs are predicted to impact on SV 1399 

availability and impair NT release in the tonic high frequency discharging neurons (387). Since 1400 

neurons with these characteristics are often inhibitory interneurons (such as the PV-positive 1401 

neurons) a diffuse impairment in SV endocytosis/recycling often results in an E/I imbalance. 1402 
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A large array of gene products mediating various steps of the endocytosis process has been 1403 

associated with epilepsy and cognitive impairment. These include the membrane adaptor AP-2, 1404 

synaptophysin (SYP), dynamin-1 (DNM1), the coat protein clathrin (CLTC), as well as proteins 1405 

involved in activity-dependent bulk endocytosis such as Rab11, TBS1D24 and AP-1. In the case of 1406 

AP-2, four patients bearing a point mutation in the µ2 subunit of the protein presented with 1407 

epilepsy and developmental delay (432). Synaptophysin is an integral SV protein interacting with 1408 

VAMP2 and regulating its availability and retrieval during endocytosis (433). Nonsense and 1409 

missense mutations in the X-linked SYP gene have been associated with epilepsy and cognitive 1410 

defects (434, 435). De novo mutations in the DNM1 gene result in DEEs including West and 1411 

Lennox-Gastaut syndromes (436). Dynamin-1 is the essential GTPase that mediates SV fission by 1412 

assembling in a collar around the neck of the budding vesicle and inducing constriction thanks to 1413 

the mechanical force produced by GTP hydrolysis (437). Most of the DNM1 mutations identified 1414 

thus far cluster within the GTPase domain (436). A series of missense and nonsense mutations in 1415 

the CLTC gene encoding for clathrin, the building block of the endocytic coat that allows to 1416 

increase the curvature of the vesicle bud to form the endocytic vesicle, have been identified in 1417 

patients with epilepsy and intellectual disability (438, 439). Impairment in bulk endocytosis also 1418 

occurs with mutations in AP-1, Rab11 and TBC1D24. This gene, whose mutants are associated with 1419 

epilepsy and DOORS (Deafness, Onychodystrophy, Osteodystrophy, mental Retardation and 1420 

Seizures) syndrome affect several processes linked to neural development and synaptic 1421 

transmission, such as endocytosis, endosome/lysosome flux and neurite growth (440–444). 1422 

Synapsins (Syns) constitute a family of three synaptic genes (SYN1, SYN2 and SYN3) that encode 1423 

for SV-associated proteins regulating SV formation, SV pool maintenance and SV trafficking 1424 

between the functional SV pools. While Syn3 is a developmental isoform and is downregulated 1425 

after birth, Syn1 and Syn2 represent the adult isoforms (445–448). Knockout mice for Syn1 1426 
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(homozygous females or hemizygous males), Syn2, Syn1/Syn2 and Syn1/Syn2/Syn3 all exhibit an 1427 

epileptic and autistic-like phenotype with impairment of social interactions and cognitive functions 1428 

(449, 450).  As observed in other mouse models (e.g., Grin1 and Grin2b), heterozygous mice do not 1429 

show an overt phenotype. An array of nonsense and missense mutations have been identified in 1430 

patients with epilepsy and/or ASD. Most nonsense mutations in the X-linked gene SYN1 have been 1431 

identified in epilepsy patients, whose seizures were typically triggered by contact with water 1432 

regardless of the water temperature. Developmental delay of a variable degree was frequently 1433 

associated (451–456). Owing to their role in regulating network activity and stability, presynaptic 1434 

proteins can also represent a target for antiepileptic drugs, such as levetiracetam that binds to SV2 1435 

on SVs (457). 1436 

2. Postsynaptic and extracellular synaptopathies 1437 

Neurotransmitters released by the pre-synaptic terminals diffuse in the extracellular space and 1438 

transfer information downstream by interacting with specific post-synaptic receptors. Mutations 1439 

have been identified in genes encoding receptors for the main excitatory (glutamate) and 1440 

inhibitory (GABA) neurotransmitters, as well as in transporters involved in ionic homeostasis and 1441 

neurotransmitter reuptake, receptor-associated scaffolding proteins and extracellular trans-1442 

synaptic proteins. 1443 

2.1 Ionotropic neurotransmitter receptors 1444 

NMDA GLUTAMATE RECEPTORS. NMDA glutamate receptor subunits are encoded by the GRIN 1445 

gene family, formed by seven genes: GRIN1 (encoding the GluN1 subunit), GRIN2A-D (encoding 1446 

the GluN2A to D subunits), and GRIN3A-B (encoding the GluN3A and B subunits). Receptor 1447 

activation requires binding of both glutamate and glycine, which are often considered co-agonists. 1448 

Functional NMDA receptors are heterotetramers composed of two GRIN1 subunits binding glycine 1449 

and two GRIN2 or GRIN3 subunits binding glutamate. They are essential for numerous 1450 
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physiological functions, including neuronal migration, synaptic connectivity, neuronal pruning and 1451 

survival, and synaptic plasticity. They are Ca2+-permeable and generate a slow voltage-dependent 1452 

synaptic current. 1453 

Among NMDA receptor subunits, GRIN1, GRIN2A and GRIN2B are the target of most variants 1454 

identified in patients with neurodevelopmental disorders. Epilepsy in patients carrying GRIN 1455 

mutations has onset from birth to few years of early childhood. Mutations can be either inherited 1456 

or de novo and generate a spectrum of phenotypes ranging from mild intellectual disability to 1457 

severe DEE (458). The GRIN1 spectrum includes LoF of varying severity with a dominant negative 1458 

effect and is characterized by severe intellectual disability with absent speech, seizures (in about 1459 

65% of patients), hypotonia, dyskinesia, cortical blindness and generalized cerebral atrophy (63). 1460 

GRIN2A mutations have either LoF and GoF effects and are associated  with epilepsy and 1461 

intellectual disability with normal brain imaging (58, 459, 460). Seizures often originate in the 1462 

temporo-rolandic regions, and EEGs often show centrotemporal spike-wave discharges, which may 1463 

be continuous during slow-wave sleep (CSWS or CSWSS). Affected individuals exhibit a range of 1464 

language/speech problems and, at times, complete aphasia (458). The GRIN2B spectrum, 1465 

characterized by various GoF and LoF mechanisms, is similar to the GRIN1 spectrum and includes 1466 

developmental delay, hypotonia, epilepsy (in about 50% of patients), movement disorders and, at 1467 

times, cortical malformations (461). The phenotypic range of GRIN2D missense GoF variants 1468 

includes developmental delay with failure to thrive, intellectual disability, hypotonia, and 1469 

hyperreflexia (59).  1470 

Heterozygous and homozygous knock-out (null) mouse models have been generated for each of 1471 

the seven GRIN genes (458). Mice carrying homozygous null mutations for Grin1 and Grin2b are 1472 

postnatal lethal, whereas heterozygous mice survive normally, but they have not been 1473 

characterized in detail. Also, knock-in mice carrying mutations identified in patients have been 1474 
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generated (462–464). Grin2a+S/644G and Grin2a+/N615K mice show perinatal lethality in homozygosis, 1475 

increased seizure propensity, behavioral and cognitive deficits in heterozygosis. Grin2b+/C456Y mice 1476 

show anxiety-like behavior with strongly reduced Grin2b levels and NMDA currents. 1477 

AMPA GLUTAMATE RECEPTORS. AMPA glutamate receptors are composed by four types of 1478 

subunits: GluA1–GluA4 subunits (also named GluR1-4) encoded by the GRIA1–GRIA4 genes. Most 1479 

AMPARs are heterotetrameric, consisting of symmetric 'dimer of dimers' of GRIA2 and either 1480 

GRIA1, GRIA3 or GRIA4 (465, 466). AMPA receptors interact with multiple accessory proteins (e.g., 1481 

TARP and cornichon). Glutamate released from the presynaptic terminal triggers the rapid opening 1482 

of AMPA receptor channels that generate an inward cation current. The GRIA2 mRNA is often 1483 

edited at the p.Q607 residue that confers Ca2+ impermeability to mature receptors containing the 1484 

edited GluA2 subunit. The AMPA current underlies most of the excitatory synaptic signaling in the 1485 

central nervous system. It is typically brief (on the order of a few ms) because glutamate rapidly 1486 

unbinds and is removed from the synaptic cleft and leads to a brief depolarization of the 1487 

postsynaptic neuron. De novo heterozygous GRIA2 mutations have been found in patients with 1488 

different associations of seizures, speech impairment, intellectual disability and autistic features 1489 

(467) with both GoF and LoF mechanisms. The most severe phenotypes were associated with the 1490 

p.A639S mutation, which caused DEE with death in infancy. There are no mouse models available 1491 

for human mutations. Gria2−/− mice exhibit increased mortality, impaired motor coordination and 1492 

behavioral abnormalities, whereas heterozygous mice do not show an overt phenotype (468). De 1493 

novo heterozygous missense mutations in GRIA3, as well as genomic deletions, have been initially 1494 

identified in a form of X-linked intellectual disability with dysmorphic features, a relatively mild 1495 

phenotype due to a LoF mechanism (469). However, GRIA3 mutations have been associated with a 1496 

larger phenotypic spectrum that also includes severe early onset DEE (470). There are no animal 1497 

models that carry human mutations. Finally, de novo heterozygous variants in GRIA4 have been 1498 
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identified in a range of phenotypes characterized by variable developmental delay, ranging from 1499 

mild to severe, with absent speech, epilepsy, gait abnormalities, and behavioral problems (471).  1500 

GABA RECEPTORS. Ionotropic GABA (GABAA) receptors are pentameric assemblies of up to 3 of 19 1501 

subunits encoded by distinct GABR genes (GABRA1–6, GABRB1–3, GABRG1–3, GABRR1–3, GABRD, 1502 

GABRE, GABRP, and GABRQ). The combination of two α-subunits (GABRA), two β-subunits 1503 

(GABRB) and one γ-subunit (GABRG) is the most common functional receptor in the brain. GABAA 1504 

receptors are cys-loop ligand-gated chloride/anion channels that, at low intracellular chloride, 1505 

implement an outward inhibitory current generating hyperpolarization and decrease in membrane 1506 

impedance by a shunting effect. The GABAergic synaptic action is essential for reducing excitability 1507 

in neuronal networks and generating rhythms of activity. The synaptic GABAA receptors provide 1508 

brief but strong phasic inhibition, whereas those extrasynaptic receptors can induce long-lasting 1509 

tonic effects in response to ambient GABA. GABRA1, GABRA2, GABRA3, GABRA5, GABRB1, 1510 

GABRB2, GABRB3 and GABRG2 genes have been identified as targets of de novo heterozygous DEE 1511 

mutations (472). Mutations in GABRA2, GABRA3, GABRA5, and GABRB1 have been mostly 1512 

associated with severe phenotypes, whereas variants in other GABAA genes include, in addition to 1513 

DEE, phenotypes associating moderate/mild intellectual disability with epilepsy, and familial 1514 

epilepsy without intellectual disability (16, 473–475). The severe phenotypes of GABRA1 DEE 1515 

mutations share some of the clinical features of Dravet syndrome (476). Most GABAA mutations 1516 

induce LoF (with dominant negative effects), by decreasing membrane targeting or modifying 1517 

gating properties or GABA sensitivity (474, 475, 477–479). Overall, LoF of GABAA receptors reduce 1518 

the inhibitory tone in neuronal networks and thus generate hyperexcitability; the effect has some 1519 

similarity to that of SCN1A mutations that reduce the intrinsic excitability of GABAergic neurons. A 1520 

different functional effect has recently been proposed for mutations in GABRD, which encodes the 1521 

GABAA δ-subunit found in extra-synaptic receptors generating tonic GABAA currents (480). DEE 1522 
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patients carrying mutations in this gene have generalized epilepsy, intellectual disability, and 1523 

behavioral problems.  1524 

Functional analysis of the identified mutations showed GoF of GABAA receptors containing the δ-1525 

subunit with increased GABAA current. Thus, increased tonic GABAA-evoked current may be a 1526 

novel pathological mechanism in DEE and neurodevelopmental diseases. Electroclinical findings in 1527 

these patients resembled those reported in patients carrying LoF mutations in the GABA uptake 1528 

transporter SLC6A1/GAT1 (481), consistent with a similar pathogenic mechanism (see below). 1529 

Heterozygous Gabra1 knockout mice show spontaneous electrographic spike-wave discharges 1530 

with behavioral absence-like seizures and develop myoclonic seizures later in life, consistent with 1531 

a relatively mild IGE phenotype (482). Gabrb2 knockout mice do not show spontaneous epilepsy, 1532 

but are more susceptible to seizures and exhibit behavioral disturbances (483). Heterozygous 1533 

Gabrb3 knockout mice show epileptic seizures, EEG abnormalities and a range of behavioral 1534 

deficits (484, 485). Homozygous Gabra3 knockout mice do not show seizures (486). The mouse 1535 

line carrying the human GABRG2 p.Q390X DEE mutation, which has a dominant negative effect, 1536 

show a more severe phenotype compared to Gabrg2-/- mice (487). Mutations in GABBR2, that 1537 

induce LoF with reduced slow GABAergic inhibition (488),have been identified in DEE (11, 16).  1538 

2.2 Synaptic transporters 1539 

DEE variants have also been identified in genes that although not directly implicated in synaptic 1540 

transmission are involved in synaptic functions. 1541 

SLC12A5 AND CLCN4. Cl- is essential for numerous physiological functions, including GABAergic 1542 

inhibition. It is actively transported, and its concentration tightly regulated in neurons and virtually 1543 

all cells types. Cation-chloride co-transporters are postsynaptic plasma membrane proteins that 1544 

determine the intracellular Cl- homeostasis and are thereby directly implicated in GABAA current 1545 

generation (489). The gene family includes Na+-Cl- cotransporter (NCC), the Na+-K+-2Cl- 1546 
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cotransporters (NKCC) and the K+-Cl- cotransporters (KCC). The SLC12A5 gene, exclusively 1547 

expressed in the central nervous system, encodes the neuronal KCC2 K+-Cl- cotransporter, which is 1548 

the major extruder of intracellular chloride in mature neurons. Low KCC2 activity can lead to 1549 

increased intracellular Cl- and to depolarizing GABAergic transmission (490).  1550 

SLC12A5 recessive de novo mutations have been identified in a spectrum of epileptic disorders 1551 

(491, 492). The most severe phenotype is a DEE with features of epilepsy of infancy with migrating 1552 

focal seizures (EIMFS) caused by LoF mutations that decrease KCC2 surface expression and reduce 1553 

protein glycosylation (139).  1554 

The CLCN gene family contains nine members in mammals, four of which encode plasma 1555 

membrane chloride channels (CLCN1, CLCN2, CLCNKA, CLCNKB) and five intracellular 2Cl−/H+ 1556 

exchangers (CLCN3–7) (493). Their function is not completely clear, but CLCN Cl− channels are 1557 

involved in the regulation of excitability by controlling extra- and intracellular ion homeostasis. 1558 

Dysfunction of some CLCN genes leads to severe neurological disorders, in particular LoF 1559 

mutations in CLCN4 cause a spectrum of phenotypes including severe DEE with drug-resistant 1560 

seizures, cognitive and behavioral disorders (494, 495).  1561 

SLC1A2 AND SLC6A1. SLC1A are plasma membrane glutamate transporters expressed by glial cells 1562 

and/or glutamatergic presynaptic terminals. They are essential for the removal and termination of 1563 

action of glutamate released from the synapses. Mutations in SLC1A2, encoding the astrocytic 1564 

EAAT2 glutamate transporter selectively expressed in astrocytes, have been identified in DEE 1565 

patients (496). Functional studies in transfected cell lines showed LoF and negative dominance 1566 

(496), consistent with impaired clearance of extracellular glutamate. Slc1a2 knockout mice show a 1567 

severe epilepsy phenotype only in homozygosity (497).  1568 

The SLC6A1 gene, encoding the GAT1 GABA transporter, is responsible for the reuptake of GABA 1569 

into presynaptic terminals and astrocytes, are emerging as a common cause of DEE (498, 499). 1570 
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Functional studies have shown that SLC6A1 DEE mutations induce LoF of GAT1 possibly associated 1571 

with negative dominance and reduced GABA reuptake (481). Slc6a1-/- mice recapitulate some 1572 

features of the human phenotypes, including motor and cognitive impairment, whereas 1573 

heterozygous Slc6a1+/- mice do not show an overt phenotype (498). Overall, the mechanism may 1574 

be similar to that of GABRD mutations, which increase the extrasynaptic GABAA current (480).  1575 

2.3 Other postsynaptic proteins 1576 

Other mutations in genes encoding for receptor-associated proteins, such as the GTPase SynGAP1 1577 

(500) and Stargazin (501) are also associated with dysfunctions in circuit excitability and epileptic 1578 

encephalopathies. Mutations in trans-synaptic adhesion protein genes, including neurexin-1, 1579 

ILRAPL1, and Caspr2 were also reported to cause epilepsy in a limited number of cases (502–504).  1580 

2.4 Extracellular synaptic proteins 1581 

An interesting group of epilepsy-related genes encodes for proteins that are secreted at the 1582 

synaptic cleft and contribute to trans-synaptic communication and synapse maintenance. Loss-of-1583 

function mutations in LGI1 gene (or LGI1 neutralizing autoantibodies) are associated with epilepsy 1584 

with cognitive impairment (505). LGI1 is a protein secreted by both the presynaptic and 1585 

postsynaptic neurons that is part of a trans-synaptic structural/functional bridge linking the 1586 

integral proteins ADAM22 and ADAM23, exposed on the opposite sides of the synaptic cleft, that 1587 

regulates the assembly and organization of AMPA glutamate receptors by the scaffold protein 1588 

PSD95 (FIGURE 8) (140, 506). Other genes encoding for the synaptically secreted proteins SRPX2 1589 

and Reelin can cause epilepsy if mutated. These proteins play a role in synaptogenesis and in the 1590 

neuronal development of the cerebral cortex by acting as extracellular synaptic organizers (507–1591 

510). In case of Reelin, the mutation impairs reelin secretion and the reelin variant is retained and 1592 

eventually degraded through the autophagic way.  1593 

IX. DYSFUNCTIONS IN NEURONAL HOUSEKEEPING: mTOR AND AUTOPHAGY 1594 
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Mature neurons are post-mitotic cells that do not replicate and have a very high workload 1595 

throughout life. The housekeeping of their structure/function is therefore of paramount 1596 

importance. Autophagy, a highly conserved structural turnover process that directs dysfunctional 1597 

macromolecules and organelles to lysosomal degradation is an indispensable mean for neurons to 1598 

maintain their integrity and functionality over time (511–513). Besides neuronal survival, 1599 

autophagy plays a key role in neural development and in the formation and maintenance of 1600 

synaptic connectivity. It is therefore conceivable that dysfunctional autophagy, due to mutations 1601 

in genes controlling its multi-step processes, can cause severe neurodevelopmental disorders 1602 

including DEEs.  1603 

One of the main pathways controlling autophagy and cell homeostasis is the mTOR 1604 

(Mammalian/mechanistic target of rapamycin) pathway. mTOR is an atypical serine/threonine 1605 

protein kinase that is activated by a very complex pathway integrating intra- and extra-cellular 1606 

signals and strictly controlling matter and energy balance within the cell. The most important 1607 

mTOR effectors are the p70 ribosomal S6 protein kinase-1 (p70S6K1) and the eukaryotic initiation 1608 

factor 4E-binding proteins (4E-BPs) that transduce extracellular signals, such as neurotransmitters, 1609 

growth factors, hormones, into an activation of translation. In neurons, these targets implicate 1610 

mTOR in cell growth, neurite outgrowth and synaptic formation, all fundamental activities for 1611 

neuronal functions and plasticity. The final synergistic effectors mTOR cascade are two mTOR 1612 

complexes, mTORC1, mainly implicated in cell growth and proliferation, and mTORC2, mainly 1613 

regulating cytoskeleton and dendrite growth (514, 515). Here we will focus on mTORC1, since 1614 

virtually all pathogenic mutations identified thus far affect the mTORC1 cascade, and the 1615 

implication of mTORC2 in DEEs is still limited. The activation of mTORC1 is tightly controlled by 1616 

two inhibitory switches, the Tuberous Sclerosis Complex (TSC) and the GATOR1 complex (FIGURE 1617 

9). Both complexes are under the inhibitory control of two upstream complexes, GATOR2 that 1618 
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inhibits GATOR1 and the phosphoinositide-3 kinase (PI3K)/Akt pathway that inhibits TSC. The 1619 

canonical mTOR pathway starts with the activation of the PI3K/Akt pathway in response to 1620 

extracellular signals (that is subjected to a further inhibitory control by PTEN) that relieves the 1621 

mTOR complex from the tonic TSC inhibition. To be active, mTOR needs to attach to intracellular 1622 

organelles, which requires the G-proteins Rheb and Rag (part of the Ragulator complex) to be in an 1623 

active, GTP-bound state. The Ragulator complex, present on the membrane through an interaction 1624 

with the proton pump vATPase, is a guanine nucleotide exchange factor (GEF) that activates Rag 1625 

and allows mTOR membrane binding and activation. On the other hand, TSC and GATOR1 1626 

inhibitory complexes act as GTPase activating proteins (GAP) to deactivate Rheb and Rag, 1627 

respectively, and thereby block mTOR activation. In addition to the stimulation of protein 1628 

synthesis, activated mTOR inhibits autophagy by inhibiting the ULK1 complex that, through the 1629 

sequential activation of the Beclin complex and the WD-repeat phosphoinositide-interacting 1630 

protein 4 (WIPI4), activate the maturation and fusion of autophagosomes with acidic lysosomes to 1631 

form autolysosomes (512). A central role in the regulation of mTOR activation, as well as in the 1632 

autophagy progression, is played by the proton pump vATPase and its ancillary proteins that 1633 

allows docking of Ragulator to the organelle membrane which in turn recruits and activates the 1634 

mTORC1 complex (FIGURE 9). 1635 

Not surprisingly, dysregulation, particularly hyperactivation, of the mTOR pathway caused by 1636 

mutations in the various components of the PI3K-mTOR pathway and regulatory cascades, result 1637 

in DEEs, the so-called mTORopathies, that are often associated with malformations of cortical 1638 

development. mTORopathies include a spectrum of drug-resistant epilepsy syndromes ranging 1639 

from apparently non-lesional focal epilepsy to Tuberous Sclerosis Complex (TSC), FCDII, HME that 1640 

are associated with brain malformations (515, 516). The complexity of the architecture of the 1641 

mTOR pathway, while it guarantees a full control over key processes for cell survival and 1642 
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adaptation, also offers several genes whose mutations impact on critical neuronal processes and 1643 

are causative of DEEs (517). The first identified, prototypical mTORopathy is the TSC linked to 1644 

germline/somatic mutations in TSC1 or TSC2 genes that remove the inhibitory brake of TSC on the 1645 

downstream mTOR complex 1 (mTORC1) and determine mTOR hyperactivity in several tissues 1646 

including the brain. Subsequently, high throughput sequencing has discovered an array of 1647 

germline and de novo somatic mutations causing mTOR hyperactivity that involved either loss-of-1648 

function of inhibitory complexes (PI3K, PTEN, AKT3, TSC1, TSC2, RHEB, DEPDC5, NPRL2, and 1649 

NPRL3) or gain-of-function hyperactive variants of MTOR. Animal models of mTORopathies are 1650 

constantly characterized by an epileptic phenotype. Pten, Tsc1, Tsc2 and Depdc5 knockout mice, 1651 

as well as Mtor knock-in mice recapitulate the human phenotype of mTORopathies by displaying 1652 

dysplastic cortical areas with enlarged cortex, ectopic and hypertrophic neurons, and epilepsy. 1653 

Constitutive and generalized mTOR hyperactivity is embryonic lethal, so that conditional models 1654 

have been used to effectively reproduce human pathology. In addition to the dysplastic 1655 

phenotype, mTOR hyperactivity causes hyperexcitability (515, 518, 519). This is not only 1656 

attributable to the intrinsic instability of dysplastic circuits with dendritic and somatic hypertrophy 1657 

and formation of reverberant connections, but also depends on an augmented intrinsic excitability 1658 

of principal cortical neurons and potentiation of excitatory synaptic transmission at both pre- and 1659 

post-synaptic levels promoting E/I imbalance. Another interesting feature of mTORopathies 1660 

regards the relative frequency of somatic mutations that are likely to occur predominantly during 1661 

brain development and that establish a condition of mosaicism in the neuronal populations of the 1662 

cerebral cortex. The intersection between inherited germline mutations and acquired somatic 1663 

ones (“second hit”) causes loss of heterozygosity or mosaic compound heterozygosity that can 1664 

convert a latent deficit into an overt phenotype in restricted brain areas. This phenomenon was 1665 

clearly demonstrated for DEPDC5 mutations both in humans and in experimental models in which 1666 
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the “somatic” knockdown of Depdc5 was reproduced by in utero electroporation and/or RNA 1667 

interference, generating focal cortical dysplasia (29, 520, 521). One of the mechanisms by which 1668 

mTOR hyperactivity causes epileptic encephalopathies is through a dysregulation of autophagy, a 1669 

process strongly implicated in neuronal survival and plasticity (511, 512, 520). As mentioned 1670 

above, neuronal autophagy is a highly regulated process in which mTOR inhibition releases the 1671 

ULK1 activator which, together with AMPK, activates the autophagy initiator Beclin complex 1672 

(composed of VPS34, VPS15, Ambra1 and Beclin1), that is recruited to the phagophore, stimulates 1673 

the production of PI3P and the binding of WIPI proteins. This allows the conversion of LC3-I into 1674 

phosphatidylethanolamine-bound LC3-II that is the fundamental signal activating autophagy 1675 

(FIGURE 9). mTOR and AMPK represent a yin-yang mechanism controlling autophagy: not only the 1676 

two pathways exert an opposite control onto the underlying autophagic process, but AMPK also 1677 

stimulates the TSC complex, keeping mTOR inactive during autophagy activation (522). The final 1678 

common pathway of autophagy is the fusion of mature autophagosomes with lysosomes to form 1679 

the autolysosomes, where the vesicular content is finally degraded and released into the 1680 

cytoplasm. This event is regulated by the autophagic proteins EPG5 and SNX14 and requires 1681 

internal acidification of the organelle to allow for proteolysis. Biallelic mutations  of EPG5 and 1682 

SNX14 cause respectively the Vici syndrome, a rare and severe congenital multisystem disorder 1683 

characterized by failure of the corpus callosum, cataracts, oculocutaneous hypopigmentation, 1684 

cardiomyopathy and combined immunodeficiency (523) and a form of cerebellar ataxia and 1685 

intellectual disability (524). Acidification is provided by vATPase, a multifunctional proton pump 1686 

that regulates multiple cellular processes including membrane trafficking, receptor-mediated 1687 

endocytosis, SV cycling and NT loading. Acidification is necessary for autophagy progression and 1688 

drugs or vATPase variants impairing the build-up of the proton gradient block autophagy (525). 1689 

vATPase is composed of a V1 cytosolic domain that hydrolyses ATP and a V0 transmembrane 1690 
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domain that transfers protons to the organelle’s interior (526). While the proton pumping activity 1691 

of vATPase occurs in all tissues, the brain is particularly vulnerable to vATPase defects for its 1692 

multiple functions in exocytosis (426, 527) and autophagy. In man, as many as 22 genes encode for 1693 

the multiple and redundant subunits of the V1 and V2 complexes, allowing the composition of 1694 

different v-ATPase complexes with specific properties and tissue expression.  1695 

Several, heterozygous or biallelic mutations in ATP6V1A coding for the V1 subunit A have been 1696 

recently described in patients with DEEs of variable severity, ranging from moderate intellectual 1697 

disability with seizures to an early-onset DEE with premature lethality (429, 528). ATP6V1A 1698 

variants affect lysosomal homeostasis and autophagy and, when expressed in postsynaptic 1699 

neurons, impair neurite development and the formation/maintenance of excitatory synaptic 1700 

connections (429). ATP6V1A deficits have also been recently associated with neuronal impairment 1701 

and neurodegeneration. ATP6V1A silenced neurons show reduced network activity and alteration 1702 

of synaptic proteins consistent with a key role of ATP6V1A in neuronal maturation and activity 1703 

(529). 1704 

In addition, mutations in ancillary proteins of the v-ATPase complex, known to regulate its 1705 

function and trafficking to the organelles, also cause severe neurodevelopmental disorders with 1706 

epilepsy and impair brain development when modelled in mice (430, 530). A de novo variant of 1707 

ATP6AP2, a vATPase accessory protein, was identified in a patient with neurodevelopmental 1708 

disorder and fulminant degeneration. In murine models and patient neurons, loss-of-function of 1709 

ATP6AP2 results in lysosomal and autophagic defects with impaired neuronal survival, revealing a 1710 

key role of this V-ATPase modulator in brain function (530). Homozygous recessive and compound 1711 

heterozygous mutations in the DMXL2 gene were recently found to cause a severe and rapidly 1712 

progressing DEE associated with Ohtahara syndrome and premature death (431). The gene 1713 

encodes for the vesicular protein DMXL2 (also known as rabconnectin-3a), a member of the WD40 1714 
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repeat (WDR) protein family that is highly expressed in brain tissue, regulates the trafficking and 1715 

activity of V-ATPase and interacts with the SV-associated G-protein Rab3A (531, 532). Altered 1716 

lysosomal homeostasis and defective autophagy were recapitulated in Dmxl2-silenced mouse 1717 

hippocampal neurons that exhibit impaired neurite elongation and synaptic loss (431). Dmxl2-/- 1718 

mice are embryonic lethal (533) while heterozygous Dmxl2 mice show brain malformations, 1719 

uncovering a penetrant role of Dmxl2 in brain development (534).  1720 

These data confirm a primary role of autophagy dysregulation in alterations of cortical 1721 

development and epileptogenesis and suggest that the severity of the clinical phenotypes and the 1722 

extent of neurodegeneration depend on the stage of neuronal development and on the specific 1723 

consequences of the impairment of synaptic transmission and neuronal survival due to the 1724 

stressful condition of impaired autophagy (535).  1725 

X. THE SEARCH FOR PERSONALISED TREATMENT APPROACHES 1726 

Currently, most therapies for DEEs target individual symptoms such as seizures, and not the 1727 

underlying disease mechanisms. For many individuals with DEEs, seizure control is not achieved, 1728 

even when antiseizure medications (ASMs) are optimized for the underlying etiology, while in 1729 

patients in whom seizure control is achieved, developmental impairments and other comorbidities 1730 

often remain severe (4, 397). In addition, since patients with the same type of clinical seizures may 1731 

differently respond to ASMs, the pathophysiological events that underlie epileptic seizures 1732 

apparently not only differ between unique seizure syndromes and specific etiologies, but may also 1733 

be multifactorial for the same types (536).The remarkable growth of animal models of DEEs has 1734 

enabled preclinical studies that tested several experimental drugs have been tested in different 1735 

animal models of DEEs (TABLE 4). Both acute and chronic models of epileptic spasms have been 1736 

used to study effects on spasms prevention using protocols that administer drugs prior to the 1737 

induction (acute models and certain chronic models) (537–544), spasms control / cessation 1738 
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(chronic models: multiple-hit, TTX) (150, 155–158, 160, 161, 545), hypsarrhythmia (TTX model) 1739 

(546), disease modification or antiepileptogenesis (chronic models: multiple-hit, ARX KI)  (150, 1740 

155). Among the existing models, resistance to existing therapies for ISS (ACTH, vigabatrin) is 1741 

shown at the multiple-hit rat model of ISS due to structural lesions (88). The only model that has 1742 

been used to study effects on hypsarrhythmia is the TTX model which allows testing of effects on 1743 

the EEG using multiple electrodes in post-pubertal animals. This is technically challenging in rodent 1744 

models that manifest spasms only during restricted early developmental periods, when the skull is 1745 

small and fragile. The prenatal betamethasone/postnatal NMDA model suggested that prenatal 1746 

betamethasone increases the sensitivity to ACTH, even though in increases the severity of NMDA-1747 

induced spasms and has been used to explore pharmacologically therapeutic effects of pathways 1748 

thought to mediate the ACTH effects, i.e., mineralocorticoid receptor signaling (538). Among the 1749 

treatments tested in these preclinical trials, two drugs eventually acquired orphan status for ISS 1750 

(carisbamate, CPP-115). CPP-115 has also been tested in a case report on an infant with drug-1751 

resistant ISS with significant improvement in spasms and seizure control compared to vigabatrin 1752 

(547). In support of the promising effects of the mTOR inhibitor rapamycin on spasms in the 1753 

multiple-hit model, recent clinical case reports suggested a possible benefit in infants with 1754 

tuberous sclerosis related ISS treated with the mTOR inhibitor everolimus (548). 1755 

There has also been a remarkable progress in screening for new treatments for Dravet syndrome, 1756 

using both rodents (233, 384, 549–558) as well as high throughput studies in zebrafish (391, 559–1757 

564). A noteworthy development has been the recent approval by the Food and Drug 1758 

Administration of fenfluramine, a reuptake inhibitor of 5-OH-tryptamine, for the treatment of 1759 

Dravet syndrome, based on evidence provided by both preclinical (560, 561) and clinical trials 1760 

(230, 565–569). 1761 
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A challenge in these preclinical drug trials has been the comparison of findings across models, 1762 

given the different species (rats vs other animal models), different induction protocols, 1763 

developmental periods of exposure to the drugs, and treatment protocols (pre- vs post-1764 

treatments) (150, 155, 157, 161, 537, 542, 545). Hopefully identification of biomarkers guiding 1765 

treatment implementation would help de-risk the process of selecting promising candidates for 1766 

transitioning in clinical trials, as well as optimizing treatment protocols and designs. 1767 

The choice of ASM for DEE in clinical practice is mainly influenced by cumulative experience in 1768 

open label studies and only a limited number of drug trials in etiologically homogeneous 1769 

conditions (570). For most DEE, treatment choices rely on the hypothesized drug action on clinical 1770 

and EEG phenomenology and remain confined to symptom relief and general principles of epilepsy 1771 

management. Commercially available ASMs are typically grouped by their principal mode of action 1772 

(drugs that affect voltage-dependent sodium channels, calcium currents, GABA activity, the 1773 

glutamate receptors, and drugs with other mechanisms of action - TABLE 5), although for many 1774 

drugs the precise mechanism of action remains unknown, or multiple actions are hypothesized. As 1775 

for other conditions, treatments for DEEs may include conventional drugs or repurposed therapies 1776 

(i.e., with specific actions that may have been used in entirely unrelated conditions). 1777 

Only recently, the enormous amount of knowledge generated by molecular genetic findings in the 1778 

DEE and increased knowledge of the underlying disease mechanisms has allowed designing 1779 

etiology-specific trials for genetic DEEs (https://clinicaltrials.gov/ct2/home), (see TABLE 6 and 1780 

SUPPLEMENTAL TABLE S2,  1781 

https://figshare.com/articles/dataset/Guerrini_et_al_Supplemental_Table_S2_xlsx/17694728, for 1782 

examples). 1783 

When clinical, EEG, and imaging findings suggest focal localization of the epileptogenic zone, and if 1784 

any resulting neurologic deficit is not more severe than epilepsy itself, surgical treatment of 1785 
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epilepsy remains one of the best options. For example, for patients with TSC, epilepsy surgery is 1786 

considered after failure of two ASMs even when multiple cortical lesions are present and TSC 1787 

operated patients, including those with infantile spasm, have a 50%–60% chance of long-term 1788 

seizure freedom after surgery for epilepsy (570). 1789 

A promising alternative approach to treat DEEs is represented by gene therapies. The growth in 1790 

gene therapies in medicine has partly been realized through the development of safe and effective 1791 

means of gene delivery using viral vectors. These vectors are engineered to avoid their replication 1792 

in human cells and to deliver the wild type form of the gene mutated in a given patient into the 1793 

right cell target. The expression of the gene product delivered by viral vectors in the cells where 1794 

the genetic defect needs to be corrected is ensured using a specific promoter. For DEEs, this 1795 

treatment approach has some drawbacks, as most viral vectors can only carry a limited amount of 1796 

DNA (and thus cannot be used to replace big genes such as SCN1A). In addition, to bypass the 1797 

blood brain barrier (BBB), they need to be injected in the brain through intraventricular injections. 1798 

Gene therapy based on vectors derived from adeno-associated virus (AAV) has the potential to 1799 

overcome the latter limitation since it has been demonstrated that different AAV serotypes are 1800 

able to cross the BBB and thus can be used to implement gene delivery strategies based on them 1801 

to treat CNS diseases (571). Gene therapy, including AAV for DEE carries several major technical 1802 

limitations (572). Delivery would need to garget the whole brain as most DEE are related to 1803 

widespread brain dysfunction. Diffusely and irreversibly altering the genetic make-up of neurons 1804 

may be a worrisome perspective since some of the genetic defects causing DEE result from both 1805 

loss and gain of function effects an overdosing can cause its own pathology. Dosing and 1806 

distribution are further complicated by the X-linked or somatic mosaic genetic alteration that 1807 

underlies the disorder, with only half or small percentages of cells needing the supplemental 1808 
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transgene delivery. Additional limitations are related to the fact that delivery should be realized in 1809 

a critical period, before mature networks are established.  1810 

Another possible way to correct the effects of a mutation at intracellular level using genetic 1811 

material is the use of antisense oligonucleotides (ASOs), single stranded deoxyribonucleotides 1812 

which are complementary to a specific target mRNA and that, upon binding it alters its splicing, 1813 

impede its translation, or promote its degradation. ASOs are usually administered intrathecally. 1814 

Studies on a conditional mouse model with Cre-dependent expression of the pathogenic patient 1815 

SCN8A mutation p.Arg1872Trp (R1872W) have recently demonstrated that administration of an 1816 

ASO directed against the Scn8a mutant transcript delayed seizure onset and increased survival, 1817 

suggesting that reduction of SCN8A transcript is a promising approach to treatment of intractable 1818 

childhood epilepsies (262). The effectiveness of ASOs has been confirmed in an additional study 1819 

carried out by Li and collaborators (246). These authors demonstrated that targeted reduction of 1820 

Scn2a mRNA expression by central administration of a gapmer ASOs in Scn2a Q/+ mice reduced 1821 

spontaneous seizures and significantly extended life span in treated animals. These results suggest 1822 

that human SCN2A gapmer ASOs could likewise impact the lives of patients with SCN2A gain-of-1823 

function DEE (246). Because ASOs can regulate splicing, it is possible to use them to increase the 1824 

production of translated mRNA. TANGO (targeted augmentation of nuclear gene output) 1825 

approach, which modulates naturally occurring, nonproductive splicing events to increase target 1826 

gene and protein expression, has recently been used in animal models of DS to increase Scn1a 1827 

transcript and Nav1.1 protein expression. In these models, a single intracerebroventricular dose of 1828 

a lead ASO at postnatal day 2 or 14 reduced the incidence of electrographic seizures and sudden 1829 

unexpected death in epilepsy (SUDEP), suggesting that TANGO may provide a unique, gene-1830 

specific approach for the treatment of DS (233).  1831 
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ASOs can also be used to regulate the activity of miRNAs, which are ‘multi-pathway’ regulatory 1832 

molecules. Mature miRNAs are generated via a multistep process. They are initially transcribed as 1833 

relatively large (even more than 1 kb) hairpin structures known as pri-miRNA. This undergoes 1834 

cleavage in the nucleus by the enzyme Drosha to produce a 60–70-nucleotide (nt) stem loop pre-1835 

miRNA, which is subsequently transported from the nucleus to the cytoplasm. The enzyme Dicer 1836 

recognizes pre-miRNA and cleaves the stem loop, leaving an imperfect ~21–23-nt miRNA duplex 1837 

with a ~2-nt 3′ overhang at each end. The less thermodynamically stable end of the pre-miRNA 1838 

duplex is then uploaded to a binding pocket within an Argonaute (Ago) protein to form the RNA-1839 

induced silencing complex (RISC). The miRNA-loaded RISC then traffics along mRNAs searching for 1840 

complementary binding sites and, upon finding mRNA targets containing a ~7–8-nt seed match 1841 

[typically within the 3′ untranslated region (UTR)], triggers either target degradation or 1842 

translational repression (573). Since there have been more than 300 studies on miRNA and 1843 

epilepsy, and over 100 different miRNAs have found to be altered in experimental models and 1844 

human samples [EpimiRBase (574)], miRNA could represent a novel class of molecules to be 1845 

targeted using ASOs to treat epilepsy in DEEs. 1846 

Gene therapy can be also pursued correcting a specific genetic defect in patients’ cells through 1847 

endogenous gene editing. This approach is not based on expressing the wild type form of a given 1848 

gene in cells that do not express it properly, but on the substitution of a specific portion of the 1849 

endogenous mutated gene (e.g. that flanking a mutation) with the wild type sequence. Clustered 1850 

regularly interspaced palindromic repeats (CRISPR)/Cas9 is a gene-editing technology that makes it 1851 

possible to correct errors in the genome and turn on or off genes in cells and organisms quickly, 1852 

cheaply and with relative ease. This gene-editing technology has a number of laboratory 1853 

applications including rapid generation of cellular and animal models, functional genomic screens, 1854 

live imaging of the cellular genome, and gene therapy (575, 576). CRISPR/Cas9 involves two 1855 
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essential components: a guide RNA to match a desired target gene, and Cas9 (CRISPR-associated 1856 

protein 9) - an endonuclease which causes a double-stranded DNA break, allowing modifications 1857 

of the genome. One of the most exciting applications of CRISPR/Cas9 is its potential use to treat 1858 

genetic disorders caused by single gene mutations. Examples of such diseases include cystic 1859 

fibrosis (CF), Duchenne’s muscular dystrophy (DMD) and haemoglobinopathies (576). A modified 1860 

version of the CRISPR-Cas9 system, called dead Cas9 (dCas9), can be tailored to obtain a robust 1861 

and highly specific activation of the Scn1a gene both in cultured neurons and in the brain tissue of 1862 

a DS mouse model, suggesting that dCas9 may be an effective and targeted approach to DS and 1863 

other disorders resulting from altered gene dosage (232). A number of challenges remain before 1864 

the potential of CRISPR/Cas9 can be translated to effective treatments at the bedside. Indeed, its 1865 

clinical translation has been hampered by varying efficiency, off-target effects, and, on occasion, 1866 

insufficient vector size for the necessary genetic material (570). In addition, a suitable vector is 1867 

needed to safely deliver Cas9-nuclease encoding genes and guide RNAs in vivo without any 1868 

associated toxicity (576). To overcome this problem, the use of AAV vectors has been proposed. 1869 

However, this delivery system may be too small to allow efficient transduction of the Cas9 gene. A 1870 

smaller Cas9 gene could be used, but this has additional implications on efficacy (575).  1871 

XI. CONCLUSIONS 1872 

Multiple genetically determined or, at times, acquired etiologies may severely alter the balance 1873 

between excitatory and inhibitory neuronal activity and result in widespread epileptogenesis in 1874 

the developing brain. If the causative defect imposes serious consequences on physiological brain 1875 

function, the superimposed epilepsy will add a clinical burden to the already compromised 1876 

neurodevelopmental processes. If the causative defect only mildly impacts physiological brain 1877 

development and function, any superimposed severe epileptogenic process will cause 1878 

considerable neurodevelopmental deterioration (577). Development of higher cortical functions is 1879 
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the most complex and vulnerable process and will be the most severely affected. Impairment may 1880 

be relatively selective, in the context of DEE in which for example, language, memory, attention or 1881 

executive functions are impaired to a different extent. Generalized severe cognitive impairment or 1882 

autistic features may be the result of a widespread epileptogenic process. Although DEE have a 1883 

multitude of causes and variable clinical patterns, with many genes involved whose altered 1884 

expression may affect different aspects of neural cell functioning, mechanisms whereby epileptic 1885 

activity may interfere with brain function and produce such patterns, tend to be relatively limited. 1886 

Moderate levels of hyperexcitability can disrupt cortical processing, with temporal and anatomic 1887 

specificity (578). Disruption is time-locked with the EEG event accompanying hyperexcitability and 1888 

specific to the modality represented in the anatomic area involved (579–581). Redundant and 1889 

frequent EEG abnormalities as observed in DEE may cause widespread cortical dysfunction that 1890 

can be manifested with signs of early cognitive regression even when seizure activity is not yet 1891 

overly manifested (582, 583). The timing of onset, network distribution and duration of the 1892 

epileptogenic process influence how the DEE will be manifested, at times in close relationship with 1893 

its specific etiology, at times irrespective from it similar anatomoclinical backgrounds may be 1894 

accompanied by very different forms of DEE in different individuals. In this perspective, while 1895 

efforts towards development of precision treatment approaches in DEE shall ideally target the 1896 

causative mechanisms, traditional approaches with antiseizure medications addressed at 1897 

mitigating the consequences of redundant epileptic activity on physiological brain function still 1898 

have a relevant role. 1899 
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Tables 3770 

Table 1. Developmental and epileptic encephalopathies (DEEs) by age 3771 

 Age of onset Gender Etiology Electroclinical characteristics

Neonatal – Infantile onset 

Early infantile DEEs 

(previously Ohtahara 

syndrome or early 

myoclonic epilepsy) 

≤3mo of life M=F Genetic or 

structural/metabolic 

Clinical: Abnormal neurological findings, neurodevelopmental deficits. Seizures: tonic 

(independent of sleep), myoclonic, epileptic spasms, sequential. 

EEG: Burst-suppression pattern; multifocal epileptiform discharges; hypsarrhythmia may 

appear. Seizure patterns are bilateral or focal onset, depending on seizure types. 

Epilepsy of Infancy with 

Migrating Focal Seizures 

(EIMFS)  

First year of life M=F Mainly genetic Clinical: Neurodevelopmental delay, focal motor tonic or clonic seizures.

EEG: Migrating EEG patterns during ictal events, multifocal discharges 

Infantile spasms syndrome 

(ISS) 

3-12mo (1-

24mo) 

M>F Structural/metabolic, 

genetic, unknown 

Clinical: Epileptic spasms, other seizures may occur; neurodevelopmental disorders, 

intellectual disabilities. 

EEG: Hypsarrhythmia, electrodecremental responses (ictal or interictal), multifocal 

epileptiform discharges. 

Dravet syndrome 3-9mo (1-20mo) M=F Genetic Clinical: Neurodevelopmental deficits. Prolonged hemiclonic seizure with fever in the 

absence of infectious / structural brain lesion; myoclonic, focal impaired awareness, 

atypical absences, atonic seizures, non-convulsive status epilepticus, tonic and tonic-

clonic seizures in sleep. 



160 
 
 Age of onset Gender Etiology Electroclinical characteristics

EEG: Focal or multifocal epileptiform abnormalities and seizures, photoparoxysmal

responses. 

Etiology-specific syndromes: 

- KCNQ2, CDKL5, 

PCDH19, SCL2A1, 

Pyridoxine and 

Pyridox(am)ine 5’-

Phosphate Dependent 

Epilepsy, Glucose 

Transporter 1 

Deficiency syndrome 

(Glu1DS), Sturge-

Weber syndrome 

First year of life M=F,

M<F  

(PCDH1

9, 

CDKL5) 

Genetic

 

KCNQ2-DEE: Sequential or focal tonic seizures, burst suppression; autonomic symptoms, 

epileptic spasms. Burst suppression or multifocal EEG. 

CDKL5-DEE: Tonic seizures, epileptic spasms. hypermotor-tonic-spasms; movement 

disorders 

PDE, P5PDE: Intrauterine or early life seizures; focal seizures, spasms or generalized 

tonic-clonic; response to pyridoxine or P5P. EEG: burst suppression or multifocal 

discharges. 

Glut1DS: Intellectual disability, low CSF/plasma glucose ratio, generalized seizures 

(myoclonic, myoclonic-atonic, generalized tonic-clonic, absences). EEG: 2.5-5Hz spike-

wave.  

PCDH19-DEE: Intellectual disability, autism spectrum disorder; focal impaired aware to 

tonic or atypical absence seizures. EEG: focal onset seizures. 

Sturge-Weber: Facial port-wine stain, progressive neurological course, epilepsy, 

hemiparesis, psychomotor delay, stroke-like events, psychiatric disorders, glaucoma. 

Focal motor seizures, febrile seizures, infantile spasms, myoclonic-atonic, gelastic 

seizures. EEG: Asymmetric, focal epileptiform activities. 
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 Age of onset Gender Etiology Electroclinical characteristics

- Gelastic Seizures with 

Hypothalamic 

Hamartoma 

First year of life M=F Structural, 

Genetic-structural 

Clinical: Normal neurological exam initially, deficits appear later; precocious puberty; 

gelastic seizures with mirthless laughter (mandatory), gelastic and dacrystic seizures, 

focal impaired awareness or generalized seizures, other types of seizures may occur. 

EEG: Focal or generalized 

Childhood onset 

Myoclonic-atonic epilepsy 2-6y M>F Genetic Clinical: Seizures: myoclonic-atonic (mandatory), atonic, myoclonic, absence, generalized 

tonic-clonic. 

EEG: 3-6Hz (poly)spike-slow wave discharges, generalized, activated in sleep; generalized 

paroxysmal fast 

Lennox-Gastaut syndrome 18mo – 8y (M>F) Structural/metabolic, 

genetic 

Clinical: Tonic seizures in sleep (mandatory), atypical absence, atonic, myoclonic, focal 

impaired awareness, generalized tonic-clonic, epileptic spasms 

EEG: Slow spike-wave (≤2.5Hz), generalized; generalized paroxysmal fast; focal or 

multifocal slow spike-wave may be seen. 

DEE with SW activation in 

sleep (D/EE-SWAS) 

2-12y M=F Structural, genetic Clinical: Neurocognitive / behavioral deficits which ameliorate / resolve with resolution 

of SWAS; seizure types depend on etiology: focal or focal to bilateral, typical, or atypical 

absences, atonic, negative myoclonus. 

EEG: Slow background; focal or multifocal discharges; marked activation of diffuse 

epileptiform discharges in sleep (>50% of sleep, 1.5-2Hz spike-wave runs). 
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 Age of onset Gender Etiology Electroclinical characteristics

Febrile Infection Related 

Epilepsy Syndrome (FIRES) 

2-17 (M>F) Infectious/post-

infectious 

Clinical: Developmental regression, intellectual disabilities, attention or behavioral 

problems, motor dysfunction. Focal or multifocal seizures, super-refractory status 

epilepticus. 

EEG: Slow background, multifocal epileptiform discharges; extreme delta brushes. 

Increasing frequency of focal onset seizures (focal >10Hz evolving to rhythmic spike-

waves). 

Hemiconvulsion-

Hemiplegia-Epilepsy 

syndrome (HHE) 

<4y M=F Unknown, 

structural/metabolic, 

genetic 

Clinical: Focal (clonic) febrile status epilepticus and persistent hemiparesis, aphasia 

when dominant hemisphere involved; focal or focal to bilateral motor seizures. 

EEG: Focal or lateralized rhythmic ictal delta, focal recruiting (10Hz) rhythms. 

Variable age onset 

Progressive myoclonus 

epilepsy (PME) 

 

- Unverricht-Lundborg 

(EPM1) 

7-13y M=F Genetic Clinical: progressive course; myoclonus induced by touch / photic stimulation, more 

pronounced upon awakening; other generalized seizures may occur. 

EEG: Photosensitivity; generalized polyspike and wave (ictal). 

- Lafora disease (EPM2) 6-19y M=F Genetic Clinical: Vision loss, cognitive decline, cerebellar symptoms. Myoclonic and generalized 

tonic-clonic seizures.  

EEG: Photosensitivity; spike wave and polyspikes, no activation in sleep. 
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 Age of onset Gender Etiology Electroclinical characteristics

- Neuronal Ceroid 

Lipofuscinosis (NCL) 

 

- CLN2 (late 

infantile) 

2-4yo M=F Genetic Clinical: Language delay, progressive course, multiple seizures febrile and afebrile,

including myoclonic. 

EEG: Photoparoxysmal response at low frequencies. 

- Juvenile 

CLN3 

4-10y M=F Genetic Clinical: Visual loss progressive, macular degeneration, optic atrophy, retinitis 

pigmentosa. 

EEG: 

- Adult NCL 

(Kufs) 

11-50y M=F Genetic Type A: PME with dementia and ataxia.

Type B: Dementia with cerebellar or extrapyramidal motor symptoms but not PME. 

The list of DEEs follows the 2021 proposal of the International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions for epilepsy syndromes (5–7). DEE: 3772 

Developmental and epileptic encephalopathies; D/EE-SWAS: DEE with SW activation in sleep; EIMFS: Epilepsy of Infancy with Migrating Focal Seizures; EPM: epilepsy with 3773 

progressive myoclonus; F: female; Glut1DS: Glucose Transporter 1 (SLC2A1) Deficiency syndrome; HHE: Hemiconvulsion-Hemiplegia-Epilepsy syndrome; M: male; mo: months; 3774 

NCL or CLN: neuronal ceroid lipofuscinosis; PME: progressive myoclonic epilepsy; PDE: Pyridoxine dependent epilepsy; P5PDE: Pyridox(am)ine 5’-Phosphate (P5PD) Dependent 3775 

Epilepsy; SW: spike-and-slow-wave; y: years. 3776 
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TABLE 2. Genes involved in epileptic encephalopathy and DEE pathogenesis 3777 

  Approved Symbol Gene/Locus name

Ion channels 

  KCNA2 Potassium channel, voltage-gated, Shaker-related subfamily, 

member 2 

CACNA1E Calcium channel, voltage-dependent, alpha 1E subunit 

KCNT2 Potassium channel, subfamily T, member 2 

SCN3A Sodium channel, voltage-gated, type III, alpha polypeptide

SCN2A Sodium channel, voltage-gated, type II, alpha subunit 

SCN1A Sodium channel, voltage-gated, type I, alpha polypeptide

SCN9A Sodium channel, voltage-gated, type IX, alpha subunit 

CACNA2D2 Calcium channel, voltage-dependent, alpha-2/delta subunit 2

HCN1 Hyperpolarization-activated cyclic nucleotide-gated potassium 

channel 1 

KCNQ5 Potassium channel, voltage-gated, KQT-like subfamily, member

5 

KCNT1 Potassium channel, subfamily T, member 1 

CACNA1B Calcium channel, voltage-dependent, L type, alpha 1B subunit

SCN8A Sodium channel, voltage gated, type VIII, alpha polypeptide

CACNA1G Calcium channel, voltage-dependent, T type, alpha-1G subunit

CACNA1A Calcium channel, voltage-dependent, P/Q type, alpha 1A 

subunit 

SCN1B Sodium channel, voltage-gated, type I, beta polypeptide 

KCNB1 Potassium voltage-gated channel, Shab-related subfamily, 

member 1 

KCNQ2 Potassium voltage-gated channel, KQT-like subfamily, member 

2 

CLCN4 Chloride channel-4
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  Approved Symbol Gene/Locus name

Receptors 

  GABRA2 Gamma-aminobutyric acid (GABA) A receptor, alpha-2 

GABRB1 Gamma-aminobutyric acid (GABA) A receptor, beta-1 

GABRB2 Gamma-aminobutyric acid (GABA) A receptor, beta-2 

GABRA1 Gamma-aminobutyric acid (GABA) A receptor, alpha-1 

GABRG2 Gamma-aminobutyric acid (GABA) A receptor, gamma-2

NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 

GABBR2 Gamma-aminobutyric acid B receptor 2

GRIN1 Glutamate receptor, ionotropic, N-methyl D-aspartate 1 

GABRB3 Gamma-aminobutyric acid (GABA) A receptor, beta-3 

GABRA5 Gamma-aminobutyric acid (GABA) A receptor, alpha-5 

GRIN2A Glutamate receptor, ionotropic, N-methyl D-aspartate 2A

GRIN2D Glutamate receptor, ionotropic, N-methyl-D-aspartate 2D

Transporters 

  ATP1A2 ATPase, Na+/K+ transporting, alpha-2 polypeptide 

SLC2A1 Solute carrier family 2 (facilitated glucose transporter), member 

1 

ARV1 ARV1 homolog, fatty acid homeostasis modulator 

SLC1A4 Solute carrier family 1 (glutamate/neutral amino acid 

transporter), member 4 

SLC25A12 Solute carrier family 25 (mitochondrial carrier, Aralar), member 

12 

SLC6A1 Solute carrier family 6 (neurotransmitter transporter, GABA), 

member 1 

SLC25A22 Solute carrier family 25 (mitochondrial carrier, glutamate), 

member 22 

SLC1A2 Solute carrier family 1 (glial high affinity glutamate transporter), 
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  Approved Symbol Gene/Locus name

member 2

SLC13A5 Solute carrier family 13 (sodium-dependent citrate 

transporter), member 5 

SLC25A10 Solute carrier family 25 (mitochondrial carrier), member 10 

(dicarboxylate ion carrier) 

SLC25A42 Solute carrier family 25, member 42

ATP1A3 ATPase, Na+/K+ transporting, alpha-3 polypeptide 

SLC12A5 Solute carrier family 12, (potassium-chloride transporter) 

member 5 

SLC35A2 Solute carrier family 35 (UDP-galactose transporter), member 2

SLC9A6 Solute carrier family 9 (sodium/hydrogen exchanger), member 

6 

Synapse related 

  CPLX1 Complexin 1

PPP3CA Protein phosphatase 3, catalytic subunit, alpha isoform 

(calcineurin A alpha) 

SYNGAP1 Synaptic Ras GTPase activating protein 1 

ADAM22 ADAM metallopeptidase domain 22

STXBP1 Syntaxin-binding protein 1

DNM1 Dynamin-1

NECAP1 NECAP endocytosis-associated protein 1 

DMXL2 DMX-like 2

AP3B2 Adaptor-related protein complex 3, beta 2 subunit 

STX1B Syntaxin 1B

SYNJ1 Synaptojanin 1

NRXN1 Neurexin 1

Cell growth, division, and proliferation related



167 
 

  Approved Symbol Gene/Locus name

  MTOR Mechanistic target of rapamycin

AKT3 AKT serine/threonine kinase 3

NPRL2 NPR2-like protein, GATOR1 complex subunit 

STAG1 Stromal antigen 1
 

RNF13 RING finger protein 13
 

PIK3CA Phosphatidylinositol 3-kinase, catalytic, alpha 
 

PPP2CA Protein phosphatase-2 (formerly 2A), catalytic subunit, alpha 

isoform  

ACTL6B Actin-like 6B
 

RHOBTB2 Rho-related BTB domain-containing protein 2 
 

TSC1 Hamartin
 

AKT1 AKT serine/threonine kinase 1
 

NPRL3 Nitrogen permease regulator-like 3
 

TSC2 Tuberin
 

PIK3R2 Phosphatidylinositol 3-kinase, regulatory subunit 2 
 

DEPDC5 DEP domain-containing protein 5
 

Cell metabolism related 
 

  MTHFR Methylenetetrahydrofolate reductase
 

ST3GAL3 ST3 beta-galactoside alpha-2,3-sialyltransferase 3 
 

PARS2 Prolyl-tRNA synthetase 2
 

HNRNPU Heterogeneous nuclear ribonucleoprotein U 
 

CAD CAD trifunctional protein of pyrimidine biosynthesis 
 

MDH1 Malate dehydrogenase, soluble
 

UGP2 Uridyl diphosphate glucose pyrophosphorylase-2 
 

BOLA3 bolA family member 3
 

ST3GAL5 Sialyltransferase 9
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  Approved Symbol Gene/Locus name

GAD1 Glutamate decarboxylase-1, brain, 67kD 
 

GLS Glutaminase
 

D2HGDH D-2-hydroxyglutarate dehydrogenase
 

UGDH UDP-glucose dehydrogenase
 

MANBA Mannosidase, beta A, lysosomal
 

NUS1 NUS1 dehydrodolichyl diphosphate synthase subunit 
 

MDH2 Malate dehydrogenase, mitochondrial
 

DENND5A DENN domain-containing protein 5A
 

NARS2 Asparaginyl-tRNA synthetase 2
 

ALG9 ALG9 alpha-1,2-mannosyltransferase
 

FCSK Fucose kinase
 

PNPO Pyridoxamine 5'-phosphate oxidase
 

ITPA Inosine triphosphatase-A
 

ALG13 ALG13 UDP-N-acetylglucosaminyltransferase subunit 
 

Intracellular trafficking related 
 

  TRAK1 Trafficking protein, kinesin-binding 1
 

AP2M1 Adaptor-related protein complex 2, mu 1 subunit 
 

CAMK2G Calcium/calmodulin-dependent protein kinase (CaM kinase) II 

gamma  

TBC1D24 TBC1 domain family, member 24
 

NSF N-ethylmaleimide-sensitive factor
 

CLTC Clathrin, heavy polypeptide (Hc)
 

ARX Aristaless-related homeobox, X-linked
 

Intracellular signaling related 
 

  SZT2 SZT2 subunit of KICSTOR complex
 

DOCK7 Dedicator of cytokinesis 7
 

YWHAG Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
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  Approved Symbol Gene/Locus name

activation protein, gamma isoform

GNAO1 Guanine nucleotide-binding protein (G protein), alpha-

activating activity  

PLCB1 Phospholipase C, beta-1
 

SIK1 Salt-inducible kinase 1
 

Transcription and gene expression related 
 

  PUM1 Pumilio RNA binding family member 1
 

TSEN2 tRNA splicing endonuclease, subunit 2
 

PURA Purine-rich element binding protein A
 

MEF2C MADS box transcription enhancer factor 2, polypeptide C 

(myocyte enhancer factor 2C)  

KMT2E Lysine (K)-specific methyltransferase 2E
 

CELF2 CUGbp- and ELAV-like family, member 2 
 

CUX2 Cut-like homeobox 2
 

FOXG1 Forkhead box G1B
 

IRF2BPL Interferon regulatory factor 2-binding protein like 
 

CHD2 Chromodomain helicase DNA binding protein-2 
 

NEUROD2 Neurogenic differentiation 2
 

MECP2 Methyl-CpG-binding protein-2
 

Protein biosynthesis/degradation related 
 

  DHDDS Dehydrodolichyl diphosphate synthase
 

ATP6V1A ATPase, H+ transporting, V1 subunit A
 

UBA5 Ubiquitin-like modifier activating enzyme 5 
 

GUF1 GUF1 homolog, GTPase
 

VARS1 Valyl-tRNA synthetase 1
 

PLAA Phospholipase A2-activating protein
 

CARS2 Cysteinyl-tRNA synthetase 2
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  Approved Symbol Gene/Locus name

AARS1 Alanyl-tRNA synthetase 1
 

EEF1A2 Eukaryotic translation elongation factor-1, alpha-2 
 

PIGP Phosphatidylinositol glycan, class P
 

PIGA Phosphatidylinositol glycan, class A
 

Cytoskeletal proteins 
 

  CYFIP2 Cytoplasmic FMRP interacting protein 2
 

PHACTR1 Phosphatase and actin regulator 1
 

SPTAN1 Spectrin, alpha, nonerythrocytic-1 (alpha-fodrin) 
 

Mitochondria proteins 
 

  MFF Mitochondrial fission factor
 

FARS2 Phenylalanyl-tRNA synthetase 2, mitochondrial 
 

RMND1 Required for meiotic nuclear division 1 homolog 
 

BRAT1 BRCA1-associated ATM activator 1
 

PMPCB Peptidase, mitochondrial processing, beta 
 

TWNK Twinkle mtDNA helicase
 

DNM1L Dynamin 1-like
 

POLG Polymerase (DNA directed), gamma
 

GOT2 Glutamic-oxaloacetic transaminase 2, mitochondrial 
 

TIMM50 Translocase of inner mitochondrial membrane 50 
 

Other/multiple functions proteins 
 

  FBXO11 F-box only protein 11
 

MBD5 Methyl-CpG-binding domain protein 5
 

PTPN23 Protein-tyrosine phosphatase, nonreceptor-type, 23 
 

DALRD3 DALR anticodon-binding domain-containing protein 3 
 

SERPINI1 Protease inhibitor 12
 

FGF12 Fibroblast growth factor-12
 

CSNK2B Casein kinase-2, beta polypeptide
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  Approved Symbol Gene/Locus name

CNPY3 Canopy 3, zebrafish, homolog of
 

CDK19 Cyclin-dependent kinase 19
 

TRRAP Transformation/transcription domain-associated protein
 

FRRS1L Ferric-chelate reductase 1-like
 

COQ4 Coenzyme Q4, S. cerevisiae, homolog of 
 

ATN1 Atrophin 1
 

PACS2 Phosphofurin acidic cluster sorting protein 2 
 

PIGB Phosphatidylinositol glycan, class B
 

PIGQ Phosphatidylinositol glycan anchor biosynthesis class Q protein
 

ROGDI Rogdi atypical leucine zipper
 

WWOX WW domain-containing oxidoreductase 
 

PIGS Phosphatidylinositol glycan, class S
 

TCF4 Transcription factor-4 (immunoglobulin transcription factor-2)
 

PNKP Polynucleotide kinase 3' phosphatase
 

CDKL5 Cyclin-dependent kinase-like 5 (serine/threonine protein kinase 

9)  

CASK Calcium/calmodulin-dependent serine protein kinase 
 

SMC1A Segregation of mitotic chromosomes 1 (SMC1, yeast, homolog 

of; DXS423E; SB1.8)  

FGF13 Fibroblast growth factor-13
 

ARHGEF9 Rho guanine nucleotide exchange factor 9 
 

PCDH19 Protocadherin 19
 

 3778 

 3779 

Genes gathered from OMIM (https://www.omim.org/) interrogated on October 27, 2021, using the keywords 3780 

‘epileptic encephalopathy’ and ‘developmental and epileptic encephalopathy’. See Supplemental Table S1 3781 

(https://figshare.com/articles/dataset/Guerrini_et_al_Supplemental_Table_S1_xlsx/17694713) for more details.3782 
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TABLE 3. Selected animal models of DEEs 3783 

Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

A. Models of epileptic spasms (ES) 

 A1. Acute 

 NMDA Rat, mouse C57 NMDA i.p., PN7-

18 

PN7-18 NR Rat: Learning and 

coordination 

deficits; 

3days – 7days post 

NMDA (mouse): 

Increased anxiety, 

impaired motor 

coordination and 

poor memory 

retention 

High dose ACTH1-

39; Vigabatrin 

Spasms (167, 170, 543, 

584–587) 

NMDA variants 

 - Prenatal 

betamethaso

Rat Betamethasone 

i.p. G15; 

PN12-15 NR NR after spasms 

induction 

Low dose ACTH1-

39; 

Spasms,

ACTH 

(168, 537, 538, 

542) 
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

ne / 

postnatal 

NMDA 

NMDA i.p., PN12-

15 

Vigabatrin sensitivity

 - Prenatal 

stress / 

postnatal 

NMDA 

Rat Forced restraint 

(FR) (G15 or 

Forced swim test 

(FST) (G1-

parturition); 

NMDA i.p., PN15 

PN15 NR NR after spasms 

induction 

FST/NMDA: 

Responds to 

ACTH1-39; 

FR/NMDA: 

Responds to 

repeated low 

dose ACTH1-39 

Spasms, 

stress 

(167, 169)

 - Prenatal MAM 

/ postnatal 

NMDA 

Rat MAM (2 doses, 

G15); 

NMDA i.p., PN12- 

15 (1 or 3 doses) 

PN12-15 NR NR after spasms 

induction 

No effect of low 

dose ACTH; 

Responds to 

vigabatrin 

Spasms,

dysplasias 

(588)

 - 

Adrenalecto

Rat Adrenalectomy 

(PN10); NMDA i.p. 

PN11 NR NR after spasms 

induction 

High dose ACTH1-

39 

Spasms (170)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

my / 

postnatal 

NMDA 

(PN11)

 - Tsc1gfap -/+ 

mouse, 

postnatal 

NMDA, 

Mouse, Tsc1flox/flox-

GFAP-Cre knockout 

C57Bl/6 and SV129 

 As in Tsc1gfap -

/+ 

NR after spasms 

induction 

NR Spasms, 

induced on 

a genetic 

background 

(589)

 Down 

syndrome / 

GBL 

Mouse (Ts65Dn), 

C57Bl/ 

6JEiXC3H/HesnJ 

γ-butyrolactone 

(GBL) i.p. 

1wk – 2mo NR NR after spasms 

induction 

Responds to 

ACTH1-24 but not 

to ACTH1-39; 

Responds to 

vigabatrin 

Spasms, 

induced on 

a genetic 

background 

(539, 590, 591)

A2. Chronic 

 Tetrodotoxin 

(TTX)  

Rat Intrahippocampal 

or intracortical 

TTX, unilateral 

≥PN21 Yes NR Sensitive to ACTH, 

vigabatrin 

ISS 

structural, 

hypsarrhyth

(87, 546, 592–

594) 
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

(PN10-38) mia;

drug-

sensitive  

 Multiple-hit  Rat PN3: Right 

intracortical LPS, 

right 

intraventricular 

doxorubicin 

PN5: PCPA i.p. 

PN4-13 Yes Sociability deficits, 

learning/memory 

deficits, 

stereotypies 

Resistant to 

ACTH; 

partial/transient 

response to 

vigabatrin 

ISS 

structural, 

drug-

resistant 

(88, 155–161)

 Arx cKO Mouse,  

CD1 and C57Bl/6 

Arx deletion from 

ganglionic 

eminence 

neuronal 

progenitors 

Adulthood Yes NR NR ISS, genetic (162)

 Arx KI [Arx 

(GCG)10+7] 

Mouse,  

75% C57BL/6; 25% 

Expansion of 1st

polyalalanine 

PN7-11 Yes Low anxiety, 

impaired learning 

NR ISS, genetic (150, 163, 595)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

129S5/SvEvBrd tract repeat (PA1) 

of Arx 

and sociability

Arx with PA1 or 

PA2 expansion 

Mouse, C57BL/6N-

Hsd 

PA1 or PA2 

expansion of Arx 

≥PN10 to 

adulthood 

(myoclonic 

seizures) 

NR 1-2mo: Sociability, 

neuromuscular 

strength deficits, 

anxiety and fear 

NR ISS, genetic (545)

 Adenomatous 

polyposis (Apc) 

Mouse Apc gene

knockout from 

excitatory CamKII 

neurons 

Peak at PN9 Yes Reduced social 

interest, increased 

repetitive 

behaviors 

NR ISS, genetic (596)

 Tsc1+/- Mouse, 

C57BL/6 

Heterozygous 

Tsc1-/+ 

PN12-16;

Observed for 

1 day/pup 

NR NR NR ISS, genetic (597)

 Aged CDKL5, 

heterozygous 

females 

Mouse, C57BL/6J Cdkl5R59X/+ or 

Cdkl5KO/+ 

>PN300 

female 

No (only 

spasms seen) 

NR in females;

Sociability deficits 

in males 

NR ISS, genetic (598)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

 Chronic early 

life stress 

Rat Unpredictable 

and fragmented 

nurturing 

behaviors in dams 

(PN2-9 period) 

PN17-35;

Last for 1 or 

several days 

NR NR NR ISS, 

unknown 

(171)

B. Models of Lennox-Gastaut syndrome, atypical absence seizures

AY9944 Rat AY9944 7.5mg/kg 

SC (PN2, 8, 14, 

PN20) 

NR Slow SWD Cognitive deficits, 

hyperactivity, 

anxiety, spatial 

learning, olfactory 

recognition deficits 

Responsive to 

DZP, ETH, 

CGP35348; Worse 

with CZP, 

baclofen, γ-OH-

butyrate 

Chronic 

atypical 

absence 

seizures 

(599–605)

MAM - AY9944 Rat Prenatal MAM / 

postnatal AY9944 

NR Slow SWD NR Refractory to ETH, 

VPA, CGP35348, 

CBZ 

Refractory 

atypical 

absence 

seizures 

(606)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

PValb- 

Dnm1Ftfl/flox 

Mouse, 

C57BL/6J 

Dnm1Ftfl/flox in PV 

cells 

NR PN19-50: 

SWD, lethal 

seizures 

Tremor NR LGS (607)

GABABR1a Mouse, 

C57BL/6 

GABABR1a 

overexpression in 

forebrain 

NR Slow SWD Impairment in 

learning, spatial 

memory 

Responsive to 

ETH, CGP35348 

Chronic 

atypical 

absence 

seizures 

(608)

GABABR1b Mouse GABABR1b 

overexpression in 

forebrain 

NR Slow SWD Mild impairment in 

learning, spatial 

memory 

Responsive to 

ETH, CGP35348 

Chronic 

atypical 

absence 

seizures 

(609)

NHE1 Mouse, 

SJL/J and C57BL/6J 

Na+/H+ 

exchanger null 

NR Slow SWD 

(3Hz) (at 4-

5wk);  

Lethal tonic or 

tonic-clonic 

Ataxia; 

 

Early mortality 

NR Chronic 

atypical 

absence 

seizures 

(610)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

seizures

Multiple-hit Rat PN3: Right 

intracortical LPS, 

right 

intraventricular 

doxorubicin 

PN5: PCPA i.p. 

PN4-13 Adulthood: 

slow SWD (5-

6Hz), motor 

seizures in 

sleep 

Sociability deficits, 

learning/memory 

deficits, 

stereotypies 

NR ISS with LGS 

features 

(155)

C. Models of 

Dravet 

syndrome 

  

Scn1a KO Mouse Exon 26 deletion, 

global constitutive 

Convulsive 

seizures, 

Hyperthermia 

seizures, 

mortality 

Hyperactivity, 

stereotypies, 

sociability, and 

spatial memory 

deficits 

Tested Dravet (64)

Scn1a CKO Mouse, C57BL/6 and Exon 25 deletion, Motor NR Dravet (611)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

129Sv forebrain 

GABAergic 

interneurons 

seizures,

Hyperthermia 

seizures 

 

Scn1a CKO Mouse, 

B6.SJL-

Tg(ACTFLPe)9205Dy

m/J and C57BL/6 

Conditional 

deletion of exon 7 

Inhibitory 

neurons 

≥PN16 

seizures, 

occasional 

death 

Hypoactive, jerks, 

death 

Dravet (612)

   Forebrain 

excitatory 

neurons 

No NR (612)

   Forebrain 

excitatory 

neurons and 

haploinsufficie

ncy in 

inhibitory 

Improved 

lethality from 

seizures 

NR Dravet (612)



181 
 
Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

neurons

   PV 

interneurons 

≥PN14 

seizures, 

death 

Ataxia (PN10) Dravet (612)

Scn1a KI, 

R1407X 

Mouse, 129/SvJ and 

C57BL/6J 

 

Human R1407X 

nonsense 

mutation 

≥1mo: 

Seizures 

Hyperactivity, 

stereotypies, 

sociability and  

Dravet (65, 224, 225)

   spatial memory 

deficits 

Scn1a KI, 

S1231R 

Drosophila S1231R mutation, 

loss of function 

Seizures NR Dravet (613)

Scn1Lab 

(didys552) 

Zebrafish Scn1Lab mutation 

(low expression) 

Increased 

locomotor 

activity, 

epileptiform 

activity, 

Impaired 

exploration, 

decreased mobility 

Tested Dravet (614)
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Models Species Induction method Spasms, age 

of onset 

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

seizures

Scn1Lab -/- Zebrafish Scn1Lab null Increased 

locomotor 

activity and 

epileptiform 

activity 

NR Tested Dravet (560)

Scn1a-

A1783V/WT KI 

Mouse, C57BL/6J Scn1a-

A1783V/WT KI 

Hyperthermia 

seizures 

NR Tested Dravet (615)

Scn1a R1648H 

KI (after 

induction of 

short seizures) 

Mouse Knock-in R1648H 

missense 

mutation, global 

constitutive,  

Convulsive 

seizures, 

Hyperthermia 

seizures, 

mortality 

Hyperactivity, 

stereotypies, 

sociability, and 

spatial memory 

deficits 

Dravet and 

GEFS+ 

(228)

D. Other

etiology-
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

specific 

models of 

DEE 

Kcnq2 KI Mouse, C57BL/6J Kcnq2-Y284C/+, 

Kcnq2-A306T/+ 

NR NR Retigabine 

reduces KA-

seizures 

KCNQ2 DEE (616)

Kcnq2-

Thr274Met/+ 

Mouse, 129Sv, 

C57BL/6N 

Kcnq2-

Thr274Met/+ 

Yes (>PN20) Spatial learning and 

memory deficits. 

Death by 3rd mo 

(25%) 

NR KCNQ2 DEE (281)

Kcna1-/- Mouse Kcna1-/- Yes NR Retigabine 

reduces  

KCNA1 

epilepsy 

(617)

   spontaneous 

seizures 

Kcnq1- Mouse Kcnq1- Rare NR Retigabine: KCNQ1 (617)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

A340E/A340E A340E/A340E spontaneous 

seizures 

adverse cardiac 

effects 

epilepsy

Pcdh19 KO and 

heterozygous 

females 

Mouse, 

129S5.C57BL/6 

Pcdh19 KO and 

heterozygous 

females 

NR;

Increased 

susceptibility 

to 6Hz and 

flurothyl 

seizures 

NR PCDH19 

DEE 

(618)

Pcdh19-HET  Mouse, C57BL/6N Pcdh19-HET Mossy fiber 

deficits 

NR Pattern completion 

and separation 

deficits 

NR PCDH19 

DEE 

(619)

Pcdh19 KO Mouse, 

C57BL/6N 

Pcdh19-KO NR Increased 

exploratory 

behavior, reduced 

anxiety 

NR PCDH19 

DEE 

(618)
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Models Species Induction method Spasms, age 

of onset  

Subsequent 

epilepsy 

Behavioral / 

neurodevelopment

al deficits 

Response to 

ACTH/vigabatrin 

Model of: References

Cdkl5 CKO Mouse, 

CD1 

Cdkl5 CKO in 

glutamatergic or 

GABAergic 

neurons 

Defective 

dendritic 

arborisation 

and spine 

maturation 

 

Yes when 

deleted in 

glutamatergic 

neurons. 

Autistic 

symptomatology, 

motor 

coordination, 

memory and 

breathing 

abnormalities 

Epigallatocathech

in-3-gallate 

(EGCG) corrects 

synaptic deficits 

CDKL5 DEE (620, 621)

ACTH: adrenocorticotropic hormone; Apc: adenomatous polyposis colon; Arx : aristaless X-linked homeobox protein; AY9944; trans-1,4-bis-3784 

cyclohexane dihydrochloride, cholesterol biosynthesis inhibitor; CDKL5: cyclin-dependent kinase-like 5; CGP35348: GABAB receptor inhibitor; DEE: 3785 

DEE: Developmental and epileptic encephalopathy; ES: epileptic spasms; CKO: conditional knockout; CZP: clonazepam; Dnm1: dynamin 1; DZP: 3786 

diazepam; EGCG: Epigallatocathechin-3-gallate; ETH: ethosuximide; GBL: gamma butyrolactone; FR: forced restraint; FST: Forced swim test; G: 3787 

gestational day; GABABR: GABAB receptor; Gfap: glial acidic fibrillary protein; HET: heterozygous; ISS: infantile spasms syndrome; Kcna1: 3788 

Potassium Voltage-Gated Channel Subfamily A Member 1); KCNQ: Potassium Voltage-Gated Channel Subfamily Q; KI: knockin; KO: knockout; LGS: 3789 

Lennox-Gastaut syndrome; LPS: lipopolysaccharide; MAM: methyl-azoxy-methanol acetate; NHE1: Na+/H+ exchanger; NMDA: N-methyl-D-3790 
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aspartate; NR: not reported; PA: polyalanine; PCPA: p-chlorophenylalanine (inhibits serotonin synthesis); PN: postnatal; PV or PValb: parvalbumin; 3791 

Scn1a: sodium channel 1 alpha; SWD: spike and slow wave discharge; Tsc: tuberous sclerosis complex; TTX: tetrodotoxin; VPA: valproic acid.3792 
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TABLE 4. Experimental drugs tested in models of DEE 3793 

Drug Mechanism Model / species Treatment Protocol Effect Reference

A. ES models 

CGP35348 GABABR 

antagonism 

Mouse, Down/GBL Pre-treatment Shortens EDRs (538)

Baclofen GABABR agonist Mouse, Down/GBL Pre-treatment Prolongs EDRs (538)

5-OH-tryptophan Serotonin 

increase 

Mouse, Down/GBL Pre-treatment Prolongs EDRs (538)

GIRK2 knockout Deletion of 

GABABR 

associated 

inward rectifying 

potassium 

channel 

GIRK2 KO Mouse, 

Down/GBL 

GIRK2 Knockout mice GIRK2 knockout 

confers resistance 

to GBL induced 

spasms 

(539)

Rapamycin mTOR inhibitor Rat, Prenatal 

betamethasone / 

postnatal NMDA 

Pre-treatment No effect, no 

evidence of target 

relevance 

(537)

Ganaxolone Allosteric Rat, Prenatal Pre-treatment Reduces number, (540)



188 
 
Drug Mechanism Model / species Treatment Protocol Effect Reference

activator of 

GABAAR, synaptic 

and extrasynaptic 

betamethasone / 

postnatal NMDA 

delays onset of 

NMDA spasms 

ACTON 

PROLONGATUM ® 

Synthetic ACTH 

based on porcine 

ACTH 

Rat, Prenatal 

betamethasone / 

postnatal NMDA 

Pre-treatment Reduces number, 

delays onset of 

NMDA spasms 

after 2doses but 

not after single 

dose 

(541)

AQB-565 ACTH1-24 linked 

to melanocyte 

stimulating 

hormone, acts on 

MC3, MC4 

melanocortin 

receptors 

Rat, Prenatal 

betamethasone / 

postnatal NMDA 

Pre-treatment Reduces number 

of NMDA spasms 

after 8 doses  

(538)

Estradiol, 

diethylstilbestrol 

Gonadal 

hormone, 

Rat, Prenatal 

betamethasone / 

Pre-treatment (PN3-

10) 

No effect on 

spasms; increased 

(542)



189 
 
Drug Mechanism Model / species Treatment Protocol Effect Reference

estrogen 

analogue 

postnatal NMDA GAD67 cells in 

neocortex 

β-OH-butyrate Ketoacid Rat, Prenatal 

betamethasone / 

postnatal NMDA 

Pre-treatment Reduces spasms 

and delays latency 

to NMDA spasms 

after repeat but 

not single dose 

administration 

(543)

β-OH-butyrate Ketoacid Rat, Prenatal 

betamethasone / 

postnatal NMDA 

Pre-treatment 

(200mg/kg ip) 

No effect (544)

2-deoxyglucose Metabolic 

inhibition of 

glycolysis 

Rat, Prenatal 

betamethasone / 

postnatal NMDA 

Pre-treatment

 

 

No effect (544)

B. ISS models 

Rapamycin, pulse mTOR inhibitor Rat, multiple hit Treatment after 

spasms onset, 3days  

Decreases spasms 

within 2h; stops 

(155, 161)
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Drug Mechanism Model / species Treatment Protocol Effect Reference

spasms with 

repeat dosing; 

improves spatial 

learning; prevents 

adult epilepsy; 

reverses mTOR 

dysregulation 

CPP-115 High affinity 

vigabatrin analog 

Rat, multiple hit Treatment after 

spasms onset, 

repeated (PN4-12) 

Reduces spasms 

from the first hour 

and for up to 3 

days; better 

efficacy and 

tolerability than 

vigabatrin 

(156)

Carisbamate Unknown; effect 

on spasms not 

due to sodium 

channel blockade 

Rat, multiple hit Treatment after 

spasms onset, single 

dose (PN4 or PN6-7) 

Reduces spasms 

within the first 

hour 

(160)
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Drug Mechanism Model / species Treatment Protocol Effect Reference

NAX-5055 Galanin receptor 

1 (GalR1) 

agonist 

Rat, multiple hit Treatment after 

spasms onset, single 

dose (PN4 or PN6-7) 

No effect; low 

expression of 

GalR1 in pups 

(158)

VX-765 Caspase 1 

inhibitor 

Rat, multiple hit Treatment after 

spasms onset, single 

dose (PN4) 

No effect (157)

CGP 35348 GABABR 

antagonism 

Rat, multiple hit Treatment after 

spasms onset, single 

dose (PN4) 

No effect (157)

17β-estradiol Gonadal 

hormone 

Rat, multiple hit Treatment started 

after induction (PN3-

10) 

No effect (157)

17β-estradiol Gonadal 

hormone 

Mouse, Arx KI [ Arx 

(GCG10+7) 

Pre-treatment (PN3-

10) 

Prevents spasms 

and other  

(150)

   seizures, restores 

interneuronopathy 

17β-estradiol Gonadal 

hormone 

Mouse, Arx with PA1 

or PA2 expansion 

Pre-treatment (PN3-

10) 

Reduces seizures 

but not the 

(545)
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Drug Mechanism Model / species Treatment Protocol Effect Reference

abnormal behavior

C. Dravet syndrome models 

Soticlestat Cholesterol 24-

hydroxylase 

inhibitor 

Mouse, Scn1atm1Kea

with exon 1 deletion 

Treatment after 

hyperthermia priming 

Reduced seizures, 

protected against 

hyperthermia 

seizures, 

prevented SUDEP 

(549)

Medium chain 

triglyceride diet 

(decanoic C10, 

octanoic acid C8 

mix) 

Ketogenic diet 

metabolite 

Mouse, Scn1a KI, 

R1407X 

4wk treatment prior to 

hyperthermia  

C10/C8 (80:20) 

reduce both 

seizures and 

mortality; 

C10 reduces 

mortality 

(551)

Gabra2 repair GABRA2 

expression 

restoration 

(increase) 

Mouse, Scn1a+/- Genetic repair of 

Gabra2 

Rescues epilepsy 

phenotype 

(550)
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Drug Mechanism Model / species Treatment Protocol Effect Reference

Trpv1 receptor 

deletion 

Trpv1 receptor 

deletion 

Mouse, Scn1a+/- Trpv1 receptor deletion No effects on 

hyperthermia 

seizures, 

frequency of 

spontaneous 

seizures or survival 

(552)

SB-705498 Trpv1 selective 

antagonist 

Mouse, Scn1a+/- No effect on 

seizures or survival 

(552)

Cannabigerolic 

acid 

Phytocannabinoid  Mouse, Scn1a+/- Pre-treatment Potentiated 

clobazam effects 

on hyperthermia 

induced and 

spontaneous 

seizures,  

(554)

   anticonvulsant in 

MES, 

proconvulsant in 

6Hz test. 
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Drug Mechanism Model / species Treatment Protocol Effect Reference

Cannabichromene, 

5-Fluoro- 

Cannabichromene 

Phytocannabinoid Mouse, Scn1a+/- Pre-treatment Anticonvulsant (553)

Ketogenic diet Ketogenic diet Mouse, Scn1a KI, 

R1407X 

Ketogenic diet, 14 days Decreases SUDEP, 

protects against 

seizure induced 

respiratory arrest 

(555)

SCN1A transfer in 

the brain 

(adenoviral) 

SCN1A 

expression in the 

brain 

Mouse, SCN1A-

A1783V KI 

Adenovirus expressing 

SCN1A, intracerebral 

injection 

Protected from 

death, attenuation 

of epilepsy, 

hyperactivity 

persisted, 

cognitive effects 

variable 

(556)

Naltrexone Opioid antagonist Zebrafish, scn1Lab Pretreatment, 30min 

prior to PTZ 

Anticonvulsant 

effects 

(559)

Fenfluramine, 

Norflenfluramine 

Reuptake 

inhibitor of 5-OH-

Zebrafish, scn1Lab-/- Treatment exposure Anticonvulsant 

effects 

(560)
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Drug Mechanism Model / species Treatment Protocol Effect Reference

enantiomers tryptamine 

Fenfluramine Reuptake 

inhibitor of 5-OH-

tryptamine 

Zebrafish, scn1Lab Treatment exposure Anticonvulsant 

effects 

(561)

Dimethadione Calcium channel 

blocker 

Zebrafish, scn1Lab Treatment exposure Anticonvulsant 

effects 

(561)

Clemizole Serotoninergic Zebrafish, scn1Lab Treatment exposure Anticonvulsant 

effects 

(562)

PK11195 Pck1 activator 

and translocator 

protein ligand 

Zebrafish, scn1Lab Treatment exposure Anticonvulsant 

effects 

(563)

GR-46611 5HT1D receptor 

agonist 

Mouse, 129S-

Scn1Atm1Kea/Mmjax 

Pretreatment Protects from 

hyperthermia 

seizures, 

decreases seizure 

severity, improves 

survival 

(557)

ASO, increases ASO, increases Mouse, F1:129S- PN2 or 14, Reduces seizures (233)
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Drug Mechanism Model / species Treatment Protocol Effect Reference

Scn1a Scn1a (TANGO 

method) 

Scn1a+/− Å~ 

C57BL/6J  

intracerebroventricular 

injection 

and SUDEP 

CRISPR/dCas9-

based Scn1a gene 

activation in 

inhibitory neurons 

CRISPR/dCas9-

based Scn1a gene 

activation in 

inhibitory 

neurons 

Mouse, Scn1aRx/+, 

floxed dCas9-

VPRVPR/+, Vgat-

CreCre/+,  

Intravenous AAV 

injection, 4wk 

Improved 

behavioral deficits, 

ameliorated 

febrile seizures 

(558)

MV1369, MV1312 NaV1.6 inhibitor Zebrafish, Scn1Lab

KO 

Treatment Reduced 

spontaneous burst 

movements and 

seizures 

(564)

AA43279 Nav1.1 activator Zebrafish, Scn1Lab

KO 

Treatment Reduced 

spontaneous burst 

movements and 

seizures 

(564)

AQB-565: ACTH1-24 linked to melanocyte stimulating hormone; ASO: antisense oligonucleotides; CPP-115: high affinity GABA aminotransferase 3794 

inhibitor; CRISPR: clustered regularly interspaced short palindromic repeats; EDRs: ectrodecremental responses; GABRA2: GABAAR A2 subunit; 3795 

CGP35348: GABAB receptor inhibitor; DEE: Developmental and epileptic encephalopathy; ES: epileptic spasms; GABABR: GABAB receptor; GalR: 3796 
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galanin receptor; GBL: gamma butyrolactone; GIRK: inward rectifying potassium channel; 5-HT: serotonin; KI: knockin; mTOR: mechanistic target 3797 

of rapamycin; MC: melanocortin receptor; Nav: Sodium channel; NMDA: N-methyl-D-aspartate; PCK1: Phosphoenolpyruvate Carboxykinase 1; PN: 3798 

postnatal; Scn1a sodium channel 1; SUDEP: sudden death in epilepsy; Trpv1: transient receptor potential cation channel subfamily V member 1; 3799 

Vgat: vesicular GABA transporter. 3800 

 3801 
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TABLE 5 Main drugs used to treat DEEs and target pathways/molecules 3802 
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Barbiturates   YES YES

Benzodiazepines   YES YES BS

Brivaracetam    YES FS 

Cannabidiol   YES LGS, DS

Carbamazepine YES YES YES  FS, GTCS

Cenobamate  YES YES YES FS 

(adult) 

Clobazam YES  YES YES LGS, FS

Eslicarbazepine YES YES  FS

Ethosuximide YES  YES  ABS

Felbamate YES YES YES YES YES YES BS

Fenfluramine YES  YES YES DS

Gabapentin YES  YES YES YES YES FS, GTCS

Lacosamide YES YES  YES FS, SGS

Lamotrigine YES YES YES  FS, GCTs, 
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ABS

Levetiracetam YES  YES YES YES YES YES BS

Oxcarbazepine YES YES YES YES  FS, GTCS

Perampanel YES  YES  FS, GTCS

Phenobarbital YES  YES YES YES YES FS

Phenytoin YES YES YES  FS, GTCS

Pregabalin YES  YES YES FS

Primidone YES  YES YES YES FS, GTCS

Retigabine YES  YES  FS

Rufinamide YES YES  LGS

Stiripentol   YES YES DS

Tiagabine   YES YES FS

Topiramate YES YES YES YES YES YES YES YES BS

Valproate YES YES YES YES YES YES BS

Vigabatrin   YES YES FS, ES
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Zonisamide YES YES YES  YES FS, GTCs, 

MYO 

BS: broad spectrum; GABA:Gamma-amonobutyric acid; 5-TH: 5-hydroxytryptamine; SV2A: synaptic vesicle protein 2°; FS: focal seizures; LGS: Lennox Gastaut syndrome; DS: 3803 

Dravet syndrome; GTCS: generalized tonic-clonic seizures; ABS: absence; SGS: secondary generalized seizures; ES: epileptic spasms; MYO: myoclonic. 3804 

Adapted from https://www.uptodate.com/contents/antiseizure-drugs-mechanism-of-action-pharmacology-and-adverse-effects. 3805 

 3806 
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TABLE 6. Clinical trials on DEEs. 3807 

1 Study Title:  Study to Evaluate NBI-921352 as Adjunctive Therapy in Subjects With SCN8A Developmental and Epileptic Encephalopathy Syndrome (SCN8A-DEE)

Recruiting: Not yet 

Has results: No 

Conditions: SCN8A DEE Syndrome 

Interventions: Drug: NBI-921352, Placebo 

Locations: Neurocrine Clinical Site, Washington, District of Columbia, United States 

2 Study Title: XEN496 (Ezogabine) in Children With KCNQ2 Developmental and Epileptic Encephalopathy

Recruiting: Yes 

Has results: No 

Conditions: Epilepsy, Epilepsy in Children, Epilepsy; Seizure Disease, Brain Diseases, Central Nervous System Diseases, Nervous System Diseases. Epileptic Syndromes 

Interventions: Drug: XEN496, Placebo  

Locations: Children's Hospital of Colorado, Aurora, Colorado, United States. Northwest Florida Clinical Research Group, Gulf Breeze, Florida, United States. Ann & 

Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States. Columbia University Irving Medical Center, New York, New York, United States. The 

Cleveland Clinic Foundation, Cleveland, Ohio, United States. Oregon Health and Science University, Portland, Oregon, United States. MultiCare Health System - Mary 

Bridge Pediatrics - Tacoma, Tacoma, Washington, United States. Sydney Children's Hospital, Sydney, New South Wales, Australia. Children's Health Queensland 

Hospital and Health Service, South Brisbane, Queensland, Australia. Austin Health, Heidelberg, Victoria, Australia. 
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3 Study Title: An Open-Label Extension of the Study XEN496 (Ezogabine) in Children With KCNQ2-DEE 

Recruiting: Yes 

Has results: No 

Conditions: Epilepsy, Epilepsy in Children, Seizure Disease, Brain Diseases, Central Nervous System Diseases, Nervous System Diseases, Epileptic Syndromes 

Interventions: Drug: XEN496, Placebo 

Locations: MultiCare Health System - Mary Bridge Pediatrics - Tacoma, Tacoma, Washington, United States. 

4 Study Title: Study of TAK-935 as an Adjunctive Therapy in Participants With Developmental and/or Epileptic Encephalopathies

Recruiting: No 

Has results: Yes 

Conditions: Developmental and/or Epileptic Encephalopathies 

Interventions: Drug: TAK-935, Placebo 

Locations: Xenoscience, Phoenix, Arizona, United States Medsol Clinical Research Center, Port Charlotte, Florida, United States. University of South Florida, Tampa, 

Florida, United States. Center for Integrative Rare Disease Research, Atlanta, Georgia, United States. Bluegrass Epilepsy Research, Lexington, Kentucky, United States. 

Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland, United States. The Comprehensive Epilepsy Care Center for Children and Adults, Saint Louis, Missouri, 

United States. Northeast Regional Epilepsy Group, Hackensack, New Jersey, United States. Thomas Jefferson University, Philadelphia, Pennsylvania, United States. 

Medical University of South Carolina, Charleston, South Carolina, United States. University of Virginia Health Sciences Center, Charlottesville, Virginia, United States. 

5 Study Title: A Phase 2, Multicenter, Randomized, Double-blind, Placebo-controlled Study to Evaluate the Efficacy, Safety, and Tolerability of TAK-935 (OV935) as an 

Adjunctive Therapy In Pediatric Participants With Developmental and/or Epileptic Encephalopathies 

Recruiting: No 
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Has results: Yes 

Conditions: Epilepsy, Dravet Syndrome, Lennox-Gastaut Syndrome 

Interventions: Drug: TAK-935, Placebo 

Locations: Phoenix Children's Hospital, Phoenix, Arizona, United States. Children's Hospital Los Angeles, Los Angeles, California, United States. Colorado Children's 

Hospital, Aurora, Colorado, United States. Nicklaus Children's Hospital, Miami, Florida, United States. Pediatric Neurology PA, Orlando, Florida, United States. Rare 

Disease Research, LLC, Atlanta, Georgia, United States. Center for Rare Neurological Diseases, Norcross, Georgia, United States. Ann and Robert H Lurie Childrens 

Hospital of Chicago, Chicago, Illinois, United States. Mayo Clinic - PPDS, Rochester, Minnesota, United States. Northeast Regional Epilepsy Group, Hackensack, New 

Jersey, United States. Children's Hospital at Saint Peter's University Hospital, New Brunswick, New Jersey, United States. Columbia University Medical Center, New 

York, New York, United States. Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, United States. Medical University of South Carolina, Charleston, 

South Carolina, United States. Cook Children's Medical Center, Fort Worth, Texas, United States. Monash Children's Hospital, Clayton, Victoria, Australia. Austin 

Hospital, Heidelberg West, Victoria, Australia. Hospital For Sick Children, Toronto, Ontario, Canada. Peking University First Hospital, Beijing, China. Capital Medical 

University (CMU) - Beijing Children's Hospital, Beijing, China. Beijing Children's Hospital, Capital Medical University, Beijing, China. Xiangya Hospital Central South 

University, Changsha, China. Children's Hospital of Fudan University, Shanghai, China. Shenzhen Children's Hospital, Shenzhen, China. Sheba Medical Center-PPDS, Tel 

Hashomer,, Ramat Gan, Israel. Soroka University Medical Centre, Bear Sheva, Israel. Bnai Zion Medical Center, Haifa, Israel. Edith Wolfson Medical Center, Holon, 

Israel. Hadassah Medical Center, Jerusalem, Israel. Schneider Childrens Medical Center of Israel, Petach Tikva, Israel. Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 

Uniwersyteckie Centrum Kliniczne - PPDS, Gdansk, Pomorskie, Poland. NZOZ Centrum Neurologii Dzieciecej i Leczenia Padaczki, Kielce, Swietokrzyskie, Poland. Szpital 

Kliniczny im. H. Swiecickiego Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu, Poznan, Wielkopolskie, Poland. Centrum Medyczne Plejady, Krakow, 

Poland. Samodzielny Publiczny Dzieciecy Szpital Kliniczny w Warszawie, Warsaw, Poland. Instytut Pomnik Centrum Zdrowia Dziecka, Warsaw, Poland. Centro 

Hospitalar Lisboa Central- Hospital Dona Estefania, Lisboa, Portugal. Centro Hospitalar Lisboa Norte, E.P.E. Hospital de Santa Maria, Lisboa, Portugal. Largo da 
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Maternidade de Julio DinisCentro Materno Infantil do Norte, Porto, Portugal. Clinica Universidad Navarra, Pamplona, Navarra, Spain. Hospital Vithas La Salud, 

Granada, Spain. Hospital Ruber Internacional, Madrid, Spain. Hospital Universitari i Politecnic La Fe de Valencia, Valencia, Spain. 

Clinical Trials gathered from ClinicalTrials.gov (https://clinicaltrials.gov/ct2/home) interrogated on October 27, 2021 using the keywords 3808 

‘developmental and epileptic encephalopathy’. 3809 
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Figures Legends 3810 

FIGURE 1. Schematic representation of an example of ‘poison exon’-mediated protein 3811 

degradation. Panel A shows a hypothetical gene encoding a transmembrane protein with four 3812 

transmembrane segments. The gene comprises nine coding exons (1-9) and a potential poison 3813 

exon (P). In the canonical splicing, the poison exon is not included in the mRNA, which is translated 3814 

into the wild type protein. After translation, the protein is correctly integrated into the plasma 3815 

membrane, where it exerts its normal function. In panel B, the presence of an intronic mutation, 3816 

which can introduce a novel splicing acceptor site, activate an exonic splicing enhancer (ESE, i.e. a 3817 

sequence that promotes the inclusion of an exon in an mRNA) or disrupt an exonic splicing silencer 3818 

(ESS, i.e. a sequence that inhibits the inclusion of an exon in an mRNA), promoting the inclusion of 3819 

the poison exon in the mRNA. The poison exon alters protein amino acid sequence and introduces 3820 

a premature stop codon (PTC). The PTC is recognized by cellular surveillance systems and the 3821 

mutant protein is degraded. 3822 

 3823 

FIGURE 2. Schematic representation of the cortical and subcortical zones and mechanisms 3824 

involved in epileptic seizures generation and spreading. A. Schematic model of networks involved 3825 

in spike-and-wave generation in generalized epilepsies. Thalamic relay neurons in the 3826 

thalamocortical circuit can activate cortical pyramidal neurons and vice versa. Thalamus-mediated 3827 

cortical activation is largely controlled by thalamic reticular neurons. They hyperpolarize thalamic 3828 

relay neurons through gamma-aminobutyric acid type B (GABAB)-mediated signals and are 3829 

themselves inhibited by neighboring reticular neurons through GABA type A (GABAA)-mediated 3830 

signals. Cortical pyramidal neurons can, in turn, activate thalamic reticular neurons in a 3831 

glutamate-mediated feed-forward loop. The neuronal basis of the EEG spike-and-wave in this 3832 

reverberating loop derive from an alternance of the summated outside-negative excitatory 3833 
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membrane events (each spike) and the summated outside-positive inhibitory membrane events 3834 

(each slow wave). Spike and waves appear as negative (upward going) events due to a dipole 3835 

effect as the soma and apical dendrites maintain opposite polarity. B. In the epileptic brain, focal 3836 

epileptic seizures are generated in the epileptogenic zone (EZ), while clinical seizures are 3837 

generated in the seizure onset zone (SOZ). If the EZ is larger than the SOZ, as in the case depicted 3838 

in the figure, its complete removal is required to guarantee seizures disappearing as multiple SOZs 3839 

with different thresholds may coexist in the same EZ. The complete EZ disconnection or removal is 3840 

also required to ensure that seizures do not spread to other areas connected to it via cortico-3841 

cortical and subcortical (i.e. thalamocortical) connections (purple arrows), which can cause 3842 

secondary generalization. Additional specific cortical areas that can be identified in the epileptic 3843 

brain are the epileptogenic lesion (EL), which may correspond to either a macroscopic 3844 

epileptogenic lesion (e.g. focal cortical dysplasia, as shown in the figure) or hyperexcitable 3845 

adjacent cortex, the irritative zone (IZ), representing the area of the normal cortex generating 3846 

interictal spikes, and the functional deficit zone (FDZ), representing the area of the cortex that 3847 

does not function normally in the interictal period. 3848 

 3849 

FIGURE 3. Trajectories of developmental processes in normal brain development. A. The 3850 

temporal trajectories of selected developmental processes that are important for normal brain 3851 

development in rodents (upper panel) and humans (lower panel) are shown. Birth (B), weaning 3852 

(W), puberty (P) and adulthood are indicated separately in each panel for the rodent or human 3853 

development. The different timescales used across species (23 days in rodents, 9 months in 3854 

human) highlight the significant differences in the speed of maturation across species. The time of 3855 

brain growth spurt in humans (full term birth) and rodents [around postnatal day (PN) 10] has 3856 

been used to indicate the ages across species that correspond to a full term newborn human baby 3857 
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(91). Brain growth spurt in these studies included gross brain growth, DNA, cholesterol, and water 3858 

content. Puberty onset occurs around PN32-36 in female rats and PN35-45 in male rats, whereas 3859 

in humans it starts around 10-11 years in girls and 11-12 years in boys (92). Distinct processes, 3860 

such as neurogenesis and migration, synaptogenesis and synaptic pruning, myelination follow 3861 

different time courses (90, 93–100). However, the staging of the equivalence of developmental 3862 

stages across species is only approximate and each developmental process needs to be considered 3863 

individually. B. Significant changes occur during development in the expression or function or 3864 

various signaling processes. A schematic depiction of the age-related changes in GABAAR and 3865 

glutamatergic signaling in rats is presented here, however cell type, regional and sex-specific 3866 

differences also exist (90, 105, 622). Early in development, there is less effective GABAAR-mediated 3867 

inhibition, due to the presence of depolarizing GABAAR signaling (see also FIGURE 4), more tonic 3868 

and less phasic GABAAR inhibition. In contrast, glutamatergic receptors, such as NMDAR or kainate 3869 

receptors also show age-related expression patterns. 3870 

 3871 

FIGURE 4. Depolarizing and hyperpolarizing GABAAR signaling in normal development and 3872 

disease. A. GABAAR signaling is depolarizing early in life due to the higher intracellular Cl- 3873 

concentrations ([Cl-]i) that force Cl- efflux upon GABAAR activation. Although the GABAAR 3874 

depolarizations render GABA inhibition less efficient, as it relies upon shunt inhibition, they are 3875 

critical for normal brain development. GABAAR depolarizations may activate L-type voltage 3876 

sensitive calcium channels and may release the Mg++ block of NMDARs, triggering intracellular Ca++ 3877 

rises that are important for neuronal survival, migration, differentiation and integration (123, 130, 3878 

132, 623). The [Cl-]i in immature neurons is a result of increased expression and/or activity of Cl- 3879 

importers, like NKCC1 (a Na+/K+/Cl- cotransporter) over Cl- exporters, like KCC2 (a K+/Cl- 3880 

cotransporter). The Na+/K+ ATPase provides the energy to maintain the cation chloride 3881 
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cotransporter function. During development, there is a gradual switch in the relative dominance of 3882 

these cation chloride cotransporters at specific timepoints that follows cell type, region, and sex 3883 

specific patterns (108, 122, 125, 126). As a result, mature neurons demonstrate hyperpolarizing 3884 

GABAAR responses that allow for effective inhibition to occur. B. Normal brain development 3885 

depends upon the age, cell type, region, and sex appropriate presence of depolarizing and 3886 

hyperpolarizing GABAAR signaling. Genetic variants, drugs, perinatal or postnatal insults that 3887 

trigger precocious presence of hyperpolarizing GABAAR signaling may result in 3888 

neurodevelopmental deficits or abnormalities that could increase the risk for epilepsy (130, 132, 3889 

623). Conversely, pathological persistence or re-appearance of depolarizing GABA has been 3890 

described in epileptogenic pathologies and may predispose to increase excitability (133). 3891 

 3892 

FIGURE 5. Simplified diagram of a cortical microcircuit with interconnected Glutamatergic and 3893 

GABAergic neurons, and an astrocyte, and cellular/subcellular distribution of ion channels and 3894 

transporters. A cortical neuronal microcircuit is illustrated as a pre-synaptic GABAergic neuron 3895 

(green) and a presynaptic myelinated glutamatergic neuron (ocher) that form synaptic 3896 

connections on the dendrites of a myelinated glutamatergic neuron (ocher). Glial cells are 3897 

displayed as an astrocyte (light blue) in proximity of the glutamatergic synapses, and as the myelin 3898 

sheets around the axons of the glutamatergic neurons formed by oligodendrocytes (violet; the 3899 

soma is not displayed), allowing saltatory conduction at the nodes of Ranvier. The upper insets 3900 

show in more detail a GABAergic (left) and a glutamatergic (right) synapse.  The ion channels and 3901 

transporters targeted by DEE mutations are indicated with their protein name (see text for details) 3902 

and their known cellular/subcellular distribution, according to the neuronal sub-compartments 3903 

(dendrites, soma, axon initial segment, nodes of Ranvier of the myelinated axon, pre-synaptic 3904 

terminal, and post-synaptic membrane). 3905 
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FIGURE 6. Schematic representation of the different in vitro and in vivo models that can be used 3906 

to study functional effects of mutations affecting DEEs causative genes. Regardless of the 3907 

starting point, researchers can move from a model to another based on the type of functional 3908 

assay they want to apply and the physiological process they want to study. EPS: 3909 

electrophysiological studies; MRI: magnetic resonance imaging; BEH: behavioral studies; ICC: 3910 

immunocytochemistry; LI: live imaging; TR: transcriptomics; PR: proteomics; IHC: 3911 

immunohistochemistry; ISH: in situ hybridization. 3912 

 3913 

FIGURE 7. Brain MRI of patients with different malformations of cortical development. A. T1-3914 

weighted (T1W) coronal section. Lissencephaly in a boy with ARX mutation. The ventricles are 3915 

severely dilated, the corpus callosum is absent, the basal ganglia are severely hypoplastic. B, C. 3916 

Coronal T1W and Axial T2W sections of a brain with posterior > anterior pachygyria and increased 3917 

cortical thickness. Boy with LIS1 mutation. The white asterisk in B indicates the point of more 3918 

severe cortical thickening. White arrows in C point to areas of more severely smooth and thick 3919 

cortex.D. T1W coronal section. Diffuse subcortical band heterotopia in a girl with DCX mutation. 3920 

The white circle surrounds the subcortical laminar heterotopia which forms an almost continuous 3921 

band beneath the cortex, separated from it by white matter. E. Axial T2W section. Right occipital 3922 

cortical dysplasia (surrounded by a white circle) in a girl with a very low-level mosaic mutation in 3923 

AKT3 (0.67% in brain, not detectable in blood). F, G. Axial FLAIR and coronal T1W sections in two 3924 

patients carrying mosaic mutations in the MTOR gene with different percentages of mosaicism [F: 3925 

p.Thr1977Ile, 20% of mosaicism in blood, G: p.Ser2215Phe, 5.5% of mosaicism in the surgically 3926 

removed dysplastic brain tissue]. In F, the patient has megalencephaly with large ventricles and 3927 

multiple areas of abnormal cortex alternating infoldings with smooth surface. This pattern is 3928 

suggestive of polymicrogyria (white arrows). In G, the white circle highlights an area of cortical 3929 
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dysplasia with increased volume of the brain parenchyma, blurring of the gray-white matter 3930 

junction and irregular cortical folding. H. T2W coronal section. Left parieto-temporal focal cortical 3931 

dysplasia in a girl with NPRL2 mutation. The circle surrounds the parietal portion of the cortical 3932 

abnormality. I, J. T1W axial sections in two patients carrying the p.Gly373Arg PIK3R2 gene 3933 

mutation with different percentages of mosaicism (I: 13% of mosaicism in blood, 43% in saliva, J: 3934 

10% of mosaicism in blood, 29% in saliva). Both patients have bilateral perisylvian polymicrogyria 3935 

(white circles). K, L. Axial FLAIR and coronal T1W sections showing right posterior quadrantic 3936 

dysplasia (white circle) in a boy with a constitutional PTEN mutation. M, N. T2W coronal and 3937 

sagittal sections in two patients with constitutional TSC2 mutations (M: p.Thr1623Ile, N: 3938 

p.Pro1202His) showing right posterior quadrantic dysplasia caused by a large cortical tuber (M, 3939 

white circle) and an extensive dysplastic area involving most of the right frontal lobe (N, white 3940 

arrowheads). O, P. T2W axial and T1W sagittal sections. Lissencephaly with normally thick cortex 3941 

and cerebellar hypoplasia (P, asterisk) in a girl with RELN mutation. The white circle surrounds a 3942 

hypoplastic brainstem. Q, R. Axial and sagittal T1W sections. Thickened cortex with simplified gyral 3943 

pattern and cerebellar hypoplasia in a boy with TUBA1A mutation. The circles surround the 3944 

hypoplastic cerebellum and brainstem. The asterisk indicates the area below a hypoplastic 3945 

cerebellar vermis and the black arrow points to a hypoplastic corpus callosum lacking its most 3946 

posterior part. S. T1W axial section. Diffusely simplified gyral pattern with prominent thickening 3947 

and infolding of the sylvian fissures in a boy with TUBB2B mutation. The arrows point to an area of 3948 

smooth cortex. T. T2W axial section. Severe dysgyria with simplified gyral pattern in a girl with 3949 

SCN3A mutation. U. T1W axial section. Classical bilateral periventricular nodular heterotopia in a 3950 

girl with FLNA mutation. Bilateral nodules of subependymal heterotopia (white arrowheads) are 3951 

contiguous, extensively lining the ventricular walls. V. T1W axial section. Diffuse polymicrogyria, 3952 

more prominent posteriorly (white arrows) in a boy with ATP1A2 mutation. W.  T2W coronal 3953 
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section. Polymicrogyria with abnormal cortical infoldings and packed microgyria (black arrows), 3954 

combined with abnormal sulcation in a boy with ATP1A3 mutation. X. T2W axial section. Bilateral 3955 

frontoparietal cortical thickening and diffusely abnormal cortical pattern in a boy with biallelic 3956 

GPR56 mutations. Y, Z. T1W axial and sagittal sections. Pachygyria and perisylvian polymicrogyria 3957 

in a girl with DYNC1H1 mutation. Asterisks in Y are located where there is maximum cortical 3958 

thickening, in the posterior cortex. The asterisk in Z is located beneath a hypoplastic cerebellar 3959 

vermis. AA. T2W axial section. Diffuse polymicrogyria in a boy with a GRIN2B mutation. BB. T1W 3960 

axial section. Diffuse abnormality of the cortical pattern with smooth cortex and areas of 3961 

abnormal infolding, suggestive of polymicrogyria in a boy with biallelic WDR62 mutations. 3962 

 3963 

FIGURE 8. Main actors of synaptic transmission and mapping of the synaptic gene products 3964 

causing synaptic encephalopathies with epilepsy. Schematic representation of a symbolic synapse 3965 

containing excitatory and inhibitory synaptic components. The main targets of synaptopathies are: 3966 

(i) at the presynaptic level, gene products involved in the post-docking SV priming/fusion 3967 

processes (SNAREs and SNARE-associated proteins: Munc-13, IM1, Munc-18, PRRT2, SNARE 3968 

proteins, synaptotagmin-1/2, voltage-gated Ca2+-channels), SV trafficking (trafficking proteins: 3969 

Synapsins I/II, vATPase, synaptophysin, SV2A, VAMP2, synaptojanin-1, AP-2, dynamin-1, TBC1D24) 3970 

and NT synthesis and loading into SVs (transport proteins: GAD1, vATPase); (ii) at the postsynaptic 3971 

level, postsynaptic receptors and their scaffold/transduction systems (GABAA and NMDA 3972 

receptors, gephyrin, collybistin, PSD-95, Homer, Shank-3, SynGAP-1, DLG-1); (iii) at the synaptic 3973 

cleft level, trans-synaptic and extracellular matrix proteins and their receptors (neurexin-1, 3974 

neuroligin, IL1RAPL1, ADAM 22/23, LGI1), as well as secreted proteins (SRPX2, reelin). Other 3975 

presynaptic voltage-gated channels that affect the dynamics of nerve terminal activation and NT 3976 

release are also shown. In green, the actin-based cytoskeleton that regulates trafficking and 3977 
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maintenance of SV pool in the nerve terminal and concentrates postsynaptic receptors on the 3978 

postsynaptic side. 3979 

FIGURE 9. Schematic representation of the mTOR and autophagy intracellular cascades and their 3980 

interrelationships. The complex regulatory cascade triggering the activation of the mTORC1 3981 

complex is initiated by extracellular signals (growth factors, neurotransmitter, hormones). To be 3982 

activated, mTORC1 needs to bind to the organelle membrane, a process that depends on the 3983 

active form of the small G-protein Rheb and by the presence of a docking complex on the 3984 

membrane formed by the GEF Ragulator and an appropriate combination of GTP- and GDP-bound 3985 

Rag G-proteins. The membrane location of the latter complex depends on the presence of the 3986 

vATPase on the membrane, which is favored by Dmxl2. Since the small G-proteins are the 3987 

molecular switches for mTOR activation, they are also the targets of the two main upstream 3988 

inhibitory complexes that act as GTPase activating proteins (GAPs), namely the TSC and Gator1 3989 

complexes that inactivate Rheb and Rags, respectively. These inhibitory TSC and Gator1 complexes 3990 

are in turn subjected to inhibition by the PI3K/AKT pathway, activated by extracellular signals and 3991 

Gator 2, respectively, that therefore catalyze release of mTORC1 from inhibition. Activation of 3992 

mTORC1 favors anabolism, protein synthesis, cell growth and, in neurons, outgrowth of neuronal 3993 

processes and formation of synaptic connections. On the other hand, activation of mTORC1 3994 

silences the autophagy chain by inhibiting the ULK1 complex which is required to recruit the Beclin 3995 

complex to the phagophore for its activation by AMPK. This results in the following steps of 3996 

autophagy flux, including LC3 conversion and binding, formation of the autophagosome and 3997 

subsequent fusion with lysosomes to form autolysosomes. In these processes, the proton gradient 3998 

established by vATPase is essential, as well as the activity of accessory proteins such as DMXL2, 3999 

EPG5 and SNX14.  4000 
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