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In many fields of scientific computing, the equations are well known but the coefficients are usually empirical functions which depend on some parameters difficult the evaluate exactly. These functions are approximated and a modeling error is then committed. In this work we focus on the elliptic nonlinear equation, with coefficients changing the behaviour to an unknown value h s . These coefficients are then approximated. We prove an a priori and an a posteriori estimates on the modeling error. The later estimates allows us -via local indicators-to build an adaptive algorithm to control the modeling error and automatically determine the "best" approximation of h s . Numerical results confirm the convergence of this procedure and the interest of this approach.

Introduction

We consider the elliptic model problem: find u ∈ H 1 0 (Ω) such that

-div(K(u)∇u) + α(u)u = f, in Ω (1.1)
where Ω is an open bounded set of R d , d = 1, 2, 3, with Lipschitz boundary, f ∈ L 2 (Ω) and α(u) and K(u) are functions having a behaviour that changes depending on some parameters related to values of the unknown function u, of this problem. These parameters are sometimes difficult to obtain exactly, and users solve the problem with approximations α(u) and K(u) of these functions. In this work we are inspired by the context of the flow in porous media, where the typical example is the Richards equation modeling the flow of water in a partially saturated medium.The shape of the soil water retention curve, near saturation, plays an important role in modeling the unsaturated-saturated porous media. A small change in this function which can exhibit an extreme non-linearity, and can significantly affect the model, especially for finetextured soils.

In the context of the a posteriori estimates of modeling error, we can distinguish at least two types of approaches. The first one is when the equations modeling the problem are simplified by neglecting some terms of the equation. An earlier work in this direction was done by Stein and Ohnimus [START_REF] Stein | Anisotropic discretization-and model-error estimation in solid mechanics by local neumann problems[END_REF] in 1999. Braak and Ern [START_REF] Braack | A posteriori control of modeling errors and discretization errors[END_REF] in 2002 investigated the concept of dual-weight residuals to develop a posteriori estimates for a non-linear elliptic problems, and the simplified problem is obtained by neglecting the nonlinear term. This analysis was extended by Perotto [START_REF] Perotto | Adaptive modeling for free-surface flows[END_REF] for steady equation to the case of generic time-dependent problem. In the second approach, the simplified model is obtained when the coefficients of the equation are modified in order to omit some dependence relatively to unknown [START_REF] Bernardi | Automatic coupling and finite element discretization of the navier-stokes and heat equations[END_REF], [START_REF] Ahusborde | Automatic simplification of darcys equations with pressure dependent permeability[END_REF] or to simplify the expression which is the situation of our work. The aim of this paper is to develop an a priori and an a posteriori analysis of the error committed when the problem (1.1) is solved with the approximated coefficients α(u) and K(u). After this introduction, in the second section, we give a weak formulation and show that, under hypothesis, the problem is well posed by giving the results of existence and uniqueness. In the third section, we derive the a priori and the a posteriori estimates of modeling error. In the forth section, we describe an adaptation strategy to approximate the coefficients α(u) and K(u), as an application of the indicators developed. In the last section, we give two manufactured examples that show the convergence of the algorithm introduced for adaptation.

Position of the problem

Let H 1 0 (Ω) be the usual Sobolev space of the first order defined by

H 1 0 (Ω) := {v ∈ L 2 (Ω) / ∂v ∂x i ∈ L 2 (Ω), i = 1, .
. . , n, and v| ∂Ω = 0}, equipped with the standard norm, H -1 (Ω) be its topological dual and α(•), α(•), K(•) and K(•)

be functions satisfying the following properties (we use the notation β for α or α or

K or K) for all (u, v) ∈ (H 1 0 (Ω)) 2 , (H 1 ) ∃γ > 0 such that Ω α(u)u -α(v)v (u -v)dx ≥ γ u -v 2 0,Ω , (H 2 ) ∃γ 1 > 0 such that Ω K(u)∇u -K(v)∇v • ∇(u -v) ≥ γ 1 ∇(u -v) 2 0,Ω , (H 3 ) ∃β 1 and β 2 such that 0 < β 1 ≤ β(v) ≤ β 2 , (H 4 ) ∃C β > 0 such that β(u) -β(v) ∞ ≤ C β u -v 1,Ω .
We denote by u and u the solutions of the following problems respectively

u ∈ H 1 0 (Ω) a(α, K, u, u, v) = L(v), ∀v ∈ H 1 0 (Ω),
(2.1)

u ∈ H 1 0 (Ω) a( α, K, u, u, v) = L(v), ∀v ∈ H 1 0 (Ω), (2.2) 
where

a(α, K, w, u, v) = Ω K(w)∇u • ∇vdx + Ω α(w)uvdx, a( α, K, w, u, v) = Ω K( w)∇ u • ∇vdx + Ω α( w) uvdx, L(v) = Ω f vdx.
Proposition 2.1. . Under hypothesis (H 1 ) -(H 4 ), the problems (2.1) and (2.2) admit unique solutions respectively, u ∈ H 1 0 (Ω) and u ∈ H 1 0 (Ω), and we have the following estimates

u 1,Ω ≤ δ(α 1 , K 1 , L), u 1,Ω ≤ δ( α 1 , K 1 , L), (2.3) where δ(α 1 , K 1 , L) = L H -1 (Ω) inf(α 1 , K 1 ) , δ( α 1 , K 1 , L) = L H -1 (Ω) inf( α 1 , K 1 )
and the constants α 1 , α 1 , K 1 and K 1 are given by the hypothesis (H 3 ) for β = α, α, K, K.

Proof:

The proof of the existence is classical and is based on the fixed point theorem of Schauder-Tychonoff [START_REF] Zeidler | Nonlinear functional analysis and its application, T1-Fixed-point theorems[END_REF], applied to the application T : z ∈ H 1 0 (Ω) -→ u z ∈ H 1 0 (Ω), where u z is the solution of the following linear problem

Find u z ∈ H 1 0 (Ω) solution of a z (α, K, u z , v) = L(v), ∀v ∈ H 1 0 (Ω), (2.4) whith a z (α, K, u z , v) = Ω K(z)∇u z • ∇vdx + Ω α(z)u z vdx.
By (H 3 ), the compactness of the injection of H 1 (Ω) into L 2 (Ω) and then (H 4 ), we show that T admits a fixed point, solution of the problem (2.1), unique by the assumptions (H 1 ) (H 2 ). To have the estimate (2.3) we take v = u in (2.2), v = u in (2.1) and use the hypothesis (H 3 )

3 The A priori and a posteriori estimates

In this section we derive an a priori and an a posteriori analysis of modeling error, when the problem (2.1) is replaced by the problem (2.2). The a priori estimate obtained is achieved without additional regularity assumption on u and gives a proof of the convergence of u towards u when α tends to α and K tends to K. We also obtain an a posteriori error estimate by proving an upper and lower bound of the modeling error by some explicit indicators which leads to a strategy to adapt the model, and provides a way of getting an accurate solution.

The a priori error estimate

Theorem 3.1.

Let u and u be the solutions of the problems (2.1) and (2.2) respectively, then we have

u -u 1,Ω ≤ δ( α 1 , K 1 , L) inf(γ; γ 1 ) sup sup v∈H 1 0 (Ω) ( α -α)(v) L ∞ (Ω) , (3.1) sup v∈H 1 0 (Ω) ( K -K)(v) L ∞ (Ω) ,
where γ and γ 1 are the constants given by the assumptions (H 1 ) and (H 2 ) and δ( α

1 , K 1 , L) is
given in Proposition 2.1.

Proof

Let R ∈ H -1 (Ω) be the residual functional associated to the problem (2.1) and its approximation (2.2), and defined, for all v ∈ H 1 0 (Ω), by

< R, v >= L(v) -a(α, K, u, u, v). (3.2) Since u is solution of (2.1) we have < R, v > = a(α, K, u, u, v) -a(α, K, u, u, v) = Ω α(u)u -α( u) u vdx + Ω K(u)∇u -K( u)∇ u • ∇vdx.
Let v = u -u, then according to the assumptions (H 1 ) and (H 2 ) we have

< R, u -u > ≥ γ Ω (u -u) 2 dx + γ 1 Ω | ∇(u -u) | 2 dx. (3.3)
In the other hand, since u is solution of (2.2) we have

< R, u -u > = a( α, K, u, u, u -u) -a(α, K, u, u, u -u) = Ω ( α( u) -α( u)) u(u -u)dx + Ω K( u) -K( u) ∇ u • ∇(u -u)dx,
If we denote by F the right hand side of (3.3), we deduce the inequality

F ≤ Ω ( α( u) -α( u)) u(u -u)(x)dx + Ω ( K( u) -K( u))∇ u • ∇(u -u)(x)dx,
and then by Cauchy Schwartz inequality we get

inf(γ; γ 1 ) u -u 2 1,Ω ≤ sup v∈H 1 0 (Ω) ( α -α)(v) L ∞ (Ω) u 0,Ω u -u 0,Ω + sup v∈H 1 0 (Ω) ( K -K)(v) L ∞ (Ω) ∇ u 0,Ω ∇(u -u) 0,Ω .
By (2.3) and simplifying by u -u 1,Ω we obtain (3.1)

The a posteriori error estimate

In order to have available computable quantities, when developing the a posteriori estimate, we introduce the approximation of (2.2) by a finite element method . Let T h be a regular triangulation of Ω and P 1 (T h ) defined by

P 1 (T h ) = v ∈ H 1 0 (Ω) | v | T ∈ P 1 (T ), ∀T ∈ T h ,
where, for each T ∈ T h , P 1 (T ) stands for the space of restriction to T of polynomials of degree 1. The discrete problem with finite elements method of degree 1 associated to (2.2) is then

given by find

u h ∈ P 1 (T h ) such that a( α, K, u h , u h , v) = L(v), ∀v ∈ P 1 (T h ). (3.4)
The existence and uniqueness of the solution of the problem (3.4) can be established thanks to the same arguments as for the problem (2.2). Now, in order to uncouple as much as possible the modeling error and the approximation error we use the triangle inequality

u -u h 1,Ω ≤ u -u 1,Ω + u -u h 1,Ω .
The term u -u 1,Ω represents the modeling error and the term u -u h 1,Ω is the error on the discretization. Since u is not computable, we give an estimate on u -u in terms of u h which is computable, and u -u h 1,Ω . A posteriori error estimates of this last term can be obtained in a classical way using the error indicators of discretization. To have an efficient and reliable estimate on u -u 1,Ω , we develop the upper and lower bounds of this term.

THE UPPER BOUND OF THE MODELING ERROR

Theorem 3.2. let u, u and u h the solutions of the problems (2.1), (2.2) and (3.4) respectively.

There is a constant

C * independent of h such that u -u h 1,Ω ≤ 1 inf(γ; γ 1 )      T ∈T h (η α T ) 2   1 2 +   T ∈T h (η K T ) 2   1 2    + C * u -u h 1,Ω , (3.5) 
with

η α T = α( u h ) -α( u h ) u h 0,T , η K T = K( u h ) -K( u h ) ∇ u h 0,T . (3.6)

Proof

Let R be the residual functional defined by (3.2). With the help of the problem (2.2) and by introducing u h , α( u h ) and α( u h ), we have

< R, v > = Ω ( α( u) -α( u)) uvdx + Ω ( K( u) -K( u))∇ u • ∇vdx = Ω ( α( u) -α( u h )) uvdx + Ω ( α( u h ) -α( u h )) u h vdx + Ω ( α( u h ) -α( u h ))( u -u h )vdx - Ω (α( u) -α( u h )) uvdx + Ω ( K( u) -K( u h ))∇ u • ∇vdx + Ω ( K( u h ) -K( u h ))∇ u h • ∇vdx + Ω ( K( u h ) -K( u h ))∇( u -u h ) • ∇vdx - Ω (K( u) -K( u h ))∇ u • ∇vdx.
By using the Cauchy-Schwartz inequality and the assumptions (H 3 ) and (H 4 ) we obtain the following bound

| < R, v > | ≤ C α u -u h 1,Ω u 0,Ω + ( α( u h ) -α( u h )) u h 0,Ω + sup v∈H 1 0 α(v) -α(v) L ∞ (Ω) u -u h 0,Ω + C α u -u h 1,Ω u 0,Ω + C K u -u h 1,Ω ∇ u 0,Ω + ( K( u h ) -K( u h ))∇ u h 0,Ω + sup v∈H 1 0 K(v) -K(v) L ∞ (Ω) ∇( u -u h ) 0,Ω +C K u -u h 1,Ω ∇ u 0,Ω v 1,Ω ,
which gives by using the estimate (2.3)

R H -1 ≤ δ(α 1 , K 1 , L) C α + C α + +C K + C K u -u h 0,Ω + ( α( u h ) -α( u h )) u h 0,Ω + sup v∈H 1 0 α(v) -α(v) L ∞ (Ω) u -u h 0,Ω + ( K( u h ) -K( u h ))∇ u h 0,Ω + sup v∈H 1 0 K(v) -K(v) L ∞ (Ω) ∇( u -u h ) 0,Ω . By breaking ( α( u h ) -α( u h )) u h 0,Ω and ( K( u h ) -K( u h ))∇ u h 0,Ω on each triangle we can write R H -1 (Ω) ≤   T ∈T h (η α T ) 2   1 2 +   T ∈T h (η K T ) 2   1 2 + C 1 u h -u 1,Ω , (3.7) 
where η α T and η K T are defined by (3.6) and

C 1 = sup δ(α 1 , K 1 , L) C α + C α + C K + C K , sup v∈H 1 0 α(v) -α(v) L ∞ (Ω) , sup v∈H 1 0 K(v) -K(v) L ∞ (Ω) ) .
In this expression the last two terms can be replaced by α 2 + α 2 and K 2 + K 2 respectively (see

(H 3 )).
Moreover, by the definition of R given by (3.2), the problem (2.1), the hypothesis (H 1 ) and (H 2 ) and then taking v = u -u we have

< R, u -u > = Ω (α(u)u -α( u) u)(u -u)dx + Ω (K(u)∇u -K( u)∇ u)∇(u -u)dx ≥ inf(γ, γ 1 ) u -u 2 1,Ω , which leads to u -u 1,Ω ≤ 1 inf(γ, γ 1 ) R H -1 (Ω) . (3.8)
Combining the inequalities (3.8) and (3.7) gives the a posteriori error estimate (3.5) with

C * = C 1 inf(γ, γ 1 ) + 1

THE LOWER BOUND OF THE MODELING ERROR

Theorem 3.3.

Let u the solution of (2.1), u h the solution of (3.4) and η α T and η K T defined by (3.6), then we have

η α T ≤ δ(α 1 , K 1 , L) e 1 u -u h 1,T + e 2 , (3.9) η K T ≤ δ(α 1 , K 1 , L) e 3 u -u h 1,T + e 4 , (3.10) 
where e 1 = C α + C α and e 2 = sup

v∈H 1 0 (Ω) ( α -α)(v) L ∞ (Ω) , e 3 = C K + C K and e 4 = sup v∈H 1 0 (Ω) ( K -K)(v) L ∞ (Ω) .

Proof

Introducing α(u) in the expression of (η α T ), using the hypothesis (H 3 ) and (H 4 ) and then the inequality (2.3) we get

(η α T ) 2 = T ( α( u h ) -α( u h )) 2 u 2 h dx = T ( α( u h ) -α( u h )) u h ( α( u h ) -α( u h )) u h dx = T ( α( u h ) -α(u)) u h ( α( u h ) -α( u h )) u h dx + T ( α(u) -α(u)) u h ( α( u h ) -α( u h )) u h dx + T (α(u) -α( u h )) u h ( α( u h ) -α( u h )) u h dx ≤ C α u h -u 1,T u h 0,T ( α( u h ) -α( u h )) u h 0,T + sup v∈H 1 0 (Ω) ( α -α)(v) L ∞ (Ω) u h 0,T ( α( u h ) -α( u h )) u h 0,T +C α u h -u 1,T u h 0,T ( α( u h ) -α( u h )) u h 0,T ≤ δ(α 1 , K 1 , L) (C α + C α ) u h -u 1,T + sup v∈H 1 0 (Ω) ( α -α)(v) L ∞ (Ω) ( α( u h ) -α( u h )) u h 0,T .
We Simplify by ( α( u h ) -α( u h )) u h 0,T , and obtain (3.9).

The estimate (3.10), on the second indicator (η K T ), is obtained by the similar arguments

Application

We consider the problem (1.1) with the functions α(•) and K(•) given by

α(u) =      α f 1 (u) if u < h s α f 2 (u) if h s ≤ u < 0 α s if u ≥ 0 K(u) =      K f 1 (u) if u < h s K f 2 (u) if h s ≤ u < 0. K s if u ≥ 0 (4.1)
where α f 1 (u), α f 2 (u), K f 1 (u) and K f 2 (u) are nonlinear functions of u, and α s and K s are constants.

In the context of porous media for example, h s is a small negative value which depends on the nature of the soil, but it is not well known generally. The following approximations of α(•) and

K(•) are usually used α * (u) = α f 1 (u) if u < 0 α s if u ≥ 0 K * (u) = K f 1 (u) if u < 0 K s if u ≥ 0. (4.2)
The aim of this section is to use the results of Theorems 3.2 and the indicators (3.6) to determine an approximation of the value of h s and so on for the functions α and K which will be as close as possible to the exact functions.

The adaptive procedure

We want to build an algorithm, based on the modeling indicators given in (3.6), such that, starting with the initial expression of α and K given by (4.2), we construct sequences (α (k) ) k and (K (k) ) k converging to the exact expression of α and K.

Computing the indicator (3.6) requires the exact expression of α and K which is unknown since h s is unknown. We will use a like-fixed point iteration to get a value h * s as close as possible to the exact value h s .

1. Let the first approximations be given by α(y) = α s , ∀y and

K(y) = K s , ∀y. (4.3)
In this first iteration, α * and K * will play the role of the exact expression, when computing the indicators, and will be updated by the iterations.

2. In the second step, we solve the problem (3.4) with the approximations α and K, which gives the approximated solution u h , and we compute the indicators, for all T ∈ T h

η T = α( u h ) -α * ( u h ) u h 0,T + K( u h ) -K * ( u h ) ∇ u h 0,T ,
and their main value η.

3. For all T ∈ T h , the modeling indicator η T is an estimation of the error between the model with the functions α * and K * and the model with the functions α and K. This allows us to determine three zones: the one where this indicator vanishes, the one where it is large and the one where it is small enough.

The zone of the domain where the indicator vanishes is given by (4.4) and the zone where the indicator is larger than the main value is given by

Ω s := {x ∈ Ω / u h (x) ≥ 0},
A := {x ∈ T ∈ T h / η T > η} \ Ω s . (4.5)
The fact that the indicators on T ∈ T h , related to A, are larger than the main value, mains that the model defined by the functions α and K is a bad approximation in this zone.

We notice that, for x ∈ A, the values of u h are negative, and define

h s := max x∈A u h (x), (4.6)
and

Ω f 1 := {x ∈ Ω / u h < h s } (4.7
)

Ω f 2 := {x ∈ Ω / h s ≤ u h < 0}. (4.8)
In order to update the expression of α * and K * we put

α (1) (u) =      α (1) f 1 (u) if u < h s α f 2 (u) if h s ≤ u < 0 α s if u ≥ 0. K (1) (u) =      K (1) f 1 (u) if u < h s K f 2 (u) if h s ≤ u < 0 K s if u ≥ 0.
(4.9)

The functions α

(1)

f 1 (u) and K

(1)

f 1 (u) are obtained by multiplying the functions α f 1 (u) and K f 1 (u) by a constant respectively to ensure continuity of α (1) and K (1) . 4. To go to the next iteration we put α = α * , and

K = K * then α * = α (1) and K * = K (1) ,
and go to the step 2, until the chosen stop criterium is fulfilled.

The algorithm can be summarized as following.

ALGORITHM INPUT

Expression of functions:

α f 1 , α f 2 , α s , K f 1 , K f 2 , K s , Tolerance ε. STEP 1 (Initialisation) h (0) s = 0 α * and K * defined by (4.2), α = α s , K = K s STEP 2 ( The indicators)
Solve the problem (3.4) with α, and K Compute η T for all T and η.

STEP 3 (Determination of the zones)

Determine the sets Ω s , by (4.4), A by (4.5)

Compute the new value of h s by (4.6)

Determine the zones Ω f 1 by (4.7) and Ω f 2 by (4.8)

Define α (1) and K (1) , the new expressions of α and K by (4.9).

STEP 4 (Update)

If |h (0) s -h s | ≥ ε then put α = α * and K = K * put α * = α (1) and K * = K (1) put h (0) s = h s go to STEP2.
Otherwise take h s , α (1) and K (1) as the best approximations.

STOP.

In the following we will present two manufactured examples to confirm the convergence of the strategy described before. Calculations are done by the software FreeFem++ [START_REF] Pironneau | Freefem++[END_REF].

Numerical tests

Let Ω =]0, 1[×]0, 1[ and u the solution of the problem (1.1) with the coefficients α(•) and K(•) having the following expressions

α(z) =          exp(-0, 3) 1, 09 z 2 + 1 if z < h s exp(z) if h s ≤ z < 0 1 if z ≥ 0, and 
K(z) =          z 2 + 1 if z < h s 1 0, 09 z 4 + 1 if h s ≤ z < 0 1 if z ≥ 0.
We have to find an approximation of u and the value h s using the algorithm defined above.

We consider two manufactured solutions where h s = -0.3. We take the parameter of stopping criterion ε = 10 -4 .

1. In the first example the exact solution is defined by u e (x, y) = 2, 2 sin(πx) (0.3 -y).

We start with the initial expressions of α and K equal to the constant 1, and use the error indicators according to the algorithm defined above. The results are given in Table 1, Figure 1 and Figure 2. We observe, in Table 1, that for a fixed mesh size h, we need only four or five iterations to rich an acceptable value of h

(k)
s and enough small main values of indicators. The L 2 -norm of the error between the exact solution and the approximated solution is also acceptable but the H 1 -norm stay relatively large. We can explain this by the fact that we do not use the indicators of discretization to adapt the mesh. Now if we refine uniformly the mesh we obtain better approximations of h (k) s and the solution, which confirm the convergence of the algorithm with the iterations and when h tends to zero. The Figure 1 shows a comparison between the exact solution and the approximated solution. The Figure 2 represents the isovalues of the coefficient α and its approximation at different iterations. The approximated solutions in the last figures are obtained with h = 1/80 and the value h s obtained in the last iteration (h s = h (5) s ).

2. In the second example the exact solution is given by u e = 17(x 2 -x 3 )(0, 35 -y).

The results, with the same algorithm, are given in Table 2, and we have the same observations as the first example. Figure 1: The exact and the approximated solution with h = 1/80 and h s = h (5)

s . h = 1/20 k h (k) s η u (k) h -u e 0,Ω u (k)
h -u e 1,Ω 1 -0, 421222 0, 0256837 0, 00432329 0, 139762 2 -0, 353366 0, 0239808 0, 00158224 0, 132176 3 -0, 333854 0, 0232097 0, 00117041 0, 131287 4 -0, 331336 0, 0232537 0, 00134389 0, 131287 5 -0, 331049 0, 0232532 0, 00134322 0, 131254

h = 1/50 k h (k) s η u (k) h -u e 0,Ω u (k) h -u e 1
,Ω 1 -0, 378704 0, 00894813 0, 00405838 0, 0645721 2 -0, 341937 0, 00838358 0, 0014325 0, 0545204 3 -0, 317007 0, 00817934 0, 0003697 0, 0522392 4 -0, 308856 0, 00812455 0, 000200004 0, 0519712 5 -0, 308249 0, 0081272 0, 000193734 0, 0519631

h = 1/80 k h (k) s η u (k) h -u e 0,Ω u (k) h -u e 1,Ω 1 
-0, 368647 0, 0054973 0, 00389191 0, 0475538 2 -0, 340095 0, 00514744 0, 00141992 0, 035589 3 -0, 305783 0, 00496892 0, 000214103 0, 0323952 4 -0, 303161 0, 00496897 6, 8361410 -5 0, 0321963 5 -0, 302731 0, 00496702 6, 7335210 -5 0, 0221944 

h -u e 0,Ω and u (k)

h -u e 1,Ω are respectively the approximated value of h s , the average of the modeling indicators, the L 2 -norm and H 1 -norm of the error between the exact solution and the approximated solution at the iteration k. 

h = 1/20 k h (k) s η u (k) h -u e 0,Ω u (k) h -u e 1
,Ω 1 -0, 357726 0, 0270085 0, 00305144 0, 201923 2 -0, 347771 0, 0257244 0, 00238952 0, 199462 3 -0, 346233 0, 0257678 0, 00221624 0, 19915 4 -0, 345044 0, 02558093 0, 00219454 0, 19913

h = 1/50 k h (k) s η u (k) h -u e 0,Ω u (k) h -u e 1,Ω 1 
-0, 381903 0, 0116102 0, 00399798 0, 0921355 2 -0, 334086 0, 0105596 0, 00119841 0, 0816705 3 -0, 331787 0, 0105538 0, 000544999 0, 0804815 4 -0, 330134 0, 0105704 0, 000570222 0, 0805092

h = 1/100 k h (k) s η u (k)
h -u e 0,Ω u (k)

h -u e 1,Ω 1 -0, 366074 0, 00570192 0, 00383143 0, 056944 2 -0, 330018 0, 00528268 0, 00114668 0, 0423303 3 -0, 309608 0, 00517833 0, 000213726 0, 040044 4 -0, 304221 0, 0051748 9, 547610 -5 0, 0398681 5 -0, 303829 0, 00517387 9, 6292510 -5 0, 0398688 

h -u e 0,Ω and u (k)

h -u e 1,Ω are respectively the approximated value of h s , the average of the modeling indicators, the L 2 -norm and H 1 -norm of the error between the exact solution and the approximated solution at the iteration k.

Conclusion and perspectives.

We have derived two estimates on the modeling error, for an elliptic nonlinear boundary value problem, when the coefficients of the equation are modified. The first one is an a priori error estimate and is achieved without additional regularity assumption on the solution. It gives the convergence when the modification tend to zero. The second one is an a posteriori error estimate where we developed an upper and a lower bounds of the error by computable indicators and hence proved that the estimate is efficient and reliable. As an application of the last estimate, we have presented an adaptive modeling strategy based on explicit evaluation of the modeling error, via the indicators, when the error is caused by the incomplete knowledge of the coefficients. The numerical tests confirm the convergence of this strategy.

Several issues are left to be investigated in future works. The first one is to combine the mesh indicator with the modeling indicator to balancing modeling and discretization errors in order to increase accuracy in an economical way. The second is to extend this estimate and this strategy to the more realistic problem of the vadose zone in the context of the infiltration in partially saturated porous media.

  Figure 2: approximation of α, for iterations 0, 1 and 5 for h = 1/80.
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