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Abstract 

Background. A large volume of heavily fragmented data is generated daily in 

different healthcare contexts and is stored using various structures with different 

semantics. This fragmentation and heterogeneity make secondary use of data a 

challenge. Data integration approaches that derive a common data model from sources 

or requirements have some advantages. However, these approaches are often built for 

a specific application where the research questions are known. Thus, the semantic and 

structural reconciliation is often not reusable nor reproducible. A recent integration 

approach using knowledge models has been developed with ontologies that provide a 

strong semantic foundation. Nonetheless, deriving a data model that captures the 

richness of the ontology to store data with its full semantic remains a challenging task. 

Objectives. This paper addresses the question: How to design a sharable and 

interoperable data model for storing heterogeneous healthcare data and its semantic to 

support various applications? 

Method. This paper describes a method using an ontological knowledge model to 

automatically generate a data model for a domain of interest. The model can then be 

implemented in a relational database which efficiently enables the collection, storage, 

and retrieval of data while keeping semantic ontological annotations so that the same 

data can be extracted for various applications for further processing.  

Results. This paper (1) presents a comparison of existing methods for generating a 

relational data model from an ontology using 23 criteria, (2) describes standard 

conversion rules, and (3) presents 𝑂𝑛𝑡𝑜𝑅𝑒𝑙𝛼, a prototype developed to demonstrate 

the conversion rules. 
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Conclusion. This work is a first step towards automating and refining the generation 

of sharable and interoperable relational data models using ontologies with a freely 

available tool. The remaining challenges to cover all the ontology richness in the 

relational model are pointed out.  

 

Keywords. Heterogeneous Databases, Health Information Interoperability, Data 

integration, Ontologies, Data and Metadata Management. 

1 Introduction 

A large volume of healthcare data is generated daily in many contexts. In some of 

them, data is heavily fragmented across multiple heterogeneous systems. To provide 

care, manage a hospital, run clinical trials, or help clinicians make better decisions, 

the core need is to understand an individual’s data through a broad scope (e.g., billing 

relies on integrating diagnosis and treatment data to sum the costs). Consequently, 

semantic and structural reconciliation for the secondary use of data is a challenging 

task that can lead to incorrect interpretation if not correctly automated and verified. 

This challenge is compounded by the fact that health data is highly dependent on 

contextual information. For example, a diabetes code could represent a working 

diagnosis, an established diagnosis, a family history of diabetes, or even a reason to 

ask for a test. Thus, to operate safely, the processes rely not only on accessing data 

from multiple systems, but also on the semantic of the data 1. The semantic include 

the nature of the element (e.g., being a patient is a role, the same individual can have 

the role of a patient when going to the emergency for a fracture fixed, but also the role 
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of a physician when coming to work as an orthopaedic surgeon to fix a fracture) and 

explicit relationships with other elements (e.g., a diagnosis of diabetes is about an 

individual who is my mother).  

Accordingly, this paper addresses the question: How to design a sharable and 

interoperable data model for storing heterogeneous healthcare data and its semantic to 

support various applications? 

In many heterogeneous environments, a sharable and interoperable data model based 

on a knowledge model has been demonstrated as a valid approach to decipher the 

structure and identify relevant data elements to be extracted or combined in a 

semantically interoperable sound way 2. Furthermore, to control data integrity while 

manipulating a large amount of data, a relational database (RDB) is an appropriate 

system to store data due to its embedded access control, transaction management, data 

integrity control, efficiency, and performance 3. However, conventional techniques 

(entity-relationship, star schema, object-oriented techniques) do not provide sufficient 

semantic or contextual information for efficient use of a data model in a 

heterogeneous environment and ensure reliable reuse of data outside a restricted field 

of its original application 1,4. Moreover, data generated across different systems (e.g., 

health ministries, pharmacies, clinics, hospitals) is often stored in RDBs, but its 

semantic is rarely documented nor updated. In other words, conventional techniques 

do not offer adequate construct to allow the unification of data with its semantic. 

Thus, the multiple stages of data processing and the exchanges that take place along 

the way can result in incomplete semantics of the extracted dataset. Therefore, a 

domain with such fragmentation and multiple data providers but with very low error 
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tolerance needs a new approach to encapsulate the data and its semantics into the 

same structure that can be shared and reused for multiple applications. Healthcare is 

one such domain, as life and death decisions will be based on this data. 

Various approaches exists5 to access or integrate data from multiple sources. These 

approaches use different kinds of inputs. Source-driven approaches use the data 

source’s structure. Requirement-driven approaches use the user requirements for a 

specific application. Hybrid approaches combine the data structure of the sources and 

user requirements. Finally, knowledge-driven approaches derive the data model from 

the knowledge model of the domain. The knowledge-driven approach is arguably the 

most appropriate for the healthcare domain. Indeed, using a source-driven approach is 

an arduous task because data sources are structured according to the underlying 

application, and the addition of new sources will often lead to changes to the model. 

Moreover, using requirements is impractical because of the diversity and evolution of 

user requirements. Finally, neither of these last two approaches gives access (by 

themselves) to explicit semantic as the predicates associated with a data model are 

always dependent on the source application or a set of user requirements at a specific 

point in time. On the contrary, a knowledge-driven approach can provide a more 

stable data model in which the semantic is made explicit1 and can serve various 

applications. 

Biomedical formal ontologies have been used to formalise biomedical knowledge 

(e.g., genetics with Gene Ontology and the ontology for biomedical investigations, a 

reference in the field). They have been successfully used to support many data-related 

processes such as data integration, data annotation, and classification in many projects 
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6–8. Developing biomedical formal ontologies is becoming more and more mature, and 

an international community, the OBO Foundry, is engaged in creating, coordinating, 

and maintaining these biomedical ontologies 9. A realist ontology can be defined as 

“classes that denote exclusively entities that exist objectively in reality and [whose] 

definitions adhere to strict criteria to ensure that the classes are reusable in other 

ontologies while preserving their ontological commitment” 10. Thus, these ontologies 

can be used as a knowledge model to describe a specific domain of discourse 

objectively and formally. Therefore, deriving a relational data model directly from an 

ontology can be hypothesised to be the best way to leverage heterogeneous data and 

its semantic while ensuring integrity and concurrency access for various applications. 

Specifically, a relational data model generated from an ontology ensures explicit 

axiomatisation of the model structure enabling access to data and its associated 

semantic. Moreover, ontologies enable interactions with the database by referring to 

knowledge rather than ad hoc table and field structure and naming. Consequently, 

data storage, formulation, and calculation of queries can be more systematic and 

reliable. 

The presented method differs from other approaches involving mapping ontologies 

and databases described in the literature. Namely, the goal is not to create an ontology 

from source databases or to store the ontology in a database. Instead, the ontology 

objectively captures the domain’s semantic rather than the database’s structure. In this 

way, the resulted RDB reflects the ontology and explicitly ties it with the data. Also, 

the method does not convert data into a triple store (Resource Description Framework 

– RDF triples) as it would not work in the use case of interest where the actors require 
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a relational endpoint for data integrity reasons. Nevertheless, if a process benefits 

from transforming data from an RDB into a triple store, the work presented here 

would still greatly facilitate and simplify this task. 

This paper presents a method for deriving a relational data model from an ontology 

using conversion rules that covers more ontological constructs compared to existing 

methods including axiom complexity reduction rules (section 3), an implementation, 

OntoRelα, a freely available prototype used to demonstrate the conversion rules on 

various ontologies (section 4), a use case (section 5), a brief survey of existing 

methods (section 6), and a highlight of the contributions and remaining challenges 

(section 7). 

2 Objective 

Many limitations remain with the existing methods to derive a sharable and 

interoperable relational data model based on a knowledge model in a heterogeneous 

environment. More specifically, every relational construct must be derived from a 

specific ontological construct uniformly in the same way, to reach uniformity and 

consistency through data integrity checks. Moreover, the generated data model must 

not reflect decisions based on specific query requirements to allow data usage outside 

the source database’s scope or a specific project. Consequently, the standardisation 

and automation of the conversion through a set of rules increase the relevance and 

consistency of the derived relational data model and reduce the risk of errors and 

ambiguities that might be unnoticeably introduced by choices influenced by 

undocumented aspects of the designers’ reality. The objective is to address the gaps 
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found in the literature regarding ontological construct coverage, including complex 

axioms found in biomedical ontologies, and to offer a publicly available 

implementation. Thus, this paper presents an advanced conversion method and 

accessible implementation that handles more ontological constructs and complex 

axioms. 

3 Method 

An ontology is constructed using classes, individuals, axioms, properties (object 

properties and data properties), cardinality restrictions, datatypes, and annotations 11,12. 

A relational model is constructed by a set of relations defined by attributes (pairs of a 

unique name and a datatype), tuples, constraints, and functions 13,14. Both models share 

common foundations: the set theory and the first-order logic. Thus, at least in part, a 

conversion from one to the other is possible.  

The distinctive characteristic of the presented method is that it is automated using 

uniform and consistent conversion rules to capture the richness of the ontology. As a 

result, the derived relational data model is shareable and interoperable and is practical 

for storing heterogeneous health data for various applications. The conversion rules 

must include an axiom complexity reduction process and generate a highly 

normalised relational schema to minimise data redundancy and potential 

contradictions. The following illustrates a set of conversion rules with examples 

presented by ontology constructs. A complete example can be found in Appendix C. 
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3.1 Conversion rules 

Class [C] is a set of individuals (a.k.a. instances). A class is converted to a relation 

that includes an Individual Identifier attribute (classIri_iid:iid_type) used as a primary 

key (see Fig. 1). Each value of iid uniquely identifies an individual. The class Thing 

(the superclass of all classes) may be converted to a relation with one attribute, the iid. 

Thus, the relation Thing contains all individual identifiers of the database. This 

conversion makes it possible to define an independent artificial key to index 

individuals. 

 

Fig. 1. Class conversion example (The ellipse represents a class described using the short Internationalized 

Resource Identifiers (IRI) and a label. The rectangle represents a relation described using the relation name and the 

list of attributes.). 

Object Property [op] links two individuals. An object property is converted to a 

relation including two iid attributes: the subject (subject_iid:iid_type) and the object 

(object_iid:iid_type). This conversion allows direct access to the links between the 

data of two relations and allows to store links that are not explicitly specified by an 

axiom of the ontology. 

 

Fig. 2. Object property conversion example. 

Property inheritance axiom [p0 ⊑ p1] defines an inheritance between two 

properties. A property inheritance axiom is converted into an “isa” referential key 

from the sub-property relation to the super-property relation. A referential key in a 
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relational data model links two relations. This conversion ensures data integrity by 

preserving the taxonomy of the properties. 

 

Fig. 3. Property inheritance axiom conversion example. 

Class inheritance axiom [C0 ⊑ C1] defines an inheritance between two classes. A 

class inheritance axiom is converted into an “isa” referential key from the subclass 

relation to the superclass relation. This conversion ensures data integrity by 

preserving the taxonomy of the classes.  

 

Fig. 4. Class inheritance axiom conversion example. 

Class association axiom [C0 op qt C1] defines an association between individuals 

belonging to two classes according to an object property and a quantifier. An object 

property [op] links two individuals. A quantifier [qt] is an interval of integers that 

specifies the association's cardinality in which individuals can participate. A class 

association axiom is converted into an association relation (a relation related to two 
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other relations) with two attributes, the primary key of both associated class relations. 

The primary key of the association relation is composed of both attributes. Moreover, 

three object property referential keys are defined from the association relation to the 

primary key of each associated class relation and property relation. Also, if qt.min > 0 

and qt.max ∈ N a quantification constraint is defined to check the number of 

individuals according to the quantification specified in the axiom. This conversion 

controls data integrity by ensuring that all the tuples in the relation have the same 

predicate with respect to the quantifier. 

 

Fig. 5. Class association axiom conversion example. 

Datatype [D] is a constrained set of values. A datatype is converted into an SQL user-

defined type reused to specify the data attributes uniformly. e.g., The OWL xsd:String 

is converted to CREATE DOMAIN “xsd:String” AS TEXT (in the PostgreSQL 

syntax). This conversion maintains the datatype definition uniformly across all the 

relations.  

Data association axiom [C0 dp qt D1] defines an association between each individual 

of a class [C0] and a value of a datatype [D1] according to a data property [dp] and a 
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quantifier. A data property links an individual to a value. A data association axiom is 

converted into a data relation with two attributes: the primary key of the class relation 

and a data attribute. The data relation’s primary key is composed of both attributes. 

One data property referential key is defined from the data relation to the class relation. 

This conversion controls data integrity by avoiding redundancy and missing 

information. 

  

Fig. 6. Data association axiom conversion example. 

Individual [I] is an entity of the modelled reality. An individual is converted into a 

tuple inserted into the proper relations according to the class of the individual. It is 

strongly recommended that iid attribute values be automatically generated (e.g., 

Globally Unique Identifier - GUID), allowing independent individual indexing and 

automatically propagating values into the relations. 
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Fig. 7. Individual conversion example. 

Annotation describes an aspect of an ontological construct with a text in a specific 

natural language. An annotation is used to document the database and to provide 

multiple access interfaces in different languages using views. A definition annotation 

is converted to SQL comment so they can be integrated into the RDBMS catalog (if 

the target RDBMS supports it). This conversion allows the documentation of 

relational constructs within the schema. 

3.2 Axiom complexity reduction 

An ontological axiom can be defined using different expressions that are logically 

equivalent. It follows that a considerable number of cases must be considered when 

dealing with axioms such as complex axioms. A complex axiom is an expression 

formed with multiple expressions connected using a conjunction (AND) or a 

disjunction (OR) operation. Complex axioms must be reduced into a simpler form to 

ensure a rigorous conversion into predictable and consistent relational constructs. 

Thus, axiom complexity reduction functions are defined. The complexity reduction 

consists of generating a set of simple axioms from a set of complex axioms. To 

simplify an axiom, each expression in the complex axiom is replaced by a new 

uniquely named class derived according to a set of rules. To simplify an ontology, the 

process is applied recursively until all axioms are simplified. Each expression in an 

axiom is syntactically analysed using the abstract grammar and reduced recursively 

according to reduction rules until a set of simple axioms is reached. More formal 

detail can be found in Appendix B. 
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Here is a concrete didactic example of a subset of the PDRO 15, an ontology about 

drug prescriptions, with one complex axiom (in bold). 

OP "has part" 

OP "has measurement unit label" 

DP "has specified numeric value" 

   

CLASS "Rate of administration specification" 

  ISA "Information content entity" 

  "has part" [1..1] ("Mass per time value specification" OR 

"Volumetric flow rate value specification") 

   

CLASS "Mass per time value specification" 

  ISA "Scalar value specification" 

  "has measurement unit label" [1..1] "Mass per time unit" 

  "has specified numeric value" [1..1] "positive rational" 

 

CLASS "Volumetric flow rate value specification" 

  ISA "Scalar value specification" 

  "has measurement unit label" [1..1] "“Volumetric flow unit" 

  "has specified numeric value" [1..1] "positive rational" 

 

CLASS "Volumetric flow unit" 

"has part" [1..1] "Mass unit" 

"has part" [1..1] "Time unit" 

CLASS "Mass per time unit" 

"has part" [1..1] "Volume unit" 

"has part" [1..1] "Time unit" 

 

CLASS "Mass unit" 

  ISA "Measurement unit label" 

  "has value" [1..1] String 

CLASS "Time unit" 

  ISA "Measurement unit label" 

  "has value" [1..1] String 

CLASS "Volume unit" 

  ISA "Measurement unit label" 

  "has value" [1..1] String 

 

After the axiom complexity reduction, the resulted ontology is as follows: 

CLASS "Mass per time value or Volumetric flow rate value 

specification" 

 

CLASS "Rate of administration specification" 

  ISA "Information content entity" 

  "has part" [1..1] "Mass per time value or Volumetric flow rate 

value specification" 

   

CLASS "Mass per time value specification" 

  ISA "Scalar value specification" 

  ISA "Mass per time value or Volumetric flow rate value 

specification" 
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  "has measurement unit label" [1..1] "Mass per time unit" 

  "has specified numeric value" [1..1] "positive rational" 

 

CLASS "Volumetric flow rate value specification" 

  ISA "Scalar value specification" 

  ISA "Mass per time value or Volumetric flow rate value 

specification" 

  "has measurement unit label" [1..1] "Volumetric flow unit" 

  "has specified numeric value" [1..1] "positive rational" 

 

Which can be derived into the following relational schema: 
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Fig. 8. Example of relational schema with data 

4 Results 

To illustrate the feasibility and the applicability of the presented method, a prototype, 

OntoRelα, was developed. As an input, OntoRelα takes an OWL ontology and some 

configuration files. It outputs an RDB script for the PostgreSQL database, a list of 

warnings to notify the user of problems in the conversion process, a mapping catalog 

between each ontological construct and relational construct (named OntoRelCat), and 

a normalised version of the ontology after the axiom complexity reduction. The 

resulted RDB scripts can be executed on PostgreSQL v9.6+. A small example of the 

human body mass from the physiological measurement ontology is presented in 

Appendix C. 

The method is implemented through multiple processes (see Fig. 9): 

• The analysis process creates an instance of the normalised ontology model (µOnto) 

using a source ontology and an ontology configuration file that parameterises the 

process. 

• The µOnto generator process generates a normalised ontology with reduced axioms 

formalised according to the µOnto language. 

• The conversion process converts an instance of µOnto into an ontological-relational 

model (OntoRel) according to the relational model (µRel) using the RDB 

configuration file that parameterises the process. 

• The OntoRelCat generator process the definitions of construct in the OntoRel to 

build a human and machine-readable mapping catalog. 
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• The SQL generator process generates a set of SQL scripts to build the RDB. 

 
Fig. 9. Data flow diagram of OntoRelα. 

 

Many open-source libraries were used to implement the processes and the internal 

data structure: OWLAPI 5.11 to load and analyse the ontology in OWL format; 

JGraphT2 to create graphs for the ontology and the database; Snakeyaml3 to analyse 

the configuration files in YAML format; StringTemplate4 for code generation and 

Jackson5 to generate JSON files for OntoRelCat.  

The prototype was tested with various ontologies (especially The Genotype Ontology 

(GENO), Fanconi Anemia Ontology, Ontology of Adverse Events, and The 

Prescription of Drugs Ontology) of different sizes. Also, the resulted relational data 

 
1 https://github.com/owlcs/owlapi 
2 https://github.com/jgrapht/jgrapht 
3 https://bitbucket.org/asomov/snakeyaml/src/master/ 
4 https://github.com/antlr/stringtemplate4 
5 https://github.com/FasterXML/jackson 
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model was used in different use cases of the Quebec SPOR Support Unit and the 

SPOR Canadian data platform 16. The prototype and detailed results, including the 

RDB scripts, can be found on GitHub: https://github.com/OpenLHS/OntoRela. 

5 Use case 

Software used to record clinical data generally does not provide explicit semantic to 

enable secondary use of data without ambiguity. In addition, there is currently no 

national standard for data exchange across institutions and provinces in Canada. This 

use case illustrates the context of drug prescriptions where researchers or physicians 

need to extract information about drug and laboratory prescriptions to make 

appropriate follow-up or identify inappropriate or missing prescriptions. Users are 

faced with many challenges, including and not limited to heterogeneity in levels of 

generality in drug administration and dispensing specification, homonymy, and 

dosing instructions 15. Moreover, merging data of drugs and laboratory results stored 

in different databases is not a straightforward task.  

PDRO 15, an ontology about drug prescriptions, is used to illustrate this use case with 

examples. OntoRelα generates the relational data model, and the database can be 

populated from data sources using Extract-Load-Transform processes or mediation 

systems. In this way, one query suffices to obtain needed data at various levels of 

generality without the need to explore each source separately to understand the 

content. 

https://github.com/OpenLHS/OntoRela
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Consider parts of two drug prescriptions termed “Drug administration specification” 

(DAS) and “Drug dispensing specification” (DDS) written on a paper or stored in a 

non-standard database: 

• (DAS1) ‘Metoprolol 50 mg PO bid’, instructs taking Metoprolol 50 mg per 

mouth (‘PO’) twice a day (‘bid’),  

• (DDS1) ‘Apo-Metoprolol 50 mg tab, 1 tab PO bid’, instructs taking one tab of 

Apo-Metoprolol 50 mg per mouth twice a day. 

With DAS1, most clinicians would intend to prescribe the active ingredient 

‘Metoprolol’ rather than a specific drug product name manufactured by a specific 

company like ‘Apo-Metoprolol’ because all pharmacies do not have in inventory 

every possible brand. Whereas DDS1 does refer to such a specific pharmaceutical 

product. Moreover, even strings that are identical in their composition and order of 

characters may have different meanings. For example, ‘Metoprolol’ in DAS1 would 

usually refer to any drug product containing metoprolol or to the active ingredient 

metoprolol itself, although it might refer to the generic drug product branded with the 

name “Metoprolol” in some cases. Moreover, the information on the prescribed drug 

may differ from the dispensed drug, and more often, databases do not distinguish 

between them (between the DAS and the DDS). 

These issues are solved using a relational data model generated from an ontology 

because it provides the explicit semantic of the data. The data model is illustrated in 

two forms: the graph form (Figure 10) and the relational form (Figure 11). Figure 10 

illustrates, as a graph, part of the generated relational data model from PDRO with 

data examples. The full rectangles represent a data relation containing tuples. The 
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dotted rectangles represent a class relation with calculated tuples. The lines represent 

the association relations. 

 

Fig. 10. OntoRel with data as a graph. 

Figure 11 illustrates part of the generated relational data model from PDRO with data 

examples.  
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Fig. 11. OntoRel with data as a relation schema. 

Finally, for other use cases, the relational data model can be used as a target model to 

store data extracted from natural language processing or for classification using 

ontology reasoners. 

6 Related work 

The literature suggested several methods to derive a relational data model from an 

ontology. A literature review was conducted in mid-2018 to explore methods 

published after 2010 describing RDB generation from an ontology 17. A list of 23 

criteria was defined to evaluate and compare the 10 most relevant papers.  

The present paper extends this review with recent publications and criteria coverage 

details (see Appendix A). The evaluated papers: A1.Dou.2010 18, A2.Bellatreche.2010 

19, A3.Saccol.2011 20, A4.Vyšniauskas.2012 21, A5.Hornung.2013 22, A6.Podsiadły-

Marczykowska.2014 23, A7.Jiménez-Ruiz.2015 24, A8.Ho.2015 25, A9.Afzal.2016 26, 

A10.Achpal.2016 27, A11.Mahmudi.2018 28 and A12.Guidoni.2020 29. 

The evaluated methods differ in several ways: the ontology constructs considered 

during the conversion, the completeness of the generated relational model, and the 

availability of tools that implement the method. As expected, all the methods convert 

a class into a relation with a primary key. Regarding axioms, complex ones are never 

considered nor handled, which is a significant issue for biomedical ontologies. Simple 

ones follow two dominant approaches: they are converted into an attribute or into a 

relation. Converting an axiom into an attribute may introduce several issues, such as 

missing information (nulls) for zero-to-one or zero-to-many relationships and data 
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redundancy for many-to-many relationships. Converting an axiom into a relation may 

impact the query performance, but this is a better approach to guarantee data integrity 

and structure extension, as performance can be handled at the physical level by the 

RDB management systems using adequate indexing structure 30. These axiom 

conversions and the inability to deal with complex axioms reduce the structural 

uniformity across all the relations in the data model and increase semantic loss.  

Moreover, the review outlined limitations in different areas which may lead to 

semantic loss, including the lack of conversion rules for object properties, property 

inheritance axioms, cardinality restriction, property characteristics, and annotation, as 

well as the inability to process complex axioms (set of simple expressions linked with 

logical operators) that are widely used in biomedical ontologies. Most methods store 

some important ontological constructs into metadata tables and do not derive explicit 

structure or constraints from them. As a result, the axiom verification will be 

incomplete or challenging to automate. Thus, the main challenge is maintaining the 

richness of ontological definitions in the resulting relational data model by converting 

uniformly and consistently ontology constructs into relational constructs to detect the 

data that do not conform to the axioms. 

Finally, only two implementations are publicly available, the first one is accessible 

through a web page 22, but the source code is not available to be used and extended by 

other researchers. The second works with ontology defined using OntoUML based on 

UFO (Unified Foundational Ontology) 29 and allows defining ontologies using a 

graphical interface. However, defining and maintaining large biomedical ontologies 
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using a graphical interface is not always convenient. Therefore, a more generic 

method is needed to benefit from the mature ontologies already in the OBO Foundry. 

7 Contribution and future work 

This work aimed to address the problem of designing a sharable and interoperable 

relational data model to not only store data coming from heterogeneous systems but 

also store the associated semantic to support various applications. The method 

described in this paper offers an advanced conversion process to enable the automatic 

generation of the uniform relational data model with constraints to maximise semantic 

preservation and control data integrity. More specifically, the presented method 

differs from the existing ones by the following features: 

• The axiom complexity reduction allows a concise and uniform conversion.   

• The normalisation of the data model increases automation and uniformity. 

• The generation of advanced constraints such as quantification, intersection and 

union using functions increases data integrity control. 

• The transformation of ontological annotations into SQL comments and views 

provides documentation and multiple access points within the data model.  

• The configurable transformation of OWL types into SQL types allows a uniform 

usage of OWL types.  

• The generation of a mapping dictionary enables structure reversibility and data 

extraction in various output formats.  

• The implementation, OntoRelα, can be used with various OWL ontologies and 

PostgreSQL databases.  
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However, several limitations will require further work. Firstly, the relatively large size 

of the resulting relational data model is a challenge, especially when trying to interact 

manually with the model. As an example, to get the all the data related to a drug 

prescription we need to build a query with at least 16 joins (see Fig. 11). This 

limitation could be alleviated by using navigation tools and query builder applications 

fully leveraging this new approach to benefit from the full semantic while helping the 

user find the needed construct faster. Secondly, structural redundancy in the data 

model is caused by redundant axioms. Advanced axiom redundancy reduction rules 

are already under development to address this, yielding a smaller RDB while fully 

preserving its semantic. Finally, more conversion rules are being defined to improve 

the data integrity and data ingestion as deriving secondary keys, general constraints 

using property characteristics 24,27, and generating data modification procedures 27 to 

ensure data quality. 

8 Conclusion 

Many conversion methods from an ontology to a relational data model have already 

been proposed. However, these propositions suffer from limitations regarding the 

coverage of ontological constructs, the handling of complex axioms, and the 

accessibility of tools. This paper presented conversion rules and a freely available 

prototype named OntoRelα that covers more ontological constructs and handles 

complex axioms, and that can be used and extended by other researchers. This work is 

a first step towards building a tool to generate a sharable and interoperable database 
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using ontologies. More development is underway to refine the derived relational data 

model and provide complementary data access tools. 
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