Faijun Nahar Mim 
email: faijun2005@yahoo.com
  
Michael B C Khoo 
  
Sajal Saha 
email: sajal.saha@iubat.edu
  
Philippe Castagliola 
email: philippe.castagliola@univ-nantes.fr
  
Revised Triple Sampling X Control Charts for the Mean with Known and Estimated Process Parameters

The primary aim of this research is to propose a revised triple sampling (TS) 𝑋 ̅ chart, where the derivations of new formulae for computing the average run length of the triple sampling (TS) 𝑋 ̅ chart correctly are provided. The secondary aim is to develop the revised TS 𝑋 ̅ chart with estimated process parameters. The revised TS 𝑋 ̅ charts are compared with the double sampling (DS) 𝑋 ̅ , two stage adaptive sample size (AS2) 𝑋 ̅ and three stage adaptive sample size (AS3 ) 𝑋 ̅ charts when process parameters are known and estimated using the average run length (ARL), average number of observations to signal (ANOS), average of the average run lengths (AARL), standard deviation of the average run lengths (SDARL), average of the average number of observations to signal (AANOS) and standard deviation of the average number of observations to signal (SDANOS) criteria, where the revised TS 𝑋 ̅ charts are found to be superior.

Additionally, a table giving the minimum number of Phase-I samples for estimating the process mean so that the revised TS 𝑋 ̅ chart with estimated process parameters has the desired in-control AARL and AANOS performances is provided.

Introduction

An efficient operation of manufacturing processes is considered as one of the key elements that ensure product quality and process efficiency. The real challenge faced by a manufacturing company is to comprehensively consider the major factors that influence the production process, as well as to improve the process quality during the manufacturing process. To avoid unintended deviations from production design and operations, the process fault identification and diagnosis has always been a top priority by management. A quick detection and recognition of such irregularities in a manufacturing process will provide operators with the information they need to make the best decision about the state of a process, thereby achieving the goals of attaining improved product quality, increased product output and lowering manufacturing costs.

The study in this article is connected to the aforementioned real-life problem by presenting the revised TS 𝑋 ̅ chart, as a control chart is the most effective tool in Statistical Process Control employed in manufacturing companies to detect process irregularities as early as possible so that the necessary corrective actions can be taken immediately, in order to avoid a large number of defective products from being manufactured.

Over the years, numerous enhancements and extensions have been made on different types of control charts, for example, see De la Torre [START_REF] De La | Identification of patterns in control charts for processes with statistically correlated noise[END_REF]; Qu et al. (2018a); Qu et al. (2018b); Abbasi and [START_REF] Castagliola | Enhanced adaptive CUSUM charts for process mean[END_REF]; Stankus and Castillo-Villar (2019); Li, Wang, and Zhu (2019); Krupskii et al. (2020); Haridy et al. (2020); Wang and Tsung (2020); [START_REF] Celano | A distribution-free Shewhart-type Mann-Whitney control chart for monitoring finite horizon productions[END_REF]and Hou and Yu (2021); to name some of the recent ones.

A production process can be monitored by adopting an appropriate control chart for a quick detection of process shifts from the nominal operating condition. Different types of control charts have been investigated in the literature, among them are the adaptive control charts, such as the variable sampling interval (VSI) (Reynolds et al., 1988;Guo and Wang, 2016), variable sample size (Prabhu, Runger and Keats, 1993;[START_REF] Costa | ̅ charts with variable sample size[END_REF]Zimmer, Montgomery and Runger, 1998;[START_REF] Aparisi | The variable sample size variable dimension 𝑇 2 control chart[END_REF] and variable parameters [START_REF] Costa | 𝑋 ̅ charts with variable parameters[END_REF] 

A type of adaptive charts that has received a great deal of attention among researchers are the DS charts. The DS control charting technique based on the sample mean 𝑋 ̅ was pioneered by [START_REF] Croasdale | Control charts for a double-sampling scheme based on average production run lengths[END_REF], where a decision about the status of a process (in-control or out-ofcontrol) depends on the information from the second sample only. [START_REF] Daudin | Double sampling 𝑋 ̅ charts[END_REF] 

modified

Croasdale's DS 𝑋 ̅ control charting procedure, where the new DS 𝑋 ̅ chart uses the information from either the first sample or combined samples in deciding about the status of the process.

Irianto and Shinozaki (1998) presented an optimal design procedure for the DS 𝑋 ̅ chart, where the power of the chart in detecting shifts is maximized, instead of minimizing the average sample size for small shifts as advised by [START_REF] Daudin | Double sampling 𝑋 ̅ charts[END_REF]. The more recent studies on charts using the DS technique were made [START_REF] Costa | The double sampling range chart[END_REF]; Haq and Khoo (2018); and Huang, Yang, and Xie (2020).

In the literature, the DS control charting procedure is combined with another control chart at hand in the development of a more advanced chart. [START_REF] Carot | Combined double sampling and variable sampling interval 𝑋 ̅ chart[END_REF] investigated the combined DS and VSI 𝑋 ̅ charts. Khoo et al. (2010) combined the DS and synthetic control charting procedures and introduced the synthetic DS 𝑋 ̅ chart for monitoring the process mean. Khoo et al. (2015) merged the DS and side sensitive group runs (SSGR) charting techniques to propose the SSGRDS 𝑋 ̅ chart and showed that this new chart performs better than the SSGR 𝑋 ̅ chart. Subsequently, Saha et al. (2018) incorporated the side sensitive modified group runs (SSMGR) approach into the DS chart in developing the SSMGRDS 𝑋 ̅ chart.

The revised TS 𝑿 ̅ chart

Assume that the quality characteristic, X follows a normal distribution, where the in-control population mean and standard deviation are denoted as 0  and 0  , respectively. The process being monitored will become out-of-control when the process mean shifts from 0 chart are referred to as standardized limits. The sample sizes for the first, second and third samples are denoted as 1 n , 2 n and 3 n , respectively. Let , li j X denote the j th observation of inspection level l at sampling stage i, where j = 1, 2, …, l n and l = 1, 2 or 3. By referring to Figure 1, the revised TS 𝑋 ̅ chart is implemented as follows:

Insert Figure 1 here

Step 1. Determine the limits 11 L , 12 L , 21 L , 22 L and 3 L .

Step 2. At sampling stage i, take an initial sample of size 1 n (inspection level 1) and compute the sample mean

1 1 1 , 1 1 1 n i i j j XX n = =  .
Step 3. Let 1

1 i i YX =
and compute 1i W ( ) 

1
2 0 1 2 2 0 i i Y n n W   -+ = .
Step 6. If

  2 21 21 21 , i W I L L  = -
, the process is in-control and the control flow returns to Step 2.

Step 7. If ( ) ( )

2 23 22 22 , , i W I L L  = - - 
+ , the process is out-of-control and the control flow proceeds to Step 11.

Step 8. If 1 n i i j j X X n = =  , followed by the combined sample mean of the first, second and third samples

1 1 2 2 3 3 3 1 2 3 i i i i n X n X n X Y n n n ++ = ++ and 
( )

3 0 1 2 3 3 0 i i Y n n n W   - + + = .
Step 9. If

  3 3 3 3 , i W I L L  = -
, the process is in-control and the control flow returns to Step 2.

Step 10. If 33 i WI  , the process is out-of-control and the control flow proceeds to Step 11.

Step 11. An out-of-control is signaled at sampling stage i and corrective actions are needed to investigate and remove the assignable cause(s). Then return to Step 2.

Table 1 gives a summary of the statistics used in the 11 steps procedure and their distributions.

Insert Table 1 here

Properties of the revised TS X chart with known and estimated process parameters

This section consists of two subsections. The statistical properties of the revised TS 𝑋 ̅ chart with known process parameters (called the revised TS 𝐾 𝑋 ̅ chart, hereafter) are explained in Section 3.1, while the revised TS 𝑋 ̅ chart with estimated process parameters (called the revised TS 𝐸 𝑋 ̅ chart, hereafter) are discussed in Section 3.2.

Properties of the revised 𝑻𝑺 𝑲 𝑿 ̅ chart

Let a P represent the probability of declaring the process as in-control and al P is the probability of declaring the process as in-control at inspection level l, for l = 1, 2 and 3. Thus,

a P = 1 a P + 2 a P + 3 a P . ( 1 
)
The formulae for computing al P , for l = 1, 2 and 3 are explained in the discussion that follows.

As pointed out by [START_REF] Daudin | Double sampling 𝑋 ̅ charts[END_REF], the probability that the process is declared as in-control at inspection level 1 is

1 a P = ( ) 1 11 Pr i W I  = ( ) ( ) 11 1 11 1 L n L n   + - -+ , ( 2 
)
while the probability that the process is declared as in-control at inspection level 2 is

2 a P = ( ) 1 1 12 2 21 1 1 1 1 Pr d i i i W wI W I W w f w w    =     ( ) * 1 12 1 1 2 21 2 2 1 2 21 2 2 1 1 1 2 2 d zI nn c L r c z c L r c z z z nn              =  + - - - + -                     , (3) 
where ( )

1 1 1 0 0 0 i z n x     = -+ , 2 1 2 r n n =+ , 12 2 2 nn c n + = , I = 12 1 11 1 , L n L n    -+ -+   11 1 12 1 , L n L n     + + 
 and (  ) and (  ) are the standard normal probability density function (pdf) and distribution function, respectively.

In He, Grigoryan, and Sigh (2002), the probability of declaring the process as in-control at inspection level 3 is 3

a P = ( ) ( ) 2 1 12 22 3 3 2 1 Pr and d d i i i i i Y X x I y I Y I Y y X x f y f x y x     = =    * 1 12 2 22 1 2 1 2 3 3 3 2 1 2 3 3 3 3 1 2 3 3 3 3 z I z I n n n n c L r c z z c L r c z z n n n n                 =  + - - - - + - -                     ( ) ( ) 1 2 2 1 d d , z z z z       (4) 
where At sampling stage i, the probability that the process is in-control at inspection level 3 (i.e. 

12 0 11 0 11 0 12 0 12 0 0 0 0 1 1 1 1 ,, L L L L I n n n n              = - -  + +             , 22 0 21 0 22 0 0 1 2 1 2 , LL I n n n n       = - -  ++    21 0 22 0 00 1 2 1 2 , LL n n n n      ++  ++   , 3 0 3 0 3 0 0 1 2 3 1 2 3 , LL I n n n n n n        = - +   + + + +     , 22 22 1 2 21 1 2 , I L n n L n n     = -+ + -+ +    21 1 2 22 1 2 , L n n L n n    + + + +   , while
2 2 2 0 0 0 22 ii Z n X I      = -+  (see Appendix A.2), where * 1 1 1 1 22 2 22 2 2 1 2 21 2 2 1 2 21 2 2 1 2 22 2 2 1 2 2 2 2 , , . n n n n I c L r c z c L r c z c L r c z c L r c z n n n n             = - + - - + -  + - + -            
Similarly, condition on 11 i Zz  = and 22 i Zz  = , asserting that 33 i WI  is equivalent to saying that ( )

3 3 3 0 0 0 3 ii Z n X I      = -+  (see Appendix A.3), where , n n n n I c L r c z z c L r c z z n n n n         = - + - - + - -       .
Based on the above discussions, 3 a P can be written as

3 a P ( ) ( ) ( ) 1 2 1 12 2 22 3 3 1 2 2 1 Pr d d i i i Z Z z I z I Z I f z f z z z            =   1 12 2 22 1 2 3 3 3 3 1 2 3 3 z I z I n n c L r c z z n n             =  + - - -           ( ) ( ) 1 2 3 3 3 3 1 2 1 2 2 1 3 3 nn c L r c z z z z dz dz nn            - + - -            . ( 5 
)
Note that * 12 I and 1 z have been defined in Equation (3), while *

22

I has been defined prior to this discussion. The other notations are defined as ( )

2 2 2 0 0 0 i z n x     = -+ , 3 1 2 3 r n n n = + + and 1 2 3 3 3 n n n c n ++ =
. As 1i Z and 2i Z  are standard normal random variables, their pdfs can also be written as ( )

1 1 i Z fz   = ( ) 1 z  and ( ) 2 1 i Z fz  = ( ) 2 z  , respectively.
The problem raised in Equation (4) no longer exists as 1i Z  and 2i Z  are by definitions independent and using the product of their pdfs as in Equation ( 5) now makes sense.

Table 2 shows the ARL(0) values of the (i) TS 𝐾 𝑋 ̅ chart adopted from He, Grigoryan, and Sigh ( 2002), (ii) revised TS 𝐾 𝑋 ̅ chart computed using MATLAB based on the model proposed in this section, and (iii) revised TS 𝐾 𝑋 ̅ chart simulated using SAS, as well as the 95% confidence interval for ARL(0) of the revised TS 𝐾 𝑋 ̅ chart simulated using SAS, all obtained based on the parameters in He, Grigoryan, and Sigh (2002). It is observed that the ARL(0) values of the revised TS 𝐾 𝑋 ̅ chart computed using the proposed model are about the same as that simulated.

Additionally, the ARL(0) values obtained using the proposed model fall in their corresponding 95% confidence intervals. However, the ARL(0) values adopted from He, Grigoryan, and Sigh (2002) are totally different from the simulated ones and none of them falls in their respective 95% confidence intervals. For example, when the parameter combination (𝑛 

, L n L n L n L n     =  + - + +  -+ - -+ (7) 
while 3 P = ( )

2 22 1 12 Pr ii W I W I  ( ) ( ) 1 1 12 2 22 1 1 1 1 Pr d i i i W wI W I W w f w w  =  =  ( ) 1 12 1 1 2 21 2 2 1 2 22 2 2 1 1 1 2 2 d zI n n c L r c z c L r c z z z n n               =  - + - - - + -                     + ( ) 1 12 11 2 22 2 2 1 2 21 2 2 1 1 1 22 d zI nn c L r c z c L r c z z z nn               + - - + -                  . ( 8 
)
The formula derivation of 3 P in Equation ( 8) is shown in Appendix A.4. A control chart's efficiency is generally measured by the speed in which an out-of-control situation is detected.

A common performance criterion that measures this speed is the ARL. As any Shewhart-type control chart, the ARL of the revised TS 𝐾 𝑋 ̅ chart is computed as

1 ARL 1 a P = - . ( 9 
)
In the revised TS control charting technique, the number of observations taken in each 

1 ˆm i i T m  = =  (11) and ( ) 2 0 , 11 1 ˆ( 1) mn i j i ij TT mn  == = - - , ( 12 
)
where i T is the sample mean of the observations {𝑇 𝑖,1 , 𝑇 𝑖,2 , … , 𝑇 𝑖,𝑛 }.

The procedure of implementation of the revised TS 𝐸 𝑋 ̅ chart is similar to that of the revised ˆˆˆPr ,

a i P W I  =  1 1 11 1 11 1 nn U VL n U VL n mn mn       =  + + - - +             , ( 14 
)
where the random variables U and V are defined as ( )

0 0 0 ˆmn U   =- (15) 
and

0 0 V   = , (16) 
respectively. U follows the standard normal distribution and 2

V follows the gamma distribution with parameters ( )

1 2 mn -    and 
( )

2 1 mn    -  , i.e. 2 V  ( ) ( ) 1 2 , 21 mn mn   -  - 
. Then the pdf of U and V are defined as

( ) ( ) U f u u = (17) and ( ) ( ) ( ) 2 1 2 2 , 21 V mn f v v f v mn    - =     -   , (18) 
respectively, where ( )

f   is the pdf of the gamma distribution with parameters ( 1) 2 mn-and 2 ( 1) mn- . Additionally, 2 ˆa P is computed as (Khoo et al. 2013) ( ) 2 2 21 1 12 0 0
ˆˆˆˆP r and ,

a i i P W I W I  =   = 1 12 21 2 21 1 2 2 wI nn U V c L w n mn n       + - + -          ( ) 1 2 1 2 21 1 2 1 0 0 1 2 ˆˆ , d , i W n n U V c L w n f w w mn n           - + +               (19) 
where ( )

1 1 ˆ1 0 0 1 1 ˆ, . i W n f w V U Vw n mn     =  + +    (20) 
Note that Equations ( 14), ( 19) and ( 20) are based on the out-of-control mean considered in this manuscript, i.e. 00   -.

At sampling stage i, the probability that the process is declared as in-control at inspection level 3 (i.e. 3 ˆa P ) is equal to the probability that 𝑊 ̂3𝑖 falls in interval 3 I , given that 𝑊 ̂2𝑖 and 𝑊 ̂1𝑖 fall in interval 22 I at inspection level 2 and in interval 12 I at inspection level 1, respectively.

Then, condition on

1 1 ˆi W w = , asserting that 2 22 ˆi WI  is equivalent to saying that ( ) 2 2 0 2 22 0 i i nX ZI    - = ˆ, where 1 1 1 1 22 2 22 1 2 21 1 2 21 1 2 22 1 2 2 2 2 , , n n n n I c L w c L w c L w c L w n n n n      = - - - -  - -         .
The mathematical derivation to show that 2

22 ˆi WI  is equivalent to 2 22 i ZI   ˆ is given in Appendix B.1. Similarly, condition on 1 1 i W w = ˆ and 2 2 ˆi Z z = , asserting that 3 3 ˆi WI  is equivalent to saying that ( ) 3 3 0 3 3 0 i i nX Z I    - =  ˆ (see Appendix B.2), where ** 1 2 1 2 3 3 3 1 2 3 3 1 2 3 3 3 3 , n n n n I c L w z c L w z n n n n  = - - - - -   .
Based on the above discussions, 3 ˆa P can be defined as

3 ˆa P ( ) ( ) ( ) 12 1 12 2 22 3 3 1 2 2 1 Pr d d ii i WZ w I z I Z I f w f z z w    =  ˆˆ. ( ) ( ) ** 1 12 2 22 1 2 3 3 12 3 3 1 2 3 33 12 ˆ3 3 1 2 3 1 0 0 2 0 0 2 1 33 ˆˆˆ, , d d , ( 21 
) i i w I z I WZ n n nn U V c L w z n U mn n n mn nn V c L w z n f w f z z w nn              =  + - - + - -                      - + + +        



where the random variables 1 ˆi W and 2 ˆi Z are independent of one another. In Equation ( 21), ( )

2 ˆ2 0 0 ˆ, i Z fz  2 22 n V U Vz n mn   =  + +    (22) and 
( )

1 ˆ1 0 0 ˆ, i W
fw  is given in Equation ( 20). Appendix B.3 explains the derivation of ( )

2 ˆ2 0 0 ˆ, i Z fz  .
The probability of taking the second sample is (Khoo et al. 2013) ( )

2 1 12 0 0 ˆˆˆPr , i P W I  = = 1 1 12 1 11 1 nn U VL n U VL n mn mn        + + - + +             + 1 1 11 1 12 1 nn U VL n U VL n mn mn        - + - - +             . ( 23 
)
Similarly, the probability of taking the third sample can be obtained as follows (see Appendix

B.4): 3 P ( ) (
)

1 1 12 2 22 1 1 0 0 1 0 0 1 ˆˆˆˆˆPr , , , d i ii W wI W I W w f w w      =  =  ) ( ) 1 12 1 1 12 2 1 2 1 2 22 1 2 2 21 1 22 21 2 1 0 0 1 2 21 1 2 2 21 2 22 1 2 2 ˆ,d i wI W wI n n n n U V c L w n U V c L w mn n mn n nn n f w w U V c L w n mn n nn U V c L w n mn n                =  + - + - + -                          + +  - + +             - - + +         ( ) 1 ˆ1 0 0 1 ˆ, d . ( 24 
) i W f w w      
The ASS of the revised TS 𝐸 𝑋 ̅ chart at each sampling stage is

ASS = ( ) ( ) ( ) 1 2 2 3 3 0 ˆˆdd UV n n P n P f u f v v u  - ++  . ( 25 
)
Note that ( ) 25) are given in Equations ( 17) and ( 18), respectively.

U fu and ( ) V fv in Equation (
If process parameters are known, the ARL value of the revised TS K 𝑋 ̅ chart is a constant and hence, the standard deviation of the ARL is zero. However, when the target values of the process mean, 0

 and standard deviation, 0  , are estimated, different Phase-I samples are used by different practitioners in the estimation. This results in different design parameters of the TS E 𝑋 ̅ chart, resulting in different values of ARL and standard deviation of the ARL (SDARL). Thus, the ARL of the estimated process parameters based TS E 𝑋 ̅ chart is a random variable and the average value of this performance measure can be calculated as the average of the ARLs (AARL), which is based on the ARL performances of the TS E 𝑋 ̅ chart averaged across different practitioners. In line with this phenomenon, in this paper, the AARL, as well as the SDARL criteria are used as the performance measures of the revised TS 𝐸 𝑋 ̅ chart. On similar lines, the average of the ANOS (AANOS) and standard deviation of the ANOS (SDANOS) will also be adopted as the performance measures of the TS 𝐸 𝑋 ̅ chart when process parameters are estimated.

The AARL and SDARL values are computed as

AARL = ∫ ∫ ( 1 1-𝑃 ̂𝑎) 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) ∞ 0 d𝑣d𝑢 ∞ -∞ , ( 26 
) and SDARL = [∫ ∫ ( 1 1-𝑃 ̂𝑎) 2 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) ∞ 0 d𝑣d𝑢 -AARL 2 ∞ -∞ ] 1/2 , ( 27 
)
respectively, while the AANOS and SDANOS values are obtained as

AANOS = ∫ ∫ (𝑛 1 + 𝑛 2 𝑃 ̂2 + 𝑛 3 𝑃 ̂3) ( 1 1-𝑃 ̂𝑎) 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) ∞ 0 d𝑣d𝑢 ∞ -∞ (28) 
and

SDANOS = √E(ANOS 2 ) -(AANOS) 2 , ( 29 
)
respectively, where

E(ANOS 2 ) = ∫ ∫ [(𝑛 1 + 𝑛 2 𝑃 ̂2 + 𝑛 3 𝑃 ̂3) ( 1 1-𝑃 ̂𝑎)] 2 𝑓 𝑈 (𝑢)𝑓 𝑉 (𝑣) ∞ 0 d𝑣d𝑢 ∞ -∞ . ( 30 
)
In this study, all integrals are solved numerically using the Legendre-Gauss quadrature method.

Optimal designs of the revised TS 𝑿 ̅ charts

In this section, the optimal designs of the revised TS 𝐾 𝑋 ̅ and revised TS 𝐸 𝑋 ̅ charts in minimizing the values of (i) ANOS(δ) and (ii) ARL(δ), as well as (iii) AANOS(δ) and (iv) AARL(δ), respectively, are elaborated, where  (> 0) is the size of a standardized mean shift where a quick detection is needed. The optimal designs of the revised TS 𝐾 𝑋 ̅ and revised TS 𝐸 𝑋 ̅ charts mentioned below need to satisfy a specified in-control average sample size (ASS0) criterion.

Optimization programs are written in the MATLAB software to compute the optimal parameters of the revised TS 𝐾 𝑋 ̅ and revised TS 𝐸 𝑋 ̅ charts. These programs are provided in the supplementary materials.

Optimal designs of the revised 𝑻𝑺 𝑲 𝑿 ̅ chart

In this section, the optimal designs of the revised TS 𝐾 𝑋 ̅ chart in minimizing (i) ANOS(δ) and

(ii) ARL(δ) values are elaborated. Since the ANOS criterion is preferred over the ARL criterion for adaptive sample size type charts, the step-by-step procedure in computing the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐾 𝑋 ̅ chart in minimizing the ANOS(δ) value is discussed first in Section 4.1.1.

Computation of optimal parameters in minimizing ANOS()

The optimization model of the revised TS 𝐾 𝑋 ̅ chart in minimizing ANOS(𝛿) is presented as follows:

1 2 3 11 12 21 22 3 , , , , , , ,

Minimize

n n n L L L L L ( ) ANOS  (31a)
subject to the constraints

( ) 1 ANOS 0  = (31b) and 00 ASS n = . ( 31c 
)
Note that ANOS(0) (for  = 0) and ANOS(𝛿) (for  > 0) are computed using Equation ( 10), while 1  in Equation (31b) is the desired ANOS(0) value and 0 n is a specified value of ASS0 which is usually set to be the same as the fixed sample size of the Shewhart 𝑋 ̅ chart.

The step-by-step procedure in computing the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐾 𝑋 ̅ chart by minimizing the ANOS(𝛿) value for the shift size  is given in Steps 1 to 11. Note that the intervals of the limits 𝐿 12 , 𝐿 11 and 𝐿 22 (see Steps 4, 5 and 6, respectively) are chosen as it is found that these intervals are large enough to give the smallest ANOS(𝛿) value, based on the values of  and 𝑛 0 considered.

Step 1. Specify the values of 1  , 𝑛 0 and 𝛿. In addition, initialize ANOSmin = ∞.

Step 2. Select a combination of sample sizes (𝑛 1 , 𝑛 2 , 𝑛 3 ), where 1 ≤ 𝑛 1 ≤ 𝑛 0 -1, 1 ≤ 𝑛 2 ≤ 𝑛 0 and 1 ≤ 𝑛 3 ≤ 2𝑛 0 that satisfy the constraint 𝑛 1 + 𝑛 2 + 𝑛 3 > 𝑛 0 and go to Step 3.

If no new (𝑛 1 , 𝑛 2 , 𝑛 3 ) combination is possible, go to Step 11.

Step = 2.50 and return to Step 5.

Step 7. Compute 𝐿 21 that satisfies Equation (31c).

Step 8. Compute 𝐿 3 that satisfies Equation (31b).

Step 9. For the shift 𝛿 specified in Step 1, compute ANOS(𝛿) using Equation ( 10 (denoted as DS 𝐾 𝑋 ̅ ) chart which will be used in the discussion in Section 5.

Insert Table 3 here

Computation of optimal parameters in minimizing ARL()

The optimization model of the revised TS 𝐾 𝑋 ̅ chart in minimizing ARL(𝛿) is presented as follows:

1 2 3 11 12 21 22 3 , , , , , , ,

Minimize

n n n L L L L L ( ) ARL  (32a)
subject to the constraints

( ) 2 ARL 0  = (32b) and 00 ASS n = . ( 32c 
)
Note that 2  in Equation (32b) is the desired value of ARL(0). To compute the optimal parameters of the TS 𝐾 𝑋 ̅ chart in minimizing the ARL(δ) value, a similar approach to that of Steps 1 -11 in Section 4.1.1 is employed. The only differences are (i) ANOSmin and ANOS(𝛿) in the aforementioned procedure in Section 4.1.1 are replaced by ARLmin and ARL(𝛿), respectively, and (ii) Equations ( 31c), (31b) and ( 10) in Steps 7, 8 and 9 of the aforementioned procedure are replaced by Equations (32c), (32b) and ( 9), respectively.  (= 370).

Insert Table 4 here

Optimal designs of the revised 𝐓𝐒 𝑬 𝐗 ̅ chart

The optimal designs of the revised TS 𝐸 𝑋 ̅ chart in minimizing the (i) AANOS(δ) and (ii) AARL(δ) ( > 0) values are discussed in this section when the process parameters 0  and 0  of the revised TS X chart are estimated from the in-control Phase-I samples.

Computation of optimal parameters in minimizing AANOS()

The optimization model of the revised TS 𝐸 𝑋 ̅ chart in minimizing AANOS(𝛿) is given as follows:

1 2 3 11 12 21 22 3 , , , , , , ,

Minimize

n n n L L L L L AANOS() (33a)
subject to the constraints

AANOS(0) = 3  (33b) and ASS0 = 𝑛 0 . ( 33c 
)
Note that 3

 in Equation (33b) is the desired value of AANOS (0), where the latter is computed using Equation ( 28) by letting  = 0.

The step-by-step procedure in Section 4.1.1 can also be used to compute the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐸 𝑋 ̅ chart, except that an additional input parameter m (number of in-control Phase-I samples) needs to be specified in

Step 1 of the procedure together with the other input parameters 𝜏 3 , 𝑛 0 and . In addition, ANOSmin and ANOS(𝛿) in the procedure are replaced by AANOSmin and AANOS(𝛿), respectively. Note that Equations (31c), (31b) and ( 10) are replaced by Equations (33c), ( 33b) and ( 28), respectively, in Steps 7, 8 and 9 of the aforementioned procedure. and SDANOS(𝛿) values for the optimal DS 𝐸 𝑋 ̅ chart.

Insert Table 5 here Insert Table 6 here

Computation of optimal parameters in minimizing AARL()

The optimization model for the revised TS 𝐸 𝑋 ̅ chart in minimizing the AARL(𝛿) value is given as follows:

1 2 3 11 12 21 22 3 , , , , , , ,

Minimize

n n n L L L L L AARL() (34a)
subject to the constraints

AARL(0) = 4  (34b) and ASS0 = 𝑛 0 . ( 34c 
)
The 4

 in Equation (34b) is the desired value of AARL [START_REF]Table 10. AARL(0) and SDARL(0) values for the revised TS 𝐸 𝑋 ̅ chart for different number of in-control Phase-I samples (m), computed using the optimal parameters of the revised TS 𝐾 𝑋 ̅ chart in minimizing AARL(1.5), based on 𝑛 0  {5, 7} and ARL(0)  {200, 370} m ARL(0) = 200 ARL(0) = 370 𝑛 0 𝑛 0 = 7 𝑛 0 = 5 𝑛 0 = 7 AARL(0) SDARL(0) AARL(0) SDARL(0) AARL(0) SDARL(0) AARL(0)[END_REF], where the latter is computed using Equation ( 26) by letting  = 0.

The optimization model in (34a) -(34c) is employed to obtain the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐸 𝑋 ̅ chart in minimizing the AARL(𝛿) value. The 11 steps optimal design procedure mentioned in Section 4.1.1 can be used in minimizing the AARL(𝛿) value but by substituting ANOSmin and ANOS(𝛿) with AARLmin and AARL(𝛿), respectively. Note that Equations (31c), (31b) and ( 10) are replaced by Equations (34c), ( 34b) and ( 26), respectively, in Steps 7, 8 and 9 of the aforementioned procedure.

Table 7 provides the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐸 𝑋 ̅ chart that minimizes the AARL() value for fixed values of , m and 𝑛 0 when 4  = 370.

The AARL(𝛿) and SDARL(𝛿) values computed using the optimal parameters in Table 7 are given in Table 8. For illustration, for the case 𝛿 = 0.5, 𝑛 0 = 5 and m = 20, the optimal parameters , 5, 10, 1.16, 4.83, 1.5825, 4.87, 2.8190) are obtained for the revised TS 𝐸 𝑋 ̅ chart (see Table 7) and using these optimal parameters result in the smallest AARL(1) value of 10.76 and the corresponding SDARL(1) value of 11.90 (see Table 8). Table 8 also provides the AARL(𝛿) and SDARL(𝛿) values for the optimal DS 𝐸 𝑋 ̅ chart.

(𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) = (3
Insert Table 7 here Insert Table 8 here

Performance analyses

In this section, the performances of the optimal revised TS 𝐾 𝑋 ̅ and optimal revised TS 𝐸 𝑋 ̅ charts when process parameters are known and estimated, respectively, are investigated. When process parameters are known, the optimal revised TS 𝐾 𝑋 ̅ chart is compared with the optimal DS 𝐾 𝑋 ̅ chart of [START_REF] Daudin | Double sampling 𝑋 ̅ charts[END_REF], in terms of the ANOS(δ) and ARL(δ) criteria in Tables 3 and4, respectively. In addition, the optimal revised TS 𝐾 𝑋 ̅ chart is compared with the AS2 𝑋 ̅ and AS3

𝑋 ̅ charts of Prabhu et al. (1993), and Zimmer, Montgomery and Runger (1998), respectively, in terms of the ARL(δ) criterion in Table 4. In the case when process parameters are estimated, the optimal revised TS 𝐸 𝑋 ̅ chart is compared with the optimal DS 𝐸 𝑋 ̅ chart of Khoo et al. (2013), in terms of the AANOS(δ) and SDANOS(δ) criteria in Table 6, while a comparison between these two charts using the AARL(δ) and SDARL(δ) criteria is given in Table 8. The speed in which the revised TS 𝑋 ̅ chart is quicker (or slower) in detecting a process mean shift compared with an existing chart at hand is measured in terms of percentage. The results presented in this paper have been verified with simulations.

The results in Table 3 show that the revised TS 𝐾 𝑋 ̅ chart outperforms the DS 𝐾 𝑋 ̅ chart for small and moderate shifts (δ  1), in terms of ANOS. For instance, when 𝑛 0 = 5, ANOS(0.7) = 18.50 for the revised TS 𝐾 𝑋 ̅ chart is significantly lower than that of the DS 𝐾 𝑋 ̅ chart (ANOS(0.7) = 25.48), which indicates that the revised TS 𝐾 𝑋 ̅ chart is 27.39% quicker than the DS 𝐾 𝑋 ̅ chart in detecting a shift of size δ = 0.7. However, for large shifts ( = 1.5 and 2), the DS 𝐾 𝑋 ̅ chart performs slightly better than the revised TS 𝐾 𝑋 ̅ chart but the difference is negligible. For example, when 𝑛 0 = 5, ANOS (1.5) = 5.34 and 5.33 for the revised TS 𝐾 𝑋 ̅ and DS 𝐾 𝑋 ̅ charts, respectively, where the difference is negligible, i.e. the DS 𝐾 𝑋 ̅ chart is 0.19% faster than the revised TS 𝐾 𝑋 ̅ chart in detecting the shift of size δ = 1.5. In terms of the ARL criterion, the revised TS 𝐾 𝑋 ̅ chart is found to be superior to the DS 𝐾 𝑋 ̅ chart in detecting shifts but the two charts have equal performances in the detection of a large shift, say  = 2 (see Table 4). For example, when 𝑛 0 = 5, ARL(0.7) = 2.84 and 3.60 for the revised TS 𝐾 𝑋 ̅ and DS 𝐾 𝑋 ̅ charts, respectively (see Table 4), which indicates that the revised TS 𝐾 𝑋 ̅ chart is 21.11% quicker than the DS 𝐾 𝑋 ̅ chart in detecting a shift of size δ = 0.7. However, for δ = 2, both charts have the same value of ARL(2) = 1.

In comparison with the AS3 𝑋 ̅ chart, the revised TS 𝐾 𝑋 ̅ chart prevails in detecting all shift sizes in terms of the ARL(δ) criterion. For example, when 𝑛 0 = 5, ARL(0.7) = 2.84 for the revised TS 𝐾 𝑋 ̅ chart is significantly lower than that for the AS 3 𝑋 ̅ chart whose ARL(0.7) = 6.17

(see Table 4). In terms of the percentage of improvement, the revised TS 𝐾 𝑋 ̅ chart is 53.97% quicker than the AS 3 𝑋 ̅ chart in detecting the shift δ = 0.7.

A comparison between the revised TS 𝐾 𝑋 ̅ and AS 2 𝑋 ̅ charts shows that the former has lower ARL() value than the latter for all shift sizes. For example, when 𝑛 0 = 5, ARL(0.5) = 7.04 for the revised TS 𝐾 𝑋 ̅ chart is significantly lower than that of the AS 2 𝑋 ̅ chart (ARL(0.5) = 18.30), which indicates that the revised TS 𝐾 𝑋 ̅ chart is 61.53% quicker than the AS 2 𝑋 ̅ chart in detecting a shift of size δ = 0.5 (see Table 4). 191.78, 105.17, 38.84, 20.74, 10.63} and {314.22, 204.11, 116.54, 42.46, 22.29, 11.36} for the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, respectively, when   {0.1, 0.2, 0.3, 0.5, 0.7, 1}, where the former has lower AANOS(δ) values than the latter. In this example, the revised TS 𝐸 𝑋 ̅ chart is 6.95% quicker than the DS 𝐸 𝑋 ̅ chart in detecting a shift of size δ = 0.7. The decrease in the AANOS() values vary from 1.73% to 9.76% when the TS 𝐸 𝑋 ̅ chart is used in place of the DS 𝐸 𝑋 ̅ chart, based on m = 20, 𝑛 0 = 5 and 0.1    1 (see Table 6). For δ > 1, the TS 𝐸 𝑋 ̅ chart is slightly slower than the DS 𝐸 𝑋 ̅ chart in detecting process shifts. For example, when δ = 1.5, 𝑛 0

= 5 and m = 20, AANOS(1.5) = 5.45 and 5.42 for the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, respectively, where the former is 0.55% slower than the latter in detecting the shift δ = 1.5. 2014), the SDANOS(0) value of the estimated process parameters based chart should be at most 10% of the ANOS(0) value of the chart's known process parameters counterpart so that the former performs satisfactorily even though there is still some considerable difference between the AANOS(0) value of the former and the ANOS(0) value of the latter.

Another important trend noticeable in

Table 9 gives the AANOS(0) and SDANOS(0) values of the revised TS 𝐸 𝑋 ̅ chart for m  {50, 100, 150, …, 800, ∞}, computed using the optimal parameters of the revised TS 𝐾 𝑋 ̅ chart in minimizing ANOS(1.5), when 𝑛 0  {5, 7} and ANOS(0)  {200, 370}. The aforementioned optimal parameters computed when ANOS( 0 for 𝑛 0  {5, 7}. For example, by adopting these optimal parameters on the revised TS 𝐸 𝑋 ̅ chart give AANOS(0) = 199.73 and SDANOS(0) = 19.27 for 𝑛 0 = 5 and m = 550 when the process is in-control.

Insert Table 9 here An analysis of Table 8 shows that when a comparison is made between the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, in terms of the AARL() criterion, the former surpasses the latter for all shift sizes , as the former has a lower AARL() value than the latter for the same value of . For example, when m = 20 and n0 = 5, AARL()  {290. 18, 149.22, 60.44, 10.76, 3.51, 1.56, 1.06, 1.00} and {296.24, 163.14, 72.37, 14.74, 4.72, 1.83, 1.09, 1.00} for   {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2}, for the TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, respectively. However, in terms of the SDARL() criterion, the TS 𝐸 𝑋 ̅ chart outperforms the DS 𝐸 𝑋 ̅ chart for all values of  and m when n0 = 5 but when n0 = 7, the TS 𝐸 𝑋 ̅ chart is superior to the DS 𝐸 𝑋 ̅ chart only for smaller values of  and m. (3, 3, 7, 0.74, 4.94, 1.6076, 4.58, 2.8820) and (5, 4, 10, 0.91, 3.38, 1.8386, 3.4, 3.0284)} for 0  {5, 7}. For example, by adopting these optimal parameters on the revised TS 𝐸 𝑋 ̅ chart give AARL(0) = 198.70 and SDARL(0) = 19.96 for 𝑛 0 = 5 and m = 800 when the process is in-control (see Table 10).

By investigating Tables 9 and10, it is seen that the SDANOS(0) and SDARL(0) values of the revised TS 𝐸 𝑋 ̅ chart decrease as m increases. For m  550 (see Table 9) and m  800 (see Table 10) when 𝑛 0 = 5, the SDANOS(0) and SDARL( 0 9) or SDARL(0) (in Table 10) value, respectively, represent the minimum number of in-control Phase-I samples needed so that the SDANOS(0) or SDARL(0) value is smaller than 10% of the corresponding ANOS(0) or ARL(0) value, respectively. This value of m will ensure that the AANOS(0) and AARL(0) values of the revised TS 𝐸 𝑋 ̅ chart are considerably close to the respective ANOS(0) and ARL(0) values of the revised TS 𝐾 𝑋 ̅ chart.

Insert Table 10 here

An implementation of the revised 𝐓𝐒 𝑬 𝑿 ̅ chart

This section illustrates the implementation of the revised TS 𝐸 𝑋 ̅ chart in a real application using a dataset of the flow width measurements (in microns) for the hard bake process adopted from Montgomery (2009). The Phase-I data which comprise m = 20 samples, each having n = 5 observations are used to estimate the in-control process mean 0  and standard deviation 0  using Equations ( 11) and ( 12), respectively. The estimates are 0  = 1.493 microns and 0  = 0.152 microns. Suppose that the revised TS 𝐸 𝑋 ̅ chart is optimally designed in minimizing AANOS(1), to enable a quick detection of the shift size  = 1, based on AANOS(0) = 370, m = 20 and 𝑛 0 = 5. Consequently, the optimal parameters are obtained from Table 5 as -2.5852, 2.5852], an out-of-control is signaled at sampling stage 14 (see Figure 2). Following this out-of-control signal, corrective actions should be taken to remove the assignable cause(s) so that the out-of-control condition becomes in-control again.

(
Ŵ (= 3.0250) 3 I  = [

Conclusions

In this research, we provide corrections to address the oversight in the formulae derivation for computing the run length performance of the known process parameters based TS 𝑋 ̅ chart in He, Grigoryan, and Sigh (2002). To assess the efficiency of the revised TS 𝐾 𝑋 ̅ chart, performance comparisons with the existing DS 𝐾 𝑋 ̅ , AS2 𝑋 ̅ and AS3 𝑋 ̅ charts, in terms of the ANOS and ARL criteria are made. In addition, the revised TS 𝑋 ̅ chart based on estimated process parameters (called revised TS 𝐸 𝑋 ̅ chart) is also proposed. The efficiency of the revised TS 𝐸 𝑋 ̅ chart is measured using the AANOS (AARL) and SDANOS(SDARL) criteria and is compared with the DS 𝐸 𝑋 ̅ chart. The numerical analyses performed in Section 5 show that the revised TS 𝐾 𝑋 ̅ and revised TS 𝐸 𝑋 ̅ charts outperform the DS 𝐾 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, respectively, in the detection of most sizes of shifts in the process mean. Tables of optimal parameters of the revised TS 𝐾 𝑋 ̅ , as well as revised TS 𝐸 𝑋 ̅ charts in minimizing the out-of-control ANOS and ARL, as well as AANOS and AARL values, respectively, for selected combinations of input parameters are given.

The quality of a production process or a product being manufactured is affected by, for example, deviations from the nominal value of the (i) weight of raw materials, (ii) process temperature, (iii) viscosity of a certain chemical, (iv) process humidity and (v) machine setting.

The revised TS 𝐾 𝑋 ̅ and revised TS 𝐸 𝑋 ̅ charts are designed to detect these deviations quickly.

These revised TS 𝑋 ̅ charts can be applied in various production systems, such as in monitoring the stability of a plastic film process, monitoring the diameter of gears in an automobile industry and monitoring the pH level of a process that produces medicine in a pharmaceutical industry, to name some. Information obtained from the revised TS 𝑋 ̅ charts in process monitoring of production systems will help decision makers in taking suitable corrective actions, in order to reduce process deviations for quality enhancement.

The effects of the estimation of process parameters from the in-control Phase-I dataset on the in-control and out-of-control performances of the revised TS 𝐸 𝑋 ̅ chart are investigated. It is found that the revised TS 𝐸 𝑋 ̅ chart adopting the optimal parameters of its known process parameters counterpart requires a very large number of the in-control Phase-I samples in order to have a closer performance to the latter. It is shown that the out-of-control AANOS (AARL) performance of the revised TS 𝐸 𝑋 ̅ chart is poorer than the out-of-control ANOS (ARL) performance of the revised TS 𝐾 𝑋 ̅ chart. A table listing the minimum required number of incontrol Phase-I samples so that the in-control SDANOS(SDARL) value of the revised TS 𝐸 𝑋 ̅ chart is at most 10% of the corresponding in-control ANOS(ARL) value of the revised TS 𝐾 𝑋 ̅ chart is presented. This research focuses on the univariate TS 𝑋 ̅ chart with known and estimated process parameters. The development of a multivariate triple sampling T 2 chart with known and estimated process parameters can be explored in the future as many real-life situations involve multivariate data. Future researches can be conducted to enhance the shift detection speed of the revised TS 𝑋 ̅ chart by incorporating the auxiliary information concept, as well as considering the variable sampling interval feature. Furthermore, the TS technique can be integrated into Shewhart charts for the process variability, such as the R, S and 2 S charts.

WI  , 2 22 i WI  and 33 i WI  are equivalent to * 1 12 i ZI   , 2 22 * i ZI   and 3 3 i Z I
  * , respectively. These derivations are given in Appendices A1, A2, and A3, respectively. Furthermore, the formula derivation of 3 P in Equation ( 8) is explained in Appendix A4. The notations defined in Section 3.1 are

2 1 2 , r n n =+ 12 2 2 nn c n + = , 3 1 2 3 , r n n n = + + 1 2 3 3 3 n n n c n ++ = , (
)

1 1 1 0 0 0 i i Z n X     = -+ , ( ) 
2 2 2 0 0 0 i i Z n X     = -+ and 
( )

3 3 3 0 0 0 i i Z n X     = -+ . 1i Z , 2i
Z  and 3i Z  are standard normal random variables from their definitions.

A1. Mathematical derivation to show that

1 12 i WI  is equivalent to   1i 12 Z I  ( ) 1 12 Pr i WI  = ( ) ( ) 12 1 11 11 1 12
Pr Pr

i i L W L L W L -  - +   . But ( ) 12 1 11 Pr i L W L -  - = ( ) 1 0 1 12 11 0 Pr i Xn L L     - -  -       = 12 0 11 0 10 11 Pr i LL X nn     -  - -    = ( ) 1 1 0 0 12 0 1 0 1 11 0 1 0 0 0 1 0 1 Pr i nX L n n L n n n          -+   -  -  -     = ( ) 1 0 0 1 12 1 11 0 Pr i X n L n L       -+   -  -  -     = ( ) 12 1 1 11 1 Pr i L n Z L n   -+   -+ .
Similarly, it can be shown that ( )

11 1 12 Pr i L W L  = ( ) 11 1 1 12 1 Pr i L n Z L n   +   + .
Therefore, ( )

1 12
Pr i WI  = ( )

12 1 1 11 1 Pr i L n Z L n   -+   -+ + ( ) 11 1 1 12 1 Pr i L n Z L n   +   + (A1) From Equation (A1), it is clear that 1 12 i WI  is equivalent to 1 12 i Z I    , where * 12 12 1 11 1 , I L n L n    = -+ -+    11 1 12 1 , L n L n   ++  . (A2) A2. Mathematical derivation to show that 2 22 i WI  is equivalent to   2 22 i Z I  ( ) ( ) ( ) 2 22 22 2 21 21 2 22
Pr Pr Pr

i i i W I L W L L W L  = -  -+   . But ( ) 22 2 21 Pr i L W L -  - = ( ) 2 0 1 2 22 21 0 Pr i Y n n LL    -+ -  -    = 22 0 1 1 2 2 21 0 0 12 1 2 1 2 Pr ii L n X n X L nn n n n n      + -  - -     + ++   = ( ) ( ) ( ) 1 1 0 0 2 2 0 0 22 0 0 21 0 2 0 1 2 0 0 2 0 Pr i i n X n X L L r n n r              -+ + -+   -  -  -   +   = ( ) ( ) ( ) 22 1 2 21 1 2 1 1 2 2 1 2 2 2 Pr ii L n n L n n Z n Z n n n r r  + +    -  + - +  -     = 1 1 2 22 2 2 1 2 2 21 2 2 1 2 2 Pr i i i nn c L r c Z Z c L r c Z nn        - + -   - + -       .
Similarly, it can be shown that ( )

21 2 22 Pr i L W L  1 1 2 21 2 2 1 2 2 22 2 2 1 2 2 Pr i i i nn c L r c Z Z c L r c Z nn        = + -   + -       .
Therefore, ( )

2 22 Pr i WI  = 1 1 2 22 2 2 1 2 2 21 2 2 1 2 2 Pr i i i nn c L r c Z Z c L r c Z nn        - + -   - + -       + 11 2 21 2 2 1 2 2 22 2 2 1 22 Pr i i i nn c L r c Z Z c L r c Z nn       + -   + -    . (A3) From Equation (A3), it is clear that 2 22 i WI  is equivalent to 2 22 i ZI    , where * 1 1 22 2 22 2 2 1 2 21 2 2 1 2 2 , nn I c L r c z c L r c z nn      = - + - - + -      11 2 21 2 2 1 2 22 2 2 1 22 , nn c L r c z c L r c z nn     + - + -   . (A4)

A3. Mathematical derivation to show that 33

i WI  is equivalent to  3 3 * i Z I  ( ) ( ) 3 3 3 3 3 Pr Pr i i W I L W L  = -  ( ) 3 0 1 2 3 3 3 0 Pr i Y n n n L L     - + + = -        3 0 1 1 2 2 3 3 3 0 0 3 1 2 3 3 Pr i i i L n X n X n X L r n n n r      ++ = -  -   ++   ( ) ( ) ( ) ( ) 1 1 0 0 2 2 0 0 3 3 0 0 30 0 3 1 2 3 0 0 3 0 0 0 3 Pr i i i n X n X n X L r n n n L r              -+ + -+ + -+ -  =  ++   -   ( ) ( ) ( ) 33 1 1 2 2 3 3 3 1 2 3 1 2 3 1 2 3 3 Pr i ii nZ n Z n Z L L r n n n n n n n n n r      = - + + -     + + + + + +   ( ) ( 3 3 1 2 3 1 1 2 2 Pr ii r L n n n n Z n Z   = - + + + - -  33 i nZ ( ) ) 3 3 1 2 3 1 1 2 2 i i r L n n n n Z n Z    + + + - - 1 2 1 2 3 3 3 3 1 2 3 3 3 3 3 1 2 3 3 3 3 Pr i i i i i n n n n c L r c Z Z Z c L r c Z Z n n n n          = - + - -   + - -       . (A5)
From Equation (A5), it is clear that 33 i WI  is equivalent to 3

3 i Z I   * , where * 1 2 1 2 3 3 3 3 3 1 2 3 3 3 3 1 2 3 3 3 3 , n n n n I c L r c z z c L r c z z n n n n         = - + - - + - -       . (A6)
A4. Formulae derivation of 3 P in Equation (8)

In Section 3.1, it is known that 3 P = ( ) 

2 22 1 12 Pr ii W I W I  ( ) ( ) 1 1 12 2 22 1 1 1 1 Pr d i i i W wI W I W w f w w  =  =  . ( A7 

P in

Equations ( 22) and ( 24), respectively, are explained in Appendices B3 and B4. The notations defined in Section 3.2 are ( )

1 1 0 1 0 î i nX W   - = , ( ) 
2 2 0 2 0 i i nX Z   - = ˆ and 
( )

3 3 0 3 0   - = i i nX Z . 1 ˆi W , 2
ˆi Z and 3 ˆi Z are standard normal random variables from their definitions. 

B1. Mathematical derivation to show that ˆ2

i i i W I L W L L W L  = -  - +   .
But ( )

22 2 21 Pr i L W L -  - = ( ) 2 0 1 2 22 21 0 Pr î Y n n LL    -+ -  -    = 22 0 1 1 2 2 21 0 0 1 2 1 2 1 2 ˆPr i i L n X n X L nn n n n n     + -  -  -     + + +   ( ) ( ) 1 1 0 2 2 0 22 1 2 21 1 2 0 0 ˆPr ˆî i n X n X L n n L n n     - -   = - +  +  - +     1 2 1 1 2 1 22 1 2 21 1 2 2 2 2 ˆˆP r i i i n n n n n n L W Z L W n n n n   ++ = - -   - -       11 2 22 1 2 2 21 1 22 ˆˆP r i i i nn c L W Z c L W nn  = - -   - -    .
Similarly, it can be shown that ( )

21 2 22 Pr i L W L  1 1 2 21 1 2 2 22 1 2 2 ˆˆP r i i i nn c L W Z c L W nn   = -   -       .
Therefore, ( ) 

2 22 Pr i WI  = 1 1 2 22 1 2 2 21 1 2 2 ˆˆP r i i i nn c L W Z c L W nn   - -   - -       + 11 2 21 1 2 2 22 1 22 ˆˆP r i i i nn c L W Z c L W nn  -   -    . ( B1 
    = - - - -  - -         . (B2)
Note that 2 c is defined in Appendix A.

B2. Mathematical derivation to show that ˆ33

i WI  is equivalent to  3 3 ˆi Z I  (
) ( )

3 3 3 3 3 ˆPr Pr i i W I L W L  = -  ( ) 3 0 1 2 3 33 0 Pr î Y n n n LL    - + + = -     ˆ2 0 0 2 2 0 0 ˆˆ, Pr , i i Z F z Z z     = 0 2 0 2 2 Pr . i X z n     =  +       (B7) As 2i X  2 0 00 2 , N n     -  
, then Equation (B7) becomes ( ) )

2 ˆ2 0 0 ˆ, i Z Fz  ( ) 2 0 0 0 2 2 00 ˆ. n zn       =  - + +    2 22 n U Vz n mn   =  + +    , ( B8 
2 2 ˆ2 0 0 2 2 ˆ,. i Z n f z V U Vz n mn     =  + +    (B9)
B4. Formulae derivation of 𝑷 ̂𝟑 in Equation ( 24)

In Section 3.2, 3 P ( ) (
) 

1 1 12 2 22 1 1 0 0 1 0 0 1 ˆˆˆˆˆPr , , , i ii W wI W I W w f w dw      =  =  . ( B10 
i i i W I L W L L W L  = -  - +   . ( B11 
)
In Equation (B11) (see Appendix B1), ( ) 15) and ( 16), respectively).

22 2 21 Pr i L W L -  - ( ) ( ) 22 1 2 1 1 0 21 1 2 1 1 0 0 2 0 2 2 ˆP r i i i L n n W n L n n W n X n n       + + + +   = -   -     . As 2i X  2 0 00 2 , N n     -   , then ( ) 22 2 21 Pr i L W L -  - ( ) ( ) 2 0 0 2 0 0 2 0 1 2 22 1 2 0 0 2 0 ˆˆP r i i X n n n c L W n n          -+   -  = - + +          ( ) 0 0 2 0 1 2 21 1 2 0 0 2 ˆˆˆi n n c L W n n       -  - + +       = 2 1 2 21 1 2 2 ˆi n n U V c L W n mn n       - + +             2 1 2 22 1 2 2 ˆi n n U V c L W n mn n      - - + +             , as ( 
Similarly, it can be shown that ( )

21 2 22 Pr i L W L  = 2 1 2 22 1 2 2 ˆi n n U V c L W n mn n       + - +             2 1 2 21 1 2 2 ˆi n n U V c L W n mn n      - + - +            
.

Therefore, Equation (B11) becomes ( )

2 22 Pr i WI  = 2 1 2 22 1 2 2 ˆi n n U V c L W n mn n       + - +             2 1 2 21 1 2 2 ˆi n n U V c L W n mn n      - + - +             + 2 1 2 21 1 2 2 ˆi n n U V c L W n mn n       - + +             2 1 2 22 1 2 2 ˆi n n U V c L W n mn n      - - + +             . (B12)
By incorporating the results in Equations ( B11) and (B12) into Equation (B10) gives 3 Table 8. AARL() and SDARL() values for the optimal revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, and the percentage of a decrease in the AARL() value by using the TS 𝐸 𝑋 ̅ chart in place of the DS 𝐸 𝑋 ̅ chart when AARL(0) = 370, 𝑛 0  {5, 7} and m  {20, 40, 80} 

P = 1 12 2 1 2 22 1 2 2 wI n n U V c L w n mn n         + - +                ( ) 1 2 1 2 21 1 2 1 0 0 1 2 ˆ,d i W n n U V c L w n f w w mn n          - + - +              

  is assumed that the process standard deviation remains unchanged and  is the size of the standardized process mean shift. It is shown in Figure1that the revised TS 𝑋 ̅ chart has three levels of inspections. The warning and control limits in level 1 All the limits in the revised TS 𝑋 ̅

  , the process is out-of-control and the control flow proceeds to Step 11.

P

  formula in Equation (4) is not correct as the random variables 2i Y and 1i X are not independent and its associated double integral should not contain the product of their pdfs, i.e. if 2i Y and 1i X are independent). Furthermore, the ARL values computed by the authors of this manuscript based on 3 a P in Equation (4) are significantly different from those obtained by simulation.

Figure 2

 2 Figure2provides a flowchart that summarizes the above 11 steps optimization procedure of the revised TS 𝐾 𝑋 ̅ chart in minimizing the ANOS(𝛿) value.Insert Figure2here For illustration, 𝜏 1 = 370, 𝑛 0  {5, 7} and   {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2} are considered. Table3presents the values of the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 ,

  ) values, respectively, become smaller than 10% of the corresponding ANOS(0) and ARL(0) (= 200) values of the TS 𝐾 𝑋 ̅ chart. The value of m for any (ANOS(0), 𝑛 0 ) or (ARL(0), 𝑛 0 ) combination corresponding to the boldfaced SDANOS(0) (in Table

  Figure 3 provides a flowchart to explain the operation of the revised TS 𝐸 𝑋 ̅ chart in the Phase-II process by using the values of the aforementioned optimal parameters.Insert Figure3hereThe dataset for the Phase-II analysis which contains 14 sampling stages, where 1 n = and the computed control charting statistics of the revised TS 𝐸 𝑋 ̅ chart are given in

Fz

   in Equation (B8) with respect to 2 z , i.e.

(

  

Figure

  Figure 1. A graphical display of the TS X chart

  

  

  

  1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12

	where 2 P and 3 P denote the probabilities of taking the second and third samples, respectively.
	Consequently,								
	2 P	=	Pr	( W 1 i		12 I	)						
			(	12			1	) (	11	1	) (	11	1	) (	12	1	)
	𝐿 21 , 𝐿 22 , 𝐿 3 ) = (2, 2, 1, 1.47, 3.00, 3.30, 1.80, 2.87) is considered, ARL(0) = 181.96 is obtained
	for the revised TS 𝐾 𝑋 ̅ chart using the model proposed in this section, where this ARL(0) value
	is close to that simulated using SAS (ARL(0) = 182.41). Furthermore, the ARL(0) (= 181.96)
	value computed based on the proposed model falls in the 95% confidence interval for ARL(0),
	i.e. (179.15, 184.51). It is obvious that, for this example, the ARL(0) (= 370.40) value reported
	in He, Grigoryan, and Sigh (2002) is incorrect as it is different from the simulated ARL(0) value
	of 182.41. Moreover, the ARL(0) (= 370.40) value in He, Grigoryan, and Sigh (2002) does not
	fall in the corresponding 95% confidence interval for ARL(0), i.e. (179.15, 184.51). The
	findings explained in this paragraph show that the formula provided by He, Grigoryan, and Sigh
	(2002) in computing the ARL is incorrect.		
											Insert Table 2 here
		The average sample size (ASS) at sampling stage i of the revised TS 𝐾 𝑋 ̅ chart is computed
	as												
										ASS = 1 n n P n P 2 2 3 3 , ++	(6)

  3. Initialize 𝐿 12 = 2.40, 𝐿 11 = 0.50 and 𝐿 22 = 2.50. Then proceed to Step 7. Step 4. If 2.40 ≤ 𝐿 12 ≤ 5.50, increase 𝐿 12 by 0.01 and proceed to Step 7. Otherwise, return to Step 2. Step 5. If 0.50 ≤ 𝐿 11 ≤1.70, increase 𝐿 11 by 0.01 and proceed to Step 7. Otherwise, reset 𝐿 11 = 0.65 and return to Step 4. Step 6. If 2.50 ≤ 𝐿 22 ≤ 5.20, increase 𝐿 22 by 0.01 and proceed to Step 7. Otherwise, reset 𝐿 22

  Table 3 presents the values of the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 ,𝐿 3 ) and the corresponding ANOS(δ) values of the revised TS 𝐾 𝑋 ̅ chart for the 𝑛 0 and 𝛿 values ) value among all parameter combinations that give ANOS(0) = 𝜏 1 (= 370). Table3 alsogives the ANOS(δ) values for the optimal known process parameters based double sampling 𝑋 ̅

considered. For example, when 𝑛 0 = 7 and 𝛿 = 1, the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) =

(6, 3, 3, 1.34, 2.61, 0.2064, 2.61, 2.5337) 

produce the smallest ANOS(1) (= 9.99

Table 4

 4 presents the values of the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) in minimizing the ARL(𝛿) value of the revised TS 𝐾 𝑋 ̅ chart for 2  = 370 and the same 𝑛 0 and 𝛿 values considered in Section 4.1.1. For example, when 𝑛 0 = 7 and 𝛿 = 1, the optimal parameters

(𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) =

(5, 5, 12, 1.11, 5.14, 1.7626, 4.77, 2.8000

) produce the smallest ARL(1) (= 1.21) value, among all parameter combinations that give the value ARL(0) = 2

  Table5provides the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐸 𝑋 ̅ chart that minimizes the AANOS() value for the shift size , when m  {20, 40, 80}, 𝛿  {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2}, 𝑛 0  {5, 7} and 𝜏 3 = 370. The AANOS(𝛿) and SDANOS(𝛿) values computed using the optimal parameters in Table5are given in Table6. For illustration, consider 𝛿 = 1, 𝑛 0 = 5 and m = 20. For this case, the optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) = (4, 3, 3, 1.09, 2.88, 1.8424, 2.72, 2.5852) of the revised TS 𝐸 𝑋 ̅ chart are obtained (see Table5) and using these optimal parameters result in the smallest AANOS(1) (= 10.63) value and the corresponding SDANOS(1) value is 2.60 (see Table6). Table 6 also provides the AANOS(𝛿)

Table 6

 6 shows a comparison of the AANOS(δ) and SDANOS(δ) values between the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, for m  {20, 40, 80, ∞}. It is obvious in Table6that the revised TS 𝐸
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𝑋 ̅ chart outperforms the DS 𝐸 𝑋 ̅ chart, in terms of the SDANOS(δ) criterion, for almost all shift sizes , when the process parameters are estimated. This is because the revised TS 𝐸 𝑋 ̅ chart has a lower SDANOS(δ) value than the DS 𝐸 𝑋 ̅ chart, for the same value of . For example, when m = 20, 𝑛 0 = 5 and   {0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.5, 2}, SDANOS(δ)  {189.42, 145.𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, respectively, where almost all the SDANOS(δ) values of the former are lower than that of the latter. When comparison is made in terms of the AANOS(δ) criterion, it is found that the revised TS 𝐸 𝑋 ̅ chart prevails over the DS 𝐸 𝑋 ̅ chart for 0.1    1. For instance, consider m = 20 and 𝑛 0 = 5. For this case, AANOS(δ)  {308.79,

  Table6is that as m increases, the AANOS(δ) values of both the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts converge to the ANOS(δ) values of their known process parameters counterparts in Table3. As an example, when 𝑛 0 = 5,  = 0.1 and m  {20, 40, 80}, AANOS(0.1)  {308.79, 291.05, 276.49} and {314.22, 300.32, 289.06} for the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts, respectively, where these values converge to the respective

	instance, when 𝑛 0 = 5, (AANOS(0.3), SDANOS(0.3))  {(105.17, 83.05), (88.33, 49.91),
	(80.36, 24.97)}, for the revised TS 𝐸 𝑋 ̅ chart, when m  {20, 40, 80}, where it is seen that the
	AANOS(0.3) and SDANOS(0.3) values vary with m for a fixed value of 𝑛 0 . Therefore, the
	AANOS(𝛿) and SDANOS(𝛿) values are random variables and their values depend on m.

ANOS(0.1) values of the corresponding revised TS 𝐾 𝑋 ̅ (= 253.41) and DS 𝐾 𝑋 ̅ (= 270.17) charts in Table

3

, as m increases. It is also observed in Table

6

that the AANOS(𝛿) and SDANOS(𝛿) performances of the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts improve as 𝑛 0 increases. For example, for the revised TS 𝐸 𝑋 ̅ chart, when m = 40, (AANOS(0.2), SDANOS(0.2)) = (164.16, 88.12) for 𝑛 0 = 5 and these values decrease to (AANOS(0.2), SDANOS(0.2)) = (143.83, 65.76) as 𝑛 0 increases to 7. Similarly, for the DS 𝐸 𝑋 ̅ chart, for the same m and  combination, the (AANOS(0.2), SDANOS(0.2)) values decrease from (180.09, 94.79) to (157.24, 70.38) as 𝑛 0 increases from 5 to 7. The AANOS(𝛿) and SDANOS(𝛿) values in Table 6 for the revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts change as the number of the Phase-I samples, m changes, even though 𝑛 0 remains constant. For According to Jones and Steiner (2012); Gandy and Kvaløy (2013) and Zhang, Megahed, and Woodall (

  ) = 200 are (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 12 𝐿 21 , 𝐿 22 , 𝐿 3 )  7}, while those adopted from Table 3 when ANOS(0) = 370 are (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 ,

	{(4, 2, 2, 0.95, 2.43, 1.0734, 2.50, 2.6518), (5, 3, 4, 0.94, 2.35, 0.5237, 2.6785)} for 𝑛 0  {5,
	𝐿 3 ) = {(4, 2, 2, 0.71, 2.65, 2.0490, 2.76, 2.7871) and (5, 3, 8, 1.21, 2.47, 0.6710, 2.60, 3.4207)}

  Table10gives the AARL(0) and SDARL(0) values of the revised TS 𝐸 𝑋 ̅ chart, for m  {50, 150, 250, …, 750, 800, …, 1150, ∞}, computed using the optimal parameters of the revised TS 𝐾 𝑋 ̅ chart in minimizing AARL(1.5), based on 𝑛 0  {5, 7} and ARL(0)  {200, 370}. The optimal parameters computed for the revised TS 𝐾 𝑋 ̅ chart when ARL(0) = 200 are (𝑛 1 , 𝑛 2 , 𝑛 3 ,  {5, 7}, while those adopted from Table4when ARL(0) = 370 are (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) = {

	𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 )  {(4, 2, 5, 1.06, 4.79, 1.6369, 4.45, 2.7015), (6, 3, 5, 1.19, 4.44, 1.7979,
	4.45 2.7183)} for 𝑛 0

  𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 , 𝐿 21 , 𝐿 22 , 3 ) = (4, 3, 3, 1.09, 2.88, 1.8424, 2.72, 2.5852). These optimal parameters are used in the Phase-II process monitoring.

Table 11 .

 11 The control charting statistics, 1

	ˆi W , 2 ˆi W and 3 ˆi W , for these 14 sampling stages in

Ŵ = 1.7079 is computed. As 1(14) Ŵ  12 I = [-2.

88, -1.09)  (1.09, 2.88], a second sample of size 𝑛 2 = 3 is taken at inspection level 2 of the same sampling stage. Ŵ = 2.5204  22 I = [-2.72, -1.8424)  (1.8424, 2.72] is obtained, hence, a third sample of size 𝑛 3 = 3 is taken at inspection level 3 of the same sampling stage. It follows that

Table 3 .

 3 Optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) and the corresponding ANOS() values for the revised TS 𝐾 𝑋 ̅ chart, and ANOS() values for the optimal DS 𝐾 𝑋 ̅ chart with the percentage of a decrease in the ANOS() value by using the revised TS 𝐾 𝑋 ̅ chart in place of the DS 𝐾 𝑋 ̅ chart

	𝑛 0 δ	𝑛 1 𝑛 2 𝑛 3 𝐿 11	𝐿 12	TS 𝐾 𝑋 ̅ 𝐿 21	𝐿 22	𝐿 3	DS 𝐾 𝑋 ̅ Decrease (%) ANOS() ANOS()
		0.1 3 5 10 1.20 4.27 1.3099 4.00 2.0614	253.41	270.17	6.20
		0.2 3 5 10 1.20 4.69 1.3071 3.53 2.0654	130.17	147.41	11.70
		0.3 3 5 10 1.20 4.30 1.3063 3.49 2.0667	72.79	82.41	11.67
	5	0.5 3 5 9 1.15 4.04 1.3256 2.77 2.2096 0.7 3 5 5 0.97 3.35 1.5464 2.69 2.3864	32.09 18.50	34.65 25.48	7.39 27.39
		1 4 3 3 1.06 2.88 1.8102 2.71 2.5699	10.13	10.48	3.34
		1.5 4 2 2 0.71 2.65 2.0490 2.76 2.7871	5.34	5.33	-0.19
		2 3 3 8 1.29 2.61 0.1008 2.81 2.8916	3.69	3.60	-2.50
		0.1 4 7 14 1.21 4.36 1.1343 3.49 1.8969	239.09	254.75	6.15
		0.2 5 7 14 1.39 4.20 1.3982 2.75 1.8393	121.28	131.47	7.75
		0.3 4 7 14 1.20 4.20 1.1299 2.80 1.9574	66.97	73.25	8.57
	7	0.5 5 5 7 1.10 3.32 1.3887 2.70 2.2024 0.7 6 4 3 1.23 2.83 1.7553 2.62 2.3436	31.28 17.98	32.76 18.96	4.52 5.17
		1 6 3 3 1.34 2.61 0.2064 2.61 2.5337	9.99	10.39	3.85
		1.5 5 3 8 1.21 2.47 0.6710 2.60 3.4207	5.88	5.44	-8.09
		2 4 3 14 1.26 2.41 0.3336 2.76 3.6524	4.22	3.70	-14.05

Table 4 .

 4 Optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 and the corresponding ARL() values for the revised TS 𝐾 𝑋 ̅ chart based on ARL(0) = 370, and ARL() values for the optimal DS 𝐾 𝑋 ̅ , AS3 𝑋 ̅ and AS2 𝑋 ̅ charts with the percentage of a decrease in the ARL() value by using the revised TS 𝐾 𝑋 ̅ chart in place of the competing charts

	𝑛 0 δ	𝑛 1 𝑛 2 𝑛 3 𝐿 11 𝐿 12	TS 𝐾 𝑋 ̅ 𝐿 21	𝐿 22	DS 𝐾 𝑋 ̅ 𝐿 3 ARL() ARL() Decrease (%)	AS3 𝑋 ̅ ARL() Decreas e (%)	AS2 𝑋 ̅ Decrease ARL() (%)
		0.1 4 5 10 1.54 4.84 1.7015 4.60 2.6813 199.65 218.00	8.42	293.07	31.88	293.39	31.95
		0.2 4 5 10 1.54 4.94 1.7015 4.63 2.6812 72.46	86.40	16.13	162.65	55.45	163.97	55.81
		0.3 4 5 10 1.53 5.17 1.7317 4.42 2.6802 29.09	36.30	19.86	77.58	62.50	78.63	63.00
	5	0.5 3 5 10 1.11 4.94 1.5506 3.94 2.7784 7.04 0.7 3 5 10 1.09 5.05 1.6058 4.75 2.7695 2.84	9.20 3.60	23.48 21.11	18.21 6.17	61.34 53.97	18.30 6.17	61.53 53.97
		1 3 4 10 0.94 5.13 1.7209 4.79 2.7773 1.46	1.70	14.12	2.57	43.19	2.58	43.41
		1.5 3 3 7 0.74 4.94 1.6076 4.58 2.8820 1.05	1.10	4.55	1.43	26.57	1.46	28.08
		2 4 1 5 0.92 4.73 1.4838 4.42 2.9483 1.00	1.00	0	1.08	7.41	1.10	9.09
		0.1 5 7 14 1.34 4.93 1.5999 4.86 2.7369 165.38 191.48	13.63	268.26	38.35	268.86	38.49
		0.2 5 7 14 1.33 4.91 1.6284 4.65 2.7360 50.38	66.48	24.22	124.29	59.47	125.89	59.98
		0.3 5 7 14 1.33 4.91 1.6284 4.85 2.7359 18.35	25.86	29.04	50.58	63.72	51.35	64.26
	7	0.5 5 7 14 1.31 5.13 1.6857 4.72 2.7328 4.39 0.7 4 7 14 1.05 4.93 1.5658 4.65 2.7768 1.98	6.11 2.48	28.15 20.16	10.43 3.89	57.91 49.10	10.44 3.89	57.95 49.10
		1 5 5 12 1.11 5.14 1.7626 4.77 2.8000 1.21	1.32	8.33	1.95	37.95	1.96	38.27
		1.5 5 4 10 0.91 3.38 1.8386 3.40 3.0284 1.01	1.02	0.98	1.18	14.41	1.20	15.83
		2 6 4 10 1.24 3.25 2.3497 3.11 3.9101 1.00	1.00	0	1.01	0.99	1.02	1.96

Table 5 .

 5 Optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐸 𝑋 ̅ chart when AANOS(0) = 370, 𝑛 0  {5, 7} and m  {20, 40, 80}

	m δ	𝑛 0 = 5 𝑛 1 𝑛 2 𝑛 3 𝐿 11 𝐿 12 𝐿 21 𝐿 22	𝐿 3	𝑛 0 = 7 𝑛 1 𝑛 2 𝑛 3 𝐿 11 𝐿 12 𝐿 21 𝐿 22	𝐿 3
		0.1 3 5 10 1.24 4.25 1.3554 3.51 2.1646	4 7 14 1.21 4.25 1.2647 3.31 2.0137
		0.2 3 5 10 1.23 4.25 1.3796 3.41 2.1668	4 7 14 1.20 4.28 1.2838 3.15 2.0227
		0.3 3 5 10 1.23 4.25 1.3747 3.30 2.1728	4 7 14 1.20 4.34 1.2630 2.91 2.0552
	20	0.5 3 5 10 1.21 3.91 1.3851 2.84 2.2561 0.7 4 4 5 1.38 3.10 1.5982 2.75 2.3978	3 7 11 1.20 3.75 0.1295 2.59 2.1806 5 5 4 0.95 2.90 1.7046 2.67 2.4089
		1 4 3 3 1.09 2.88 1.8424 2.72 2.5852	6 2 2 0.85 2.70 1.5919 2.70 2.4939
		1.5 4 2 2 1.10 2.69 0.6334 2.70 2.7922	5 3 4 0.94 2.60 0.7495 2.54 2.9145
		2 3 2 6 1.12 2.60 0.1356 2.70 3.4041	3 3 11 1.01 2.50 0.1370 2.59 3.7736
		0.1 3 5 10 1.22 4.55 1.3341 3.63 2.1289	4 7 14 1.20 4.22 1.2292 3.42 1.9680
		0.2 3 5 10 1.22 4.62 1.3338 3.61 2.1292	4 7 14 1.19 4.62 1.2496 3.20 1.9761
		0.3 3 5 10 1.22 4.24 1.3256 3.30 2.1412	4 7 14 1.18 4.31 1.2508 2.85 2.0221
	40	0.5 3 5 10 1.20 3.95 1.3399 2.80 2.2384 0.7 4 4 4 1.30 3.15 1.6871 2.76 2.3939	3 7 9 0.82 3.90 1.2441 2.67 2.2364 6 3 4 1.18 2.91 1.6620 2.66 2.3780
		1 4 3 3 1.10 2.90 1.7262 2.73 2.5807	6 2 2 0.75 2.68 1.8874 2.65 2.4739
		1.5 4 2 4 1.35 2.70 0.3648 2.70 2.8059	5 3 4 1.03 2.48 0.1157 2.65 3.0472
		2 3 3 8 1.25 2.60 0.4394 2.80 3.0222	3 3 11 1.01 2.47 0.1154 2.64 3.7909
		0.1 3 5 10 1.20 4.74 1.3473 3.55 2.1028	4 7 14 1.20 4.66 1.1954 3.41 1.9386
		0.2 3 5 10 1.21 4.45 1.3209 3.61 2.1033	4 7 14 1.20 4.64 1.1865 3.14 1.9513
	80	0.3 3 5 10 1.20 4.45 1.3393 3.24 2.1171 0.5 4 5 10 1.54 3.34 1.6167 2.58 2.1562	4 7 14 1.20 4.31 1.1783 3.00 1.9654 3 7 9 1.04 3.94 0.4830 2.60 2.1911
		0.7 4 4 4 1.30 3.15 1.6273 2.73 2.3977	6 3 4 1.20 2.91 1.5759 2.65 2.3726
		1 3 4 6 1.25 2.90 0.1142 2.59 2.6476	6 2 2 0.75 2.67 1.8577 2.65 2.4736
		1.5 4 4 10 1.29 2.69 1.9924 2.60 3.6364	5 3 4 1.03 2.68 0.1457 2.48 2.8299
		2 3 3 8 1.20 2.70 0.6610 2.70 2.8553	3 3 11 1.01 2.47 0.1056 2.64 3.6599

Table 6 .

 6 AANOS() and SDANOS() values for the optimal revised TS 𝐸 𝑋 ̅ and DS 𝐸 𝑋 ̅ charts with the percentage of reduction in AANOS() when AANOS(0) = 370, 𝑛 0  {5, 7} and m  {20, 40, 80}

	m = 20
	𝑛 0 δ

Table 7 .

 7 Optimal parameters (𝑛 1 , 𝑛 2 , 𝑛 3 , 𝐿 11 , 𝐿 12 𝐿 21 , 𝐿 22 , 𝐿 3 ) of the revised TS 𝐸 𝑋 ̅ chart when AARL(0) = 370, 𝑛 0  {5, 7} and m  {20, 40, 80}

	m δ	𝑛 0 = 5

Table 11 .

 11 An implementation of the revised TS 𝐸 𝑋 ̅ chart on flow width measurements (in microns) for the Phase-II hard bake process

	Sampling	Inspection level 1	Inspection level 2	Inspection level 3	Inspection level	Inspection level	Inspection level
	stage, i	(𝑛 1 = 4) 𝑋 1𝑖,1 𝑋 1𝑖,2 𝑋 1𝑖,3	(𝑛 2 = 3) 𝑋 1𝑖,4 𝑋 2𝑖,1 𝑋 2𝑖,2 𝑋 2𝑖,3 𝑋 3𝑖,1 𝑋 3𝑖,2 𝑋 3𝑖,3 (𝑛 3 = 3)	𝑋 ̅ 1𝑖	1	𝑊 ̂1𝑖	𝑋 ̅ 2𝑖	2 𝑌 2𝑖	𝑊 ̂2𝑖	𝑋 ̅ 3𝑖	3 𝑌 3𝑖	𝑊 ̂3𝑖
	1	1.4483 1.5458 1.4538 1.4303		1.4696 -0.3079					
	2	1.6206 1.5435 1.6899 1.5830 1.3358 1.4187 1.5175		1.6093 1.5303 1.4240 1.5299 0.6423		
	3	1.3446 1.4723 1.6657 1.6661		1.5372 0.5816					
	4	1.5454 1.0931 1.4072 1.5039 1.5264 1.4418 1.5059		1.3874 -1.3895 1.4914 1.4320 -1.0618		
	5	1.5124 1.4620 1.6263 1.4301		1.5077 0.1934					
	6	1.2725 1.5945 1.5397 1.5252		1.4830 -0.1316					
	7	1.4981 1.4506 1.6174 1.5837		1.5375 0.5855					
	8	1.4962 1.3009 1.5060 1.6231		1.4816 -0.1500					
	9	1.5831 1.6454 1.4132 1.4603		1.5255 0.4276					
	10	1.5808 1.7111 1.7313 1.3817 1.3135 1.4953 1.4894		1.6012 1.4237 1.4327 1.5290 0.6266		
	11	1.4596 1.5765 1.7014 1.4026		1.5350 0.5526					
	12	1.2773 1.4541 1.4936 1.4373		1.4156 -1.0184					
	13	1.5139 1.4808 1.5293 1.5729		1.5242 0.4105					
	14	1.6738 1.5048 1.5651 1.7473 1.6128 1.8089 1.5513 1.8250 1.4389 1.6558 1.6228 1.7079 1.6577 1.6378 2.5204 1.6399 1.6384 3.0250
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where *
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I is given in Equation (A2).

Appendix B

This appendix explains the mathematical derivations to show that 2

( )

( )

From Equation (B3), it is clear that 3

From Equation (B4), we have ( )
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Note that 3 r and 3 c have been defined in Appendix A.

B3. Formulae derivation of 𝒇 𝒁 ̂𝟐𝒊 (𝒛 𝟐 | ̂𝟎,  ̂𝟎) in Equation (22)

From definition, ( )

, where

Note that 2 c is defined in Appendix A. This completes the formulae derivation of 3 P in Equation ( 24).

Table 1 A summary of the statistics used in the 11 steps procedure in Section 2 and their distributions Table 2. ARL(0) values of the (i) TS 𝐾 𝑋 ̅ chart adopted from He, Grigoryan, and Sigh ( 2002), (ii) revised TS 𝐾 𝑋 ̅ chart computed using MATLAB based on the model in Section 3.1, (iii) revised TS 𝐾 𝑋 ̅ chart simulated using SAS; and the 95% confidence interval for ARL(0) of the revised TS 𝐾 𝑋 ̅ chart simulated using SAS; all obtained using the parameters in He, Grigoryan, and Sigh ( 2002)
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