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DAROD: A Deep Automotive Radar Object Detector on Range-Doppler
maps

Colin Decourt!23#, Rufin VanRullen!2, Didier Salle!*, Thomas Oberlin '3

Abstract—Due to the small number of raw data automotive
radar datasets and the low resolution of such radar sensors,
automotive radar object detection has been little explored with
deep learning models in comparison to camera and lidar-
based approaches. However, radars are low-cost sensors able
to accurately sense surrounding object characteristics (e.g.,
distance, radial velocity, direction of arrival, radar cross-
section) regardless of weather conditions (e.g., rain, snow, fog).
Recent open-source datasets such as CARRADA, RADDet or
CRUW have opened up research on several topics ranging
from object classification to object detection and segmentation.
In this paper, we present DAROD, an adaptation of Faster
R-CNN object detector for automotive radar on the range-
Doppler spectra. We propose a light architecture for features
extraction, which shows an increased performance compare to
heavier vision-based backbone architectures. Our models reach
respectively an mAP@0.5 of 55.83 and 46.57 on CARRADA and
RADDet datasets, outperforming competing methods.

I. INTRODUCTION

In the last decade, the increasing number of advanced
driver-assistance systems (ADAS) has led to an increase in
the number of sensors embedded in the car including camera,
lidar and radar. These sensors together enable the vehicle to
depict the surrounding environment and adapt its behaviour
depending on it. Nowadays, most intelligent vehicles use
camera and lidar for ADAS applications as they provide
high-resolution output and high-performance in 3D object
detection and classification tasks. Because of poor angular
resolution, radar sensors have been neglected for object
classification and detection tasks, and used mostly for blind
spot detection or automatic cruise control. Yet, radar sensors
seem particularly suited for critical and real-time automotive
applications such as automatic emergency braking, because
they are not hampered by light or weather conditions and
they provide information such as range and velocity of the
surrounding objects. Paired with camera and lidar sensors,
radar could bring redundancy at sensors level to improve
safety in the vehicles. In this paper we propose a new deep
learning model for object detection and classification using
radar data.
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Object detection and classification is one of the main
tasks in computer vision, for which deep neural networks
have achieved a major breakthrough in the past decade.
Such approaches have been successfully applied to lidar and
camera [1], [2] but the dearth of publicly available annotated
radar datasets has slowed down research in object detection
and segmentation from radar data. As illustrated in Figure 1,
radar data can be represented either as a target lists (point
clouds) or as raw data tensors (Range-Doppler or Range-
Angle-Doppler maps). Target lists, which are the default
radar data format, contain very low level information such
as the position of the targets all around the vehicle, their ve-
locities and their radar cross-sections. As an example, target
lists can be used as input to deep neural network for object
classification [3] or object segmentation [4]. However, the
filtering techniques applied to the radar signal to obtain target
lists lead to a loss of useful information contained in raw data
tensors. Instead, raw data tensors and deep neural networks
can be used to replace and improve traditional techniques
for object detection, classification and segmentation without
losing information. Recently, radar datasets and challenges
such as CARRADA [5], RADDet [6] or CRUW [7], where
radar data is provided as raw data tensors, have opened
up research on new deep learning methods for automotive
radar ranging from object detection [6], [8], [9] to object
segmentation [10].

In this work, we propose a new model for object detection
and classification using Faster R-CNN [11] algorithm based
only on Range-Doppler (RD) maps. The use of RD maps
instead of Range-Angle-Doppler (RAD) tensors is motivated
by the fact that RAD tensors are more computationally
demanding to produce for radar Micro Controller Units
(MCUs). We propose a lightweight backbone for Faster R-
CNN object detection, adapted to range-Doppler data. We
design our model to handle the complexity of the RD maps
and the small size of radar objects while trying to keep
the processing pipeline as efficient as possible. Experiments
on CARRADA and RADDet datasets show that our model
can help improving object detection and classification per-
formance on radar data and outperforms competing methods.

The paper is organised as follows. Section II presents
the related work and some background on radar processing.
Section III then introduces our model. The experiments and
results are gathered in Section IV, while Section V discusses
and concludes the paper.
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processing operations and the green box represents the post-processing.

II. BACKGROUND AND RELATED WORK

A. Object detection for computer vision

In computer vision, the object detection task has been
widely explored over the past few years thanks to many
challenges such as Pascal VOC [12], COCO [13] or more
specifically to ADAS application, KITTI [14]. Object detec-
tors can be split into two categories: single-stage detectors
and two-stages detectors. Single-stage detectors such as
YOLO [15], SSD [16] or Retina-Net [17] are architectures
which directly predict a bounding box and a class given
an input image. However, this simplicity results in lower
performance than two-stage detectors such as Faster R-CNN
[11], R-FCN [18] or FCOS [19]. Two-stage detectors are
generally composed of a region proposal network (RPN)
that first proposes areas in the input image that potentially
contain an object and then predicts a bounding box and a
class for each of these regions. This two-step approach allows
two-stage detectors to be more accurate than single-stage
detectors but often slower.

B. Radar pipeline

Radar is an active sensor that transmits electromagnetic
wave signals, which get reflected by objects in their field
of view [20]. By capturing the reflected signal, a radar
system can determine the range, velocity and angle of the
objects. For automotive applications, most radars transmit
a frequency-modulated continuous-wave signal (FMCW) in
order to measure range as well as angle and velocity. An
FMCW radar emits chirp signal, a signal whose instanta-
neous frequency increases or decreases linearly with time.
Usually, an FMCW radar receives N samples of M chirps
signal over T, antennas resulting in a N x M x T, output
tensor containing the received signal in the time domain. We
called this tensor the Analog to Digital Converted (ADC)
signal.

As illustrated in Figure 1, the distance information is
extracted by performing a fast Fourier transform (FFT) over
the ADC samples within one chirp. The velocity information
is extracted by performing a second FFT over the chirp
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Ilustration of the radar signal processing pipeline. Orange boxes denote range and Doppler processing operations, blue boxes correspond to angle

index to estimate the phase difference between chirps and
deduce the Doppler shift, resulting in a range-Doppler spec-
trum. Finally, a 3" FFT (or angle FFT) or more advanced
algorithms is applied in the antenna dimension to extract
the angle information and finally generate Range-Angle-
Doppler tensor (or RAD cube). Because the RAD tensor is
too intensive to compute, targets are usually detected on the
RD spectrum using peak detection algorithms such as CFAR
[21]. Then, radar reflections are obtained using angle FFT or
beamforming methods and some post-processing steps (ego-
motion compensation, Kalman filtering).

C. Deep learning for automotive radar

Many research works have proposed to leverage the power
of deep learning to improve some parts of the radar process-
ing chain, ranging from target detection and classification to
direction of arrival (DoA) estimation.

1) Reflection-based methods: In the automotive industry,
the most common representation of radar data is a list
of targets around the vehicle. Researchers widely use this
representation for target recognition [22], [3], segmentation
[4], [23], [24], ghost target detection [25] or 3D radar-camera
object detection [26]. The sparsity of radar reflections allows
development of lightweight, efficient and high-performance
neural networks running on edge-computing. Nonetheless,
this sparsity, due to the filtering techniques applied to the
signal and the post-processing steps presented in Figure 1,
results in a loss of valuable information contained in the raw
radar signal.

2) Raw data-based methods: To overcome this, several
works consider lower level representations, mainly the RD,
RA or RAD tensors. Because RAD tensors aggregate both
distance, velocity and angle information together, there is
an increasingly number of works using this representation.
Major et al. [27] and Gao et al. [28] propose similar
architectures, merging each view into a single 2D tensor to
detect and identify targets in RA maps. Paffly et al. [29]
exploit the RAD view to detect and classify road-user objects
using the radar data, while enriching the radar detection
with the RAD cube. In [10], Ouaknine et al. use the RAD



cube representation to segment objects both in the RA and
the RD maps using lightweight segmentation architecture
which exploit the temporal information. 3D object detection
is also explored by Zhang et al. in [6] using a YOLO-like
architecture.

Since RA maps provide angle information, thus allowing
to detect targets around the car, it has been explored ex-
tensively for different tasks. Patel et al. [30] extract regions
of interest (ROI) from RA maps to classify targets. In a
similar manner, Akita et al. [31] simultaneously track and
classify targets using extracted ROI from RA maps. Recently,
as part of the CRUW challenge [7] new object detection and
classification architectures were proposed on RA maps such
as [32] and [9].

The range-Doppler spectrum has been considered more
recently in the following works. Perez et al. [33] use con-
volutional neural networks (CNN) for vulnerable road user
classification. Similarly, Khalid et al. [34] use CNN and long-
short term memory networks for target identification. [35]
and [36] use YOLO-like architectures for object detection
and classification. However, squaring and up-sampling steps
in [35] might result in loss of information in the Range-
Doppler spectrum. Finally Ng et al. [37] propose a U-Net-
like architecture to replace CFAR algorithm, thus detecting
targets.

As mentioned in section II-B, although RAD tensors
provide the most informative data, they are cumbersome
to compute for radar processors. In the purpose of object
detection, RA views are not adequate representations either,
since they do not account for Doppler which is a crucial
information. Besides, RA maps usually suffer from a poor
angular resolution caused by a small number of antennas
in the FMCW radar. Instead, we hypothesise that the RD
spectrum contains enough information for both detection and
classification tasks in automotive radar. Angular information
might be computed for each target afterwards in a post-
processing step, either using standard techniques or with Al
as done by Brodeski et al. in [38].

III. METHODOLOGY

In this section we present a lightweight Faster R-CNN
architecture for object detection in Range-Doppler spectra.
Given a RD map as input, we use a convolutional neural
network to learn relevant features, as in Faster R-CNN.
Following the features extraction, a region proposal network
(RPN) is used to propose regions in the spectrum that con-
tain potential targets. To generate region proposals, a small
network is slid over the learned convolutional feature map.
For each point in the feature map, the RPN learns whether
an object is present in the input image at its corresponding
location and estimates its size. This is done by placing a
set of anchors on the input image for each location on the
output feature map. These anchors indicate possible objects
in various sizes and aspect ratios at this location. We invite
the reader to refer to the Faster-RCNN paper [11] for more
information about RPN and anchors. Next, the bounding box
proposals from the RPN are used to pool features from the
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Fig. 2. Model architecture (lightweight Faster R-CNN architecture)

backbone feature map. These features are used to classify
the proposals either as background or object and to predict a
bounding box using two sibling fully connected layers. This
second part is named Fast-RCNN. We depict this pipeline in
Figure 2b.

We show in Figure 3 two RD maps with radar signatures
of some objects in the captured scene of RADDet dataset.
Even though those RD maps seem complex, the information
they contain remains of low complexity, contrary to camera
images which are bigger and more diverse in terms of
textures, orientations, geometry, lighting, etc. Although being
more noisy, RD maps have fixed orientation and their objects
exhibit more similar patterns and shapes.

To account for those differences, we modify Faster R-
CNN to include a lighter backbone and a modified RPN. Our
backbone is derived from the VGG architecture [39] and con-
tains 7 convolutional layers. Though residual networks are
state-of-the-art architectures for features extraction, residual
connections increase the complexity of the model and are
difficult to implement in hardware. Figure 2a depicts this
lightweight backbone architecture. To keep the processing
pipeline as simple and efficient as possible, we decide to
not resize the spectrum and to process it as it is, resulting
in an input of size 256 x 64. The backbone is composed of
two blocks with two 2D convolutions and one block with
three 2D convolutions. Following each convolutional block,
we apply a 2D max pooling operation to down-sample the
size of the input. We down-sample the Doppler dimension
only by a factor of two after the first block, to minimise loss
of the Doppler information, which is useful for classification.
Then, we obtain a feature map size 32 x 32 which was found
to lead to the best performance. The number of channels for
each block of convolutions are respectively set to 64, 128
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Fig. 3. Two RD maps of RADDet dataset, along with the bounding boxes
around objects and their zoom.

and 256.

The next step is to defined the anchors used by the RPN
so as to capture the diversity of shape and size in the objects.
In this work we use 3 scales and 3 aspect ratios for anchors
generation, yielding to 9 anchors at each position in the
feature map. The mean size of objects in RD maps is 8 x 8,
we use this size as reference for anchors scale. For smaller
and bigger objects we respectively use scale of 4 and 16
resulting in anchors scales of size 4, 8 and 16. Additionally,
we set aspect ratios to %, % and % Contrary to Faster R-CNN
paper where aspect ratios are set to 1, 2 and % we choose
aspect ratios where denominators are multiple of 4 to account
for the % ratio between input height and width. To reduce the
computational complexity of the model, we don’t consider
all the combinations of scales and ratios. We only consider
combinations containing scale 8 and ratio % resulting in less
anchors generated per image (5 at each position). We find
these settings provide the best performances.

Since the RD spectrum is not translation invariant (the
velocity is a characteristic of the target), we decide to add
this information to the feature vector used for classification
and bounding box regression. This feature vector corresponds
to the flattened region proposed by the RPN. We compute
the velocity by extracting the position of the pixel with
the highest intensity in proposed region of interest (ROI).
Knowing the velocity resolution of the radar §, and the
position of the highest pixel in the ROI p, we compute the
velocity using the following formula: v = J, * p. We notice
a slight improvement in the performances using the Doppler
velocity as extra feature.

We optimise the model using the loss function described
in [11]. To take into account the uncertainty of the annota-
tions, we slightly modify the intersection over union (IoU)
thresholds to assign an anchor and a detection to a ground-
truth box. We set this threshold to 0.5 for the RPN (instead
of 0.7 for Faster R-CNN) and to 0.3 for Fast R-CNN (instead

of 0.5 for Faster R-CNN). As there is not a lot of objects in
our RD data, we randomly sample 32 proposals (instead of
512 for Faster R-CNN) to compute the loss of the RPN and
Fast R-CNN.

IV. EXPERIMENTS AND RESULTS
A. Datasets and competing method

We train our model on the two publicly available radar
datasets CARRADA [5] and RADDet [6]. For the CAR-
RADA dataset we use the segmentation masks as reference to
create our bounding boxes by drawing a box around masks.
Regarding the RADDet dataset, we extract the RD maps
by summing the values of the RAD tensors over the angles
dimension. We use the same bounding boxes provided by the
authors of the RADDet dataset by only taking coordinates
along the range and the Doppler dimension. We use default
train/val/test distribution of CARRADA dataset. For RAD-
Det, we randomly split the train into training and validation
set with a 9:1 ratio. For testing, we use the provided test set.

We compare our model DAROD, made of the lightweight
backbone and the simplified Faster R-CNN architecture
displayed in Figure 2, with the RADDet model [6]. To
the best of our knowledge it is the only published object
detector designed for radar data. We modify the RADDet
model to train it only with RD maps as input instead of
RAD tensors. We also consider the variant termed RADDet
RAD which corresponds to the original RADDet model
(train on RAD tensors) evaluated only on the range and the
Doppler dimensions, using the pretrained weights provided
in [6]. As a second baseline we consider the state of the
art in computer vision, by selecting the Torchvision! Faster
R-CNN implementation using the default hyper-parameters,
namely a resizing of the input from 256 x 64 to 800 x 800
and a ResNet50+FPN backbone pretrained on ImageNet.
FPN (Feature Pyramid Network) is a feature extractor that
takes a single-scan image of an arbitrary size, and outputs
proportionally sized feature maps at multiple levels thus
allowing to detect object at different scales. In addition, we
train the Torchvision Faster R-CNN without the pre-traning
on ImageNet to evaluate the impact of this pre-training on
the results.

B. Training setting and evaluation metrics

We use the Adam optimiser with the recommended pa-
rameters. A learning rate of 1 x 10™* is used for all our
experiments. The batch size is set to 4 for CARRADA
dataset and to 16 for RADDet dataset. Our model is trained
over respectively 50 and 80 epochs for CARRADA and
RADDet datasets. As Faster R-CNN object detector contains
several hyper-parameters, we perform grid-search over some
carefully chosen parameters to improve the performance of
our model. We randomly use horizontal and vertical flipping
as data augmentation strategies.

We evaluate our model using the mean average precision
(mAP), a well-known metric for evaluating object detectors.

Uhttps://github.com/pytorch/vision



TABLE I
RESULTS OF DIFFERENT MODELS ON CARRADA AND RADDET DATASETS. BEST RESULTS ARE SHOWN IN BOLD, SECOND BEST ARE UNDERLINED.

TIoU 0.3 TIoU 0.5 .
Dataset Model mAP  Precision Recall | mAP  Precision  Recall # params (M) | Inference time
DAROD (ours) 70.68 76.73 52.52 55.83 68.34 46.03 34 25.31 ms
CARRADA Faster R-CNN (pretained) 71.08 51.70 72.97 61.56 47.86 67.21 41.3 37.19 ms
Faster R-CNN (from scratch) | 64.21 45.90 7417 | 52.93 41.59 67.40 41.3 37.19 ms
RADDet RD 48.59 61.31 42.56 18.57 36.73 25.50 7.8 74.03 ms
DAROD (ours) 65.56 82.31 47.78 46.57 68.23 38.74 34 25.31 ms
RADDet Faster R-CNN (pretrained) 58.47 52.17 56.92 49.55 47.78 51.77 41.3 37.19 ms
Faster R-CNN (from scratch) | 49.16 32.33 61.46 | 40.84 29.37 55.29 41.3 37.19 ms
RADDet RD 38.42 78.20 29.77 22.87 60.41 20.55 7.8 74.03 ms
RADDet RAD [6] 38.32 68.80 26.83 17.13 46.55 16.99 8 75.2 ms
We consider mAP at IoU thresholds 0.3 and 0.5 to take # FLOPS vs mAP@0.5
into account the uncertainty on the annotations, which is 60
generated semi-automatically for both datasets. In addition, P
we provide precision and recall at IoU thresholds 0.3 and )
. . 2 50 Model
0.5. All the experiments are conducted using the Tensorflow x e DAROD
. . . qe . N
deep learning framework along with an Nvidia RTX 2080Ti % Faster R-CNN (pretrained) n
GPU. o 40 e Faster R-CNN
c RADDet
C. Results 30 e RADDet RAD
Table I shows the performance of our model on CAR- Dataset
RADA and RADDet datasets®. In a nutshell, our DAROD x CARRADA
model clearly outperforms the RADDet method on both 20 [ »  RADDet
datasets, while it remains competitive with Faster R-CNN.
P 0 5 10 20 30 40 50 60

When pre-trained on ImageNet, Faster R-CNN leads to the
best mAP in 3 cases with DAROD being second best, the
positions being inverted in the last experiment (RADDet
dataset and IoU at 0.3).

Generally, we observe that DAROD achieves good preci-
sion scores but medium recall. This suggests that our model
is accurate when detecting targets (eg. correctly classifies
them) but seems to struggle to detect all the targets, resulting
in missed targets. We draw the same conclusion for the
RADDet model which obtains decent precision scores but
low recall, hence impacting mAP@0.3 and mAP@0.5. The
Faster R-CNN model achieves sufficient precision scores and
good recall, resulting in more false positives but less missed
targets, which may be better for critical applications. For
DAROD, we aimed to optimise mAP, which measures the
global performance of object detector. We might be able
to improve the recall by reducing the selectivity of our
model during training and in the post-processing step, or
by decreasing the penalty of classification errors.

Finally, we remark the pretraining of Faster R-CNN
backbone on the ImageNet dataset helps to improve the
detection performance. Particularly, it drastically improves
the precision score but doesn’t seem to impact the recall
score.

A critical point in automotive radar is the computational
load of the different models. We compute the FLOPS (float-
ing point operations per second) of the different models and
represent it as a function of the performance in Figure 4. Not

Zhttps://www.tensorflow.org/
3We train all the models 10 times and we show the best results for each
in Table T

GFLOPS

Fig. 4. Number of FLOPS vs. mAP@0.5 for DAROD, Faster R-CNN
(pretrained or trained from scratch), RADDet and RADDet RAD.

surprisingly, radar based approaches are far more efficient
than Faster R-CNN that uses up-sampling and deeper back-
bones. RADDet model is the model with the lowest number
of FLOPS as it is inspired from the single stage detector
YOLO [15]. The number of FLOPS required by DAROD is
slightly bigger than RADDet, but stays reasonable to run on
MCUs.

V. DISCUSSION

We show in section IV-C that our model achieves much
better mAP at threshold 0.3 and 0.5 than RADDet model
on CARRADA and RADDet datasets. We would like to
emphasise the RADDet model was specifically designed to
process RAD tensors instead of RD spectra. Therefore, it
might be inefficient on RD spectra and the results might
suffer from this difference. For this reason, we evaluate the
RADDet model on the range and the Doppler dimensions
only, using the pre-train model provided by the authors.
Results are given in Table I as the RADDet RAD model.

At similar feature map resolution as DAROD, the Faster
R-CNN model we compare with achieves good performance.
However regarding the large number of parameters and
FLOPS of this model, the gain in performance we observe
doesn’t improve by far the results. We conclude we don’t
need to use very deep convolutional neural networks to



extract meaningful information from radar data.

Although camera images are very different from RD
maps, pre-training the weights of Faster R-CNN leads to an
improvement of 7 to 9 points in mAP, which outperforms
DAROD in 3 of the 4 cases. Pre-training the backbone
of DAROD might also lead to a significant increase of
performance. But this is not trivial, since it requires a well-
suited dataset in terms of shape and complexity, this is thus
left for future works.

We demonstrate that a simple and light backbone performs
well for object detection and classification tasks contrary to
deeper image based backbones. We also show our model
outperforms similar radar based approach. However, our
model doesn’t take into account the temporal information
of radar data which could be useful to build more accurate
radar object detector. Research on this needs to be conducted.

Even though our model is the lightest in terms of number
of parameters, the number of floating point operations it
requires remain big to be embedded. Replacing the 2D
convolutions by depth-wise separable convolutions or trans-
forming our model into a single stage detector could be a
solution to improve the efficiency of our backbone.

Finally, the approach we propose remains inspired from
computer vision algorithms and might not be the most
suitable and efficient approach for automotive applications.
Working directly with the complex Range-Doppler spectrum
to predict the position of objects in 3D (range, angle,
velocity) instead of bounding boxes on RD spectra could
address this problem.

We hope this work helps for the development of new deep
learning approaches for object detection and/or classification
using the RD spectra, in order to develop more efficient and
high-performance object detectors for radar.
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