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The trace-reinforced ants process does not find shortest paths

Daniel Kious∗† Cécile Mailler∗‡ Bruno Schapira§

February 21, 2022

Abstract

In this paper, we study a probabilistic reinforcement-learning model for ants searching for the
shortest path(s) between their nest and a source of food. In this model, the nest and the source of food
are two distinguished nodes N and F in a finite graph G. The ants perform a sequence of random walks
on this graph, starting from the nest and stopped when first hitting the source of food. At each step
of its random walk, the n-th ant chooses to cross a neighbouring edge with probability proportional
to the number of preceding ants that crossed that edge at least once. We say that the ants find the
shortest path if, almost surely as the number of ants grow to infinity, almost all the ants go from the
nest to the source of food through one of the shortest paths, without losing time on other edges of the
graph.

Our contribution is three-fold: (1) We prove that, if G is a tree rooted at N whose leaves have been
merged into node F , and with one edge between N and F , then the ants indeed find the shortest path.
(2) In contrast, we provide three examples of graphs on which the ants do not find the shortest path,
suggesting that in this model and in most graphs, ants do not find the shortest path. (3) In all these
cases, we show that the sequence of normalised edge-weights converge to a deterministic limit, despite a
linear-reinforcement mechanism, and we conjecture that this is a general fact which is valid on all finite
graphs. To prove these results, we use stochastic approximation methods, and in particular the ODE
method. One difficulty comes from the fact that this method relies on understanding the behaviour at
large times of the solution of a non-linear, multi-dimensional ODE.

1 Introduction and main results

Context: It is believed that ants are able to find shortest paths between their nest and a source of food
with no other means of communication than the pheromones they lay behind them. This phenomenon
has been observed empirically in the biology literature (see, e.g., [GADP89, DAGP90, MJT+13]), and
reinforcement-learning has been proposed as a model for describing it (see, e.g. [MJT+13]). In the survey
of [DS04, Chapter 1], this phenomenon is called stigmergy: “ants stimulate other ants by modifying the
environment via pheromone trail updating”.

In this paper, we study a probabilistic reinforcement-learning model for this phenomenon of ants
finding shortest path(s) between their nest and a source of food. In this model, which was introduced in
our previous paper [KMS], the nest and the source of food are two nodes N and F of a finite graph G,
and the ants perform successive random walks starting from N and stopped when first hitting F . The
distribution of the n-th ant’s walk depends on the trajectory of the previous n−1 random walks in a way
that models ants leaving pheromones on the edges they cross: each edge has a weight which is equal to 1
at the start and which increases by 1 at time n if and only if the n-th ant has deposited pheromones on
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that edge. The transition probabilities of the random walk of the (n + 1)-th ant are proportional to the
edge-weights at time n. The reinforcement is thus linear.

In [KMS], the ants deposit pheromones only on their way back: i.e. when they come back to the nest
after having hit F . Two cases are studied in [KMS]:

• In the “loop-erased” ant process, or model (LE), ants come back to the nest following the loop-
erasure of the time-reversed version of their forward trajectory.

• In the “geodesic” ant process, or model (G), they come back following the shortest path between F
and N within the trace of their forward trajectory (ties are broken uniformly at random).

The conjecture is that, under these two versions of the model, when time goes to infinity, almost all ants
go from N to F through a shortest path, i.e. the ants indeed find the shortest path(s) between their nest
and the food. This conjecture is proved in [KMS] for model (LE) in the case when G is a series-parallel
graph, and in the model (G) in the case when G is a five-edge graph called the lozenge.

Main contribution: In this paper, we look at the same model but assuming that ants deposit
pheromones on their way forwards to the food, i.e. the weight of an edge increases by one at time n if
and only if the n-th ant has crossed this edge at least once on its way from N to F . We call this model
the “trace-reinforced” ant process, or model (T). In the biology literature, all cases of ants depositing
pheromones on their way forwards, backwards or both are considered (see [DS04, Chapter 1]).

Maybe surprisingly, this small change to the reinforcement rule leads to a drastically different be-
haviour: indeed, we prove that, in the trace-reinforced ant process, in general, the ants do not find the
shortest path(s) between their nest and the source of food, except in some very particular cases. Indeed,
in Theorem 1.3, we show that on a family of graphs called “tree-like”, in which there is a unique edge
between N and F (N and F are at distance 1), the ants do find the shortest path. However, one can find
graphs, with N and F at distance one, which are not tree-like and such that the ants do not find shortest
paths (see Proposition 1.4, Theorem 1.5 and Proposition 1.6).

The fact that ants do not always find shortest paths when depositing pheromones only on their way
forward has been observed empirically on ants (see [DS04, Section 1.1.2]): “The observation of real ant
colonies has confirmed that ants that deposit pheromone only when [going forward] to the nest are unable
to find the shortest path between their nest and the food source”. Our analysis proves that the model
introduced in [KMS] exhibits the same behaviour.

Our second main finding, which might also be surprising at first glance, is that although we use a
linear reinforcement mechanism (see the discussion below), in all the graphs we consider, the sequence of
normalised edge-weights converges to a deterministic limit. In fact, we conjecture that this is a general
phenomenon, and that on all graphs with no multiple edges linked to node F , the sequence of the
normalised weights converges almost surely to a deterministic limit:

Conjecture 1.1. If, for all n ≥ 0, for all e ∈ E, we let We(n) denote the weight of edge e at time n,
then there exists a deterministic family (χe)e∈E such that (We(n)/n)e∈E → (χe)e∈E almost surely when
n → +∞. Furthermore, if in addition the distance between N and F is at least 2, then χe > 0 for all
e ∈ E.

Discussion: Other probabilistic reinforcement models inspired by urns exist in the probability lit-
erature. As far as we know these models are all self-reinforced random walks models with super-linear
reinforcement; see for example Le Goff and Raimond [LGR18] and Erhard, Franco and Reis [EFR19].

The ant process can be seen as a “path formation” model: the quantity of interest is the subgraph
of G obtained by removing from G all edges whose normalised weight converges to zero. If this limiting
graph is different from G, then we say that “some path(s) has formed”.

Another model for path formation is the Pólya urns with graph based interactions of Benäım, Ben-
jamini, Chen and Lima [BBCL15] and its generalisation to WARMs of [VDHHKR16]. In the latter (and in
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more recent paper on the same model such as Hirsch, Holmes and Kleptsyn [HHK20]), only super-linear
reinforcement is considered because it leads to path formation; in contrast, it is believed that, under
linear reinforcement, the limiting graph would be equal to G. In [CH21], Couzinié and Hirsch consider
the sub-linear WARM model. They show that, for bounded degree (possibly infinite graphs), if the re-
inforcement is sufficiently weak, or if G = Z, then the limiting edge-weights exist and are deterministic.
In [BBCL15], and later [CL14] and [Lim16], the cases of sub-linear, super-linear and linear reinforcement
are considered. In the linear case, if the original graph G is regular and not bipartite, then the vector of
normalised weights converges almost surely to a non-deterministic limit.

Given these examples from the literature, it is quite surprising that in the ant process, with linear
reinforcement, the vector of normalised weights always converges to a deterministic limit. In fact, this
difference of behaviour can be observed when looking at the simplest probabilistic model with linear
reinforcement: (generalised) Pólya urns. A d-colour Pólya urn of replacement matrix R = (Ri,j)1≤i,j≤d
is defined as follows: at time zero, there is one ball of each colour in the urn, and at every time step, we
pick a ball uniformly at random among the balls in the urn, and if its colour was i, we return it to the urn
together with Ri,j balls of colour j (∀1 ≤ j ≤ d). If R is the identity, it is known (see Markov [Mar17]) that
the vector Û(n) whose coordinates are the number of balls of each colour divided by n converges almost
surely to a Dirichlet(1, . . . , 1)-distributed random variable. In contrast, if the matrix R is irreducible,
then Û(n) converges almost surely to a deterministic limit (see Janson [Jan04] and the references therein).

Interestingly, in a not-yet-available paper [HK] (whose results have been announced), Holmes and
Klepstyn also exhibit a linear reinforcement model which, on some graphs, converges to a deterministic
limit, a result that resonates with Conjecture 1.1.

A similarity between this paper, the Pólya urns with graph-based interaction of [BBCL15] and the
WARMs of [VDHHKR16] is the method of proof since we also use stochastic approximation. In particu-
lar, we use the ODE method for stochastic approximation, and apply results from Benäım [Ben99] and
Pemantle [Pem07]. However, the analysis of these stochastic approximations in the different examples of
graphs we consider is quite different from the one in [BBCL15] and [VDHHKR16]. In fact, as we later
explain in more details, each of our examples requires an ad-hoc argument, which suggest that proving
our conjecture on the convergence of edge-weights in great generality is a difficult open problem.

That said, we prove a general result ensuring that on any finite graph, the sequence of normalised
edge weights is a stochastic approximation, in a sense which is recalled in Definition 2.3 below, with
a vector field F which is Lipschitz on a suitable convex compact subspace of the Euclidean space (see
Proposition 2.7).

1.1 Definition of the model and main results

Let G = (V,E) be a finite (undirected) graph with vertex set V and edge set E, with two distinct marked
nodes called N (for “nest”) and F (for “food”). We define a sequence (W(n) = (We(n))e∈E)n≥0 of
random weights for the edges of G recursively as follows:

• At time zero, all weights are equal to 1, i.e. We(0) = 1 for all e ∈ E.

• Given W(n), we sample a random walk (X(n+1)

i )i≥0 on G according to the following distribution:

– the walk starts at node N , i.e. X(n+1)

0 = N ,

– it stops when first hitting F , i.e. P(X(n+1)

i+1 = F |X(n+1)

i = F ) = 1 for all i ≥ 0,

– for all i ≥ 0, for all u ∈ V \ {F}, v ∈ V ,

P(X(n+1)

i+1 = v|X(n+1)

i = u) =
W{u,v}(n)∑

u′∼uW{u,u′}(n)
1{u,v}∈E ,

where u′ ∼ u if there is an edge linking the vertices u′ and u.
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We let γ(n+ 1) be the set of edges that were crossed at least once by the random walk X(n+1); we
call this the “trace” of the (n+ 1)-th walker. For all e ∈ E, we set We(n+ 1) = We(n) + 1e∈γ(n+1).

We call this process the “trace-reinforced” ant process on G.
In our first result, we focus on graphs that are “tree-like” in the following sense:

Definition 1.2. We say that a graph G = (V,E) with two marked nodes N and F is tree-like if the graph
whose vertex set is V \ {F} and whose edge set is E minus all edges that contain F is a tree (i.e. a graph
with no cycle).

Theorem 1.3. Assume that G = (V,E) is tree-like and that the edge a = {N,F} belongs to E with
multiplicity 1. Then, almost surely when n→ +∞,

Wa(n)

n
→ 1 and

We(n)

n
→ 0, for all e ∈ E \ {a}.

In other words, following this reinforcement algorithm, the ants eventually find the shortest path
between their nest and the source of food, i.e. the proportion of ants that go from N to F by only crossing
the edge {N,F} is asymptotically equal to one, and the proportion of ants that cross any other edge
asymptotically equals zero.

Note that if the edge {N,F} appears with multiplicity ` in E (i.e. there are ` edges from N to F in
parallel), then it is easy to deduce from Theorem 1.3 that the normalised weights of all other edges go to
zero almost surely, and the weights of the ` edges from N to F converge almost surely, as a `-tuple, to a
Dirichlet random variable with parameters (1, . . . , 1).

A natural extension of the set of tree-like graphs is the set of series-parallel graphs, which were
considered for instance in [HJ04] and in our previous paper [KMS]. One could then ask whether the
previous theorem extends to this class of graphs, that is, if the distance from the source to the food is
one, do the weights of all edges not directly connected to both N and F go to zero? Maybe surprisingly,
the answer is no. Indeed our next result provides a counter-example, which is depicted by Figure 1 and
which we call the cone graph.

Proposition 1.4. Let G be the graph of Figure 1. If we let Wi(n) be the weight of edge i at time n (using
the numbering of edges of Figure 1) and W(n) = (Wi(n))1≤i≤4, then almost surely when n→ +∞,

W(n)

n
→ (1, 1/3, 1/3, 0).

The following result shows that Theorem 1.3 does not extend to tree-like graphs where N and F are
at (graph-)distance at least 2 from each other. For two integers p ≥ 1 and q ≥ 1, we define the (p, q)-path
graph as the graph with two parallel paths between N and F , one of length p and one of length q (see
Figure 2).

4



Theorem 1.5. Let G = (V,E) be the (p, q)-path graph. We let a1, . . . , ap (resp. b1, . . . , bq) denote the
edges of the path of length p (resp. q), numbered from the closest to the nest to the closest to the food.

If min(p, q) ≥ 2, then, almost surely for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q,

lim
n→+∞

Wak(n)

n
→ αk and lim

n→+∞

Wb`(n)

n
→ β`,

where (α, β) is the unique solution in (0, 1)2 of{
αp + βq = 1

αp(1− α) = βq(1− β).
(1.1)

Note that, if p = q ≥ 2, the solution of (1.1) is explicit and given by α = β = 2−1/p.
Now to give further support to our conjecture that normalised edge weights always converge to a

deterministic limit (when the edges connected to F are simple), we look at the lozenge graph in Figure 3;
this example, which was also considered in [KMS], is different from all other cases so far, in the sense that
it does not belong to the class of “series-parallel” graphs.

Proposition 1.6. Let G be the lozenge graph of Figure 3. If we let Wi(n) denote the weight of edge i
at time n (with the edges numbered as in Figure 3), and W(n) = (Wi(n))1≤i≤5, then almost surely as
n→ +∞, we have

W(n)

n
→ (w∗, 1/2, 1/2, w∗, 1/2),

where w∗ is the unique solution of 2x3 + 4x2 − 2x− 3/2 = 0 in (0, 1).

The fact that the limiting weights of edges 2 and 5 are equal to 1/2 should not come as a surprise.
Indeed, by symmetry they must be equal (assuming they are deterministic), and since each ant reinforces
exactly one of these two edges at each step, their common value has to be 1/2. Similarly for the edges 1
and 4, except that since each ant can reinforce both of them, one has now w∗ > 1/2. However, the fact
that the limiting weight of edge 3 equals 1/2 seems to be merely a coincidence.

Notation: Given some filtration (Fn)n≥0, and Z some random variable, we will use the notation En[Z]
to denote the conditional expectation of Z with respect to Fn.

Acknowledgements: We thank three anonymous referees for their careful reading of the paper
and their constructive comments. Preliminary investigations on the problems treated in this paper were
carried out by Yassine Hamdi, a student at École Polytechnique at the time, during an undergraduate
research internship at the University of Bath, under the supervision of CM (see [Ham20] for Yassine’s
internship report). The authors are grateful to Yassine for the time he spent on these questions, and to
both the École Polytechnique and the University of Bath for making this internship possible.

2 Preliminaries

2.1 Urn processes

We state here a result concerning (generalized) Pólya urn processes. Given a function G : [0, 1]→ [0, 1], we
call G-urn process, a process (Xn)n≥0 with integer values, such that almost surely Xn+1 ∈ {Xn, Xn + 1},
and for all n ≥ 0,

P(Xn+1 = Xn + 1 | X0, . . . , Xn) = G(X̂n),

with X̂n := Xn
n+2 . In general we will assume that it starts from 1 at time 0, i.e. that X0 = 1, but we

shall also consider other initial conditions. We then say that it starts from some value k at time m, if we
condition the process on the event {Xm = k}.
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Informally Xn corresponds to the number of (say) red balls after n draws in a Pólya urn with two
colours, where at each step, we draw a ball in the urn at random, and replace it into the urn with an
additional ball of the same colour. At each draw, the probability to pick a red ball is G(p) if the proportion
of red balls in the urn is p.

We will need the following standard result (which follows for instance from Corollary 2.7 and Theo-
rem 2.9 in [Pem07]).

Proposition 2.1. Let (Xn)n≥0 be a G-urn process, with G a C1-function. Then almost surely (X̂n)n≥0
converges towards a stable fixed point of G, that is a (possibly random) point p ∈ [0, 1], such that G(p) = p
and G′(p) ≤ 1.

In particular if there exists c > 0, such that G(x) > x, for all x ∈ (0, c) (resp. G(x) < x for all
x ∈ (1− c, 1)), then almost surely lim infn→∞ X̂n ≥ c (resp. lim sup X̂n ≤ 1− c).

We shall also use the following corollary.

Corollary 2.2. Let (Xn)n≥0 be an integer valued process adapted to some filtration (Fn)n≥0, such that
almost surely for all n ≥ 0, Xn+1 ∈ {Xn, Xn + 1}, X0 = 1, and for some function G : [0, 1]→ [0, 1],

P(Xn+1 = Xn + 1 | Fn) ≥ G(X̂n), (2.1)

with X̂n := Xn
n+2 . If there exists η, c > 0, such that G(x) > (1 + η)x, for all x ∈ (0, c), then almost surely

lim infn→∞ X̂n ≥ c.

Proof. For ε ∈ (0, η), consider Gε : [0, 1] → [0, 1], a C1 function such that x < Gε(x) ≤ (1 + η)x, for
all x ∈ (0, c − ε), Gε(x) ≤ (1 + η)x, for x ∈ (c − ε, c), and Gε ≡ 0 on [c, 1]. By assumption on G, one
has G(x) ≥ Gε(x), for all x ∈ [0, 1]. It follows that (Xn)n≥0 stochastically dominates a Gε-urn process,
and applying Proposition 2.1, we deduce that almost surely lim inf X̂n ≥ c − ε. Since this holds for all
ε ∈ (0, c), the result follows.

In our applications, the process (Xn)n≥0 will often be one coordinate of a higher-dimensional process
(Xn)n≥0, and (Fn)n≥0 will simply be the natural filtration of the process (Xn)n≥0.

2.2 Stochastic approximation and the ODE method

We use the following definition for a stochastic approximation (note that we do not seek for the most
general definition here, but it will be sufficient for our purpose).

Definition 2.3. A stochastic approximation is a process (Xn)n≥0, adapted to some filtration (Fn)n≥0,
with values in a convex compact subset E ⊆ Rd, for some d ≥ 1, that satisfies an equation of the type

Xn+1 = Xn +
F (Xn) + ξn+1 + rn

n+ 2
, for all n ≥ 0, (2.2)

where the vector field F : E → R is some Lipschitz function, the noise ξn+1 is Fn+1-measurable and
satisfies En[ξn+1] = 0, for all n ≥ 0, and the remainder term rn is Fn-measurable and satisfies almost
surely ‖rn‖ ≤ C/n, for some deterministic constant C > 0.

Remark. The fact that we assume E to be a convex compact subset of Rd enables to easily extend F into
a Lipschitz continuous function defined on Rd, simply by composing it with the orthogonal projection
on E . We then fall into the setting of Benäım [Ben99], and we can rely on its results. Thus in the
following, we will identify F with its Lipschitz extension on Rd, as defined here.

Remark. The choice of renormalisation factor equal to 1
n+2 in Equation (2.2) is arbitrary and can be

replaced by 1
n+3 (as in Sections 4 and 6). In Sections 4 and 6, we explain why the chosen renormalisation

is the most convenient.
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The idea underlying the ODE method is that the trajectories of a stochastic approximation asymp-
totically follow the solutions of the differential equation

ẏ = F (y). (2.3)

We recall that if for x ∈ Rd, we let (Φt(x))t≥0 be the (unique because F is Lipschitz) solution of (2.3)
starting at x, then this defines a flow, in the following sense.

Definition 2.4. LetM be some metric space. A flow (or semi-flow) onM is an application Φ : R+×M→
M, such that Φ0 = Id, and Φt+s(x) = Φt ◦ Φs(x), for all s, t ≥ 0, and x ∈M.

• A subset A ⊂M is said to be invariant, if Φt(x) ∈ A, for all x ∈ A and all t ≥ 0.

• An attractor is a set A that admits a neighbourhood U ⊂M, such that

∩t≥0∪s>tΦs(U) = A.

We will frequently use the following result due to Benäım [Ben99, Prop. 4.1, Rk. 4.5, Prop. 5.3, Th.
5.7] (see also e.g., [Pem07, Prop. 2.10 and Th. 2.15]).

Theorem 2.5. Let (Xn)n≥1 be a stochastic approximation. If there exists a deterministic constant C > 0,
such that almost surely supn≥1 ‖ξn‖ ≤ C, then almost surely, the limiting set L(X) = ∩n≥0∪m≥n{Xm} is
invariant by the flow of the ODE (2.3), connected, and the flow of the ODE restricted to L(X) admits no
other attractor than L(X) itself.

We will also use the following corollary of Theorem 2.5:

Corollary 2.6. Under the assumptions of Theorem 2.5, if there exist a set U ⊆ E and p ∈ U such that

(i) almost surely, L(X) ⊆ U , and

(ii) for all w ∈ U , the solution of the ODE (2.3) started at w converges to p,

then L(X) = {p} almost surely.

Proof. First note that either L(X) = {p} or there exists a (possibly random) point x ∈ L(X) \ {p}. In
the first case, the conclusion of Corollary 2.6 holds trivially. In the second case, we show that (i) and
(ii) together with Theorem 2.5 imply that p ∈ L(X). Indeed, by (i), we have that x ∈ U . Thus, by (ii),
the solution t 7→ Φ(t) of the ODE started at x converges to p when time goes to infinity. Theorem 2.5
ensures that L(X) is invariant by the flow of the ODE, and thus that Φ(t) ∈ L(X) for all t ≥ 0. Since
L(X) is closed (as the intersection of closed sets), this implies that limt→+∞Φ(t) = p ∈ L(X), as claimed.
Finally, by Theorem 2.5, the flow restricted to L(X) admits no other attractor than L(X) itself, and by
(ii), p is an attractor of the ODE restricted to L(X) ⊆ U ; this implies that L(X) = {p}, as required.

2.3 The process of edge weights seen as a stochastic approximation

Consider a finite graph G = (V,E), with two marked vertices N and F . Recall that W(n) = (We(n))e∈E
denotes the sequence of the weights of the edges of the graph after n steps of the trace-reinforced ant
process, and let Fn := σ(W(0), . . . ,W(n)).

For any edge e ∈ E, and any n ≥ 0, we let Xe(n) := We(n)
n+1 , and X(n) = (Xe(n))e∈E . Next for any

w ∈ [0, 1]E , and any e ∈ E, we let pe(w) be the probability that the edge e belongs to the trace of a
random walk on the graph G endowed with the weights w, starting from N and killed at F . Then we
define F : [0, 1]E → [0, 1]E , by

Fe(w) := pe(w)− we, for any e ∈ E. (2.4)

7



Given w ∈ [0, 1]E , we set

πw(x) :=
∑
e∼x

we, for all x ∈ V,

where e ∼ x means that we sum over all edges e ∈ E that have x ∈ V as endpoint, and recall that
this defines a reversible measure for the random walk on G endowed with the weights w. We also let
S(G) be the number of self-avoiding paths from N to F in G, which we number in some arbitrary order:
c1, . . . , cS(G). For i = 1, . . . ,S(G), we define

Ei :=
{
w ∈ [0, 1]E : πw(N) ≥ 1, and we ≥

1

S(G)
for all e ∈ ci

}
.

Note that each Ei is a convex compact subset of [0, 1]E . Then we further define,

E := conv

(
S(G)⋃
i=1

Ei

)
=


S(G)∑
i=1

λiwi :

∑
i λi = 1, and λi ≥ 0, for all i

wi ∈ Ei, for all i

 , (2.5)

the convex hull of the union of the Ei’s, which is also a convex compact subset of [0, 1]E . One has the
following general fact.

Proposition 2.7. The function F is Lipschitz on the space E. Furthermore the process (X(n))n≥0 is a
stochastic approximation on E. More precisely,

X(n+ 1) = X(n) +
1

n+ 2
(F (X(n)) + ξ(n+ 1)), (2.6)

where for any e ∈ E, ξe(n+ 1) := 1{We(n+ 1) = We(n) + 1} − pe(X(n)).

Remark. We stress that the proof of this result works in a wider setting, including the two variants of
the process considered in our previous paper [KMS].

Proof. For the first part, we use a coupling argument. For all w,w′ ∈ E , we define (Xn)n≥0 as the
random walk on G equipped with edge-weights w, and (X ′n)n≥0 as the random walk on G equipped with
edge-weights w′. Both walks start at N and are killed when they first reach F . We couple (Xn)n≥0 and
(X ′n)n≥0 until the first time when they differ, in a way that maximises the probability that they stay
equal after each step. We let τ be the random time when the walks first differ. If τF denotes the first
time when (Xn)n≥0 hits F , then

‖F (w)− F (w′)‖∞ = max
e∈E
|Fe(w)− Fe(w′)|

≤ max
e∈E
|pe(w)− pe(w′)|+ ‖w −w′‖∞ ≤ P(τ ≤ τF ) + ‖w −w′‖∞

≤
∑
k≥0

P(Xk = X ′k, Xk+1 6= X ′k+1, k < τF )+‖w −w′‖∞

=
1

2

∑
x∈V

∑
k≥0

P(Xk = X ′k = x, k < τF )
∑
e∼x

∣∣∣∣ we
πw(x)

− w′e
πw′(x)

∣∣∣∣+‖w −w′‖∞, (2.7)

where the first inequality is obtained from (2.4) using the triangle inequality, the second inequality is a
general fact which holds for any coupling of the two walks, since if an edge is crossed by only one of the
two walks, then necessarily τ ≤ τF , and the last equality in (2.7) holds because our coupling maximises
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the probability of the two walks staying equal. From (2.7), we get

‖F (w)− F (w′)‖∞ ≤ 1

2

∑
x∈V

∑
k≥0

P(Xk = X ′k = x, k < τF )
∑
e∼x

(
|we − w′e|
πw(x)

+ w′e
|πw′(x)− πw(x)|
πw(x) · πw′(x)

)
+‖w −w′‖∞

≤ 1

2

∑
x∈V

∑
k≥0

P(Xk = x, k < τF )

(∑
e∼x |we − w′e|
πw(x)

+
|πw′(x)− πw(x)|

πw(x)

)
+‖w −w′‖∞

≤
∑
x∈V

Gw(N, x)

πw(x)
·
∑
e∼x
|we − w′e|+‖w −w′‖∞,

with Gw(·, ·) the Green’s function on the graph G endowed with the weights w (i.e. the mean number of
visits to the second argument for a random walk starting from the first argument, up to its hitting time
of F ). Using the reversibility of the measure πw, we deduce that (see e.g. [LP05, Exercise 2.1(e)]),

Gw(N, x)

πw(x)
=
Gw(x,N)

πw(N)
(∀x ∈ V ).

Using also that Gw(x,N) ≤ Gw(N,N), we get

‖F (w)− F (w′)‖∞ ≤
Gw(N,N)

πw(N)

∑
x∈V

∑
e∼x
|we − w′e|+‖w −w′‖∞ ≤

(
1 +

2Gw(N,N)

πw(N)

)
· ‖w −w′‖1,

with ‖w−w′‖1 =
∑

e∈E |we −w′e|. Now by definition, for w ∈ E , one has πw(N) ≥ 1, and we claim that
Gw(N,N) is also bounded by a positive constant independent of w (only depending on the graph G).
Indeed, by [LP05, Eq. (2.4)], for a random walk starting from N , the number of returns to N before
hitting F is a geometric random variable with mean πw(N)/C(G,w)(N,F ), where C(G,w)(N,F ) denotes
the effective conductance between N and F in the graph G endowed with the weights w. Moreover, by
definition of E , for any w ∈ E , there exists a self-avoiding path from N to F such that all the edges
on this path have a weight larger than S(G)−2 (we recall that S(G) denotes the number of self-avoiding
paths between N and F in G). Such a path has an effective conductance larger than (hmax(G) ·S(G)2)−1,
where hmax(G) denotes the maximal length of a self-avoiding path from N to F in G. By Rayleigh’s
monotonicity principle, we also have C(G,w)(N,F ) ≥ (hmax(G) · S(G)2)−1. Finally, note that πw(N) is
bounded by the degree of N , say dG(N). In total, this implies that, for all w,w′ ∈ E ,

‖F (w)− F (w′)‖∞ ≤ K(G) · ‖w −w′‖1,

with K(G) := 1+2
(
1 + dG(N) · hmax(G) ·S(G)2

)
, a constant which only depends on the graph G. This

concludes the proof of the fact that F is Lipschitz on E .
Since (2.6) is straightforward by definition of the model, it only remains to show that X(n) belongs

to E , for all n ≥ 0. The fact that πX(n)(N) ≥ 1 follows from the fact that, by definition of the model, at
each step at least one of the edges incident to N is reinforced. Furthermore, at each step, at least one of
the self-avoiding paths from N to F is reinforced, which implies that, at any time n ≥ 0, at least one of
these self-avoiding paths has been reinforced at least n/S(G) times. In other words, for all n ≥ 0, X(n)
belongs to at least one of the Ei’s, and thus X(n) belongs to E as claimed.

2.4 Case when N and F are at distance one

In this section, we prove the following general fact: if N and F are at distance 1, then the only simple
paths from N to F which “survive” asymptotically are those of length one. In other words, asymptotically,
almost all of the ants reach F by last crossing one of the edges that connect N and F . However, it is not
true in general that the only edges which survive are those from N to F ; the cone graph of Proposition 1.4
is a counter-example.
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Figure 4: The graph G(k, `).

Proposition 2.8. Assume that G is a finite graph with two marked vertices N and F , connected by at
least one edge. Let (W(n))n≥0 be the process of edge-weights of the trace-reinforced ant-process on G.
Then for any edge e connected to F but not to N , one has We(n)/n→ 0 almost surely.

Proof. First note that it is enough to prove the result in the case when there is a unique edge a = {N,F}
(i.e. it has multiplicity one). Indeed, if {N,F} has multiplicity m ≥ 2, then, by definition of the ant
process, at most one of these m edges belongs to the trace of each ant. Hence, the process obtained by
adding the weights of theses edges into one weight is the ants process on the graph in which the m parallel
edges have been merged into one edge with initial weight m.

Assume that w is such that wa /∈ {0, 1}. Let G′ be the graph obtained by removing edge a from G:
i.e. G′ = (V,E′) where E′ = E \ {a}. We equip the edges of G′ with the weights (we)e∈E′ , and let CG′(w)
denote the conductance between N and F in G′ equipped with these weights. We denote pa(w) the
probability to reinforce the edge a when the weights over the graph are given by w. With this notation,
we have

pa(w) =
wa

wa + CG′(w)
.

We let k denote the number of edges connected to N in G′, and ` denote the number of edges connected
to F in G′. We define the graph G(k, `) as the graph with vertex set {N,F, P} and with edge set {N,P}
with multiplicity k and {P, F} with multiplicity ` (see Figure 4). We equip the k edges between N and P
in G(k, `) with the same weights as the k edges connected to N in G′, and the ` edges between P and F
in G(k, `) with the same weights as the ` edges connected to F in G′. The graph G(k, `) can be obtained
from G′ by merging all vertices different from N and F into one node called P , or equivalently by adding
edges between all pair of vertices disjoint of N and F , and assigning an infinite weight to all edges not
connected to N or F . By Rayleigh’s monotonicity principle (see [LP05, §2.4]), the conductance CG(k,`)(w)
of G(k, `) is at least equal to the conductance of G′.

The conductance of G(k, `) with these weights is given by

CG(k,`)(w) =

∑
e∈E′ : N∼e

we
∑

e∈E′ : F∼e
we∑

e∈E′ : N∼e
we +

∑
e∈E′ : F∼e

we
≤ k(1− wa)
k + 1− wa

,

where X ∼ e denotes that the vertex X is an endpoint of e, where we have used that for all e ∈ E′,
we ≤ 1, and also that

∑
e∈E : F∼ewe = 1, and thus∑

e∈E′ : F∼e
we = 1− wa.

Therefore,

pa(w) ≥ wa

wa + k(1−wa)
k+1−wa

.
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Thus, (Wa(n))n≥0 stochastically dominates a G-urn process with

G(x) =
x

x+ k(1−x)
k+1−x

.

Note that G(x) = x if and only if x ∈ {0, 1}, and one can compute that G′(0)= (k + 1)/k > 1. Thus
Corollary 2.2 shows that Wa(n)/n converges almost surely to 1, and as a consequence one also has that
We(n)/n converges almost surely to 0 for all e connected to F different from a. This concludes the
proof.

3 Proof of Theorem 1.3

First note that Proposition 2.8 implies that Wa(n)/n→ 1, almost surely. Note also that by definition of
the model, it now suffices to show that the normalised weight of all the other edges connected to N go to
zero almost surely, as the weight of any edge e in the tree is always smaller than the weight of the unique
edge connected to N on the path from e to N .

So let e be some edge connected to N , which is different from a. By assumption, the graph G is a
tree rooted at N and whose leaves have been merged into F . Thus, since the ants are stopped when
first hitting F , the first time each ant crosses the edge e has to be from N to the other extremity of e.
Moreover, if an ant crosses the edge a it is stopped immediately. This implies that the probability to
cross e before reaching F on G is smaller than on the graph consisting only of the two edges a and e (in
parallel between N and F ). This gives for all n ≥ 0, almost surely,

P(We(n+ 1) = We(n) + 1 |W(n)) ≤ We(n)

We(n) +Wa(n)
=

Ŵe(n)

Ŵe(n) + Ŵa(n)
, (3.1)

where we recall that we write Ŵ (n) = W (n)/(n + 2). Now let ε > 0 be fixed. We know that almost
surely, for n large enough, Ŵa(n) ≥ 1 − ε. On the other hand on the event when Ŵa(n) ≥ 1 − ε, for all
n larger than some integer n0, we know by (3.1) that (We(n))n≥n0 is dominated by a G-urn process with
G(x) = x/(x+ 1− ε). Then Proposition 2.1 shows that almost surely, lim supn→∞ Ŵe(n) ≤ ε. Since this
holds for all ε > 0, this concludes the proof.

4 The cone

We first note that by Proposition 2.7 and the specific features of the cone, the process Ŵ(n) := W(n)/(n+
2) is a stochastic approximation on the space

E ′ = {w = (w1, . . . , w4) ∈ E : w1 + w4 = 1, w4 ≤ w2 + w3},

with E as defined in (2.5). More precisely, for all n ≥ 0, we have

Ŵ(n+ 1) = Ŵ(n) +
1

n+ 3

(
F (Ŵ(n)) + ξn+1

)
,

with ξn+1 some martingale difference, and for all 1 ≤ i ≤ 4, Fi(w) = pi(w) − wi, where pi(w) is the
probability that edge i belongs to the trace of a random walk on the graph endowed with weights w,
which starts from N and is killed at F .

Remark. Note that, for the cone graph, it is convenient to define Ŵ(n) as W(n)/(n + 2) rather than
as W(n)/(n + 1). This is because, by definition of the process, for all n ≥ 0, W1(n) + W4(n) = n + 2;
indeed, W1(0) +W4(0) = 2 and, at each step we increase exactly one of W1(n) and W4(n) by one.
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To calculate p2 (and thus p3, by symmetry), we decompose according to the first step of the ant: to
reinforce edge 2, it has to either go straight through edge 2 (in which case, no matter what it does later,
edge 2 will be reinforced), or go through edge 3. In the latter case, the second step of the ant has to be
either through edge 2 (edge 2 gets reinforced no matter what happens next) or back through edge 3, in
which case we start again. Hence,

p2(w) =
w2

w1 + w2 + w3
+

w3

w1 + w2 + w3

(
w2

w2 + w3 + w4
+

w3

w2 + w3 + w4
p2(w)

)
.

Solving this in terms of p2(w) gives

p2(w) =
w2(w2 + 2w3 + w4)

(w1 + w2 + w3)(w2 + w3 + w4)− w2
3

.

To calculate p1(w), we use the electrical networks method (see, e.g. [LL10]) to see that the probability,
starting from N , to cross edge 1 before edge 4 is w1 divided by the total conductance between N and F .
The latter conductance is given by w1 + (w2+w3)w4

w2+w3+w4
, which gives

p1(w) =
w1

w1 + (w2+w3)w4

w2+w3+w4

.

Thus, the coordinates of the function F are given by

F1(w) =
w1

w1 + (w2+w3)w4

w2+w3+w4

− w1 F2(w) =
w2(w2 + 2w3 + w4)

(w1 + w2 + w3)(w2 + w3 + w4)− w2
3

− w2

F4(w) = −F1(w) F3(w) =
w3(2w2 + w3 + w4)

(w1 + w2 + w3)(w2 + w3 + w4)− w2
2

− w3.

Now our aim is to use the ODE method and for this we proceed in 4 steps:
(1) we first remind that lim Ŵ1(n) = 1 almost surely as n→ +∞, thanks to Proposition 2.8,
(2) we prove that lim infn→+∞ Ŵ2(n) ∧ Ŵ3(n) > 0 (where x ∧ y denotes the minimum of x and y),
(3) we prove that for any w in U := {w ∈ E : w1 = 1, w2w3 6= 0}, the solution of ẏ = F (y) started at

w, converges to (1, 1/3, 1/3, 0),
(4) we finally apply Corollary 2.6, together with (1), (2) and (3) to conclude.

For (2), note that, if w ∈ E ′, w1 → 1, w2 → 0, and w4 → 0, then

(w1 + w2 + w3)(w2 + w3 + w4)− w2
3 ∼ w2 + w3 + w4 + w2w3 + w3w4 ∼ w2 + w3 + w4,

because w2w3 = o(w3) and w3w4 = o(w3). This implies

F2(w) ∼ w2(w2 + 2w3 + w4)

w2 + w3 + w4
− w2 =

w2(w2 + 2w3 + w4)− w2(w2 + w3 + w4)

w2 + w3 + w4
=

w2w3

w2 + w3 + w4
.

Finally, since, for all w ∈ E ′, w4 ≤ w2 + w3, we get that, as w1 → 1, w4 → 0 and w2 → 0,

F2(w) ≥ w2w3(1 + o(1))

2(w2 + w3)
≥ w2 ∧ w3

4
(1 + o(1)).

In other words, there exists ε > 0 such that, for all w ∈ E ′ with w2 ≤ ε, and w1 ≥ 1− ε,

F2(w) ≥ w2 ∧ w3

8
. (4.1)

By symmetry, for all w ∈ E ′ such that w3 ≤ ε, and w1 ≥ 1− ε,

F3(w) ≥ w2 ∧ w3

8
. (4.2)
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Thus, if we set H(x) = 9x1x≤ε/8, by Equations (4.1), and (4.2), and since Ŵ1(n) → 1 almost surely as
n → ∞, we get that, for all sufficiently large n, the random variable Φ(n) := W2(n) ∧W3(n) satisfies
almost surely on the event when W2(n) 6= W3(n),

P
(
Φ(n+ 1) = Φ(n) + 1 |W(n)

)
≥ H

(
Φ̂(n)

)
, (4.3)

with Φ̂(n) := Φ(n)/n. This is however not sufficient to apply Corollary 2.2, since when W2(n) = W3(n),
one has Φ(n+ 1) = Φ(n) + 1, only when both edges 2 and 3 are reinforced at the next step, which holds
with smaller probability. To overcome this issue, we introduce the following quantity:

Ψ(n) := Φ(n) +
n−1∑
k=0

1{W2(k) = W3(k), W2(k + 1) 6= W3(k + 1)}.

Note that contrarily to Φ, the function Ψ increases by one unit as soon as at least one of the two edges
2 or 3 is reinforced, whatever their weights are at this time (in particular this holds even when they are
equal). Therefore, (4.1) and (4.2) imply that, almost surely for all sufficiently large n,

P
(
Ψ(n+ 1) = Ψ(n) + 1 |W(n)

)
≥ H

(
Φ̂(n)

)
. (4.4)

We now claim that almost surely one has Φ(n) ∼ Ψ(n) as n → +∞, which by Corollary 2.2 implies
lim inf Φ(n) > 0, because H ′(0) = 9/8 > 0.

In fact we prove a stronger statement: almost surely for all n large enough,

Ψ(n) ≤ Φ(n) + Φ(n)
3/4. (4.5)

To see this, set
Zn := max(W2(n),W3(n))−min(W2(n),W3(n)) (∀n ≥ 1).

Note that, conditionally on the event that edge 2 or 3 is reinforced but not both, the one with largest
weight is more likely to be reinforced than the other. This implies that the process (Zk)k≥0 taken at its
jump times (i.e. the times k = 0 and all k ≥ 1 such that Zk 6= Zk−1) stochastically dominates a simple
random walk (rSRWn)n≥0 on Z+ = {0, 1, . . . } reflected at 0. We let L(n) denote the number of times
(Zk)k≥0 returns to zero before time n, i.e.

L(n) =
n∑
k=0

1{Zk = 0},

and N(n) the number of jump times of (Zk)k≥0 during its first L(n) excursions out of zero (equivalently
the number of times only one of the two edges 2 or 3 is reinforced before the last time before n when
the weights of edges 2 and 3 are equal). Then, for all integers n, L(n) is stochastically dominated by the
number of returns to the origin of (rSRWk)k≥0 before time N(n). Moreover, by definition,

Ψ(n)− Φ(n) =

n−1∑
k=0

1{W2(k) = W3(k), W2(k + 1) 6= W3(k + 1)} ≤ 1 + L(n). (4.6)

During each excursion out of the origin, the probability to hit level N 5/8 is equal to N−5/8, by a standard
Gambler’s ruin estimate. Moreover, by Hoeffding’s inequality, for any N ≥ 1, the probability for a simple
random walk started at level N 5/8 to hit 0 before time N is bounded by 2N exp(−N 1/4/2). Therefore the
probability that (rSRWk)k≥0 returns more than N 3/4/2 times to the origin before time N is bounded by

(1 −N−5/8)N
3/4/2 + 2N exp(−N 1/4/2) ≤ exp(−N 1/8/4), for all large N . Using the Borel-Cantelli lemma,
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Figure 5: The vector field F (w) on E ∩ {w1 = 1} in the cone case.

we deduce that, almost surely for all large N , (rSRWk)k≥0 returns at most N 3/4/2 times to the origin
before time N . This implies that, almost surely for all large n,

L(n) ≤ 1

2
N(n)

3/4. (4.7)

On the other hand, during each excursion of the process (Zk)k≥0 out of zero, the process (Φ(k))k≥0
increases by at least half the number of jumps made by (Zk)k≥0 during this excursion. It follows that
N(n) ≤ 2Φ(n), for all n ≥ 0, and together with (4.6) and (4.7), this concludes the proof of (4.5), and
thus of point (2).

(3) Let w ∈ U , and let Φ(t) = (Φ1(t),Φ2(t),Φ3(t),Φ4(t)) be the solution of ẏ = F (y) started at w.
We need to prove that Φ(t)→ (1, 1/3, 1/3, 0).

For all w ∈ U , we have

F2(w) =
w2(w2 + 2w3)

(1 + w2 + w3)(w2 + w3)− w2
3

− w2 and F3(w) =
w3(2w2 + w3)

(1 + w2 + w3)(w2 + w3)− w2
2

− w3.

Note that F2(w) = 0 if and only if w2 = 0 or

w2 + 2w3 = (1 + w2 + w3)(w2 + w3)− w2
3 ⇔ w3 = w2

2 + 2w2w3.

Similarly, F3(w) = 0 if and only if w3 = 0 or w2 = w2
3 +2w2w3. Thus, for all w ∈ E ∩{w1 = 1}, F (w) = 0

if and only if w2 = w3 = 0 or w2w3 6= 0 and{
w3 = w2

2 + 2w2w3

w2 = w2
3 + 2w2w3

⇔

{
w3 − w2 = w2

2 − w2
3

w2 = w2
3 + 2w2w3

⇔

{
w3 = w2

1 = 3w2

i.e. w2 = w3 = 1/3. Thus the only zeros of F on E ′ ∩ {w1 = 1} are (1, 0, 0, 0) and (1, 1/3, 1/3, 0). Similar
calculations show that F2(w) > 0 if and only if w2 < w2

3/(1 − 2w3), and F3(w) > 0 if and only if
w3 < w2

2/(1 − 2w2). In Figure 5, we plot the vector field (F2(1, w2, w3, 0), F3(1, w2, w3, 0)) with w2 on
the horizontal axis and w3 on the vertical axis. The blue curve is where F2 = 0, the purple curve where
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F3 = 0. Note that [0, 1]2 \ ({w3 = w2
2/(1− 2w2)}∪{w2 = w2

3/(1− 2w3)}) has four connected components:
on the bottom-left one, F2, F3 > 0, on the top-right one, F2, F3 < 0, on the bottom right one, F2 < 0
while F3 > 0, and, finally, on the top-left one, F2 > 0 while F3 < 0.

Thus, any solution of the ODE started in U converges to (1, 1/3, 1/3, 0), as claimed.

(4) Finally, we prove that Ŵ(n) → (1, 1/3, 1/3, 0) almost surely as n → +∞. For this we apply
Corollary 2.6: in Steps (1) and (2), we have shown that limn→+∞ Ŵ1(n) = 1 and lim infn→+∞ Ŵ2(n) ∧
Ŵ3(n) > 0. This implies that almost surely the limiting set L(W) of the process (Ŵ(n))n≥0 is contained
in U . Then (3) and Corollary 2.6 imply that L(W) = {(1, 1/3, 1/3, 0)}, as wanted.

5 Two parallel paths: proof of Theorem 1.5

Recall that, in Theorem 1.5, the graph G = (V,E) is the (p+ q)-path graph of Figure 2. In this section,
we assume that min(p, q) ≥ 2. We let a1, . . . , ap denote the p edges on one of the paths from N to F
(ordered from N to F , i.e. a1 links to N while ap links to F ), and b1, . . . , bq denote the edges on the other
path from N to F (also ordered from N to F ).

Finally, for all e ∈ E = {a1, . . . , ap, b1, . . . , bq}, we let We(n) denote the weight of edge e at time n
and set W(n) = (Wa1(n), . . . ,Wap(n),Wb1(n), . . . ,Wbq(n)), for all n ≥ 0.

The proof of Theorem 1.5 uses the ODE method, as for the cone graph in the previous section.
We roughly follow the same steps here, but there are some important differences. We first show in
Subsection 5.1 that almost surely the limiting set L(W) of the sequence of normalised weights Ŵ(n) :=
W(n)/(n + 1), is contained in (0, 1]p+q. Then, in Subsection 5.2, we give an explicit expression for the
vector field F appearing in the stochastic approximation satisfied by (Ŵ(n))n≥0. In this section, we
also define a sequence of compact sets (Kn)n≥0 in [0, 1]p+q, which we prove to be decreasing. Then in
Subsection 5.3, we show that L(W) ⊆ Kn, for all n ≥ 0, and finally in Subsection 5.4, we prove that the
intersection of the Kn’s is reduced to a single point, which is precisely the limiting point arising in the
statement of Theorem 1.5.

5.1 Proof that none of the edges has a limiting weight equal to zero

We prove here the following result.

Proposition 5.1. Let p and q be integers such that min(p, q) ≥ 2. If G = (V,E) is the (p, q)-path graph,
then there exists a constant cp,q > 0, such that almost surely for all e ∈ E,

lim inf
n→+∞

We(n)

n
> cp,q.

This proposition is proved by induction on k for ak ∈ {a1, . . . , ap} and by induction on ` for b` ∈
{b1, . . . , bq}. We prove the base case separately in the following lemma.

Lemma 5.2. In the (p + q)-path graph, if q ≥ 2, then there exists c > 0, such that almost surely,
lim infn→+∞Wa1(n)/n ≥ c, and by symmetry, if p ≥ 2, then almost surely, lim infn→+∞Wb1(n)/n ≥ c.

Proof. For all n ≥ 0, we have

P(Wa1(n+ 1) = Wa1(n) + 1 |W(n)) = P(a1 ∈ γ(n+ 1) |W(n)) =
Wa1(n)

Wa1(n) + 1∑q
i=1Wbi

(n)−1

. (5.1)

Note that, by definition of the model, for all n ≥ 0, we have either ap ∈ γ(n+ 1) or bq ∈ γ(n+ 1) but not
both. This implies that, for all n ≥ 0,

Wap(n) +Wbq(n) = n+ 2.
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By definition of the model again, we have that ap ∈ γ(n+ 1)⇒ ap−1 ∈ γ(n+ 1)⇒ · · · ⇒ a1 ∈ γ(n+ 1),
and bq ∈ γ(n+ 1)⇒ bq−1 ∈ γ(n+ 1)⇒ · · · ⇒ b1 ∈ γ(n+ 1), which imply that, for all n ≥ 0,

Wap(n) ≤Wap−1(n) ≤ · · · ≤Wa1(n) ≤ n+ 1 and Wbq(n) ≤Wbq−1(n) ≤ · · · ≤Wb1(n) ≤ n+ 1.

Thus, (5.1) implies that

P(Wa1(n+ 1) = Wa1(n) + 1 |W(n)) ≥ Wa1(n)

Wa1(n) + 1
q(n+1)−1

=
Z(n)

Z(n) + 1/q
,

where we have set Z(n) := Wa1(n)/(n + 1), for all n ≥ 0. This implies that (Wa1(n))n≥0 stochastically
dominates a G-urn process, where, for all z ∈ [0, 1],

G(z) =
z

z + 1/q
.

Note that G(z) = z if and only if z = 0 or z = 1− 1/q (which is positive because q ≥ 2, by assumption);
furthermore, one can check that G is C1 and G′(0) = q > 1, implying that the normalized G-urn process
converges almost surely to c := 1 − 1/q > 0, when n → +∞, by Proposition 2.1. This concludes the
proof.

Proof of Proposition 5.1. We prove the result by induction on k ∈ {1, . . . , p}. The case k = 1 follows
from Lemma 5.2. Assume the result holds true for some k < p, i.e. there exists c ∈ (0, 1/2) such that
almost surely lim inf Wak(n)/n > c. Let us define the events

Em := {Wak(n) ≥ cn, ∀n ≥ m} (m ≥ 1).

Then,
⋃
mEm holds almost surely.

Let τn be the time when edge ak is reinforced for the n-th time (so by definition Wak(τn) = n + 1).
Note that by definition τn ≥ n for all n ≥ 1. Thus, for all n ≥ m, on Em, using that Wak−1

(τn) ≤ τn + 1
and τn ≤ (n+ 1)/c, one has

Wak(τn)

Wak(τn) +Wak−1
(τn)

≥ c(n+ 1)

c(n+ 1) + n+ 1 + c
≥ c/2.

It follows that, almost surely on the event Em, if the weight of ak+1 is zero, then, for all n ≥ m, the τn-th
ant makes at least a geometric number of crossings of edge ak, with success probability ν := 1−c/2, before
jumping across edge ak−1. Consequently, on Em, and for n ≥ m, the probability to reinforce edge ak+1

at time τn is at least 1− (1− ρ(n))Xn , where (Xn)n≥0 is a sequence of i.i.d. geometric random variables
with parameter ν, and

ρ(n) =
Wak+1

(τn)

Wak+1
(τn) + n+ 1

.

Thus, letting uk+1(n) = Wak+1
(τn)/(n+ 1), we find

E[Wak+1
(τn+1)−Wak+1

(τn) | Fτn ] ≥ E[1− (1− ρ(n))Xn |Wak+1
(τn)] = 1− ν(1− ρ(n))

1− (1− ν)(1− ρ(n))

=
ρ(n)

1− (1− ν)(1− ρ(n))
=

uk+1(n)

uk+1(n) + ν
,

with (Fi)i≥0 the natural filtration of the process, and where we used that ExXn = νx/(1− (1−ν)x) for all
x ∈ (0, 1). It follows that on the event Em, the process (Wak+1

(τn))n≥m stochastically dominates a G-urn
process (starting from Wak+1

(τm)), with G(x) := x
x+ν . Since G(x) > x for all x ∈ (0, c/2), it follows from

Proposition 2.1 that almost surely lim inf uk+1(n) ≥ c/2. We deduce the induction step, using that by
hypothesis, lim sup τn/n ≤ 1/c.
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5.2 The stochastic algorithm and a sequence of decreasing compact subspaces.

Recall that we set Ŵ(n) := W(n)/(n + 1), for all n ≥ 0. Note also that, by definition of the model, for
all n ≥ 0,

Ŵ(n) ∈ E ′ := {w ∈ E : wap = 1− wbq , wbq ≤ wbq−1 ≤ · · · ≤ wb1 , wap ≤ wap−1 ≤ · · · ≤ wa1},

with E as defined in (2.5). Moreover, for all n ≥ 0, we have

Ŵ(n+ 1) = Ŵ(n) +
1

n+ 2

(
F (Ŵ(n)) + ξn+1

)
,

with ξn+1 some martingale difference and with F as defined in (2.4). More specifically the coordinates of
F can be computed explicitly here, and are given by, for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q, for all w ∈ E ′,

Fak(w) =
Sak(w)

Sak(w) + Sbq(w)
− wak and Fb`(w) =

Sb` (w)

Sb` (w) + Sap (w)
− wbk , (5.2)

where we have defined, for any w ∈ [0, 1]E , m ∈ {a, b}, and s an integer such that 1 ≤ s ≤ p if m = a,
and 1 ≤ s ≤ q if m = b,

Sms (w) =
1∑s

i=1
1

wmi

. (5.3)

Note that, for all 1 ≤ k ≤ p, Sak(w) = 0 if and only if wai = 0 for some 1 ≤ i ≤ k, and for all 1 ≤ ` ≤ q,
Sb` (w) = 0 if and only if wbi = 0 for some 1 ≤ i ≤ `.

To prove Theorem 1.5, we use the ODE method and thus start by studying the solutions of the
equation ẏ = F (y). To do so, we define a sequence (Kn)n≥0 of decreasing compact subsets of E ′ such that
(A) for all n ≥ 0, L(W) ⊆ Kn, and (B) the intersection of all these compacts is {w∗}, where w∗ak = αk

and w∗b` = β`, with (α, β) as in Theorem 1.5. We prove (A) in Section (5.3), and (B) in Section 5.4. In the
rest of this section, we define the sequence (Kn)n≥0 and show that it is decreasing, i.e. that Kn+1 ⊂ Kn

for all n ≥ 0. For this we need some additional notation. For all u,v ∈ E ′, we let

Hak(u,v) =
Sak(u)

Sak(u) + Sbq(v)
and Hb`(u,v) =

Sb` (u)

Sb` (u) + Sap (v)
,

for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q. Recall further that by Proposition 5.1, there exists a constant cp,q > 0,
such that almost surely

L(W) ⊆ {w : we ≥ cp,q, for all e ∈ E}. (5.4)

We also define w∗ as the limiting vector appearing in the statement of Theorem 1.5. More precisely, we
have

w∗ak = αk, and w∗b` = β`, (5.5)

for all 1 ≤ k ≤ p, 1 ≤ ` ≤ q, with (α, β) the unique solution of the system (1.1) in (0, 1)2 (existence and
uniqueness of the solution for this system of equations will be proved later, at the end Subsection 5.4).
We then define u(0) and v(0) by

u(0)
ak

= uk0, u(0)

b`
= u`0, and v(0)

ak
= v(0)

b`
= 1,

for all 1 ≤ k ≤ p, 1 ≤ ` ≤ q, with u0 chosen arbitrarily so that

0 < u0 < min(1− 1/q, α, β, cp,q).

The fact that we choose u0 ≤ min(α, β) entails in particular

0 < u(0)
e ≤ w∗e , for all e ∈ E.
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Next we define inductively two sequences (u(n))n≥0 and (v(n)))n≥0, by

u(n+1) = H(u(n),v(n)), and v(n+1) = H(v(n),u(n)).

Finally, we define the sequence (Kn)n≥0 by

Kn := {w ∈ E ′ : u(n)
e ≤ we ≤ v(n)

e , for all e ∈ E} (∀n ≥ 0).

We prove now that this sequence is decreasing, that is, Kn+1 ⊂ Kn, for all n ≥ 0. More precisely, we
prove that, for all n ≥ 0,

u(n) < H(u(n),v(n)) = u(n+1) (5.6)

v(n) > H(v(n),u(n)) = v(n+1). (5.7)

We reason by induction on n: first note that, for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q,

Sak(u(0)) = uk0
1− u0
1− uk0

and Sb` (v
(0)) =

1

`
,

which implies, using that 1− u0 > 1/q,

u(1)
ak

= Hak(u(0),v(0)) =
uk0(1− u0)

uk0(1− u0) + (1− uk0)/q
>

uk0/q

uk0/q + (1− uk0)/q
= uk0 = u(0)

ak
,

and
v(1)ak

= Hak(v(0),u(0)) < 1 = v(0)
ak
.

Similarly, for all 1 ≤ ` ≤ q,
u(1)

b`
> u(0)

b`
and v(1)

b`
< v(0)

b`
.

We now proceed to the induction step and assume that, for some n ≥ 1 u(n)
e > u(n−1)

e and v(n)
e < v(n−1)

e for
all e ∈ E. We then simply observe that, for all e ∈ E,

u(n+1)
e = He(u

(n),v(n)) > He(u
(n−1),v(n−1)) = u(n)

e ,

and
v(n+1)
e = He(v

(n),u(n)) < He(v
(n−1),u(n−1)) = v(n)

e ,

which proves the induction step, and thus concludes the proofs of (5.6) and (5.7). In other words we just
have proved that (Kn)n≥0 is indeed a sequence of decreasing sets.

5.3 Proof that L(W) ⊆ Kn, for all n ≥ 0.

We use an induction argument. Note first that by (5.4) and the definition of K0, one has almost surely
L(W) ⊆ K0, using also the hypothesis u0 ≤ cp,q. We now prove the induction step, i.e. that almost
surely, if L(W) ⊆ Kn, for some n ≥ 0, then also L(W) ⊆ Kn+1.

To do so, we first look at Fak(w) for 1 ≤ k ≤ p and w such that ue ≤ we ≤ ve for all e ∈ E: we have

Fak(w) =
Sak(w)

Sak(w) + Sbq(w)
− wak ≥

Sak(u)

Sak(u) + Sbq(v)
− wak = Hak(u,v)− wak .

Thus, if ue ≤ we ≤ ve for all e ∈ E and
wak < Hak(u,v),

then Fak(w) > 0. Also, for all 1 ≤ k ≤ p, if ue ≤ we ≤ ve for all e ∈ E and

wak > Hak(v,u),
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then Fak(w) < 0. The same argument leads to

wb` < Hb`(u,v) =⇒ Fb`(w) > 0;

wb` > Hb`(v,u) =⇒ Fb`(w) < 0,

for all 1 ≤ ` ≤ q, and if ue ≤ we ≤ ve for all e ∈ E. These facts imply that, for all n ≥ 0, and for any
w ∈ Kn, the flow of the ODE ẏ = F (y) started at w converges to Kn+1. Therefore if we already know
that L(W) ⊆ Kn, then it means that L(W)∩Kn+1 is an attractor of the flow restricted to L(W). Thus
by Proposition 2.5, we deduce that L(W) ⊆ Kn+1.

Altogether this proves that L(W) is almost surely included in the intersection of all the Kn’s.

5.4 Identification of the intersection of the Kn’s.

We show here that the intersection of the Kn’s is reduced to the single point w∗, which appears as the
limiting vector in the statement of Theorem 1.5 (see also (5.5) above).

Since the sequences (u(n)
e ) and (v(n)

e ) are all monotonic and bounded, they all converge. We let
u∗ = limn→+∞ u

(n) and v∗ = limn→+∞ u
(n). Because H is continuous on E ′, we have

u∗ = H(u∗,v∗), and v∗ = H(v∗,u∗).

The equation u∗ = H(u∗,v∗) can be written as, for all 1 ≤ k ≤ p, 1 ≤ ` ≤ q,

u∗ak =
Sak(u∗)

Sak(u∗) + Sbq(v
∗)

and u∗b` =
Sb` (u

∗)

Sb` (u
∗) + Sap (v∗)

.

Using that Sa1 (u∗) = u∗a1 and Sb1(u
∗) = u∗b1 , this implies that

u∗a1 = 1− Sbq(v∗) =: α and u∗b1 = 1− Sap (v∗) =: β, (5.8)

and, for all 2 ≤ k ≤ p, 2 ≤ ` ≤ q,

u∗ak =
Sak(u∗)

Sak(u∗) + 1− u∗a1
and u∗b` =

Sb` (u
∗)

Sb` (u
∗) + 1− u∗b1

.

We first show by induction that this implies u∗ak = αk and u∗b` = β` for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q.

Indeed, if for some 1 < k ≤ p, and all 1 ≤ i < k, u∗ai = αi, then

u∗ak =

(
1
u∗ak

+ 1−αk−1

αk−1(1−α)

)−1
(

1
u∗ak

+ 1−αk−1

αk−1(1−α)

)−1
+ 1− α

=
1

1 + (1− α)
(

1
u∗ak

+ 1−αk−1

αk−1(1−α)

) ,
and a straightforward calculation yields that u∗ak = αk, as claimed. The proof of u∗b` = β` for all 1 ≤ ` ≤ q
is similar.

Since (u∗,v∗) also satisfies the symmetric equation v∗ = H(v∗,u∗), we get that

v∗a1 = 1− Sbq(u∗) =: ᾱ and v∗b1 = 1− Sap (u∗) =: β̄, (5.9)

and v∗ak = ᾱk, v∗b` = β̄` for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q. Using this into (5.8), and using the definition of
Sp and Sq (see (5.3)), we get

α = 1− 1∑q
i=1 β̄

−i and β = 1− 1∑p
i=1 ᾱ

−i .
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Similarly, using the fact that u∗ak = αk and u∗b` = β` for all 1 ≤ k ≤ p and 1 ≤ ` ≤ q, together with
Equation (5.9), we get

ᾱ = 1− 1∑q
i=1 β

−i and β̄ = 1− 1∑p
i=1 α

−i .

Note that

α = 1− 1∑q
i=1 β̄

−i ⇔ 1− α =
β̄q(1− β̄)

1− β̄q
, (5.10)

and, similarly,

β̄ = 1− 1∑p
i=1 α

−i ⇔ 1− β̄ =
αp(1− α)

1− αp
. (5.11)

For all integer p ≥ 2 and x ∈ [0, 1], we let

fp(x) = 1− 1∑p
i=1 x

−i = 1− xp(1− x)

1− xp
.

With this notation, we have α = fq(β̄) and β̄ = fp(α) (and similarly for ᾱ and β), and thus

α = fq ◦ fp(α) and ᾱ = fq ◦ fp(ᾱ).

We now show that fp is a contraction for all p ≥ 2, implying that fp ◦ fq is also a contraction, and thus
admits a unique fixed point, which implies α = ᾱ (and thus β = β̄).

Lemma 5.3. For all p ≥ 2, the function fp : [0, 1]→ R defined by

fp(x) := 1− xp(1− x)

1− xp
,

is a contraction.

Proof. First note that fp can be extended to a continuous function on [0, 1] by setting fp(1) = 1− 1/p. To
prove that fp is a contraction, we show that there exists ε > 0 such that, for all x ∈ [0, 1], |f ′p(x)| ≤ 1− ε.
First note that, for all x ∈ [0, 1),

f ′p(x) = −x
p−1(xp+1 − (p+ 1)x+ p)

(1− xp)2
.

For all ε > 0, we have that

f ′p(x) ≤ 1− ε ⇔ x2p − (p+ 1)xp + pxp−1 ≤ 1− ε− 2(1− ε)xp + (1− ε)x2p

⇔ 0 ≤ 1− ε− pxp−1 + (p− 1 + 2ε)xp − εx2p =: ϕ(x).

To understand ϕ(x) on [0, 1], we look at its derivative: for all x ∈ [0, 1],

ϕ′(x) = −p(p− 1)xp−2 + p(p− 1 + 2ε)xp−1 − 2pεx2p−1 = xp−2ψ(x),

where
ψ(x) = −p(p− 1) + p(p− 1 + 2ε)x− 2pεxp+1.

Note that ψ′(x) = p(p− 1 + 2ε)− 2p(p+ 1)εxp is non-negative if and only if

xp ≤ p(p− 1 + 2ε)

2p(p+ 1)ε
.

For all ε small enough, the right-hand side of this inequality is larger than one (because p ≥ 2), implying
that for such ε, ψ′(x) is non-negative and thus ψ is non-decreasing on [0, 1]. And thus, for all x ∈ [0, 1],
ψ(x) ≤ ψ(1) = 0. Therefore, since ϕ′(x) = xp−2ψ(x), we get that ϕ′(x) ≤ 0 for all x ∈ [0, 1], and thus ϕ
is non-increasing on [0, 1]. This implies that ϕ(x) ≤ ϕ(0) = 1− ε, and thus concludes the proof.
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We have thus proved that α = ᾱ and β = β̄, where we recall that (α, β) is the unique solution of
α = fq(β) and β = fp(α) in (0, 1)2, i.e. {

α = 1− βq(1−β)
1−βq

β = 1− αp(1−α)
1−αp .

(5.12)

It only remains to show that (α, β) is also a solution of (1.1), and that it is the unique solution of (1.1)
on (0, 1)2. Since (α, β) is a solution of (5.12), we get that

(1− α)(1− βq) = βq(1− β) ⇒ 1− α = βq(2− α− β),

and, similarly,
(1− β)(1− αp) = αp(1− α) ⇒ 1− β = αp(2− α− β).

This implies

2− α− β =
1− β
αp

=
1− α
βq

,

and thus (α, β) satisfies the second equation of (1.1). Furthermore,

αp + βq =
1− β

2− α = β
+

1− α
2− α− β

= 1,

implying that (α, β) is solution of (1.1).
To prove that (1.1) has a unique solution on (0, 1)2, we show that any solution of (1.1) on (0, 1)2

is also a solution of (5.12) (since the latter has a unique solution on (0, 1)2, this concludes the proof).
Indeed, if (α, β) ∈ (0, 1)2 is a solution of (1.1), then

1− α =
βq(1− β)

αp
=
βq(1− β)

1− βq
,

which implies the first equation of (5.12). The second equation of (5.12) can obtained similarly. Therefore,
if (α, β) is a solution of (1.1), then it is also a solution of (5.12), which concludes the proof of Theorem 1.5.

6 The lozenge: proof of Proposition 1.6

First recall that, by Proposition 2.7 and the specificities of the lozenge graph, if we let Ŵ(n) = W(n)
n+2

(∀n ≥ 0), then, for all n ≥ 0, Ŵ(n) ∈ E ′, where

E ′ := {w = (w1, w2, w3, w4, w5) ∈ E : w2 + w5 = 1, w1 + w4 ≥ 1, w2 ≤ w1 + w3, w5 ≤ w3 + w4},

with E as defined in (2.5). The first condition (w2 +w5 = 1) is satisfied by Ŵ(n) because, by definition of
the model, each ant reinforces either edge 2 or edge 5 but not both. The second condition (w1 +w4 ≥ 1)
is redundant with the fact that w ∈ E (it is the same condition as πw(N) ≥ 1). The third condition
(w2 ≤ w1 +w3) holds because each ant that reinforces edge 2 also reinforces either edge 1 or edge 3. The
fourth condition is the symmetric of the third one.

Remark. As in Section 4, it is convenient to define Ŵ(n) as W(n)/(n+2) rather than as W(n)/(n+1).
This is because with the former definition, we have Ŵ2(n) + Ŵ5(n) = 1 for all n ≥ 0, which is not true
with the latter definition (although it holds asymptotically as n→ +∞).
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Moreover, for all n ≥ 0,

Ŵ(n+ 1) = Ŵ(n) +
1

n+ 3

(
F (Ŵ(n)) + ξn+1

)
,

with ξn+1 some martingale difference, and where Fi(w) = pi(w)−wi, with pi(w) = P(ei ∈ γn+1 | Ŵ(n) =
w) (note that this probability does not depend on n).

The first step in the proof of Proposition 1.6 is to compute these probabilities pi(w), for 1 ≤ i ≤ 5. A
straightforward calculation, which we carry out in Section A, shows that for all w ∈ E ′,

p1(w) =
w1

w1 + w4
+

w4

w1 + w4
·

w1
w3+w4+w5

(
w4

w1+w4
+ w3

w1+w2+w3

)
1− w2

4
(w1+w4)(w3+w4+w5)

− w2
3

(w1+w2+w3)(w3+w4+w5)

p2(w) =
w2(w1(w3 + w4 + w5) + w3w4)

(w1 + w4)(w3 + w2w5 + w1w4
w1+w4

)

p3(w) =
w3

(
w1

w1+w2+w3
+ w4

w3+w4+w5

)
w1 + w4 −

(
w2

1
w1+w2+w3

+
w2

4
w3+w4+w5

) . (6.1)

By symmetry, we also have p4(w) = p1(w4, w5, w3, w1, w2) and p5(w) = p2(w4, w5, w3, w1, w2). Further-
more, since, by definition of the model, each ant reinforces either edge 2, or edge 5, but not both, we have
p2(w) = 1− p5(w). Note also that, for all w ∈ E ′,

F2(w) = p2(w)− w2 =
w2w5(

w1
w1+w4

− w2)

w3 + w2w5 + w1w4
w1+w4

, (6.2)

and

p3(w) =
w3(α+ β)

α(w3 + w2) + β(w3 + w5)
, (6.3)

with
α :=

w1

w1 + w2 + w3
, and β :=

w4

w3 + w4 + w5
, (6.4)

where by convention we set α = 0 when w1 = 0, and similarly β = 0, when w4 = 0.

The second step is the following fact.

Lemma 6.1. Almost surely lim infn→+∞
W1(n)
n > 0, and by symmetry lim infn→+∞

W4(n)
n > 0 almost

surely.

Proof. Note that for all w ∈ E ′,

p1(w)

w1
≥ 1

w1 + w4
+

w2
4

w1 + w4
· 1

(w3 + w4 + w5)(w1 + w4)− w2
4

.

When w1 → 0, we have w4 → 1 because 1− w1 ≤ w4 ≤ 1 for all w ∈ E ′. Using in addition the fact that
w3 + w5 ≤ 2 for all w ∈ E ′, we get that

lim inf
w1→0

p1(w)

w1
≥ 3

2
,

and then the result follows from Corollary 2.2.

We next prove the following result.
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Lemma 6.2. For all w ∈ E ′, one has

(i) If w2 <
w1

w1+w4
, then F2(w) > 0, and if w2 >

w1
w1+w4

, then F2(w) < 0.

(ii) If w2 ≥ w1
w1+w4

, and 0 < w1 < w4, then F1(w)w4 − F4(w)w1 > 0. Likewise, if w2 ≤ w1
w1+w4

, and
w4 < w1 < 1, then F1(w)w4 − F4(w)w1 < 0.

Proof. The first claim follows directly from (6.2). For the second claim, note that if w2 ≥ w1
w1+w4

, then
with the notation of (6.4), one has λ1 ≤ w1

w1+
w1

w1+w4
+w3

, and if in addition w1 < w4, we get

λ1 ≤
w1

w1 + w1
w1+w4

+ w3
<

w4

w4 + w4
w1+w4

+ w3
≤ λ4,

since w2 ≥ w1
w1+w4

is equivalent to w5 ≤ w4
w1+w4

(using that for w ∈ E , w5 = 1 − w2). Then, we get using
(6.1), and again λ4 ≥ λ1, and w4 > w1,

F1(w)w4 − F4(w)w1 = p1(w)w4 − p4(w)w1

=
w1w4

w1 + w4


w4λ4
w1+w4

+ w3w4
(w1+w2+w3)(w3+w4+w5)

1− w4λ4
w1+w4

− w2
3

(w1+w2+w3)(w3+w4+w5)

−
w1λ1
w1+w4

+ w3w1
(w1+w2+w3)(w3+w4+w5)

1− w1λ1
w1+w4

− w2
3

(w1+w2+w3)(w3+w4+w5)

 > 0,

proving the first statement of (ii). The second statement follows from similar arguments.

As a corollary we get the following:

Lemma 6.3. Let t 7→ Φ(t) be a solution of the equation ẏ = F (y), starting from some point w ∈ U :=
{w ∈ E ′ : w1w4 6= 0}. Then limt→∞Φ(t) = (w∗, 1/2, 1/2, w∗, 1/2), where w∗ is the unique solution in [0, 1]
of the equation 2x3 + 4x2 − 2x− 3

2 = 0.

Proof. We first show that Φ(t) converges to the setH := E ′∩{w2 = w1
w1+w4

= 1/2}. Denote by (Φi(t))i=1,...,5

the coordinates of the vector Φ(t), and let

u(t) = Φ2(t)−
1

2
, and v(t) =

Φ1(t)

Φ1(t) + Φ4(t)
− 1

2
.

By definition, taking the derivative along the flow, we get

u′(t) = F2(Φ(t)), and v′(t) =
F1(Φ(t)) · Φ4(t)− F4(Φ(t)) · Φ1(t)

(Φ1(t) + Φ4(t))2
.

Our aim is to show that h(t) := max(|u(t)|, |v(t)|) is a Lyapunov function, i.e. that it is decreasing, for all
t smaller than the (possibly infinite) time when it reaches 0, and that it converges to 0. To see this, first
note that if at some time t, one has 0 ≤ v(t) < u(t), then by Lemma 6.2(i), h′(t) = u′(t) = F2(Φ(t)) < 0.
By symmetry, if u(t) < v(t) ≤ 0, then h′(t) = −u′(t) < 0. Second, note that, if v(t) < 0 ≤ u(t), then
by Lemma 6.2, we have u′(t) < 0 and v′(t) > 0, which entails that h is decreasing in a neighborhood
of t since both its right and left derivatives are negative at this time (it is differentiable if |u(t)| 6= |v(t)|).
Symmetrically, the same holds if u(t) < 0 ≤ v(t). Finally when u(t) = v(t) 6= 0, we see that u′(t) = 0
while v′(t) 6= 0, so that in a neighborhood of t, u(t) 6= v(t), and thus by the previous argument h is
again decreasing in a neighborhood of t. As a consequence, h is decreasing up to the (possibly infinite)
time when it reaches 0, and thus converges. Note also that the previous arguments show that h has a
negative right-derivative at any non-zero value, which implies that its only possible limit is zero. This
indeed implies that Φ(t) converges to the set H := E ′ ∩ {w2 = w1

w1+w4
= 1/2}, as claimed.

We now prove that Φ(t) converges to the set H′ := H ∩ {w3 = 1/2}. Indeed, observe that for any
w ∈ H,

F3(w) =
w3

w3 + 1/2
− w3,
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thus F3(w) > 0, if w3 < 1/2, and F3(w) < 0 if w3 > 1/2. Since F3 is continuous and E is compact, F3 is
also positive in a neighborhood ofH∩{w3 ≤ 1/2−ε}, and negative in a neighborhood ofH∩{w3 ≥ 1/2+ε},
for any fixed ε > 0. Since we also know that Φ(t) converges to H, it follows that it converges to
H ∩ {1/2− ε ≤ w3 ≤ 1/2 + ε}, for any ε > 0. In other words it converges well to H′, proving the claim.

Finally, note that for any w ∈ H′, one has

F1(w) =
1

2
+

1

2
·

w1
1+w1

(
1
2 +

1/2
1+w1

)
1− 1

2
w1

1+w1
− 1/4

(1+w1)2

− w1 =
1

2
+

w1(2 + w1)

2w2
1 + 6w1 + 3

− w1.

Then one can check that F1(w) > 0 if and only if f(w1) > 0 where, for all x ∈ R,

f(x) = −2x3 − 4x2 + 2x+
3

2
.

Note that f is a polynomial of degree 3, it thus has at most three zeros in R. One can check that f ′ is
positive on ((−2−

√
7)/3, (−2 +

√
7)/3) and non-positive on the complement of this set. Thus, on [0, 1],

f is non-decreasing on [0, (−2 +
√

7)/3] and non-increasing on [(−2 +
√

7)/3, 1]. Since f(0) = 3/2 > 0 and
f(1) = −5/2, we get that there exists a unique solution to f(x) = 0 on [0, 1], which we call w∗. Moreover,
f(x) > 0 for all x ∈ [0, w∗) and f(x) < 0 for all x ∈ (w∗, 1]. The conclusion follows, using again continuity
of F1 and compactness of H′, as above.

The proof of Proposition 1.6 now follows from Corollary 2.6. Indeed, by Lemma 6.1, the limiting
set L(Ŵ ) of the stochastic approximation (Ŵ (n))n≥0 is contained in the set U , which was defined in
Lemma 6.3. Then Lemma 6.3 and Corollary 2.6 imply that L(Ŵ ) = {(w∗, 1/2, 1/2, w∗, 1/2)}, as wanted.

A Calculating F in the lozenge case: proof of (6.1)

We use the same notation as in Section 6. To prove (6.1), we use the electrical networks method (see,
e.g. [LL10]). We start by calculating p2(w): this is the probability that a random walker on the graph
with weights w = (wi)1≤i≤5, starting from N , crosses Edge 2 before crossing Edge 5. This is equal to the
probability that a walker starting from N reaches F2 before F5 on the weighted graph of Figure 6. We
decompose p2(w) according to the first step of the walker:

p2(w) =
w1

w1 + w4
· p22(w) +

w4

w1 + w4
· p25(w), (A.1)

where p22(w) (resp. p25(w)) denotes the probability to reach F2 before F5 starting from P2 (resp. P5) on
the graph of Figure 6. By classical formulas for random walks on weighted graphs (see, e.g. [LL10]),

p22(w) =
CP2F2(w)

CP2F2(w) + CP2F5(w)
,

where CXY (w) is the effective conductance between vertices X and Y when the edge weights are given
byw. By definition of effective conductances, the effective conductance of a single edge is its weight. Thus,
CP2F2 = w2. Moreover, the conductance of two edges in parallel is the sum of their effective conductances,
the effective conductance of two edges in series is the inverse of the sum of the inverses of their effective
conductances. Using these formulas, we get (see Figure 6 for details)

CP2F2(w) =

(
w3 + w1w4

w1+w4

)
w5

w3 + w5 + w1w4
w1+w4

.
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N

F2 F5

w2
w3

w5

w4w1

P2 P5 F2 F5

w2 w5

P2 P5

w3 +
w1w4

w1+w4

Figure 6: Notation for the proof of (6.1), and calculation of p22(w), the probability of reaching F2 before
F5 starting from P2.

We thus get

p22(w) =
w2

w2 +

(
w3+

w1w4
w1+w4

)
w5

w3+w5+
w1w4
w1+w4

=
w2

(
w3 + w5 + w1w4

w1+w4

)
w2

(
w3 + w5 + w1w4

w1+w4

)
+
(
w3 + w1w4

w1+w4

)
w5

=
w2

(
w3 + w5 + w1w4

w1+w4

)
w3 + w2w5 + w1w4

w1+w4

,

because w2 + w5 = 1 for all w ∈ E ′. By symmetry,

p25(w) = 1−
w5

(
w2 + w3 + w1w4

w1+w4

)
w3 + w2w5 + w1w4

w1+w4

=
(1− w5)

(
w3 + w1w4

w1+w4

)
w3 + w2w5 + w1w4

w1+w4

=
w2

(
w3 + w1w4

w1+w4

)
w3 + w2w5 + w1w4

w1+w4

.

Thus, (A.1) becomes

p2(w) =
w1

w1 + w4
·
w2

(
w3 + w5 + w1w4

w1+w4

)
w3 + w2w5 + w1w4

w1+w4

+
w4

w1 + w4
·

w2

(
w3 + w1w4

w1+w4

)
w3 + w2w5 + w1w4

w1+w4

=
w2(w1(w3 + w4 + w5) + w3w4)

w3 + w2w5 + w1w4
w1+w4

,

as claimed.

We now calculate p3(w): we decompose on the first step of the random walker to get

p3(w) =
w1

w1 + w4
· p32(w) +

w4

w1 + w4
· p35(w), (A.2)

where p32(w) (resp. p35(w)) is the probability to cross edge 3 before reaching F starting from P2 (resp.
P5), when the edge weights are given by w. Decomposing over the first weight of a random walker starting
at P2, we get

p32(w) =
w1

w1 + w2 + w3
· p3(w) +

w3

w1 + w2 + w3
,

and similarly for p35(w). Using this in (A.2), we get

p3(w)

=
w1

w1 + w4

(
w1

w1 + w2 + w3
· p3(w) +

w3

w1 + w2 + w3

)
+

w1

w1 + w4

(
w4

w3 + w4 + w5
· p3(w) +

w3

w3 + w4 + w5

)
,

which implies(
1− w2

1

(w1 + w4)(w1 + w2 + w3)
− w2

4

(w1 + w4)(w3 + w4 + w5)

)
p3(w)

=
w3

w1 + w4

(
w1

w1 + w2 + w3
+

w4

w3 + w4 + w5

)
.
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This indeed gives the formula for p3(w) announced in (6.1).

Finally, we show how to calculate p1(w): again, we decompose according to the first step of the walker:

p1(w) =
w1

w1 + w4
+

w4

w1 + w4
· p15(w), (A.3)

where p15(w) is the probability to cross edge 1 before reaching F starting from P5. Decomposing according
to the first step again, we get

p15(w) =
w4

w3 + w4 + w5
· p1(w) +

w3

w3 + w4 + w5
· p12(w)

=
w4

w3 + w4 + w5

(
w1

w1 + w4
+

w4

w1 + w4
· p15(w)

)
+

w3

w3 + w4 + w5
· p12(w) (A.4)

where p12(w) is the probability to cross edge 1 before reaching F starting from P2. We have used (A.3)
in the second equality. Finally, we have

p12(w) =
w1

w1 + w2 + w3
+

w3

w1 + w2 + w3
· p15(w). (A.5)

Using (A.5) in (A.4) we get

p15(w) =
w1

w1+w4
· w4
w3+w4+w5

+ w1
w1+w2+w3

· w3
w3+w4+w5

1− w2
4

(w1+w4)(w3+w4+w5)
− w2

3
(w1+w2+w3)(w3+w4+w5)

,

and we can then use in (A.3) to get the formula for p1(w) announced in (6.1).
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