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ABSTRACT 32 

Computational analysis of bio-images by deep learning (DL) algorithms has made 33 

exceptional progress in recent years and has become much more accessible to non-34 

specialists with the development of ready-to-use tools. The study of oogenesis 35 

mechanisms and female reproductive success in fish has also recently benefited from the 36 

development of efficient three-dimensional (3D) imaging protocols on entire ovaries. 37 

Such large datasets have a great potential for the generation of new quantitative data on 38 

oogenesis but are, however, complex to analyze due to imperfect fluorescent signals and 39 

the lack of efficient image analysis workflows. Here, we applied two open-source DL tools, 40 

Noise2Void and Cellpose, to analyze the oocyte content of medaka ovaries at larvae and 41 

adult stages. These tools were integrated into end-to-end analysis pipelines that include 42 

image pre-processing, cell segmentation, and image post-processing to filter and combine 43 

labels. Our pipelines thus provide effective solutions to accurately segment complex 3D 44 

images of entire ovaries with either irregular fluorescent staining or low autofluorescence 45 

signal. In the future, these pipelines will be applicable to extensive cellular phenotyping 46 

in fish for developmental or toxicology studies. 47 

  48 
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INTRODUCTION 49 

As imaging methods for thick biological samples improve and become more widespread in 50 

various fields of life sciences, the volume of image data keeps growing and their analysis 51 

becomes even more complex. Biologists are therefore facing a rising need for computational 52 

tools to analyze large bio-image datasets and extract reproducible and meaningful biological 53 

information. 54 

The fish ovary is a complex organ that shows important structural and functional changes 55 

during reproductive cycles. It contains different types of cells, including oocytes (i.e., female 56 

gametes) and numerous surrounding somatic supporting cells that form, together with each 57 

oocyte, the functional units known as ovarian follicles (Lubzens et al., 2010; Nakamura et al., 58 

2009). During oogenesis, each follicle grows and differentiates until finally giving rise to eggs 59 

that are ultimately released during spawning. One of the greatest challenges facing research on 60 

the development of ovarian dynamics and functions is the lack of an effective method to 61 

accurately count growing oocytes regardless of their stage. Studies have indeed traditionally 62 

been limited to automatic or manual oocyte counting on two-dimensional (2D) ovarian sections 63 

and extrapolation of the data to the whole organ  or to manual counting of dissociated follicles 64 

(Gay et al., 2018; Iwamatsu, Takashi, 1978; Iwamatsu, 2015). Some studies have also focused 65 

on the development of complex stereological approaches to limit the biases induced by 2D 66 

approaches (Charleston et al., 2007). Recently, the emergence of optical tissue clearing methods 67 

and powerful microscopes have opened new perspectives with the possibility of imaging whole 68 

ovaries in three dimensions (3D), notably for mice and fishes (Fiorentino et al., 2021; Lesage 69 

et al., 2020; Soygur and Laird, 2021). It is thus now possible to generate 3D image data, 70 

generally of very large size, that ideally allows direct and comprehensive access to all structures 71 

and to achieve a precise 3D image reconstruction of the whole ovary. However, tools for 3D 72 

image analyses are still too inaccurate and tedious, especially for image segmentation, partly 73 
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because of an irregular contrast signal in depth and the presence of oocytes of heterogenous 74 

sizes, as reported previously for the adult Medaka ovary (Lesage et al., 2020). Ovarian 3D 75 

imaging therefore has a promising future, but its widespread use still relies on the availability 76 

of more efficient and easier-to-use computerized analytical tools. 77 

In recent years, artificial intelligence (AI) has developed considerably and is proving to be 78 

highly effective for digital image analysis in biology, which has recently led to a deluge of 79 

publications in this field. Various algorithms based on deep learning (DL) have emerged and 80 

provide many applications in microscopy allowing to overcome classical limitations such as 81 

image segmentation. They allow to increase object recognition accuracy, segmentation 82 

reproducibility and enable to save a considerable amount of time for the analysis of large 83 

datasets by limiting manual interventions of users (Moen et al., 2019). Some specific methods 84 

have thus been proposed to automatically segment follicles in the mammalian ovary from 85 

histological 2D sections using a convolutional neural network (CNN) (İnik et al., 2019; Sonigo 86 

et al., 2018). Other more generalist tools have recently emerged to democratize the use of DL 87 

technology with few prerequisites in computed coding, by providing either DL trained models 88 

accessible from public databases (https://bioimage.io/#/), notebooks accessible from any 89 

computer (von Chamier et al., 2021), or other open-source plugins such as CSBDeep (Weigert 90 

et al., 2018) or DeepImageJ (Gómez-de-Mariscal et al., 2021). Among the available models for 91 

cell segmentation, Cellpose is a particularly versatile one, providing a generalist pre-trained 92 

model for segmentation that can perform on various cell types in a great variety of acquisition 93 

modalities (Stringer et al., 2021). Cellpose has recently proven to be very effective in 94 

segmenting muscle fibers from 2D images of histological sections (Waisman et al., 2021). 95 

Noise2Void (N2V) is another approach that stands out for its image denoising performance. 96 

N2V does not require noisy image pairs nor clean target images, therefore allowing training 97 

directly on the corpus of data to be denoised (Krull et al., 2019). In the era of deep learning, it 98 
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thus appears that some of the routine limitations for bio-image analysis are now solved. All that 99 

remains for the biologist is the delicate task of integrating deep learning steps into the various 100 

analytical procedures for 2D and for 3D images in particular. 101 

The aim of this study was to test the possibility of using a pre-trained open-source model to 102 

improve the critical step of segmentation of Medaka ovary 3D images without undergoing the 103 

fastidious and complex task of neural network training. We generated 3D fluorescent images 104 

of the adult ovarian follicle boundaries, by using the Methyl Green nuclear dye. We also 105 

generated 3D images of ovaries at the larvae stage, by using the autofluorescence signal in 106 

oocyte cytoplasm. For 3D segmentation of both types of images, we applied the generalist 107 

Cellpose model for oocyte 3D segmentation, which was even more efficient after image pre-108 

processing steps and N2V denoising. A post-processing step after Cellpose was also set up to 109 

eliminate any remaining error and to combine labels when necessary. N2V and Cellpose have 110 

thus been integrated into a complete pipeline that allows an accurate estimation of the oocyte 111 

content from complex 3D images of the whole Medaka ovary.  112 

 113 

MATERIAL AND METHODS 114 

Ethical Statement  115 

All fish were reared in the INRAE ISC-LPGP fish facility, which hold full approval for animal 116 

experimentation (C35-238-6). All fish were handled in strict accordance with French and 117 

European policies and guidelines of the INRAE LPGP Institutional Animal Care and Use 118 

Committee (no.M-2020-126-VT-ML, no.M-2019-48-VT-SG). 119 

 120 

Medaka breeding and sample collection 121 

Medaka fish (Oryzias latipes) from the CAB strain were raised at 26°C under artificial 122 

photoperiod dedicated to growth phase (16 h light/ 8 h dark) or reproductive cycles (14 h light/ 123 
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10 h dark). Female fish were sampled either at larvae stage (20 days post-hatch, dph) or adult 124 

stage (5 months old). Fish were euthanized by immersion in a lethal dose of MS-222 at 300mg/L 125 

supplemented with NaHCo3 at 600mg/L and fixed overnight at 4°C in 4% paraformaldehyde 126 

(PFA) diluted in 0.01 M phosphate buffer saline (PBS) pH 7.4. Larvae were then dehydrated 127 

gradually in methanol and stored at -20°C. Adult ovaries were dissected after fixation and 128 

directly stored at 4°C in PBS + 0.5% (w/v) sodium azide (S2002, Sigma-Aldrich). 129 

 130 

Fluorescent staining and clearing 131 

Larvae were progressively rehydrated in PBS and ovaries were dissected. Ovaries were then 132 

permeabilized and immunostained following the iDISCO protocol with some modifications 133 

(Renier et al., 2014). Samples were successively incubated in PBS/0.2% Triton X-100 (PBSTx) 134 

for 30 min twice, PBSTx/20% DMSO for 30 min at 37°C and in PBSTx/0.1% Tween-20/20% 135 

DMSO/0.1% deoxycholate/0.1% NP40 at 37 °C for 3 h. Ovaries were washed in PBSTx for 15 136 

min twice, then blocked in PBS/0.1% Triton X-100/20% DMSO/6% Sheep Serum for 2H30-137 

3H at 37°C. Samples were immunolabelled with anti-phospho-Histone H3 (Ser10) primary 138 

antibody (1:500, 06-570 Merck millipore), washed for 0.5 day in PBS/0.1% Tween-20/10µg/ml 139 

heparin (PBSTwH) under gentle agitation, and incubated with Alexa-Fluor 546 secondary 140 

antibody (1:500, A11035, ThermoFisher). Antibodies incubations were conducted for 2.5 days 141 

at 37°C in PBSTwH/5% DMSO/3% Sheep serum. Finally, stained larvae ovaries were 142 

embedded in low-melting agarose 1% before proceeding to clearing. Adult ovary samples were 143 

stained and cleared according to the C-ECi method with few modifications (Lesage et al., 2020). 144 

For staining, adult ovaries were incubated with the Methyl Green dye (MG) (40 μg/mL, 323829, 145 

Sigma-Aldrich) in PBS/0.1% Triton X-100 at 37°C for 2.5 days. After Staining, both adult 146 

ovaries and embedded larvae ovaries were dehydrated in serial methanol/H2O dilution series 147 

supplemented with Tween-20 (2% and 0.1%, respectively), then immersed in 100% ethyl-3-148 
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phenylprop-2-enoate (ethyl cinnamate [ECi]) (W243000, Sigma-Aldrich) and finally kept at 149 

room temperature until subsequent imaging step.  150 

 151 

Samples mounting and imaging 152 

Image acquisitions were performed with a Leica TCS SP8 laser scanning confocal microscope 153 

equipped with a 16x/0.6 IMM CORR VISIR HC FLUOTAR objective (ref. 15506533, Leica, 154 

Wetzlar, Germany). For larvae ovaries, samples embedded in agarose blocks were glued on a 155 

coverslip and placed in a glass Petri dish filled with ECi. Adult ovaries were successively placed 156 

with ventral side up or down for complete imaging despite the objective working distance 157 

limitation, and mounted as described previously (Lesage et al., 2020). Mosaic z-stack tiles were 158 

stitched in Leica software using 11,72% overlap. Larvae ovaries were acquired in 1024x1024 159 

pixels, 400Hz (unidirectional) with an optical zoom of 1.3 and a z-step of 1.63 µm (voxel size 160 

0.52 x 0.52 x 1.6264 µm). PH3 fluorescent signal was acquired using 552 nm laser excitation 161 

slightly above optimal intensity (3-4%), and frame average was set to 2. Acquisitions took 162 

between 1.5 and 5.5 hrs according to ovary size and generated 1 to 2 GB of data. Adult ovaries 163 

were acquired in 512x512 pixels, 600Hz (bidirectional), optical zoom 0.75, z-steps 6 µm (voxel 164 

size 1.80 x 1.80 x 6.00 µm), line accumulation 2 and frame average 2. Ventral and dorsal z-165 

stacks were acquired in about 10 hrs each and generated 8 to 10 GB of data. MG staining was 166 

detected with 638 nm laser and excitation gain compensation was used along Z axis (5 to 10% 167 

intensity). 168 

 169 

Image processing  170 

A schematic overview of image treatment workflows is shown on Figure 1. All steps were 171 

conducted on the open-source FIJI software, unless otherwise specified. 172 

 173 
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Image intensity and contrast enhancement 174 

Before image enhancement, adult z-stacks were downscaled in order to reduce computation 175 

time. A resampling factor of 3 on X and Y axes was used, which resulted in images sizes of 176 

1214 x 970 pixels. Progressive intensity and gamma correction plugin was applied along the Z 177 

axis to compensate fluorescence loss in depth (Fig. 1B). For larvae, exponential or linear 178 

interpolation method were used with default parameters and intensity enhancement was set 179 

between 150 and 400% depending on samples. For adults, linear interpolation method was used, 180 

intensity set between 200 and 800% and normalization was selected (modifying range of pixel 181 

intensity values by linear scaling method). A linear gamma correction was also performed 182 

(factor 1.5) to enhance mid tones pixels on adult images. Image contrast was then enhanced by 183 

applying Contrast Limited Adaptive Histogram Equalization (CLAHE) with following 184 

parameters: block size 128, bins 256, slope 3 and fast mode, for larva; block size 512, bins 256, 185 

slope 30 and fast mode, for adult. A Fiji macro was used to apply this function on Z-stacks by 186 

batches, which is available on our GitHub page: https://github.com/INRAE-187 

LPGP/ImageAnalysis_CombineLabels. 188 

 189 

3D registration 190 

Adult ventral and dorsal 3D stacks were registered, aligned and combined with the Fijiyama 191 

plugin using the “two images registration mode (training)” (Fig. 1B). A manual registration was 192 

first performed to roughly superimpose the two volumes. Automatic registration was then 193 

applied for linear image transformation with block-matching alignment method. Linear 194 

transformations included rigid transformations (translation and rotation) and, if necessary, 195 

similarities transformations (rigid and isotropic homothetic factor). The two registered stacks 196 

were fused with Image calculator (Max operator), resulting in image size of 1324 x 1108 x 713 197 

pixels.  198 
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 199 

Signal-to-noise ratios enhancement 200 

Three-dimensional images were denoised using Noise2Void (N2V) deep-learning based tool 201 

available on Fiji, using a model trained on a few selected 3D stacks snippets. A 2D model was 202 

trained on folder containing ~15 Z-stacks snippets (512x512, from 50 to 115 z-steps) cropped 203 

from different larvae samples. Training patch shape was set at 96x96 pixels and N2V 204 

automatically used data augmentation (90, 180 and 270 rotations and flipping), thereby 205 

multiplying total patches amount by 8. The resulting pool of 2D patches were used for training 206 

(90%) and validation (10%). Training was performed with 250 epochs, 150 steps/epoch and 207 

batch size set to 128, resulting in ~13 hrs of training with our computer specifications. 208 

Denoising prediction duration was estimated to ~12 min for 1GB of data with our stated 209 

parameters (batch size 2). For adult, similar strategy was used for training, using 10 z-stack 210 

snippets (256x256, 100-200 Z-steps), patch shape 64x64 pixels. Training was performed with 211 

300 epochs, 200 steps/epoch, batch size 128, for a total of ~9 hrs of training. Denoising 212 

prediction duration was estimated to ~8 min for 1GB of data with our hardware specifications 213 

and stated parameters (batch size 2). For image edges enhancement, stacks were subjected to a 214 

3D median filter (x,y,z radius 1,1,1 for larvae and 2,2,2 for adult). Filtered image was then 215 

subjected to external morphological gradient computation (shape: ball; x,y,z radius 3,3,3 for 216 

larvae and 2,2,2 for adult) with Morphological filters (3D) function of MorpholibJ plugin. 217 

External gradient image was then subtracted from original pre-treated stack (without median 218 

filtering). An internal morphological gradient was also computed on larvae stacks (element 219 

shape: ball, x,y,z radius 4,4,4) and added to image data. For 3D visualization of data, volume 220 

reconstructions were performed on the Amira software using Volren rendering (Fig 2A, E) or 221 

Volume-rendering (Fig 3A, F and 4A, F). 222 

 223 
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Deep learning 3D segmentation 224 

Follicle segmentation was performed using Cellpose algorithm with local environment 225 

installation, launched from Anaconda command prompt (Fig. 1C). For larvae, X and Y scale 226 

were first reduced by half so that mean follicle diameter approach ~30 pixels, which is the 227 

optimum diameter for Cellpose cell segmentation (final image size 1194 x 610 pixels). Cellpose 228 

was then run in 3D with “cyto” pre-trained model, setting parameters as follows: diameter 30, 229 

cellprob threshold -2, anisotropy 1,6, min size 10. A batch size of 2 was used, depending on 230 

GPU memory allocation, resulting in ~50 min for segmentation prediction of ~250 Mb of data. 231 

Resulting masks were saved in TIFF format for subsequent data treatment. For adults, the same 232 

process was used except anisotropy was set to 1.7. 3D segmentation took ~4 hrs for ~1 Gb of 233 

data. To segment out-of-range follicles, adult stacks were downscaled once more by applying 234 

a resampling factor of 2 in X, Y and Z (no interpolation, final images size of 662 x 554 x 357 235 

pixels). Downscaled stacks were subjected to Cellpose segmentation with diameter size set to 236 

30 and 60 pixels. 3D segmentation took ~35 min and ~11 min for ~125 Mb of downsized data, 237 

for 30 and 60 pixel diameter respectively. 238 

 239 

Post-processing and data extraction 240 

For post-processing of segmented follicles, data were first slightly narrowed. For that operation, 241 

label boundaries were computed with MorpholibJ plugin and subtracted from the original 242 

Cellpose results. For larvae ovary images, labels were then post-processed on AMIRA software. 243 

Labels were subjected to an opening morphological operator (3 pixels, precise) and then filtered 244 

based on their size (Equivalent Diameter >= 1.5e-5m) and shape (ShapeVAa3d <=3.5). Few 245 

remaining errors were manually corrected. For adult ovary images, label shrinkage, filtration 246 

and combination were performed automatically or semi-automatically using a Fiji macro. 247 

Labels were filtered based on volume and sphericity parameters. When necessary, segmentation 248 
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images were rescaled to match 3D registered image size (1324 x 1108 x 713px). The 249 

combination strategy consisted in adding largest segmented labels from downscaled images 250 

(using Cellpose diameter 30) on original scale label segmentation (Cellpose diameter 30) where 251 

largest follicles were over-segmented (Supplemental Fig. 1). Briefly, labels >650µm volume-252 

equivalent diameter (EqDiameter) were filtered from the downscaled image and added to the 253 

original scale label image after selection and deletion (using morphological reconstruction 254 

operation) of wrong labels resulting from over-segmentation. For combination of missing 255 

largest labels, a similar strategy was used with downscaled label image obtained with Cellpose 256 

diameter 60, but with semi-automatic method. Missing labels were manually selected with 257 

multi-point tool and then processed as presented before. Macro “CombineLabels” was 258 

developed in IJ1 Macro language and can be downloaded from the Github page: 259 

https://github.com/INRAE-LPGP/ImageAnalysis_CombineLabels. The volumes of all 260 

segmented follicles were exported and equivalent diameters were calculated. For adults, 261 

EqDiameter were subjected to a correction factor of 1.12 to compensate the volume shrinkage 262 

due to sample clearing, as described in Lesage et al.  (Lesage et al., 2020). Data analysis was 263 

performed on labels above 25 and 50 µm in diameter, for larvae and adult samples respectively. 264 

Label 3D reconstructions were generated on Amira using volume-rendering object. 265 

 266 

Hardware and software 267 

Data were analyzed on a 64-bit Windows 10 Pro computer equipped with a 2x Intel Xeon Silver 268 

4110 (8 Cores, 3.0GHz) processor, a Nvidia Geforce GTX 1080 graphic card, and 384 Go of 269 

RAM. We used the Amira 2020.2 software with the XLVolume extension (Thermo Fisher 270 

Scientific, Waltham, Massachusetts, United States), Anaconda3-2021.11 python distribution, 271 

Python 3.7.9, CUDA toolkit 10.0, PyTorch 1.6.0 and Cellpose v0.6.1 (Stringer et al., 2021). 272 

We also used FIJI (Schindelin et al., 2012) and the following plugins: CLAHE (Pizer et al., 273 
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1987; Zuiderveld, 1994), Progressive intensity and gamma correction (Murtin, 2016), Fijiyama 274 

(fijiyama-4.0.0) (Fernandez and Moisy, 2021), CLIJ2 (clij2-2.5.3.0, Haase et al., 2020), 275 

MorpholibJ (morpholibJ-1.4.3, Legland et al., 2016), Noise2Void (n2v-0.8.6)(Krull et al., 276 

2019) and CSBDeep (csbdeep-0.6.0)(Weigert et al., 2018). 277 

 278 

RESULTS 279 

3D imaging of the ovaries 280 

To detect oocytes within the ovary at both adult and larvae stages, sample were 281 

fluorescently stained and optically cleared to allow full imaging by confocal fluorescence 282 

microscopy (Fig. 1A). For adult ovaries, nuclei of supporting cells surrounding the oocytes 283 

were stained with the fluorescent nuclear dye Methyl-Green (MG) identified as a convenient 284 

marker for delineating follicle boundaries (Lesage et al., 2020). For larvae ovaries (20 dph), 285 

which are composed of small early developing oocytes flanked by only a few supporting 286 

somatic cells, we took advantage of the cytoplasmic autofluorescence generated by 287 

immunostaining (here anti-phospho-histone H3 antibody, PH3). Resulting images displayed a 288 

very low signal-to-noise ratio (SNR) and a rapid loss of signal recovery in depth for larvae 289 

ovaries (Fig. 2A-D). Signal intensity was twice as low at 440 µm in depth compared to the top 290 

(150 µm depth, Fig. 3B, B'). In addition, it is noteworthy that smaller oocytes were less 291 

distinguishable than larger ones having thicker cytoplasm, especially in very compact regions 292 

(Fig. 2D and 3B). Images stacks of adult ovaries displayed a higher fluorescence signal with a 293 

high SNR that was recovered up to 1152 µm in depth, although some heterogeneity in 294 

fluorescence intensity was observable (Fig. 2F, G). At a greater depth (2 000 µm), images 295 

display a substantial loss of signal intensity (Fig. 4B, B').  296 

 297 

Image enhancement and 3D visualization 298 
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Given the uneven signal intensity of the images, and especially the very low SNR observed 299 

with the non-specific staining of larval ovaries, we applied successive processing steps to 300 

enhance the fluorescent signal throughout Z-stacks prior segmentation. For larvae ovary, 301 

fluorescence intensity of image stacks was progressively enhanced along Z-axis to increase the 302 

signal in depth, and mean grey values were increased and homogenized to enhance contrasts 303 

(Fig. 3B, B’, C, C’). To minimize the noise potentially introduced by intensity and contrasts 304 

adjustment and to avoid potential aberrant enhancement of noisy structures, image stacks were 305 

denoised using the self-supervised N2V deep-learning-based algorithm (Krull et al., 2019) (Fig. 306 

3D, D’). Finally, edges were refined using morphological gradients (Fig. 3E, E’). XY views 307 

from Z-stacks and fluorescent intensity profiles through adjacent oocytes show the progressive 308 

signal recovery over the different steps at both 150 and 440 µm in depth. It is noticeable that 309 

while normalizing grey values distribution, N2V denoising preserves oocytes edges with 310 

limited blurring effect, thus minimizing any feature loss (Fig. 3D, D’). In addition, it is 311 

noteworthy that overexposure was created in some cases as a side effect of edge refinement. 312 

The challenge here was therefore to find a compromise between the loss of detection of 313 

underexposed oocytes and the overexposure generated in order to achieve the greatest 314 

difference between light and dark levels. Image pre-processing steps thus enabled to increase 315 

the overall fluorescent signal intensity, to better define edges of the oocytes and to homogenize 316 

the fluorescence intensity across the Z-stack, thereby allowing a better 3D reconstruction of the 317 

larval ovary (Fig. 3A, F).  318 

For 3D images of adult ovaries, a similar strategy was applied except an extra step of 319 

automatic 3D registration that was performed for the reconstruction of the whole ovary (Fig. 320 

4B-E and 4B’-E’). As a result of the combination of images in the overlap region, 3D 321 

registration led to a slight increase in fluorescence intensity in this region in the final stack (Fig. 322 

4A, F). XY views of Z-stacks and fluorescent intensity profiles through adjacent oocytes 323 
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showed a significant increase of the SNR, especially at 2 000 µm in depth. Similar to the larvae 324 

ovary, the pre-processing allowed to improve the fluorescence signal, and especially to 325 

homogenize the fluorescence intensity through the Z-stack for a better 3D reconstruction of the 326 

adult ovary (Fig. 4A, F). 327 

  328 

Cellpose efficiently identifies oocytes and follicles on 3D images  329 

For 3D oocyte and follicle segmentation on larvae and adult images, we selected the open-330 

source Cellpose deep-learning algorithm because of its generalist nature for cell segmentation 331 

(Stringer et al., 2021). We compared the efficiency of Cellpose for 3D segmentation before and 332 

after image pre-treatment. In both cases, Cellpose could detect either internal fluorescent 333 

staining (oocyte cytoplasm) or external fluorescent staining (somatic follicular cells), on larvae 334 

and adult ovary images respectively (Fig. 5A-D and 5E-H). Notably, Cellpose was much more 335 

efficient on pre-treated images than raw images. Although XZ views of larvae stacks revealed 336 

accurate segmentation along the Z axis, several undetected oocytes and some Z-label fusions 337 

were detectable in the absence of preprocessing (Fig. 5B and 5D, insets). For adult ovaries, 338 

segmentation of raw images leads to many cases of over-segmentation in conjunctive tissues or 339 

in large follicles, as well as fewer detected follicles, compared to segmentation of pre-processed 340 

images (Fig. 5F and 5H, insets).  341 

 342 

Post-processing of label images after Cellpose 3D segmentation 343 

Cellpose output images were post-processed to adjust the label sizes to that of the oocytes (label 344 

shrinkage) and to remove outliers (label filtration) (Fig. 6). Label shrinkage was performed by 345 

automatically subtracting the label boundaries to the original Cellpose labels. For adult ovaries 346 

that have the unique feature of containing heterogeneous follicle sizes (ranging from about 20 347 

to 1 000 µm in diameter), different Cellpose label images were generated by modulating image 348 
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resolution of the input image (Fig.6B, C). If necessary, a 60 pixel diameter was used for 349 

Cellpose segmentation to detect largest follicles. The different resulting label images were 350 

combined in an additional post-processing step by using a Fiji Macro named “CombineLabels” 351 

(Fig. 6D). Images of larvae ovary labels show that, after post-processing, the majority of labels 352 

perfectly fit to the shape and size of the oocytes and that aberrant labels with elongated shapes 353 

or very small sizes were removed. In few cases, some inaccuracies still persisted, mainly under-354 

segmentation of small oocyte clusters (Fig. 6A, arrows) or non-segmented oocytes (Fig. 6A, 355 

arrowhead). Similar to larvae ovary images, results of segmentation and post-processing of 356 

adult ovary images were highly accurate, both in terms of follicle detection, label shape and 357 

size fitting (Fig. 6B-D). After post-processing, remaining segmentation errors were limited to 358 

a few outlier labels located outside the relevant structures. 359 

  360 

Oocyte content analyses 361 

To assess the ovarian oocyte content at both larvae and adult stages, ovaries were imaged at 362 

each of these stages and 3D computational analyses were performed following our deep 363 

learning-based pipeline. Three-dimensional reconstructions after data pre-processing revealed 364 

the thin oval-shape of larvae ovaries oriented along the anteroposterior axis, which then evolves 365 

into a thicker rounded shape at the adult stage (Fig. 3F, 4F, 7A and 7D). Ventrally, larvae 366 

ovaries exhibited lateral folds and a marked central depression, likewise adult ovaries displayed 367 

two lateral folds as well as a ventro-median bulge, giving the ovary a wheat grain appearance. 368 

Diameters of segmented oocytes or follicles were computed, classified into different size 369 

classes and merged to the 3D ovary reconstructions (Fig. 7A’, B, D’, E). The ventral and dorsal 370 

3D views of the larvae ovary, revealed that small oocytes were preferentially visible from the 371 

ventral views, whereas larger oocytes were only observable from dorsal views, while no 372 

obvious regionalization was observable in the adult ovary (Fig. 7B and 7E). To analyze the 373 
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relative abundance of the different size classes, the developmental stage of oocytes/follicles 374 

was determined according to their diameter and as described in the oocyte developmental table 375 

of Iwamatsu et. al. (Iwamatsu et al., 1988). In the larvae ovary, a total of 1231 ± 182 (n=2) 376 

oocytes were detected. The mean size distribution showed a high predominance of small 377 

previtellogenic follicles ranging from 25 to 60 µm in diameter (chromatin-nucleolar stage, stage 378 

I), which suggests a synchronized oocyte growth during larval development (Fig. 7C). By 379 

contrast, all follicular developmental stages were found at the adult stage. A total of 1275 380 

follicles were counted with a large predominance of pre-vitellogenic follicles (from stage II to 381 

IV, 50-150 µm) and of early vitellogenic follicles (stages V and VI, 150-400 µm, Fig. 7F). 382 

Proportion of follicles then progressively decrease as they progress through late vitellogenesis 383 

(stages VII and VIII, 400-800 µm). The pool of post-vitellogenic follicles (maturation stage IX, 384 

> 800 µm) is clearly distinguishable and reflects upcoming egg laying with a consistent number 385 

of about 23 follicles measuring more than 950 µm in diameter. 386 

 387 

DISCUSSSION 388 

Three-dimensional imaging of whole fish ovaries typically generates large image data sets that 389 

are particularly complex to analyze. In this study, we generated two types of 3D images. On 390 

the one hand, we generated images of adult fish ovaries with low-contrast follicle outline signal 391 

at great depths, which usually greatly impairs the final segmentation efficiency, as described 392 

previously (Lesage et al., 2020). On the other hand, we generated images of larvae ovaries with 393 

a low-contrast signal inside the oocytes throughout image stacks, which makes segmentation 394 

otherwise impossible with conventional approaches. Here, we applied the generic Cellpose pre-395 

trained algorithm that allows cell segmentation without any manual annotation and neural 396 

network training. To optimize 3D segmentation results and maximize accuracy of 397 

oocyte/follicle content analyses, Cellpose was integrated into an end-to-end analysis pipeline. 398 
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 399 

Enhancement and homogenization of input dataset 400 

The first part of our pipeline was dedicated to signal quality improvement in depth of raw image 401 

stacks. Such image pre-processing steps allowed improving segmentation efficiency by 402 

Cellpose. To some extent, the decrease in fluorescence level in depth on raw images should not 403 

be a major issue for predicting feature boundaries with Cellpose as it uses vector gradients 404 

representation of objects to accurately predict complex cell outlines with non-homogenous cell 405 

marker distribution (Stringer et al., 2021). However, our result indicates that the SNR is an 406 

important prerequisite for image analysis with Cellpose, in line with previous observations (Kar 407 

et al., 2021). Along with an enhanced visualization of the structures of interest across the 408 

sample, the pre-processing of 3D images therefore allows for homogenization of the data set 409 

and much more efficient 3D segmentation with Cellpose, thus increasing the reproducibility 410 

and quality of analysis. 411 

 412 

Improvement of Cellpose output label images 413 

Despite its high efficiency, Cellpose led to some substantial errors, including slightly oversized 414 

or aberrant labels, and it also failed to segment oocytes of highly heterogeneous sizes. To 415 

overcome these limitations and refine labels produced by Cellpose, we performed post-416 

segmentation corrections. The size of 3D labels was adjusted following an automated boundary 417 

subtraction strategy. Our strategy differs from other methods that use the pixel-by-pixel label 418 

erosion operation, such as in LabelsToROIs Fiji plugin designed on 2D myofiber sections, and 419 

is likely to be faster when dealing with large 3D data (Waisman et al., 2021). The combination 420 

of multiple Cellpose segmentation images, implemented with a Fiji macro “CombineLabels”, 421 

also allows identification of highly heterogeneous objects sizes, that was previously not 422 

possible with Cellpose algorithm alone. It is however worth noting that there are still few 423 
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inaccuracies that could not be fixed. Under-segmentations or unsegmented objects were 424 

sometimes detected mostly with larvae image datasets. Albeit minor, these errors occur in 425 

highly oocyte-dense regions or with non-optimal signal levels. Such observation is in agreement 426 

with some studies that do not recommend Cellpose for highly overlapping masks or that 427 

describe lower accuracy with over- or underexposed images (Kar et al., 2021). This could be 428 

attributed to the 2D averaging process for the 3D Cellpose extension that may have lower 429 

accuracy than a model trained with 3D data, especially for highly dense regions (Lalit et 430 

al.,2022; Stringer et al., 2021). Obviously, one can assume that better accuracy could be 431 

achieved by using a dedicated specialized DL model, and in particular with 3D trained model 432 

on our data, as shown by D.Eschweiler et al (Eschweiler et al., 2022). It would thus be 433 

interesting in the future to use our segmentation results for Cellpose algorithm fine-tuning. This 434 

could indeed limit the need for image pre-processing as well as post-processing corrections of 435 

segmentation results. But in this case, we would somewhat lose the advantage of versatile 436 

generalist models like Cellpose and different models would have to be trained for each type of 437 

data. Another solution could therefore be to improve the input images quality, by using a 438 

suitable oocyte marker to avoid sharp signal enhancement and posssibly in combination with a 439 

membrane marker for better boundary discrimination. Alternatively, and in absence of such 440 

specific staining, another denoising process, either trained in three dimensions, with noisy/non-441 

noisy paired images (CARE) or combining deconvolution process (DecoNoising), could also 442 

help objects recognition accuracy (Weigert et al., 2018; Goncharova et al., 2020).  443 

 444 

An accurate and comprehensive content analysis of larvae and adult medaka 445 

ovaries 446 

Implementation of Cellpose for oocytes/follicle 3D segmentation eventually enabled unbiased, 447 

reproductible and comprehensive studies for meaningful biological information, which offers 448 
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great possibilities for a complete description of fish ovarian growth and development. From a 449 

morphological point of view, we could clearly distinguish the oval shape of the ovary 450 

thickening over time and shaping a bulge in the ventro-median position that connects the 451 

mesentery and attaches to the gut (Iwamatsu, 2015; Lesage et al., 2020). In situ follicular size 452 

measurements by our 3D imaging and DL-based segmentation approaches allowed producing 453 

size distribution profiles for both larvae and adult ovaries. Our results are consistent with those 454 

obtained previously from dissociated follicles measured manually for the larvae ovary 455 

(Iwamatsu, 2015) or semi-automatically from 3D images by classical watershed segmentation 456 

approaches for the adult ovary as shown in our previous study (Lesage et al., 2020). However, 457 

greater confidence can be attributed to the present study, particularly for the pre- and post-458 

vitellogenic stages in the adult ovary for which we achieved fewer segmentation errors. In 459 

general, we also achieved a better estimation of follicle size due to the accurate shape detection 460 

enabled by the Cellpose algorithm. Interestingly, we also noticed that the spatial distribution of 461 

oocytes between 30 and 70 µm in diameter tended to be regionalized along the ventro-dorsal 462 

axis in the larvae ovary, suggesting an oriented follicular growth through this axis in 463 

consistency with observation of Nakamura et al. (Nakamura, 2018). In the future, the ovarian 464 

morphogenesis and spatial organization of follicles according to their size should however be 465 

further characterized during the ovarian development by using refined 3D spatial analysis 466 

approaches.   467 

 468 

Conclusion 469 

Overall, the use of the generic Cellpose algorithm has been successful for 3D ovary images and 470 

has allowed ovarian segmentation of unprecedented quality. Cellpose significantly accelerated 471 

and improved the efficiency and the quality of ovarian follicles 3D segmentation in adults, 472 

leading to an accurate count and measurement of all oocyte diameters. Even more remarkably, 473 
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this generalist model also allowed the successful segmentation of images of larvae ovaries with 474 

weak fluorescent signal, otherwise not exploitable with conventional methods, and quite 475 

certainly even after image pre-processing. This possibility challenges the dogma that a good 476 

raw image is necessary for an accurate object segmentation and thus significantly increases 477 

further analysis opportunities. Furthermore, thanks to its ease of use, implementation of 478 

Cellpose avoids the tedious and complex step of setting up an AI segmentation method and is 479 

therefore largely accessible to non-specialist biologists with limited coding and hardware 480 

knowledge. In the deep learning era, it is thus now clearly possible to apply such a cutting-edge 481 

technology for tissue 3D phenotyping with relative ease. To our knowledge, our pipeline is the 482 

first application using developer-to-user deep learning solutions for 3D image analysis of the 483 

ovary in vertebrates, thus opening the way for further innovative in-depth morphometric studies 484 

within the framework of developmental or toxicological studies. 485 

 486 

ACKNOWLEDGMENTS 487 

We thank the INRAE ISC-LPGP fish facility staff and especially Amélie Patinote and 488 

Guillaume Gourmelen for fish rearing and husbandry. 489 

 490 

ADDITIONAL INFORMATION AND DECLARATIONS 491 

Funding  492 

This work was funded by The DYNAMO project (Agence Nationale de la Recherche, ANR-493 

18-CE20-0004 to V.T.). This work has also been supported by the IMMO project (grants from 494 

the INRAE Metaprogramme DIGIT-BIO to V.T.). The funders had no role in study design, data 495 

collection and analysis, decision to publish, or preparation of the manuscript. 496 

 497 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.03.502611doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.502611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

Competing Interests 498 

The authors declare there are no competing interests. 499 

 500 

Author Contributions 501 

M.L. performed the experiments, the computational analyses and wrote the manuscript. 502 

J.B. participated to the setup of the computation bio-image analyses. M.T. participated in 503 

the setup of the clearing protocol and to the image acquisition. T.P. participated in the 504 

choice and implementation of the tool for the 3D registration of adult ovary images. V.T. 505 

conceived the study, participated in data analyses and manuscript writing. All authors 506 

reviewed drafts of the article and approved the final manuscript.  507 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.03.502611doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.502611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

REFERENCES 508 

 509 

Charleston, J. S., Hansen, K. R., Thyer, A. C., Charleston, L. B., Gougeon, A., Siebert, J. 510 

R., Soules, M. R. and Klein, N. A. (2007). Estimating human ovarian non-growing follicle 511 

number: the application of modern stereology techniques to an old problem†. Human 512 

Reproduction 22, 2103–2110. 513 

Eschweiler, D., Smith, R. S. and Stegmaier, J. (2022). Robust 3D Cell Segmentation: 514 

Extending the View of Cellpose. 515 

Fernandez, R. and Moisy, C. (2021). Fijiyama: a registration tool for 3D multimodal time-516 

lapse imaging. Bioinformatics 37, 1482–1484. 517 

Fiorentino, G., Parrilli, A., Garagna, S. and Zuccotti, M. (2021). Three-dimensional 518 

imaging and reconstruction of the whole ovary and testis: a new frontier for the reproductive 519 

scientist. Molecular Human Reproduction 27, gaab007. 520 

Gay, S., Bugeon, J., Bouchareb, A., Henry, L., Montfort, J., Le Cam, A., Bobe, J. and 521 

Thermes, V. (2018). MicroRNA-202 (miR-202) controls female fecundity by regulating 522 

medaka oogenesis. 523 

Gómez-de-Mariscal, E., García-López-de-Haro, C., Ouyang, W., Donati, L., Lundberg, 524 

E., Unser, M., Muñoz-Barrutia, A. and Sage, D. (2021). DeepImageJ: A user-friendly 525 

environment to run deep learning models in ImageJ. Nat Methods 18, 1192–1195. 526 

Goncharova, A. S., Honigmann, A., Jug, F. and Krull, A. (2020). Improving Blind Spot 527 

Denoising for Microscopy. 528 

Haase, R., Royer, L. A., Steinbach, P., Schmidt, D., Dibrov, A., Schmidt, U., Weigert, 529 

M., Maghelli, N., Tomancak, P., Jug, F., et al. (2020). CLIJ: GPU-accelerated image 530 

processing for everyone. Nat Methods 17, 5–6. 531 

İnik, Ö., Ceyhan, A., Balcıoğlu, E. and Ülker, E. (2019). A new method for automatic 532 

counting of ovarian follicles on whole slide histological images based on convolutional neural 533 

network. Computers in Biology and Medicine 112, 103350. 534 

Iwamatsu, T. (2015). Growth of the Medaka (IV) - Dynamics of Oocytes in the Ovary 535 

During Metamorphosis. Bulletin of Aichi Univ. of Education 64, 37–46. 536 

Iwamatsu, T., Ohta, T., Oshima, E. and Sakai, N. (1988). Oogenesis in the Medaka 537 

Oryzias latipes : Stages of Oocyte Development : Developmental Biology. Zoological Science 538 

5, 353–373. 539 

Iwamatsu, Takashi, T. (1978). Studies on Oocyte Maturation of the Medaka, Oryzias latipes 540 

VI. RELATIONSHIP BETWEEN THE CIRCADIAN CYCLE OF OOCYTE 541 

MATURATION AND ACTlVlTY OF THE PITUITARY GLAND. J. Exp. Zool. 206, 355–542 

364. 543 

Kar, A., Petit, M., Refahi, Y., Cerutti, G., Godin, C. and Traas, J. (2021). Assessment of 544 

deep learning algorithms for 3D instance segmentation of confocal image datasets. 545 

Bioinformatics. 546 

Krull, A., Buchholz, T.-O. and Jug, F. (2019). Noise2Void - Learning Denoising from 547 

Single Noisy Images. arXiv:1811.10980 [cs]. 548 

Lalit, M., Tomancak, P. and Jug, F. Embedding-based instance segmentation in 549 

microscopy. PMLR 399–415. 550 

Legland, D., Arganda-Carreras, I. and Andrey, P. (2016). MorphoLibJ: integrated library 551 

and plugins for mathematical morphology with ImageJ. Bioinformatics btw413. 552 

Lesage, M., Thomas, M., Bugeon, J., Branthonne, A., Gay, S., Cardona, E., Bobe, J. and 553 

Thermes, V. (2020). C-Eci: A Cubic-Eci Combined Clearing Method For 3D Follicular 554 

Content Analysis In The Fish Ovary. Developmental Biology. 555 

Lubzens, E., Young, G., Bobe, J. and Cerdà, J. (2010). Oogenesis in teleosts: how eggs are 556 

formed. Gen. Comp. Endocrinol. 165, 367–389. 557 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.03.502611doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.502611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M. and Van Valen, D. (2019). Deep 558 

learning for cellular image analysis. Nat Methods 16, 1233–1246. 559 

Murtin, C. I. (2016). Three-dimensional image analysis of high resolution confocal 560 

microscopy data of the Drosophila melanogaster brain. Image Processing [eess.IV]. 561 

Université de Lyon., 1–166. 562 

Nakamura, Y. T. (2018). All Oocytes Attach to the Dorsal Ovarian Epithelium in the Ovary 563 

of Medaka, Oryzias latipes. Zoological Science 35, 306–313. 564 

Nakamura, S., Kurokawa, H., Asakawa, S., Shimizu, N. and Tanaka, M. (2009). Two 565 

distinct types of theca cells in the medaka gonad: germ cell-dependent maintenance of 566 

cyp19a1-expressing theca cells. Dev. Dyn. 238, 2652–2657. 567 

Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T. and 568 

Zuiderveld, K. (1987). Adaptive Histogram Equalization and Its Variations. COMPUTER 569 

VISION, GRAPHICS, AND IMAGE PROCESSING 355–368. 570 

Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P. and Tessier-Lavigne, M. (2014). 571 

iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume 572 

Imaging. Cell 159, 896–910. 573 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 574 

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source 575 

platform for biological-image analysis. Nature Methods 9, 676–682. 576 

Sonigo, C., Jankowski, S., Yoo, O., Trassard, O., Bousquet, N., Grynberg, M., Beau, I. 577 

and Binart, N. (2018). High-throughput ovarian follicle counting by an innovative deep 578 

learning approach. Sci Rep 8, 13499. 579 

Soygur, B. and Laird, D. J. (2021). Ovary Development: Insights From a Three-580 

Dimensional Imaging Revolution. Front. Cell Dev. Biol. 9, 698315. 581 

Stringer, C., Wang, T., Michaelos, M. and Pachitariu, M. (2021). Cellpose: a generalist 582 

algorithm for cellular segmentation. Nat Methods 18, 100–106. 583 

von Chamier, L., Laine, R. F., Jukkala, J., Spahn, C., Krentzel, D., Nehme, E., Lerche, 584 

M., Hernández-Pérez, S., Mattila, P. K., Karinou, E., et al. (2021). Democratising deep 585 

learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276. 586 

Waisman, A., Norris, A. M., Elías Costa, M. and Kopinke, D. (2021). Automatic and 587 

unbiased segmentation and quantification of myofibers in skeletal muscle. Sci Rep 11, 11793. 588 

Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm, B., 589 

Schmidt, D., Broaddus, C., Culley, S., et al. (2018). Content-aware image restoration: 590 

pushing the limits of fluorescence microscopy. Nature Methods 15, 1090–1097. 591 

Zuiderveld, K. (1994). Contrast Limited Adaptive Histogram Equalization. In Graphics 592 

Gems, pp. 474–485. Elsevier. 593 

 594 

  595 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.03.502611doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.502611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

FIGURE LEGENDS 596 

Figure 1: Pipeline overview for 3D image analysis of the whole ovary at larvae and 597 

adult stages.  598 

(A) Fluorescent staining strategies for whole ovary imaging. Cytoplasmic 599 

autofluorescence from Histone H3 phosphorylation immunofluorescence (PH3) is used 600 

for larvae (left panel). Methyl-green (MG) nuclear staining delineating follicles contour is 601 

used for adult stage (right panel). Z-projection of raw data are shown (standard deviation 602 

method. Raw stacks sizes are indicated. (B) Image pre-processing steps used for 603 

reconstruction and enhancement, listed from top to bottom. (C) 3D segmentation step is 604 

performed with Cellpose algorithm. Adult images are subjected to several segmentations 605 

runs before and after image downscaling. (D) Image post-processing is performed for 606 

segmentation correction, label filtering and final quantitative analysis. Opensource tools 607 

are indicated in white boxes, deep-learning opensource tools in blue, commercially 608 

available software in red (AMIRA). Relative computation time for one sample is indicated 609 

(B-D). Voxel size is indicated in brackets (A-C). Scale bars 200 µm (for larvae), 1000 µm 610 

(for adult), 100 µm (for larvae inset), 500 µm (for adult inset) 611 

 612 

Figure 2: 3D reconstruction of whole medaka ovaries. 613 

(A) Larvae ovary reconstruction with raw data. Total ovary size approach 1240 µm in 614 

length (x), 630 µm in width (y) and 515 µm in height (z). XY plane at 188µm and XZ plane 615 

are shown with dotted lines. (B) XY plane showing PH3 staining and cytoplasmic 616 

background in oocytes at 188µm in depth, magnified in inset (D). (C) XZ orthoslice of 617 

larvae PH3 staining. A decrease in fluorescence intensity is observable near 400 µm in 618 

depth. (E) Adult ovary reconstruction with raw data. Only back stack (dorsal face) is 619 

shown, with a size of 7645 µm in length (x), 6033 µm in width (y) and 2778 µm in height 620 
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(z). XY and YZ virtual slices are shown with dotted lines. (F) XY plane at 1152µm depth 621 

shows MG staining resulting in delimitated follicular contours, magnified in inset (H). (G) 622 

YZ orthoslice of dorsal face of adult ovary. Heterogeneity of MG staining is observable 623 

through depth. Scale bars 200µm (B, C), 50µm (D), 1000µm (F, G), 40µm (H). 624 

 625 

 626 

Figure 3: Image pre-processing for enhancement of features detection through 627 

larva ovary depth. 628 

(A) Representative 3D reconstruction of 20 dph (days post-hatching) larvae ovary before 629 

image processing. (B-E) Effect of successive image processing steps at 150 µm depth and 630 

(B’-E’) at 400 µm depth assessed on XY cropped planes. A profile line intensity is used to 631 

assess fluorescence intensities nearby relevant objects to be segmented. Fluorescence 632 

intensity and signal to noise ratio are progressively enhanced. (F) 3D reconstruction of 633 

20 dph larvae after image pre-processing showing signal homogenization. Color gradient 634 

is representative of grey levels (1-255). Scale bar 100 µm, Grid square size 50 µm. 635 

 636 

Figure 4: Image pre-processing for enhancement of features detection through 637 

adult ovary depth. 638 

(A) Volume reconstruction of front and back adult z-stacks before image processing. (B-639 

E) Effect of successive image processing steps at 780 µm deep and (B’-E’) at 2000 µm deep 640 

assessed on XY cropped planes extracted on front stack. A profile line intensity is used to 641 

assess fluorescence intensities nearby relevant objects to be segmented. Fluorescence 642 

intensity loss in depth is greatly recovered and resolution of follicles contours is 643 

improved. (L) Final adult ovary reconstruction after 3D registration and image 644 
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enhancements. Color gradient representative of grey levels. Scale bar 300 µm, Grid square 645 

size 500 µm. 646 

 647 

 648 

Figure 5: Effect of image pre-processing on Cellpose 3D segmentation efficiency  649 

(A) XZ orthoslice of larvae ovary showing raw data and (C) image data after pre-650 

processing, magnified on insets. (B) Cellpose segmentation output using raw data as input 651 

or (D) pre-processed image data. Results are shown after label erosion to correctly 652 

visualize labels individualization. Insets show more segmentation errors without image 653 

pre-processing, including unsegregated labels (arrows) or over-segmentation 654 

(arrowhead). (E) XY plane of adult ovary on raw data and (G) after image processing, 655 

magnified on insets. (F) Cellpose segmentation output for 30 pixel diameter using either 656 

raw data input or (H) pre-processed image. Segmentation results show high error number 657 

without image pre-processing, including many missing labels (arrowhead) especially in 658 

locations with heterogenous staining and high over-segmentation in medium and large 659 

size follicles. Scale bars: 200 µm (A-D), 100 µm (insets in A-D), 1000 µm (E-H), 500 µm 660 

(insets in E-H). 661 

 662 

Figure 6: Post-processing corrections of segmented labels.  663 

(A, top) XY planes of 20 dph larvae ovary at ~330 µm depth showing pre-treated image 664 

data, Cellpose output, labels boundaries, eroded labels (subtracted boundaries) and final 665 

results after semi-automatic label filtration in AMIRA superimposed onto image data. (A, 666 

bottom) YZ planes for qualitative assessment of segmentation along Z-axis. Segmentation 667 

results after post-processing show good accuracy and shape fitting in XY or YZ planes with 668 

only few labels fusion for smallest oocytes (arrows) or missing label (arrowhead). (B, top) 669 
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XY planes of adult ovary at ~2500 µm depth before and after Cellpose 30 segmentation. 670 

(B, bottom) YZ planes of adult ovary showing segmentation accuracy along Z axis. Largest 671 

follicles are over-segmented but other labels are correctly fitting follicles size. (C) 672 

Downscaled image data, Cellpose 30 segmentation results and post-processed images of 673 

adult data on XY plane (top) or YZ orthoslices (bottom). Large labels (stars) are combined 674 

to original scale segmentation result in (B) to replace segmentation errors of largest 675 

follicles. (D) Combined and filtered adult segmentation data superimposed onto image 676 

data. Labels show a good fit in size and shape of follicles at various sizes either on XY or 677 

YZ plane. Scale bars 100 µm (larvae panels), 1000 µm (adult panels). 678 

 679 

 680 

Figure 7: 3D Qualitative spatial visualization and quantitative analysis of ovarian 681 

content. 682 

(A) 3D ventral and dorsal reconstruction views of 20 dph larvae ovary, and (A’) merged 683 

with segmented oocytes. Ovary size is approximately represented on bounding box 684 

measuring 1240 µm in length (x, yellow), 630 µm in width (y, green) and 515 µm in height 685 

(z, red). (B) Oocytes spatial distribution visualized by diameter range from ventral and 686 

dorsal side of larvae ovary. Oocytes tend to localize dorsally through their growth. (C) 687 

Oocyte distribution in entire larvae ovaries (mean +-SD, n=2) depending on their 688 

equivalent diameter. Diameter measure cut-off was applied at 25 µm. Corresponding 689 

developmental stages of previtellogenesis are indicated: stage I, chromatin-nucleolar (25-690 

60 µm) and stage II, perinucleolar (60-90 µm). (D) 3D ventral and dorsal views of entire 691 

adult ovary after registration and reconstruction, and (D’) merged with 3D segmented 692 

follicles. Bounding box size approximates whole ovary size with an antero-posterior 693 

length of 7 mm (x, yellow), left to right width of 6 mm (y, green) and depth of 4,25 mm (z, 694 
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red). (E) Follicles spatial distribution within ovary based on their equivalent diameter 695 

range. Follicle size classes show respective localization of various developmental stages, 696 

namely previtellogenesis (50-150 µm), vitellogenesis (150-800 µm) and post-697 

vitellogenesis (>800 µm). (F) Total quantification of adult ovarian content distributed by 698 

follicular diameter. Stages of development are listed, namely previtellogenesis (II-IV, 50-699 

150 µm), early vitellogenesis (V-VI, 150-400 µm), late vitellogenesis (VII-VIII, 400-800 700 

µm) and post-vitellogenesis (IX, 800 µm and over). Oocyte and follicular distribution are 701 

expressed as percentage of total objects counted within the ovaries.  702 
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