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The efficiency of multidimensional quadrature methods is compared for seven test functions in intermediate dimensions. Following this goal, the numerical evaluations of the mean and variance of the test functions, for two probability density functions, are assessed with respect to (wrt) their known exact values. The retained dimensions (3 to 6) correspond to the number of operational and geometrical uncertain parameters we plan to consider in a near future for realistic sensitivity analysis or robust designs. Most of the numerical quadrature methods rely on a generalized Polynomial Chaos (gPC) defined either by quadrature or by collocation. Two of the gPC collocation techniques, Basis Poursuit Denoise (BPdn) and Least Angle Regression (LAR), search for a sparse gPC while satisfying the collocation equations. Finally, the efficiency of the quadrature methods is discussed in relation with the regularity, the input dimension and the ANOVA decomposition of the test functions.

INTRODUCTION

ONERA participated in several cooperative projects devoted to uncertainty quantification (UQ) for computational fluid dynamics (CFD), like the EU projects NODESIM-CFD and UM-RIDA or the RTO-AVT-191 group [START_REF] Lazareff | Non-intrusive stochastic studies for external and internal flows using the elsA software[END_REF][START_REF] Peter | Verification, validation and error estimation in CFD for compressible flows[END_REF][START_REF] Savin | Sparse polynomial surrogates for aerodynamic computations with random inputs[END_REF][START_REF] Peter | Three-parameter uncertainty quantification for generic missile FG5[END_REF]. Uncertainty calculation about complex flows requires significant CPU ressources and does not allow a large comparison of quadrature techniques. Conversely, in this study, we assess the efficiency of a series numerical integration methods, mostly based on generalized Polynomial Chaos (gPC) [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF], for the calculation of the mean and variance of seven mathematical test functions. Of course, the retained intermediate dimensions (3 to 6) correspond to the number of uncertain parameters we plan to deal with in a near future in sensitivity analysis or robust designs applications.

PDF AND TEST FUNCTIONS

Classical test functions for numerical integration

Probably, the most widely used test functions for numerical integration are those defined by Genz [START_REF] Genz | A Package for Testing Multiple Integration Subroutines[END_REF]. This series of five multivariate functions (Oscillatory, product peak, corner peak, Gaussian, C 0 , discontinuous) varies the regularity from C ∞ to C 0 and discontinuous and goes with two families of numerical parameters: the first ones are typically shifts along the axis that do not affect the difficulty of the integration ; on the contrary, the second ones make the functions more stiff/oscillatory. These test functions are very interesting but they do not vary the coupling of the input variables unless incidentally some of the parameters of the second family are zero. Also interesting are the nine test functions defined by Kocis and Whiten [START_REF] Kocis | Computational investigations of low-discrepancy sequences[END_REF] that are all designed to have null mean and unit variance. The first three functions are sums of 1D-functions. The next four functions are product functions with numbers of minima and maxima increasing with 2 n as well as exponentially increasing absolute maximum. The last two functions are sums of two-dimensional components that are themselves products of two one-dimensional functions. In this study, we consider seven test functions with various regularity and coupling bewteen input variables. In order to quantitatively qualify this coupling, we calculate the number non-zero second-order terms in the ANOVA decomposition divided by the total number of pairs of input variables. Besides, the previous contributions considered integration for the uniform distribution whereas more peaky distributions may be more representative of an uncertain parameter in an engeering problem and may concentrate the integration in zone of discontinuity or, at least, locally low regularity and thus make the integration more difficult. Therefore a constant and also a peaky probability density function (pdf) are considered.

Probability density functions

We consider both a uniform distribution and a peaky β distribution with two equal exponents.

D U (ξ) = 1/2 n D (2) (ξ) = 15 16 n n l=1 (1 -ξ 2 l ) 2
The mean and variance of a function F for these two pdf are denoted as follows:

E u (F ) = [-1,1] n F (ξ)D u (ξ)dξ V u (F ) = [-1,1] n (F (ξ) -E u (F )) 2 D u (ξ)dξ. E (2) (F ) = [-1,1] n F (ξ)D (2) (ξ)dξ V (2) (F ) = [-1,1] n (F (ξ) -E (2) (F )) 2 D (2) (ξ)dξ.

Test functions

The first function is the well-known Ishigami or Homma-Saltelli function [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF]. Functions three and four are taken from [START_REF] Kocis | Computational investigations of low-discrepancy sequences[END_REF]. The input variable is denoted ξ ∈ [-1, 1] n and the seven test functions read:

F 1 (ξ) = sin(πξ 1 ) + a sin 2 (πξ 2 ) + b (πξ 3 ) 4 sin(πξ 1 ) F 2 (ξ) = exp(ξ 1 + ξ 2 2 + ξ 3 3 ) + 2 exp(ξ 2 + ξ 3 2 + ξ 4 3 ) + 3 exp(ξ 3 + ξ 4 2 + ξ 5 
3 )

F 3 (ξ) = 9 n   n j=1 ξ j + 1 - 2 √ 2n 3   F 4 (ξ) = n j=1 (-1.2 √ 7ξ j + √ 7ξ 3 j ) F 5 (ξ) = γ n n j=1 tanh(2ξ j ) + η n n j=1 ξ j with γ n = 2 (n-1)/2 (2 -tanh(2)) n/2 η n = 3 2n F 6 (ξ) = 0.5/(1 + ξ 2 1 ) + 1/(1 + 4ξ 2 2 )/(1 + 4ξ 2 3 ) + 8/(1 + 16ξ 2 4 )/(1 + 16ξ 2 5 )/(1 + 16ξ 2 6 ) F 7 (ξ) = |ξ 1 | 3 + |ξ 2 + 1/3| 3 |ξ 3 -1/3| 3 + |ξ 4 + 1/2| 3 |ξ 5 | 3 |ξ 6 -1/2| 3
For numerical tests, F 3 , F 4 and F 5 are considered in dimension 5.

Exact mean and variance for uniform distribution

The exact mean and variance of the test functions for the uniform distribution are gathered hereafter. The mean and variance of Ishigami function for

D u are [9] E u (F 1 ) = a 2 V u (F 1 ) = a 2 8 + bπ 4 5 + b 2 π 8 18 + 1 2 .
Considering F 2 , we first calculate

s(a) = 1 -1 exp(at)D u (t)dt = e a -e -a 2a
, then

E u (F 2 ) = 6s(1)s(1/2)s(1/3) V u (F 2 ) = 14s(2)s(1)s(2/3) + 16s(1)s(3/2)s(5/6)s(1/3) + 6s(1)s(4/3)s(1/3)(s(1/2)) 2 -(E u (F 2 )) 2
F 3 , F 4 and F 5 have been designed so that

E u (F 3 ) = 0 V u (F 3 ) = 1 E u (F 4 ) = 0 V u (F 4 ) = 1 E u (F 5 ) = 0 V u (F 5 ) = 1.
Before integrating F 6 , we calculate

J(γ) = 1 -1 0.5 1 + γt 2 dt = 1 √ γ atan( √ γ), K(γ) = 1 -1 0.5 (1 + γt 2 ) 2 dt = 1 2 √ γ (atan( √ γ)+ √ γ 1 + γ ). Then E u (F 6 ) = 0.5J(1) + J(4) 2 + 8J(16) 3 V u (F 6 ) = 0.25 K(1) + K(4) 2 + 64 K(16) 3 + J(1) J(4) 2 + 8J(1)J(16) 3 + 16 J(4) 2 J(16) 3 -E u (F 6 ) 2
Integrating F 7 requires the calculation of

I n (γ) = 1 2 1 -1 |t -γ| n dt = 1 2(n + 1) ((1 -γ) n+1 + (γ + 1) n+1 ).
We note that I n (-γ) = I n (γ). It is then straightforward that:

E u (F 7 ) = I 3 (0) + I 3 (1/3) 2 + I 3 (0)I 3 (1/2) 2 V u (F 7 ) = I 6 (0) + I 6 (1/3) 2 + I 6 (0)I 6 (1/2) 2 + + 2 I 3 (0)I 3 (1/3) 2 + 2 I 3 (0) 2 I 3 (1/2) 2 + 2 I 3 (1/3) 2 I 3 (1/2) 2 I 3 (0) -E u (F 7 ) 2 .
2.5 Exact mean and variance for β (2) distribution

The mean and variance of Ishigami function for D (2) are

E (2) (F 1 ) = a 2 (1 + 45 16π 4 ) V (2) (F 1 ) = (1 + 45 16π 4 )( 1 2 + 5π 8 858 b 2 + π 4 21 b) + a 2 8 (3 + 2835 256π 4 ) -E (2) (F 1 ) 2 .
Considering F 2 , we first calculate s(a) the counterpart of s(a) for D (2) : ) .

s(a) = 1 -1 exp(at)D 2 (t)dt = 1 -1 exp(at)D (2) (t)
The mean and variance of F 2 are then expressed as:

E (2) (F 2 ) = 6s(1)s(1/2)s(1/3) V (2) (F 2 ) = 14s(2)s(1)s(2/3) + 16s(1)s(3/2)s(5/6)s(1/3) + 6s(1)s(4/3)s(1/3)(s(1/2)) 2 -(E (2) (F 2 )) 2 .
The coefficients in F 3 , F 4 and F 5 have been tuned to get null variance and unit mean for the uniform distribution. For the selected β distribution, these values become:

E (2) (F 3 ) = 6 √ 2n 77 V (2) (F 3 ) = (2( 160 77 ) 2 - 1280 77 + 8)n + (9 -2( 160 77 ) 2 ) -E (2) (F 3 ) 2 E (2) (F 4 ) = 0 V (2) (F 4 ) = 21 40 n 36 3 - 132 5 + 181 7 - 110 9 + 25 11 n E (2) (F 5 ) = 0 V (2) (F 5 ) = γ 2 n 1 -1 (tanh(2u)) 2 D (2) (u)du n + n 7 η 2 n 0.5 0.6294369205482356 2 -tanh(2) n + 3 14 
In order to integrate F 6 we first calculate

J(γ) = 1 -1 D (2) (t) 1 + γt 2 dt = 15 16 2 3γ -2( 2 γ + 1 γ 2 ) + 2(1 + 1 γ ) 2 J(γ) , and 
K(γ) = 1 -1 D (2) (t) (1 + γt 2 ) 2 dt = 15 16 2 γ 2 -2( 2 γ + 2 γ 2 )J(γ) + 2(1 + 1 γ ) 2 K(γ) .
The expressions of E (2) (F 6 ) and E (2) (F 6 ) are then easily derived

E (2) (F 6 ) = 0.5J(1) + J(4) 2 + 8J(16) 3 V (2) (F 6 ) = (0.25 K(1) + K(4) 2 + 64 K(16) 3 + J(1) J(4) 2 + 8J(1)J(16) 3 + 16 J(4) 2 J(16) 3 ) -E (2) (F 6 ) 2 .
In order to calculte the mean and variance of F 7 , we introduce

L n,p (γ) = 1 -1 t p |t-γ| n dt and I n (γ) = 1 -1 |t-γ| n D (2) (t)dt = 15 16 (L n,0 (γ)-2L n,2 (γ)+L n,4 (γ)).
As D (2) (-t) = D (2) (t), we note that I n (-γ) = I n (γ). Besides, for γ ∈ [-1, 1], L n,p may be calculated splitting the domain of summation in [-1, γ] and [γ, 1]

L n,p (γ) = n k=1 (-1) (n-k) n k γ k t p+n-k+1 p + n -k + 1 γ -1 + γ (n-k) t p+k+1 p + k + 1 1 γ .
The mean and variance of interest are then expressed as:

E (2) (F 7 ) = I 3 (0) + I 3 (1/3) 2 + I 3 (0)I 3 (1/2) 2 V (2) (F 7 ) = I 6 (0) + I 6 (1/3) 2 + I 6 (0)I 6 (1/2) 2 + + 2 I 3 (0)I 3 (1/3) 2 + 2 I 3 (0) 2 I 3 (1/2) 2 + 2 I 3 (1/3) 2 I 3 (1/2) 2 I 3 (0) -E (2) (F 7 ) 2

INTEGRATION METHODS AND TOOLS

Various quadrature methods have been used to calculate the integrals defined in §2.

Smolyak sparse grids [START_REF] Smolyak | Quadrature and interpolation formulas for tensor products of certain classes of functions[END_REF][START_REF] Gerstner | Numerical integration using sparse grids[END_REF][START_REF] Gerstner | Dimension-adaptive tensor-product quadrature[END_REF] have been used with Clenshaw-Curtis [START_REF] Clenshaw | A method for numerical integration on an automatic computer[END_REF] and Gauss-Patterson [START_REF] Patterson | The optimum addition of points to quadrature formulae Mathematics of[END_REF] 1D base-quadrature. The selected computational module is Smobol by prof. Richard Dwight [7]. The two underlying 1D quadratures are associated with D u for which they exhibit a polynomial exactness of degree N -1 (Clenshaw-Curtis) and (3N -1)/2 (Gauss-Patterson) for N points. Unfortunately, there is no 1D quadrature associated with D (2) available yet so that the products F i × D (2) have been integrated for the evaluation of E (2) and V (2) . It is easily checked that N points then only exactly integrate a polynomial of degree N -5 (Clenshaw-Curtis) and (3N -9)/2 (Gauss-Patterson) as D (2) is a degree four polynomial. In the plots legend, the corresponding results are noted SmolCC and SmolGP .

All other considered methods are gPC methods [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] which basics are briefly recalled in 1D: a polynomial surrogate of F , gF , is searched for on a polynomial basis {P l } associated with D(ξ), the probability density function of the UQ problem:

gF (ξ) = l=M l=0 C l P l (ξ) F (ξ) < P l , P m >= P l (ξ)P m (ξ)D(ξ)dξ = δ lm
As in all other surrogate based UQ methods, the stochastic evaluations for F are estimated from gF . The mean and variance are exactly evaluated for gF as

E(gF ) = C 0 V (gF ) = l=M l=1 C 2 l
The coefficents of the expansion may be calculated either by quadrature using

C l =< F, P l >= P l (ξ)P l (ξ)D(ξ)dξ,
or by collocation solving for the C l the (possibly overdetermined or underdetermined) following linear system l=M l=0

C l P l (ξ k ) = F (ξ k ) ∀ k ∈ {1...Q}. ( 1 
)
The extension of this method in IR n is straightforward if the joint pdf of ξ is a product of 1D pdf as in our case. Finally, we remind that the polynomials orthonormal for D u are the normalized Legendre polynomials whereas their counterparts orthonormal for D (2) are the normalized Jacobi polynomials with the parameters corresponding to this pdf [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF].

The gPC method has been used with tensorial quadrature either for maximum degree multivariate polynomials or for total degree multivariate polynomials. The link between the retained polynomial basis and the number of quadrature points is the satisfaction of discrete orthonormality. The corresponding mentions in the plot legends are gPC-TensGL , gPC-TensGJ and gPC-Tens-OT (OT indicates the use of OpenTURNS [START_REF] Baudin | OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation, Handbook of Uncertainty Quantification[END_REF]) -also in the legends, m.t. refers to maximum degree, t.d. refers to total degree. Finally, two sparse gPC methods have been tested. They both search a solution to (1) with three times less collocation equations than polynomials in the total degree basis. Both also use a random sampling and the presented results correspond to the mean over four trials of the mean and variance estimations. The first sparse gPC method is a Compressed Sensing resolution by the Basis Poursuit denoise (BPdn) algorithm [START_REF] Van Den | Probing the Pareto frontier for basis pursuit solutions[END_REF][START_REF] Van Den | Sparse optimization with least-squares constraints[END_REF]. It solves an accurate L 1 minimization resolution of the collocation system. We have used the corresponding SPGL1 python module by E. van den Berg and M.P. Friedlander. The results of this method are referred to as gPCBPdn in the plot legends. The second sparse gPC resolution is the Least Angle Regression (LAR) algorithm [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF] applied to the collocation system. Its principle is to search iteratively the remaining polynomial of the basis, P l , that is best correlated with the current expansion residual of the approximation process r = F -ΣC l P l . The corresponding results appear in plot legends as gPC LAR OT.

RESULTS

The complete set of results for the seven functions, the two pdf and the various quadrature methods is presented and discussed in reference [START_REF] Peter | PRF MODDA Task 1.6 -Polynomial chaos for Uncertainty Quantification[END_REF]. The null mean values allow some verifications and, more important, the polynomial F 4 allows to check that the Smolyak sparse grids module and the tensorial quadratures scripts exhibit the theoretical polynomial exactness (actually, as D (2) is a polynomial, exactness with both D u and D (2) has been checked). The next subsections focus on three specific lessons learnt. 1 presents the convergence of E u (F 2 ) (left) and E (2) (F 2 ) (right) as a function of the number of nodes (in logarithmic scale) for the various quadrature methods. In the left plot, it clearly appears that the theoretical properties of Smolyak sparse grids [START_REF] Smolyak | Quadrature and interpolation formulas for tensor products of certain classes of functions[END_REF][START_REF] Gerstner | Numerical integration using sparse grids[END_REF][START_REF] Gerstner | Dimension-adaptive tensor-product quadrature[END_REF][START_REF] Peter | Generalized polynomial chaos and stochastic collocation method for uncertainty quantification in aerodynamics[END_REF] lead to the most efficient approximation of E u (F 2 ) by SmolGP and SmolCC among all tested numerical integration methods. Considering E (2) (F 2 ) (see Fig. 1 right), these two sparse grids are on the contrary the least efficient methods. Most probably, the underlying 1D quadrature needs to be associated with the marginal probability law whereas, for D (2) , due to the lack of such 1D quadrature, we have integrated F 2 × D (2) by the sparse grids used for uniform distribution. Future work will include the calculation of a Gauss-Patterson 1D quadrature [START_REF] Patterson | The optimum addition of points to quadrature formulae Mathematics of[END_REF] associated with D (2) .

Influence of coupling between input variables

We recall that functions F 2 and F 6 read

F 2 (ξ) = exp(ξ 1 + ξ 2 2 + ξ 3 3 ) + 2 exp(ξ 2 + ξ 3 2 + ξ 4 3 ) + 3 exp(ξ 3 + ξ 4 2 + ξ 5 
3 )

F 6 (ξ) = 0.5 1 + ξ 2 1 + 1 1 + 4ξ 2 2 1 1 + 4ξ 2 3 + 2 1 + 16ξ 2 4 2 1 + 16ξ 2 5 2 1 + 16ξ 2 6
There are hence 7 coupled pairs of input variables among 10 pairs for F 2 and only 4 coupled pairs of variables among 15 pairs for F 6 . The sparsity of the exact gP C associated to F 6 (either for D u or D (2) ) is hence superior to the one of F 2 . We thus expect the sparse gP C methods gPCBPdn and gPC-LAR-OT to behave better for F 6 than for F 2 . This is exactly what we observe in Fig. 2. Actually, these methods are the most efficient for the evaluation of E u (F 6 ).

Influence of random sampling in compressed sensing methods

Both sparse gPC methods, gPC-LAR-OT and gPCBPdn, use a random spampling. This raises the question of the influence of the sampling set on the accuracy of the numerical integration. It was found to be significant (up to one or one and half order of magnitude) for samplings of tenth or hundreds of evaluations and less influent for larger sampling where the change in the final mean or variance accuracy was less than one order of magnitude. This is illustrated in Fig. 3 for the gPCBPdn method and the Ishigami function: for each sampling size, the results obtained with two distinct samplings are reported by orange and brown circles which discrepancy can be appreciated.

CONCLUSION

Several numerical integration methods have been compared in intermediate dimensions for the calculation of the mean and the variance of mathematical test functions [START_REF] Genz | A Package for Testing Multiple Integration Subroutines[END_REF][START_REF] Kocis | Computational investigations of low-discrepancy sequences[END_REF][START_REF] Peter | PRF MODDA Task 1.6 -Polynomial chaos for Uncertainty Quantification[END_REF]. Most of them build a gPC [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] and the gPC exact mean and variance are the discrete evaluations of the method. The low coupling of input variables (or, equivalently, the sparsity of the exact polynomial expansion) appeared to go with efficient evaluations of the two sparse gPC approaches [START_REF] Van Den | Probing the Pareto frontier for basis pursuit solutions[END_REF][START_REF] Van Den | Sparse optimization with least-squares constraints[END_REF][START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF]. On the contrary, the influence of the function regularity on the method accuracy is more difficult to understand based on our results. Tests should be pursued with neighboring functions exhibiting close values and distinct mathematical regularities to clarify this point. In the future, we shall also deal with surrogates of aerodynamic functions (like lift, drag, pitching moment) from aerodynamic data basis and CFD based robust design problems. Besides ON-ERA has developed a strong experience in the discrete adjoint method regarding fundamental aspects [START_REF] Peter | Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches[END_REF][START_REF] Peter | Analysis of finite-volume discrete adjoint fields for twodimensional compressible Euler flows[END_REF][START_REF] Peter | Adjoint characteristics for Eulerian two-dimensional supersonic flow[END_REF], goal-oriented simulations [START_REF] Peter | Goal-oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -With application to Euler flows[END_REF][START_REF] Nguyen-Dinh | Mesh quality assessment based on aerodynamic functional output total derivative[END_REF][START_REF] Todarello | Finite-volume goal-oriented mesh-adaptation using functional derivative with respect to nodal coordinates[END_REF] and optimisation of complex configurations [START_REF] Dumont | Aerodynamic shape optimization of hovering rotors using a discrete adjoint of the Reynolds-Averaged Navier-Stokes equations[END_REF][START_REF] Peter | Discrete adjoint method for shape optimization and mesh adaptation in the elsA code. Status and challenges[END_REF][START_REF] Meheut | Gradient-based optimization of CRM wingalone and wing-body-tail configurations by RANS adjoint technique[END_REF]. Future surrogate based numerical integration methods will hence involve adjoint-based gradient information.
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 1 Figure 1: Convergence of E u (F 2 ) and E (2) (F 2 ) as function of the number of quadrature points
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 2 Figure 2: Convergence of E u (F 2 ) and E u (F 6 ) as function of the number of quadrature points

Figure 3 :

 3 Figure 3: Convergence of E u (F 1 ) (F 1 Ishigami function) as function of the number of quadrature points
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