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Abstract
The study detailed in this paper aims to provide a solver able to simulate of a complex

flows with multiple unsteady interactions. The numerical application of vortex methods has
been studied intensively during the second half of the 20th century. In particular, the Vortex
Particle Method (VPM), aims to represent an incompressible flow through singular particles.
However, its computational cost curtailed its use until recently. Since each particle influences
one another, the VPM cost is O(N2

p), with Np the number of particles. Fortunately enough,
recent methods can be used to accelerate such problems to make it a O(N) problem. After
introducing the VPM, its implementation and acceleration are detailed. A validation of the
algorithm is conducted on several test cases. In addition, a comparison with other similar
studies is carried out to validate its robustness and accuracy. Eventually a lifting line is added
to study the reaction of the VPM when confronted with a wing.

Keywords: Aerodynamic Simulation, Vortex Particle, Vortex Ring, Lifting Line, Fast Multi-
pole Method

Nomenclature

αrel Relative AoA [rad]
−→α Vorticity Strength [m3.s−1]

−→A Angular Impulse [m5.s−1]

a Radius of Ring Section [m]

b Wingspan [m]

c Chord [m]

Cl , Cd 2D Lift and Drag Coefficient

cL, cD 3D Lift and Drag Coefficient

cs Smagorinski Constant

−→
D Drag [N]

ϵ Induced Angle [rad]

E Enstrophy [m3.s−2]

E Kinetic Energy [m5.s−2]

F Total Lift [N]

Γ Circulation [m2.s−1]

H Helicity [m4.s−2]

h Resolution Length [m]

−→I Linear Impulse [m4.s−1]

−→
L Lift [N]

krelax Circulation Relaxation

ν Kinematic Viscosity [m2.s−1]

Np Number of Particles

Ns Number of Sources
−→
ψ Div-Free Potential [m2.s−1]

ϕ Curl-Free Potential [m2.s−1]

ρ Dimensionless Distance

R Ring Radius [m]

σ Particle Core Radius [m]

−→u∞ FreeStream Velocity [m.s−1]

−→urel Relative Velocity [m.s−1]

−→u Induced Velocity [m.s−1]

V Volume of the Particle [m3]
−→
Ω Total Vorticity [m3.s−1]

−→ω Vorticity [s−1]

w Downwash [m.s−1]

−→xi Particle Position [m]
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I Introduction

New concepts of eVTOL (electric Vertical
Takeoff and Landing) vehicles have spread dur-
ing the last decade. The use of several rotors
generates a strong propulsion allowing verti-
cal take off and precise handling of the vehi-
cle. The aerodynamic interactions between sev-
eral rotors are arduous to accurately simulate
with low fidelity methods and they are also too
costly to be studied with high fidelity methods
(CFD). This is especially the case during the
design phase. The need for a fast and accurate
method, which can fully take into account the
interactions between multiple rotors, motivated
this study.

High-fidelity CFD methods remain com-
putationally costly and fail to be used in
industrial design process. The Vortex Particle
Method (VPM) was developed here to tackle
this challenge. This potential method, first
introduced by Rosenhead in 1931[13], aims to
represent continuous unsteady flows through
the use of singular particles. Since then
various authors managed to use this method
to simulate: propeller-on-wing interactions[4],
rotors in hover configuration with a Lifting
Line[6], rotor wake transition and coplanar
rotors wake mixing[1], marine turbines with
a panel method[12]... This incompressible
method is particularly well suited to represent
wake decay and mixing, and viscous effects
where other panel or filament methods fail
to do so, making it a possible candidate to
simulate the interactions between the wakes of
several different rotors. Moreover, It is also a
meshless method which significantly reduces
computational dissipation.

The goal of this study is to create a new al-

gorithm from scratch based on the VPM. This
code will have a Python interface while running
in C++. The solver has been developed into the
ONERA CASSIOPEE (CFD Advanced Set of
Services In an Open Python EnvironmEnt)[3]
environment of ONERA which uses the CGNS
standard (CFD General Notation System). The
validation with well-known case studies will
then be carried out to validate the algorithm.
Eventually, a Lifting Line (LL) method will be
coupled to the solver in order to simulate a
wing.

II 3D Viscous Vortex

Particle Method

II.1 Modelisation of the VPM

The VPM is a vortex method and, as such,
aims to represent the flow through its vortic-
ity −→ω (x⃗, t) = ∇×−→u (x⃗, t). This method uses
singular particles to represent a continuous
flow. The particles can move freely (as opposed
to prescribed-wake approaches) and influence
each other. To follow the evolution of the parti-
cles, the Lagrangian representation of the flow
is adopted. To do so, the vorticity equation is
used. It is obtained by taking the curl of the tra-
ditional three-dimensional Navier-Stokes equa-
tions for a viscous and incompressible flow:

d−→ω
dt

=
(−→ω · ∇

)−→u + ν∇2−→w (1)

where 1st term on the RHS accounts for the
stretching and compression between particles
while the 2nd term allows for reconnection and
diffusion. One has also (−→ω · (t∇−∇))−→u =
−→ω × (∇×−→ui ) =

−→ω ×−→ω =
−→
0 which leads to

write the 1st term as (−→ω ·t ∇)−→u . It has been
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shown that this representation is the only one
to conserve the total vorticity of the flow[17].
For this reason, this scheme will be the one
used for this study.

Each particle is a vector element represented
by a position (x⃗i), a core size (σ), a volume (Vi)
and a strength (−→αi ≈ Vi

−→ωi ). The vorticity field
is discretized as follows:

−→ωi(
−→xi , t) =

Np

∑
p=1

δ(−→xi −−→xp)
−→αp(t) (2)

The velocity of the particles is then obtained
thanks to the Helmholtz Decomposition Theo-
rem:

dx⃗i

dt
= −→u∞ +∇×−→

ψ +∇ϕ (3)

where ∇ϕ is the velocity induced by a lifting
surface and −→u = ∇ × −→

ψ is induced by the
particles. The vorticity and velocity are then
linked by the latter streamfunction:

−→ω = ∇× (∇×−→
ψ ) = ∇

(
�
���*0

∇ · −→ψ
)
−∇2−→ψ (4)

The solution of a Poisson’s equation is given
by Green’s function:

−→
ψ (−→x , t) =

∫
V

G(−→x ,−→x ′)−→ω (−→x ′, t)d−→x ′ (5)

≈
Np

∑
p=1

G(−→x ,−→xp)
−→αp(t) (6)

Finally, the velocity is obtained by taking the
curl of the previous equation:

−→ui (
−→xi , t) =

N

∑
p=1

K(−→xi −−→xp)×−→αp(t) (7)

where K(−→xi −−→xp) =
−1

4π||−→xi −−→xp ||3
(−→xi −−→xp) is

the Biot-Savart kernel.

II.2 Regularisation of the Particles

In order to avoid singularities when parti-
cles get close, a function g is used to regularise
the previous kernel:

K(x⃗) = −g(ρ)
|⃗x|3 x⃗ (8)

where ρ = |⃗x|
σ .

The viscous term of the vorticity equation can
not be calculated as it is, because the strength
of the particles is not a function of space. The
Particle Strength Exchange (PSE) [10][17][15][6]
is nonetheless used to account for the viscous
effects of the fluid:

∇2−→ω (x⃗) ≈ 2
∫

V
η(x⃗ − x⃗′)[−→ω (x⃗′)−−→ω (x⃗)]dx⃗′ (9)

ν∇2−→αi ≈
Np

∑
p=1

νi + νp

2
η(x⃗i − x⃗p)[Vi

−→αp − Vp
−→αi ] (10)

The η function can be directly linked with
the regularisation function used with the Biot-
Savart kernel:

η(ρ) =
1

σ5ρ4

(
2

dg(ρ)
dρ

− ρ
d2g(ρ)

dρ2

)
(11)

However, it has been observed that the dif-
fusion term of the vorticity equation is of-
ten negligible in front of the stretching term,
especially when considering air flows (ν ≈
1.56 · 10−5m2.s−1). In order to better take into
account the viscous effects of the flow, a turbu-
lent viscosity is added to the kinematic viscos-
ity:

ν = νair + (Csσ)
2
√

2||−→ω || (12)

This model is taken from the Smagorinski
model[8]. To better represent the diffusion
term, it is necessary to stabilise the regions of
the flow where the vorticity gets carried away.
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The Smagorinski constant is the same as the
one from the LES model and is usually taken
between 0.15 and 0.25.

Both Gaussian and High Order Algebraic
(HOA) regularisation kernels have been imple-
mented (see Table:1). They only differ by the
fact that the HOA regularisation smoothes less
when particles are close.

Kernels g(ρ)

HOA 1
4π

ρ3(ρ2+5/2)
(ρ2+1)5/2

Gaussian 1
4π

(
erf
(

ρ√
2

)
−
√

2
π ρe−

ρ2
2

)
Table 1: Regularisation Functions.

The fully regularised system to solve be-
comes:

d−→xi (t)
dt

= −→u ∞ +
N

∑
p=1

− 1
σ3

g(ρ)
ρ3 (x⃗i − x⃗p)×−→αp (13)

d−→αi (t)
dt

=
Np

∑
p=1

[
1
σ3

g(ρ)
ρ3

−→αi ×−→αp

+
1

σ5ρ

d
dρ

(
g(ρ)
ρ3

)
(−→αi · ((x⃗i − x⃗p)×−→αp)(x⃗i − x⃗p)

+
νi + νp

σ5ρ4

(
2

dg(ρ)
dρ

− ρ
d2g(ρ)

dρ2

)
(Vi

−→αp − Vp
−→αi )

]
(14)

A 1st, 2nd and 3rd order Runge Kutta schemes
were implemented to solve this system.
Beale, Majda[2] and Greengard[5] proved the
convergence of this regularisation as long as
1 < σ

h ; where h represents the typical distance
between particles and σ the core size of the
particles.

The vorticity of the particles can be obtained
by the VPM by also regularising the Dirac delta

function. The function ζ(ρ) = 1
ρ2

dg(ρ)
dρ

has

been applied:

−→ωi =
Np

∑
p

ζ(ρ)

σ3
−→α p (15)

The vorticity used for the post-treatment
however is obtained from the velocity induced
by the particles on a Cartesian grid.

II.3 Other Schemes

The major drawback of this approach is
that even though the velocity is divergence-free,
it is not necessarily the case of the vorticity[17].
Pedrizzetti’s relaxation scheme has been imple-
mented to address this issue[11]. The scheme
aims to realign the particles’ strength with their
vorticity:

−→α new = (1 − f ∆t)−→α old + f ∆t
−−→ωold

|−−→ωold|
|−→α old| (16)

where f is a cutoff frequency to be tuned
with the simulation.

To address any Lagrangian distortion, a
global redistribution of the particles’ strength
has also been implemented. This allows to
project the strength of all particles on a Carte-
sian grid of mesh size h, built of the orthonor-
mal base (⃗e1, e⃗2, e⃗3) like represented in Figure 1.
This way the strength at a node j is:

−→αj =
Np

∑
p=1

[
3

∏
k=1

M′
4

( ||(x⃗j − x⃗p).⃗ek||
h

)]
−→αp (17)

where:

M′
4 =


1 − 5

2 ρ2 + 3
2 |ρ|3 , if 0 ≤ |ρ| ≤ 1

1
2(1 − |ρ|)(2 − |ρ|)2 , if 1 ≤ |ρ| ≤ 2

0 , if 2 ≤ |ρ|
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Fig. 1: Example of Global Redistribution on a 2D lattice.

II.4 Acceleration Method

In its current state, the VPM remains costly.
The inter-particular interactions makes it a
O(N2) problem, preventing from efficiently us-
ing more than 104 particles. In order to reduce
computing costs, the Fast Multipole Method
(FMM) module ExaFMM[18] has been fully
optimised, parallelised, vectorised and imple-
mented into the solver. This method aims to
separate particles into clusters as shown in Fig-
ure 2. Interactions between two clusters far
apart can be summed up as a single interac-
tion, thus reducing inter-particular interactions
to particles close to each other. In best case
scenarii, the VPM becomes a O(N) problem.

III Vortex Rings

This section describes the validation of the

Fig. 2: Concept of the FMM.

VPM, without vorticity sources, on vortex rings
configurations.

III.1 Conservation Laws

The behaviour of the VPM can be assessed
through the monitoring of conservation laws.
The linear invariants are the Total Vorticity (

−→
Ω ),

Linear Impulse (
−→I ) and Angular Impulse (

−→A )
while the quadratic invariants are the kinetic

energy (E), the Enstrophy (E = −1/ν
dE
dt

) and
the Helicity (H). The analytical solutions of the
linear diagnostics are fairly easy to obtain with
regularised quantities though it is not the case
for the quadratic ones. Winckelmans still man-
aged to obtain a solution by semi-regularising
the diagnostics with the HOA[17]:

−→
Ω =

Np

∑
p=1

−→αp (18)
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−→I =
1
2

Np

∑
p=1

x⃗p ×−→αp (19)

−→A =
1
3

Np

∑
p=1

x⃗p ×
(

x⃗p ×−→αp
)

(20)

E =
1

16π

Np

∑
p,q=1

[
1

(|⃗xp − x⃗q|2 + σ2)3/2 ·(
(|⃗xp − x⃗q|2 + 2σ2)−→αp · −→αq

+ ((x⃗p − x⃗q) · −→αp)((x⃗p − x⃗q) · −→αq )
)]

(21)

E =
1

4π

Np

∑
p,q=1

[
10σ4 + 7

2 σ2 |⃗xp − x⃗q|2 + |⃗xp − x⃗q|4

(|⃗xp − x⃗q|2 + σ2)7/2
−→αp · −→αq

− 3
2

7σ4 + 9σ2 |⃗xp − x⃗q|2 + 2|⃗xp − x⃗q|4

(|⃗xp − x⃗q|2 + σ2)9/2 ·

((x⃗p − x⃗q) · −→αp)((x⃗p − x⃗q) · −→αq )

]
(22)

Another formulation of E and E can be
obtained with the hypothesis of a purely
divergence-free flow. This can help monitor the
divergence of the flow by evaluating the differ-
ence between both diagnostics (|E − Ediv− f ree|
and |E − Ediv− f ree|).

III.2 Rings Initialisation

Vortex rings were computed in order to be
compared with other studies and well-known
experiences. Those torus-shaped rings were
modeled following the geometry given by Knio
and Ghoniem[7]. The section of the ring is a
disk composed of several concentric layers of
particles. These layers can go beyond a, the ra-
dius of the ring’s section to represent the flow
around the rings. This radius is taken as a ≪ R
so that the ring remains thin. Eventually the
particles are initialised as proposed by Winck-
elmans:
−→ω (t = 0) =

Γ
2πa2

(
1 +

r
R

cos θ
)

e−
r2

2a2 e⃗ψ (23)

The strength of the particles is obtained by
solving A[−→α i] = [−→ω i] where the square matrix

A contains the values of Aij = ζ
( ||⃗xi−x⃗j||

σ

)
.

III.3 The Self-Induced Ring

A vortex ring is a toroidal-shaped ring
with a concentration of vorticity in its section
core. Such rings can translate solely due to
their self induction. A single self-induced ring
is simulated and compared with other stud-
ies. The HOA regularisation was used to stay
consistent with the other authors. The diag-
nostics obtained by the solver and from other
studies are compared in Table:2. While the
diagnostics remain close, the temporal rate of
change of E which is different than Singh’s.
This could be explained by the difference of
integrating scheme or the way the matricial sys-
tem is solved to obtain the particles’ strength.

Knowing −→ω (t = 0), one can calculate E(t =
0) = 50.75m3s−1. The difference between the
computed and analytical values could come
from the semi-regularisation used[17]. Never-
theless the diagnostics can still be used as a
mean to check the divergence of the simula-
tions.

The evolution of the diagnostics has also been
compared to the ones of Winckelmans’ in Fig-
ure 3 to 8. In the viscous case, the rate of change
of the kinetic energy is close to variation of the
Enstrophy, as predicted by dE/dt = −νE in
Figure 5. The curvature of the kinetic energy
at around ≈ 2s also shows that the vorticity
of the ring concentrated at its core has been
diffused to its last layer thanks to the PSE. The
inviscid case shows in turn the conservation
of kinetic energy. The linear diagnostics are
all conserved as is expected for an unbounded,
divergence-free, source-less simulation.
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Fig. 3: Linear Impulse for an Inviscid (left) and Viscous (right) Vortex Ring by Winckelmans[17].

Fig. 4: Linear Diagnostics for an Inviscid (left) and Viscous (right) Vortex Ring.

Fig. 5: Velocity and Kinetic Energy Variation for an Inviscid (left) and Viscous (right) Vortex Ring.
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Fig. 6: Kinetic Energy for an Inviscid (left) and Viscous (right) Vortex Ring by Winckelmans[17].

Fig. 7: Enstrophy for an Inviscid (left) and Viscous (right) Vortex Ring by Winckelmans[17].

Fig. 8: Kinetic Energy and Enstrophy for an Inviscid (left) and Viscous (right) Vortex Ring.
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III.4 Leap-Frogging Rings

The leap-frog phenomenon shows that
when two rings follow each another, the one
behind will tend to contract and accelerate
while the one in front will loosen up and
decelerate. This leads to the ring behind to
go through the one in front. This operation
is repeated in a back-and-forth fashion. The
goal is to reenact this phenomenon while
putting the solver under stress by having
strong velocity gradients. The Inputs are
Cs = 0.25, νair = 1.56 · 10−5m2.s−1, h = 0.015m,
σ = 0.0225, ∆t = 0.001s, the 3nd order Runge
Kutta scheme and the Gaussian regularisation
are used. The rings are made of 3 layers
each, have Γ = 1m2.s−1, a = 0.05 and are
initially placed one inside the other. The bigger
ring has R = 1m while the other has R = 0.75m.

The simulation is represented in Figure 9, for
a Q-criterion of 20s−1. The rings follow the
back-and-forth motion of the leap-frog. The
general toroidal shape of the rings is preserved
despite the strong stretching and compression
they undergo. This shows the stability of the
solver as well as its ability to conserve connec-
tions between vortical structures. After ≈ 7s,
the rings start to reach out. At this point, the
faster spinning ring drags the slower one, and
the structure of the rings sustain strong stretch-
ing as they start twisting around each other.
The computation of the diffusion term then
helps them merge into one as they roll up.

Fig. 9: Vortex Rings’ Leap-Frog Simulation.
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III.5 Rings Fusion

The last case concerns the
fusion of two vortex rings. The
rings are identical and placed
side-by-side, pointing in the same
direction. It has observed exper-
imentally[14], that the two rings
will merge to form a single (quite
deformed) ring. Following the
initial fusion of the two rings, the
newly formed ring will collapse
into two smaller rings. This
phenomenon can be replicated by
the computing of the viscous term
of the vorticity equation.

The inputs are Cs = 0.25, h =
0.001m, σ = 0.0015m, ∆t =
0.0025s, the 3rd order Runge Kutta
scheme are used and each ring
is discretised by 4 layers. The
problem is solved using the Gaus-
sian regularisation. The solution
is compared with Winckelmans
whom applied the HOA regular-
isation. is used in order to be
compared with the HOA’s used
by Winckelmans who happened to
have done the same simulation[17].
Pedrizzetti also carried out this
simulation and obtained similar
results[11]. Winckelmans pointed
out that a lot a layers were neces-
sary to represent the flow near the
rings in order to capture the diffu-
sion of vorticity to the outer layers.
However, in this study few layers
are used thanks to the global redis-
tribution. This scheme allows the
vor-

Fig. 10: Front (left), Side (middle) and Top Views (right) of the Vortex
Rings’ Fusion by the VPM.
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ticity to spread at its own pace by adding parti-
cles around the ring. The small timestep allows
to use this scheme every 40 timesteps only. The
relaxation scheme is applied after every redis-
tribution with a cutoff of 0.02Hz. A ||−→α ||
cutoff was set to 10−19m3.s−1 to eliminate parti-
cles that do not have enough strength in order
not to overload the simulation with unneces-
sary redistribution.

The physical parameters of the simu-
lation are taken as the averaged values
between the two rings from Schatzle’s exper-
iments: Γ = 0.001605m2.s−1, R = 0.016575m,
a = 0.004025 and νwater = 9 · 10−7m2.s−1.
The rings are initially positioned like in the
experiment’s, in a ’∧’ shape with an angle of
−13.3° from the horizontal and put 0.0446m
apart from each other (center-to-center). The
simulation is available in Figure 10, with a
Q-criterion of 1s−1.

The rings merge together at ≈ 5s. After that,
their initial inertia stretch the newly formed
ring into an ellipse. Under the influence of
the stretching term, the new ring collapses into
two large opened rings at ≈ 13s. Being thrown

Fig. 11: Front (left) and Side View (right) of the Vortex Rings’ Fusion Experiment by Schatzle[14].

in opposite directions, the two collapsed and
opened rings close themselves to form two
whole rings at ≈ 16s. After that the rings are
too thick to split again and end up collapsing
on themselves, killing what is left of their vor-
ticity.

This whole phenomenon has been captured
during Schatzle’s experiment, a visualisation
is provided from Schatzle’s thesis in Figure
11. The fact that the experiment was much
shorter than the simulation can be attributed to
a variety of reasons. Firstly, the experiment’s
rings were translating because of their own self-
induced velocity (like in the simulation) but
also because of the flow velocity generated by
the pistons that created the rings. The param-
eters of the simulation could also be underes-
timated. A smaller ring radius a or a higher
circulation Γ greatly speeds up the process and
make the rings merge and break faster.
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IV Lifting Line

Coupling

IV.1 Modelisation

A Lifting Line (LL) module has been
added to the solver. This century-old method
remains relevant to this day thanks to its low
computational cost and simplicity.

The load on the LL is computed from the
effective angle of attack at each of its blade
elements. 2D polars are used to get the aerody-
namical loads on the LL. L = 1

2 ρ∞
∫

u2
relcCl(αrel)dy

D = 1
2 ρ∞

∫
u2

relcCd(αrel)dy
(24)

The circulation is then recovered from the
Kutta-Joukowski Theorem:

−→
L = ρ∞

∫
−→u rel ×

−→
Γ dy (25)

The introduction of a solid in the flow creates
vorticity according to Kelvin’s Theorem. Two
contributions to this vorticity source can be
identified:

dΓ
dt

=
∂Γ
∂t

+−→u m · ∇Γ = 0 (26)

These two terms contribute to the genera-
tion of vorticity because of the temporal rate
of change and the spanwise variation of the
circulation on the solid. To respect this, parti-
cles are shed along the LL and are set free in
the wake[12][16][15][1]. The temporal contri-
bution generates shedding particles, parallel to
the LL while the spatial variations contribute
to the generation of trailing particles, perpen-
dicular to the LL. In turn, the particles of the
wake induce velocities on the LL which affect

the αrel and −→u rel of each blade element. This
process is repeated at each timestep until con-
vergence of the circulation is reached. To have
large timesteps without destabilising this itera-
tion process, a relaxation scheme is introduced
when updating the circulation:

Γnnew = Γn−1 + krelax(Γnold − Γn−1) (27)

at the nth iteration. The process is stopped
when maxLL(|Γn − Γn−1|) falls below a given
threshold.

IV.2 Elliptical Wing

The VPM has been studied on an elliptical
wing. This peculiar geometry offers convenient
analytical results providing validation for the
LL module.

The wing has a reference chord of c0 = 0.34m,
a wingspan of b = 1.6m and its chord repar-

tition is c(y) = c0

√
1 −

(
2y
b

)2
. The NACA

0012 airfoil is used for the whole wing. The
wing is furthermore untwisted, has neither
dihedral nor sweep. Its surface is given by
S = π

2 c0L ≈ 0.427m2. The specificity of this
wing, renowned for being on UK’s Spitfires
during WWII, is that its shape minimises its
induced drag and gives elliptical circulation
and lift. The overall aerodynamic coefficients,
circulation, induced velocity and induced angle
are provided by Prandtl’s theory:

cL =
b2παi

S
=

2F
ρ∞u2

∞S
(28)

cD = cDp + cDi =
1
S

∫
Cd(y)c(y)dy +

c2
LS

πb2 (29)

Γ(y) = Γ0
c(y)
c0

(30)

wi(y) = wi(0) = −Γ0

2b
(31)
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ϵ(y) = ϵ(0) = arctan
(

Γ0

2u∞b

)
(32)

where Γ0 = 4F
ρ∞u∞bπ and cDp is the profile

drag. In our case, the overall lift is obtained by
taking into account the influence of the induced
velocity and angle:

F =
1
2

ρ∞

∫
u2

relc (Cl cos(ϵ)− Cd sin(ϵ)) dy (33)

Fig. 12: Experimental and VPM Polars Comparison.

Polars have been obtained from the
VPM and series of experiments conducted
in ONERA’s L1 wind tunnel in Meudon.
The VPM inputs are u∞ = 50m.s−1,
h = b

101 ≈ 0.016m, σ = 2h, ∆t = h/u∞,

krelax = 0.37, νair = 1, 56 · 10−5m2.s−1,
Cs = 0.15, the 3rd order Runge Kutta scheme
is used, the redistribution is carried out every
11 timesteps with a cutoff of 7, 5 · 10−11m3.s−1

followed every time by the relaxation scheme
with a cutoff of 0.02Hz. The air density was
taken from the ideal gas law at a tempera-
ture of 19°C and at standard atmospheric
pressure to respect the experimental conditions.

Fig. 13: Analytical and VPM wi (top) and ϵ (bottom)
Comparison.

As can be seen in Figure 12, experimental
and VPM polars match as long as the AoA is in
the linear range of cL. This is partly due to the
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2D polars having trouble representing the stall
for high AoA, and the LL requiring small AoA.

A focus is made on the case where α0 = 5°
to confront this result with Prandtl’s theory. As
one can see from Table:3, the analytical and
numerical results concur. The induced velocity
w (and thus the induced angle ϵ) is supposed
to remain constant for an elliptical wing with
an infinite aspect ratio. But as can be seen in
Figure 13, it is not the case at the wingtips.

The LL itself depends on having a high aspect
ratio to avoid such issues. However modern
aircrafts have an aspect ratio going from around
7 to 10. Wingtip vortices play a major part in
the loads of the wing and the wake it generates.
This causes a small deviation in the circulation
at around |y| = 0.77m (see Figure 15). These
vorticies can be observed in Figure 14. The case
of the elliptic wing tend to downplay this imp-

Fig. 14: Elliptical Wing’s Wake for a Q-criterion of 1s−1.

Fig. 15: Analytical and VPM Circulation Comparison.

act on the cL and cD because of its rapidly de-
creasing chord at the wingtips.
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V Conclusion

The Vortex Particle Method solver has
successfully been implemented and accelerated
by a Fast Multipole Method module. A
redistribution and a relaxation scheme have
also been added to the algorithm to improve
its robustness. The solver has first been
validated without vorticity sources, comparing
its solution to other studies. A Lifting Line
module has been added and also validated on
an elliptical wing by confronting experimental
and analytical results. However, other wings
have to be simulated to unsure the sturdiness
and versatility of the solver when confronted
with unusual geometries or polars. In the
future, rotors and propellers will be treated.
Indeed they make for perfect tests because of
the strong 3D dynamics, stalls, strong velocity
gradients, blade twists and strong vorticities
generated.
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Appendix

4 layers h = 7, 78cm σ = 10cm 5 layers h = 6, 36cm σ = 8, 4cm 6 layers h = 5, 38cm σ = 7, 35cm

Diagnostic Study W. S. C. M. Study W. S. Study W. S.

|I| 3,165454 3,213919 3,16545 3,1326 3,274 3,173189 3,215482 3,1785 3,173189 3,215482 3,1785

Ediv− f ree 1,016773 1,047634 1,01677 1,012922 1,0408 1,010371 1,036526 1,01369 1,010371 1,036526 1,01369

E 1,016694 1,047552 1,01669 1,012823 1,0407 1,010330 1,036491 1,01366 1,010330 1,036491 1,01366

Ediv− f ree 60,41207 62,38420 60,4121 63,38210 63,52 57,54908 58,99072 57,6503 57,54908 58,99072 57,6503

E 61,41085 61,34640 61,4109 N/A N/A 58,30688 58,30524 58,3174 58,30688 58,30524 58,3174

UR 0,249509 0,26605 0,2496272 N/A N/A 0,250503 0,26607 0,251092 0,250503 0,26607 0,2510928

dE/dt -0,12355 -0,1276 -0,1496 -0,1276 N/A -0,12346 -0,12684 -0,1526 -0,12346 -0,12684 -0,1526

Table 2: Diagnostics Comparison of three Self-Induced Rings with WINCKELMANS Gérard[17], SINGH Puneet[15], CALABRETTA
Jacob[4] and MARTIN Evan[9] for ν = 2, 5 · 10−3m2.s−1.

Γ0 [m2.s−1] wi(0) [m.s−1] ϵ(0) [°] cL cD cDi cD f

VPM 3.51418 -1.09523 1.25512 0.418336 0.0200595 0.00929715 0.0113207

Analytical 3.55586 -1.11121 1.27314 0.413433 0.0206178 0.0090805 0.0113207

Relative Error [%] 1,17 1,44 1,4 1,19 2,71 2,39 0.00

Table 3: Comparison Between Prandtl’s Theory and the VPM on the Elliptical Wing for α0 = 5°.

16


	[] Nomenclature
	Introduction
	3D Viscous Vortex Particle Method
	Modelisation of the VPM
	Regularisation of the Particles
	Other Schemes
	Acceleration Method

	Vortex Rings
	Conservation Laws
	Rings Initialisation
	The Self-Induced Ring
	Leap-Frogging Rings
	Rings Fusion

	Lifting Line Coupling
	Modelisation
	Elliptical Wing

	Conclusion
	

