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Abstract. It is shown that cascaded nonlinear optical frequency conversion
over an intermediate wavelength, subjected to dissipation, behaves similarly to
population transfer via a decaying state in a three-state non-Hermitian quantum
system. The intermediate dissipation leads to a fixed phase relationship between
the input signal wave and the wave at the target frequency, what finally stabilizes
both waves preventing any spatial oscillation of their powers. The cascaded
conversion acts as a stable wave splitter between the input and target waves,
the latter being nearly immune to power fluctuations of the pumps . A case
of a simultaneous cascade of the sum frequency generation (SFG) and the
difference frequency generation (DFG) processes is discussed as an example. A
possible implementation, based on aperiodically engineered quasi-phase-matching
in Lithium Niobate, is proposed.

Keywords: Nonlinear optics, Cascaded frequency conversion, Non-Hermitian quantum
systems, Dissipative media.
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1. Introduction

In recent decades, the important analogies existing
between quantum mechanics and various domains of
classical physics have emphasized the deep connection
between these two seemingly contradictory worlds
[1]. These analogies are fundamentally connected to
the comparable mathematical formalisms governing
several phenomena in both fields. Such links are
particularly strong with classical optics, which has
served as inspiration for several quantum physics
formulations. The study and exploitation of analogies
between quantum and optical physics is indeed an
intense field of research [2, 3] with applications in
various areas of photonics, including, among others,
waveguide optics [4, 5, 6], polarization optics [7, 8]
and nonlinear optics [9, 10, 11, 12]. Some of the
latter are inspired by adiabatic techniques developed
for quantum population transfer, which includes
the celebrated Stimulated Raman Adiabatic Passage
(STIRAP) [13, 14, 15] as well as Rapid Adiabatic
Passage (RAP) [16, 17] or adiabatic elimination
techniques [18, 19]. Others are related to the robust
composite pulses approaches, initially developed in the
field of nuclear magnetic resonance [20, 21]. While
the above examples are related to Hermitian systems
that conserve the total energy, much attention has
been given recently also to open systems associated
to non-Hermitian Hamiltonians and their photonics
counterparts involving gain and/or loss. In this
context, systems exhibiting the so-called parity-time
(PT) symmetry and exceptional points provide new
and often counterintuitive ways to control the flow of
light [22, 23].

Nonlinear optical frequency conversion of second
order [24] in the so called undepleted pump approx-
imation is intrinsically related to population transfer
between coupled quantum states. Let us first consider
a three-wave mixing interaction involving waves at the
frequencies ω1 and ω2 (here with ω1 < ω2) and a pump
wave at frequency ωp1. It can be easily shown [10, 25]
that the basic three-wave mixing processes of sum fre-
quency generation (SFG, ω1 + ωp1 → ω2) and differ-
ence frequency generation (DFG, ω2 − ωp1 → ω1) are
analog to the process of inverting a two-state quan-
tum system (for SFG) and to the back-conversion pro-
cess to the ground state (for DFG), respectively. This
kind of analogy holds also in the case of an extension
to a two-step cascade of such processes (see Fig. 1,
target wave frequency ω3; second pump ωp2 ), if they
occur simultaneously and if the pumps are still unde-
pleted. However here the analogy is to a three-state
quantum system, such as a Λ-type system and not to a
two-state system, as depicted schematically in Fig. 2.
Indeed, cascaded second-order nonlinear optical pro-
cesses are quite often employed with the aim of effi-

Figure 1. Two-step cascades of three-wave mixing nonlinear
optical frequency conversion processes. (a)SFG-SFG, (b) DFG-
DFG, (c) DFG-SFG, and (d) SFG-DFG. The frequency ω1

always corresponds to the input (signal) wave, while ω3 is the
target wave frequency and ω2 the one of the intermediate wave.
ωp1 and ωp2 are the frequencies of first and second pump waves.
The intermediate wave is absorbed by the nonlinear crystal at a
rate α (cm−1).

ciently producing waves at specific frequencies (see for
instance [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]).
In general, such processes are most useful to generate
wavelengths either near or far away from the one of
the input signal wave. The first case is often used in
connection with wavelength division multiplexing, for
instance for power redistribution and all-optical signal
processing within the telecom bands. The second is re-
quired whenever a direct conversion to the target wave-
length in one step is not possible due to lack of phase-
matching, or if such a conversion would require the
weaker and generally less efficient third order nonlin-
earity. Phase matching [24] corresponds to the neces-
sity to insure photon momentum conservation across
the nonlinear interaction. In the context of cascaded
processes, such as those depicted in Fig. 1, one ap-
proach consists in separating the two sub-processes, for
instance by using two distinct nonlinear optical crystals
so that the conversions get spatially separated. In this
case, the phase-matching condition can be adjusted in-
dependently in each of the crystals for the correspond-
ing sub-process. In the quantum picture of Fig. 2, this
solution is equivalent to avoiding any temporal over-
lap between the coupling of states ψ1 and ψ2 through
Ωp, and the coupling of states ψ2 and ψ3 through Ωs.
The second approach is the one where all sub-processes
occur simultaneously, i.e. with temporal overlap in
quantum population transfer and with spatial overlap
in nonlinear optics. Therefore in this case phase match-
ing should be fulfilled for each of the cascaded processes
within a single nonlinear crystal. In the following, we
will consider only this simultaneous situation.

The present work adresses two-step cascaded
nonlinear optical interaction in the specific condition
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where the wave at the intermediate frequency ω2

is being strongly dissipated in the medium. It is
shown that this situation is fully analogous to the
one encountered in a coupled non-Hermitian three-
state quantum system, in which the population is
decaying out of the system at the intermediate state ψ2,
which was discussed earlier by Vitanov and Stenholm
[37]. The dissipation is depicted in Figs. 1 and 2
by the spatial and temporal decay rates α and Γ.
It is worth mentioning that the present case is also
analog to the recently discussed classical system of
three evanescently coupled waveguides that can act
as ultra-broadband beam splitter if the intermediate
waveguide is strongly dissipative [38]. Here we show
that the non-Hermitian nature of the interaction finally
leads to a stabilization of the powers in the input (ω1)
and target (ω3) waves with no power left at the wave
at ω2. The input and target waves acquire a fixed
phase relationship and, unlike in the common case in
absence of dissipation, they reach a stationary state
with no spatial variation of their amplitudes. The
system effectively acts as a power splitter between
the waves at the frequencies ω1 and ω3, with the
splitting ratio being adjustable by the strengths of the
nonlinear coupling of the two sub-processes. The price
to pay is the loss of part of the initial photons at
ω1 due to the dissipation at ω2. This loss amounts
to half of the ω1-photons if the maximum power at
ω3 is desired. However, significantly lower overall
losses are possible for a moderate decrease of this
power. Section 2.1 presents the general theoretical
aspects for the non-Hermitian three-level quantum
system of Fig. 2 under the simplifying assumption that
the Rabi frequencies characterizing the two coupling
mechanisms are constant in time. The corresponding
theory for a five-waves nonlinear interaction of the type
SFG-DFG with two pump waves being undepleted is
given in Sect. 2.2, the main results are illustrated using
normalized coordinates. Finally, a calculated example
for a cascaded nonlinear conversion in lithium niobate
(LiNbO3) and an intermediate frequency in the near
ultraviolet is illustrated in Sect. 3. Here a quasi-phase-
matching (QPM) technique able to accommodate the
phase mismatch of both the SFG and DFG sub-
processes is exploited.

2. Theory

2.1. Decaying three-state quantum system

We first consider a three-state non-Hermitian quantum
system as the one depicted on the left side of Fig. 2,
where the intermediate level can decay out of the
system with a total decay rate Γ ≥ 0. It is assumed
that the direct transition between states ψ1 and ψ3

is electric-dipole forbidden. This kind of system was

Figure 2. Coupled Λ-type three-state quantum system (left-
frame, states ψ1, ψ2, and ψ3) and the analogous classical case
of cascaded nonlinear frequency conversion (right-frame, wave
frequencies ω1, ω2 and ω3). The quantum states are coupled via
the pump and the Stokes Rabi frequencies Ωp and Ωs associated
to the coupling fields, while the frequency conversion is driven by
the second-order susceptibility χ(2) and the corresponding pump
wave amplitudes for the first (assumed here to be SFG) and the
second process (DFG). Γ (s−1) and α (cm−1) are the decaying
rate of ψ2 and the amplitude absorption constant of the wave at
ω2, respectively.

discussed in detail in [37]. For the sake of simplicity,
here we summarize only the main features that can
be put in direct relation with the classical nonlinear
optical interaction discussed in the Section 2.2. The
overall wave function Ψ that describes the whole
system is a linear combination of the three states,

Ψ =

3∑
j=1

cj(t)ψj , (1)

where the complex coefficients cj(t) are the population
probability amplitudes of the jth state, with Pj(t) =

cj(t)
2

being the probability of occupation of that state.
As mentioned above, states ψ1 and ψ2 are coupled by
a coherent field (for instance a laser field) of Rabi
frequency Ωp (pump field), while states ψ2 and ψ3

are coupled by a Stokes field of Rabi frequency Ωs.
As in [37], we consider the case where a detuning ∆
is allowed between the oscillation frequencies of the
pump and Stokes fields ωp,s and the corresponding
transition frequencies ω0,p and ω0,s. However, this
detuning should be the same for both transitions, i.e.
∆ = ωp − ω0,p = ωs − ω0,s, so that the so called
two-photon resonance between states ψ1 and ψ3 is
maintained.

In the rotating-wave approximation, under the
above conditions, the probability amplitudes of the
three states obey the Schrödinger-type equation [37],

i
d

dt

 c1
c2
c3

 =

 0 Ωp 0
Ωp ∆− iΓ Ωs

0 Ωs 0

 c1
c2
c3

 , (2)

where possible spontaneous emission transitions from
state ψ2 to state ψ1 or ψ3 has been neglected. A
significant role in the dynamics of a three-state system
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on two-photon resonance is played by the so-called
bright and dark states, that are superpositions of the
ground and the target states according to

b = sinϑ(t)ψ1 + cosϑ(t)ψ3 , (3)

d = cosϑ(t)ψ1 − sinϑ(t)ψ3, (4)

where the mixing angle ϑ(t) is defined as

tanϑ(t) =
Ωp(t)

Ωs(t)
. (5)

In view of the relation with the nonlinear optical case
treated below, one can take the simplifying assumption
that the Rabi frequencies Ωp and Ωs, and thus also
the angle ϑ are constant in time. For the nonlinear
interactions, discussed in Sect. 2.2, this will correspond
to a nonlinear coupling strength between the waves
being constant in space. In alternative to the base
used in Eq. (1), the wave function Ψ of the system can
be expressed also in a base containing the bright and
dark state b and d,

Ψ = Cb(t)b+ C2(t)ψ2 + Cd(t)d , (6)

where the coefficients in the two bases transform
according to the matrix equation Cb

C2

Cd

 =

 sinϑ 0 cosϑ
0 1 0

cosϑ 0 − sinϑ

 c1
c2
c3

 . (7)

Here Cb and Cd depict the probability amplitudes for
the states b and d, respectively, and C2 = c2. In
the new coordinates and for a constant mixing angle,
Eq. (2) turns into the interesting form

i
d

dt

 Cb

C2

Cd

 =

 0 Ω0 0
Ω0 ∆− iΓ 0
0 0 0

 Cb

C2

Cd

 , (8)

where Ω0 =
√

Ω2
p + Ω2

s is the effective coupling.

Inspection of the above equation shows that the states
b and ψ2 are coupled, while the state d is completely
decoupled from the other two. Therefore, due to their
coupling, the states b and ψ2 continue to exchange
population. However, as a result of the decay of state
ψ2, any population being initially in state b or in
state ψ2 will be lost after a long enough interaction
time. In contrast, any population being initially in the
dark state d will stay in this state during the whole
evolution of the system. As an example, a system
initially in state ψ1 corresponds to the initial conditions
c1(t = 0) = 1, Cb(t = 0) = sinϑ and Cd(t = 0) = cosϑ.
Only this last amplitude does survive the evolution and
the back transformation to the base of the three states
gives for the final distribution c1(t = ∞) = cos2 ϑ,
c2(t = ∞) = 0 and c3(t = ∞) = − sinϑ cosϑ. In this

case the final population in state ψ3 is maximized if
ϑ = π/4 and thus Ωp = Ωs, leading to |c1(t = ∞)|2 =
|c3(t = ∞)|2 = 1/4, the remaining 1/2 of the initial
population has been lost by the dissipation is state ψ2.

2.2. Cascaded Nonlinear Frequency Generation in a
Dissipative Medium

The concept of the bright-dark states leading to
Eq. (8) can be applied also to the case of a two-step
cascaded nonlinear frequency generation system. To
well understand the mathematical formalism behind
this analogy, we discuss here specifically the case of
a SFG process followed by DFG, which corresponds
to the case of Fig. 1(d) and to the right panel in
Fig. 2. However, this analogy can be applied to all
the situations in Fig. 1, provided that the intermediate
wave at frequency ω2 is lossy.

We assume that three waves are initially injected
in the nonlinear medium, the input signal wave (at
frequency ω1), and two intense pumps (ωp1 and ωp2),
with intensities Ip1 and Ip2, respectively. By the
SFG process, the signal combines with the first pump
to create the intermediate wave at ω2 = ω1 + ωp1 .
Simultaneously, the wave at ω2 combines with the
second pump, by the process ω3 = ω2−ωp2

, to generate
the target wave by DFG. Hereby, due to dispersion in
the nonlinear crystal, the momentum is generally not
conserved and the phase-mismatches for SFG (∆kS)
and DFG (∆kD) are given as

∆kS = k1 + kp1
− k2 , (9a)

∆kD = k3 + kp2
− k2 , (9b)

where kj = ωjnj/c = 2πnj/λj are the wave-numbers
of the jth wave (j = 1, p1, 2, p2 and 3) possessing a
vacuum wavelength λj and being associated to the
refractive index nj ≡ n(ωj). In order to study the
spatial evolutions of the number of photons associated
to each of the interacting waves, such a system can be
described by the symmetrized coupled wave equations
for collinear five-wave mixing in the slowly varying
envelope approximation [24, 39] as

i
d

dz
A1 = Ω̃SA

∗
p1
A2e

−i∆kSz , (10a)

i
d

dz
Ap1

= Ω̃SA
∗
1A2e

−i∆kSz , (10b)

i
d

dz
A2 = Ω̃SAp1A1e

i∆kSz + Ω̃DAp2A3e
i∆kDz (10c)

− iαA2 ,

i
d

dz
Ap2

= Ω̃DA
∗
3A2e

−i∆kDz , (10d)

i
d

dz
A3 = Ω̃DA

∗
p2
A2e

−i∆kDz . (10e)

Here the amplitudes Aj are proportional to the light
electric fields amplitudes Ej associated to each of
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the waves and are defined as Aj ≡
√
nj/ωjEj .

Importantly, their square module Aj
2 is proportional

to the number of photons Φj in the jth wave.

The quantities Ω̃S and Ω̃D are symmetrized effective
nonlinear coupling coefficients for the SFG and DFG
processes, respectively,

Ω̃S = 2
dS

c

√
ω1ωp1

ω2

n1np1
n2

, (11a)

Ω̃D = 2
dD
c

√
ω2ωp2ω3

n2np2
n3

. (11b)

The quantities dS = χ(2)(ω1, ωp1
;ω2)/2 and dD =

χ(2)(ω2, ωp2
;ω3)/2 are the effective second-order non-

linear coefficients for the type of interaction being
considered, with χ(2) being the corresponding second-
order nonlinear susceptibility. In the above cou-
pled equations, a particular attention can be given to
Eq. (10c). The last term on the right-hand side de-
scribes the dissipation of the intermediate wave at ω2,
while the first two terms show that this wave is ali-
mented on one side by the SFG process ω2 = ω1 + ωp1

(first term), but also by the SFG process ω2 = ω3 +ωp2

(second term) as the back process of the DFG conver-
sion ω3 = ω2 − ωp2

. The latter is described by the last
equation (10e). Similarly, Eq. (10a) describes the DFG
back process ω1 = ω2 − ωp1

.
In the following we assume that the two pumps

are undepleted, with their amplitudes largely exceeding
those of the three waves of interest (|Ap1,p2| �
|A1|, |A2|, |A3|). This condition cancels the second and
the fourth equations in (10), which can be reduced to
a system of three coupled equations

i
d

dz
A1 = ΩSA2 exp e−i∆kSz , (12a)

i
d

dz
A2 = ΩSA1e

i∆kSz + ΩDA3e
i∆kDz − iαA2 , (12b)

i
d

dz
A3 = ΩDA2e

−i∆kDz , (12c)

where the coupling coefficients have been slightly
redefined and contain now the amplitudes of the pump
waves, ΩS ≡ Ω̃SAp1 and ΩD ≡ Ω̃DAp2. It is
useful to substitute the amplitudes Aj with the phase-
shifted amplitudes Bj such that their modules are not
modified (Aj = Bj), that is

A1(z) = B1(z) , (13a)

A2(z) = B2(z) exp [i∆kSz] , (13b)

A3(z) = B3(z) exp [−i (∆kD −∆kS) z] . (13c)

Equations (12) transform then into

i
d

dz

 B1

B2

B3

 =

 0 ΩS 0
ΩS ∆kS − iα ΩD

0 ΩD ∆kS −∆kD

 B1

B2

B3

 .

(14)
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Figure 3. Expected stationary photon fluxes Φ1(z →∞) (blue
dashed line, signal frequency) and Φ3(z → ∞) (red solid line,
target frequency) as a function of the overall photon losses δ.
The curves are normalized with respect to the initial photon
flux at the signal frequency (Φ1(z = 0) = 1).

By comparing with Eq. (2), it becomes evident that
when the last element of the matrix above tends
towards zero (∆kS −∆kD → 0), this system becomes
fully analog to the problem of the dissipating three-
state quantum system discussed in Sect. 2.1. The
condition ∆kS−∆kD = 0 is equivalent to the quantum
two-photon resonance condition.

One can therefore follow the same steps as in
Sect. 2.1 and transform the vector ~B = [B1, B2, B3]T

containing the wave amplitudes into the bright-dark
basis ~C = [Cb, C2, Cd]T by undergoing the same
transformation as in Eq. (7), Cb

C2

Cd

 =

 sinϑ 0 cosϑ
0 1 0

cosϑ 0 − sinϑ

 B1

B2

B3

 , (15)

this time with a mixing angle given as tanϑ = ΩS/ΩD

(instead of Eq. (5)). In full analogy to (8), under this
coordinate transformation and for spatially constant
couplings ΩS and ΩD, Eq. (14) becomes

i
d

dz

 Cb

C2

Cd

 =

 0 Ω0 0
Ω0 ∆− iα 0
0 0 0

 Cb

C2

Cd

 , (16)

with Ω0 ≡
√

Ω2
S + Ω2

D and ∆ = ∆kS = ∆kD. Again,
the dark state Cd = B1 cosϑ − B3 sinϑ is completely
decoupled from the other two, which are still coupled to
each other. For a sufficiently long propagation distance
any photon population initially in the bright state Cb or
in the state C2 = B2 will be lost due to the absorption
constant α, while the population initially in the dark
state is maintained in that state.

If, besides for the pump waves, only the signal
wave ω1 is present at the input we have at the position
z = 0 following initial conditions, A1(0) = B1(0) = 1,
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A2(0) = B2(0) = C2(0) = 0 and A3(0) = B3(0) = 0,
where for practical purposes the input wave amplitude
has been normalized to 1. This input field ~B =
[1, 0, 0]T corresponds to a superposition of the bright
and dark states with projections given by

Cb(0) = sinϑ , (17a)

Cd(0) = cosϑ . (17b)

The corresponding normalized powers Φb ≡ Cb
2 and

Φd ≡ Cd
2 in the bright and dark states at z = 0 are

therefore

Φb(0) = sin2 ϑ =
Ω2

S

Ω2
S + Ω2

D

≡ δ , (18a)

Φd(0) = cos2 ϑ =
Ω2

D

Ω2
S + Ω2

D

= 1− δ . (18b)

We keep in mind that the bright state decays due to the
non vanishing coupling to the dissipating intermediate
state, so that Cb(z → ∞) = Φb(z → ∞) = 0. This
permits to identify the quantity δ defined in Eq. (18a)
as the overall normalized photon loss of the two-step
cascaded frequency conversion.

On the other hand, the photons in the dark state
are maintained so that Cd(z → ∞) = cosϑ and
Φd(z → ∞) = cos2 ϑ. By transforming back to the
initial basis of the three waves (ω1, ω2, ω3) by means of
the inverse relation to (15) one obtains

B1(z →∞) = cos2 ϑ , (19a)

B2(z →∞) = 0, (19b)

B3(z →∞) = − sinϑ cosϑ . (19c)

The corresponding normalized photon numbers at the
signal and target frequencies are therefore

Φ1(z →∞) =
Ω4

D

(Ω2
S + Ω2

D)2
≡ (1− δ)2 , (20a)

Φ3(z →∞) =
Ω2

SΩ2
D

(Ω2
S + Ω2

D)2
= δ(1− δ) . (20b)

Therefore, thanks to the losses of the intermediate
wave, the two-step cascaded nonlinear optical process
acts as a power splitter between the input wave at
ω1 and the target wave at ω3. The splitting ratio
and the conversion efficiency depend on the ratio of
the coupling coefficients ΩS and ΩD, and thus on
the overall photon losses of the system δ. Figure 3
illustrates the normalized photon numbers at the input
and target wavelengths as a function of δ. As can be
easily recognized, the maximum number of photons at
ω3 is obtained for δ = 0.5, in which case the two waves
contain the same number of photons, each being 25%
of the initial number in the input wave.

The above stationary state is reached for a long
enough interaction length in the nonlinear crystal.
Given a certain crystal length L, it is useful to evaluate
the level of absorption α of the intermediate wave and
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Figure 4. Normalized number of photons Φ1(z = L) (a) and
Φ3(z = L) (b) as a function of the coupling-length product
ΩL and of the absorption-length product αL, as obtained by
numerical integration of Eq. (14). The coupling coefficients of
both processes are supposed equal, Ω = ΩS = ΩD and both,
SFG and DFG, are supposed to be phase-matched (∆kS =
∆kD = 0). The color scale gives the number of photons
relative to those injected in the input wave (ω1). The large
purple region on the top-right of both frames correspond to the
situation of interest in this work, while the power oscillations
on the abscissas correspond to the standard case of a vanishing
amplitude absorption constant at ω2, (α = 0).

of the coupling of the two nonlinear processes required
to reasonably reach this steady-state. To do that we
assume, for the sake of simplicity, that phase matching
is fulfilled for both SFG and DFG (∆kS = ∆kD = 0)
and that the coupling for the two sub-processes is
the same (ΩS = ΩD ≡ Ω). Figure 4 shows contour
plots of the relative number of photons Φ1(L) and
Φ3(L) as a function of the products ΩL and αL, as
obtained by direct integration of Eq. (14) under the
above assumptions. Within the large purple region on
the top right of the two panels the final photon numbers
at both frequencies ω1 and ω3 are between 23% and
27% of the initially injected ones in the signal wave.
It can be recognized that an amplitude absorption
constant α of the order of 10/L is largely sufficient to be
in this regime. At the same time the coupling constant
Ω should be at least of the order of 5/L. Note that, in
the whole purple region, the number of photons at the
intermediate frequency ω2 is vanishing small. On the
other hand, the conditions on the abscissas of Fig. 4(a)
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Figure 5. Spatial evolutions of the normalized photon fluxes Φ1(z), Φ2(z) and Φ3(z) for a crystal length L and various values of
Ω and α within the purple region of Fig. 4. The same conditions as in Fig. 4 are used. Top raw (a), (b), (c): αL = 10; bottom raw
(d), (e), (f): αL = 50. Left column (a), (d): ΩL = 10; central column (b), (e): ΩL = 20; right column (c), (f): ΩL = 30. All curves
reach a final state with Φ1(L) ≈ Φ3(L) ≈ 0.25.

and Fig. 4(b) correspond to the case α = 0, where the
intermediate wave would not be dissipated. In this
case one gets the expected spatial power oscillation
between signal and target wave (Rabi-like oscillations).
However, within these spatial transients, a significant
power can be also at the intermediate wave (not shown
in Fig. 4). In this specific case, a maximum of 50% of
the initial photons can be at frequency ω2, what is
associated to ΩL values between the maxima and the
minima for the input and target waves, i.e. at positions
where the contour lines in Fig. 4 reach the abscissa.

It is interesting to look at the spatial evolution
towards the final stationary state within the optimum
purple regions of Fig. 4. Figure 5 illustrates the
quantities Φj(z) along the crystal for various points
on the (ΩL,αL) parameter plane, all belonging to the
purple region, thus leading to nearly the same final
state. The general feature is that both Φ1(z) and
Φ3(z) show damped spatial oscillations before reaching
the steady state at the value 0.25. For a given value
of α an increase of Ω increases the number and the
frequency of the oscillations. In contrast, for a given
value of Ω an increase of α decreases the oscillations
and leads generally to a faster stabilization. For
sufficiently large α the system becomes overdamped
with no oscillations left. This behavior is similar to
what observed for several equivalent coupled systems
in classical or quantum physics [40].

It is useful to discuss the spatial evolution of the
relative phases of the three waves at ω1, ω2 and ω3.
We do this with the help of Fig. 6 which corresponds
to the case of Fig. 5(b). The reference phase for the
signal wave is fixed at ζ1(z) = 0 by our definition.
As can be seen, the generated target wave gets in anti-
phase to the signal, so that its phase assumes the value
ζ3(z) = π all along. In contrast, during the damped

oscillations the phase ζ2 of the intermediate wave can
assume the values +π/2 or −π/2. In the second case
the target wave is being amplified at the expense of
the signal wave, in the first case it is the other way
round. This behavior is the result of the interplay
of the SFG and DFG processes for each of the two
cascaded conversions. For instance, in the sections
where the signal is being re-amplified (ζ2 = +π/2), this
occurs by the DFG process ω2−ωp1 → ω1. The relative
phase of π between the signal and target waves is valid
in the case of perfect phase matching discussed here. It
permits to understand better what is happening in the
stationary state, where only the so-called dark state
survives . Indeed, the intermediate wave is alimented
by both SFG processes ω2 = ω1+ωp1 and ω2 = ω3+ωp2

as discussed earlier in connection to Eq. (10c). In
the stationary regime, these two processes are equally
strong but, being in anti-phase due to the phase ζ3 =
π, they lead to a perfect destructive interference at
the intermediate wave, which ends up being ”dark” .
This explains also the apparent paradox that, in the
stationary state, there are more photons in the target
wave than in the signal wave (Φ3 > Φ1) whenever
the second nonlinear process is weaker than the first
(ΩD < ΩS), as seen in Fig. 3 for δ > 0.5. This is
because the stationary state balance mentioned above
can be maintained only if a weaker coupling is counter-
balanced by a larger amplitude in the corresponding
source wave.

Finally, before addressing a concrete numerical
example, we would like to point out that the present
approach allows to reach a very stable intensity level
of the target wave. Indeed, the loss in the intermediate
wave has the effect of stabilizing the output target
wave intensities against power fluctuations of the two
pumps. Fluctuations of the pump intensities lead to
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Figure 6. Relative phases of the intermediate wave (ζ2(z),
purple solid line) and of the target wave (ζ3(z), black dashed
line) with respect to the phase of the signal wave (right-hand
scale). The evolution is for the same case as in Fig. 5(b). The
normalized photon fluxes Φ(z) (left-hand scale) are reproduced
as well. The red dash-dotted curve, the green solid curve and
the blue dashed curve give Φ1(z), Φ2(z) and Φ3(z), respectively.

variations of the coupling coefficients ΩS and/or ΩD

and thus of the normalized photon loss δ in (18a).
However, as can be easily recognized in Fig. 3, a change
of δ has only a little effect on the photon flux Φ3 in
(20b) in the case where this flux is balanced to the one
of the signal wave (δ ≈ 0.5). Under these conditions,
a fluctuation of one of the two pump intensities by 5%
with respect to the other would lead to a fluctuation
in the intensity of the wave at frequency ω3 by only
≈ 0.06% of the maximum value. If the relative
fluctuation would be 10% the target wave fluctuation is
still less than 0.3%. In comparison, the corresponding
fluctuations in this last case in absence of dissipation
can exceed 50%.

3. Example for engineered lithium niobate

The above calculations were presented in a general
normalized way and were based on the assumption
that both processes, SFG and DFG in our case, are
phase-matched in the crystal of interest. In practice
such a phase matching is not easy to achieve. Even
though birefringent phase matching [24, 39] may be
possible for each of the two processes, it is very
unlikely to be able to achieve it for both processes in
a single configuration (propagation direction inside the
crystal and/or temperature). The same is true for the
standard quasi-phase-matching (QPM) method [24]
which entails splitting the crystal into small periodic
segments with alternating inversion of the sign of the
nonlinear coefficients dS and dD in (11), and thus also
of the signs of ΩS and ΩD in (12). Usually the QPM
method can address only a single nonlinear process, but
a modification aimed at a simultaneous phase matching
of both processes in cascade will be discussed below.

Our calculated example to illustrate possible

implementations of the concept is based on the LiNbO3

nonlinear crystal. This material is one of the most
used one in nonlinear optics. It combines reasonably
large nonlinearity with the ease of growth and with the
possibility of reversing the sign of the local nonlinearity
by electric-field induced ferroelectric domain reversal
[41]. We assume that the second-order nonlinear tensor
element driving both processes is the same and, by
neglecting its possible weak dispersion, we can take
d0 = dS = dD = d333 = 27 pm/V [41]. The
nonlinear optical wave interaction is calculated over a
crystal length L = 20 mm and the phase mismatch
is calculated based on the values of the refractive
indices at the temperature T = 300 K. Because the
predominant absorption of such a crystal occurs in
the ultraviolet spectral range, the set of frequencies
is chosen such that the intermediate wave is in this
range. The chosen wavelengths of the five interacting
waves are

λ532nm
1 + λ800nm

p1
→ λ319.5nm

2 , (21a)

λ319.5nm
2 − λ1064nm

p2
→ λ456.6nm

3 , (21b)

where the first line gives the SFG and the second
line the DFG process. All the interacting waves are
supposed to be extraordinarily polarized (in direction
of the crystal z-axis), which justifies the use of the
largest nonlinear optical tensor element d333.

As mentioned above, standard QPM generally ad-
dresses a single nonlinear optical frequency conversion
process at once. The idea is to compensate the pri-
mary phase-mismatch ∆kS (or ∆kD) with an addi-
tional wavevector KS (or KD) in order to fulfill the
following relationships

∆kS = ∆kS +KS = ∆kS +mS
2π

ΛS
= 0 , (22a)

∆kD = ∆kD +KD = ∆kD +mD
2π

ΛD
= 0 , (22b)

where mS and mD are the integer QPM orders, and ΛS

and ΛD are the QPM modulation periods for the SFG
and the DFG processes, respectively. Based on the
refractive index data in [42], for our set of interacting
wavelengths in LiNbO3, one finds for the first-order
QPM periods, ΛS = 1.06 µm and ΛD = 1.18 µm at 300
K. In this material, the QPM structures are realized
by inversion of ferroelectric domains and for such short
periods the domain configuration lack a sufficient long-
time stability, it is therefore useful to use longer periods
by going to higher orders mS and mD. The use of
QPM implies a reduction of the effective nonlinearity
of the sample by a factor Gm = (2/πm) sin (mπ/2)
that depends on its order m. This form clearly shows
that only odd orders are of interest. The quantity Gm

actually correspond to the Fourier coefficient of the
term with modulation wavevector |∆kS | (or |∆kD|) in
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the Fourier series of the QPM square modulation with
period ΛS (or ΛD).

In order to be able to phase match simultaneously
both the SFG and the DFG processes one has
to structure the crystal in such a way that both
Fourier components |∆kS | and |∆kD| are present at
the same time and with similar amplitudes of their
coefficients. This kind of problem is not uncommon
and is encountered whenever the simultaneous phase-
matching of two distinct nonlinear processes is desired.
We may define the average phase mismatch at order m
as

km =
1

m

∆kS + ∆kD
2

(23)

and the half-difference of the individual phase
mismatches as

∆k =
∆kS −∆kD

2
. (24)

The simultaneous phase matching of both processes
can then be reached by using the aperiodic modulation
function δ(z) of the sign of the nonlinear coefficient
defined as [43]

δ(z) =
d(z)

d0
= sign

[
sin (kmz) sin (∆kz)

]
, (25)

which is associated to a common reduction factor

Gm =
1

m

(
2

π

)2

(26)

of the effective nonlinearity of SFG and DFG, which
are taken at the same order m. The quantity Gm is a
factor 2/π smaller than Gm, the case where only one of
the processes is addressed individually. It is important,
in this context, to leave the difference ∆k at order 1 as
given in (24), this can be done because this quantity is
generally small.

As mentioned above, the maximum photon flux for
the target wave is found under the condition ϑ = π/4
and thus ΩS = ΩD. This allows to establish a specific
relationship for the ratio of the intensities of the pumps
Ip2 and Ip1 required to satisfy this condition,

ρ ≡ Ip2

Ip1
=
np2n3

np1n1

λ3

λ1
≈ λ3

λ1
, (27)

where the last approximation can be made in case of
weak refractive index dispersion in the spectral range
of the pumps and of the signal and target waves. In
our specific example ρ ≈ 0.86 provided that a perfect
implementation of the aperiodic QPM structure given
in Eq. (25) can be achieved in practice.

The correct working of the aperiodic QPM
structuring for the simultaneous phase matching can be
verified by numerically integrating the initial coupled

Figure 7. Calculated spatial evolution of the normalized
photon fluxes for the case of a two-step conversion in a LiNbO3

crystal subjected to an aperiodic domain structuring. In (a)
the domains are designed according to Eq. (25) while in (b)-
(d) they are corrected for a minimum domain size of 5 µm (see
text for details). The curves are obtained by a direct numerical
integration of Eq. (12) by conserving all phase mismatch terms
and switching the sign of the nonlinear coupling coefficients at
each domain boundary. Panels (a) and (b) give the normalized
photon fluxes for the signal wave (Φ1, red dashed-dotted curve),
the intermediate wave (Φ2, green dashed curve) and the target
wave (Φ3, blue solid curve) over a distance L = 20 mm and for
α = 0.5 mm−1 and thus αL = 10. The uncorrected coupling-
length product ΩL = 18.5 corresponds to pump intensities
Ip1 = 1 GW/cm2 and Ip2 = 0.69 GW/cm2 in (a) or Ip2 = 0.69
GW/cm2 in (b), see text. Panel (c) shows Φ3(z) for the same
coupling strength as in (b) but for three values of the absorption
given in the inset. Panel (d) gives again Φ3(z) for αL = 10 with
three values of the coupling. For the brown dotted curve, both
pump wave intensities are reduced by a factor 4 with respect
to cases (b) and (c), while for the black dashed curve they are
reduced by half. The solid blue curve is identical in the three
corrected panels (b) to (d).

equations (12) while keeping the mismatch terms ∆kS
and ∆kD in the exponentials and switching the sign of
the nonlinear coefficients Ω̃S and Ω̃D at each domain
boundary, what is shown in Fig. 7. The first panel,
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Fig. 7(a), shows the photon flux evolution for the waves
ω1, ω2 and ω3 for our example within a 20 mm long
aperiodic structured LiNbO3 crystal. The structuring
is supposed to be by domain reversal following Eq. (25)
at the order m = 9. The value of ΩL = 18.5 (Ω =
0.925 mm−1) corresponds to the nonlinear coupling
coefficient ΩS for SFG within each individual domain
multiplied by the nominal reduction factor Gm in (26)
for pump intensity Ip1 = 1 GW/cm2, i.e. Ω = ΩSGm.
Figure 7(a) is for Ip2 = ρIp1 = 0.86 GW/cm2 and
shows that the aperiodic structuring works well and
give results fully consistent with the ideal normalized
case discussed in Sect. 2.2 (see for instance Fig. 5(b)).

However, the aperiodic structuring according to
(25) contains also some domains which are very short
and, as a consequence, are generally unstable in
LiNbO3 under normal experimental conditions. To
face this problem one can set a lower limit for the
domain size and perform a correction of the structure.
This consist in flipping any domain smaller than a
minimum value so that these domains are merged with
the two adjacent ones. In our calculations, we have
chosen a (conservative) minimum value of 5 µm, which
is well consistent with available commercial LiNbO3

QPM products. Note that the correction procedure
of the aperiodic design is performed sequentially from
the entrance to the output of the structure. Panels
(b), (c) and (d) in Fig. 7 present this corrected case.
It is worth noting that the corrections favors slightly
the DFG process over SFG. This is because the chance
of making a correction on DFG is somewhat lower due
to the smaller phase mismatch in our example. This
has the consequence that the balance of the effective
nonlinearities (25% of photons at the signal and target
wave) is obtained for a ratio Ip2/Ip1 ≈ 0.69 being
used for Fig. 7(b-d). This is smaller than the value
of ρ calculated with (27) and used for Fig. 7(a). It
can be recognized that the results obtained with the
corrected structure (Fig. 7(b)) and the uncorrected
one (Fig. 7(a)) are very similar. The lower oscillation
spatial frequency in Fig. 7(b) is associated to a decrease
of the effective nonlinearity below the value ΩL = 18.5,
as a result of the correction process, the latter being
calculated in absence of any corrections. We have also
verified that, in presence of the aperiodic structuring,
at the spatial steady state, the target and signal waves
still possess a fixed phase relationship. The phase
difference, though, differs from the value of π found for
perfect phase matching (see Fig. 6). This is the result
of the additional effective phase shifts associated on
one hand to the QPM process and, on the other hand,
to the domain correction. Nevertheless, the destructive
interference, discussed in Sect. 2.2, of the steady-state
contributions of signal and target waves to the wave at
frequency ω2 is still at work.

The curves in Fig. 7(a-b) are for an amplitude
absorption constant α = 0.5 mm−1, which is actually a
bit smaller than the one expected for our configuration.
The wavelength λ2 = 319.5 nm of the intermediate
wave corresponds closely to the ultraviolet band edge
cut-off λc for congruently grown LiNbO3. Indeed,
according to Refs. [41, 44] this cut-off, defined at an
intensity absorption constant level 2α = 20 cm−1

(α = 1 mm−1), is at λc = 320 nm. The corresponding
situation (αL = 20) for the evolution of the target
wave flux Φ3(z) is shown as black dashed line in
Fig. 7(c). The latter also shows the case (αL = 5)
which would occur if the wavelength λ2 would have
been chosen a few nanometers longer. Figure 7(c)
reproduces well the behavior expected under variation
of the absorption constant already predicted in Fig. 5.
The same expected equivalence can be seen also for the
case of Fig. 7(d) that shows the effect of diminishing
the coupling strength by a decrease of the intensities of
both pump waves with respect to the case of Fig. 7(b).
We can therefore conclude, that our example, involving
the full integration of the initial coupled equations in
an aperiodically engineered crystal, entirely confirms
the predictions put forward in Sect. 2.2.

4. Conclusion

We have shown that cascaded nonlinear optical fre-
quency conversion with dissipation at the intermediate
frequency and quantum population transfer via a de-
caying state in a three-state coupled system behave
similarly. The nonlinear optical system essentially acts
as a stable, adjustable and partially lossy wave split-
ter between the input signal wave and the wave at the
target wavelength. The splitting ratio is tunable by
the coupling strengths associated to the two cascaded
sub-processes. Among the possible configurations, we
have treated specifically the one of a cascaded SFG-
DFG conversion process. As an example, it was shown
that a QPM-type aperiodic structure with corrections
for too short domains can serve for a realistic imple-
mentation in LiNbO3, with the intermediate dissipat-
ing wave being in the ultraviolet. However, the concept
can be applied to several other materials, such as for
instance aperiodically poled KTiOPO4 (KTP) [45, 46],
and to other processes, such as DFG-SFG, SFG-SFG,
or DFG-DFG, provided that the intermediate wave is
sufficiently absorbed. The required dissipation level to
reach the spatially stable output regime in terms of
the amplitude absorption constant α was shown to be
of the order 5 − 10 over the length of the nonlinear
medium.

The present approach may be useful to split an
input wave into two waves of different wavelengths,
with stable relative intensities, or to reach a very stable
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intensity level of the target wave, with highly reduced
fluctuations, as compared to the fluctuations of the
pump waves. It is also worth mentioning that the
approach presented here works independently on the
initial intensity of the input wave. The concept can
therefore be applied also in the case of single photon
or few photons input in the context of quantum optics.
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