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Abstract The existence and uniqueness of an equilibrium solution to frictional con-
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coefficient values, the steady sliding frictional contact problem is uniquely solvable,
thanks to the Lions-Stampacchia theorem on variational inequalities associated with a
nonsymmetric coercive bilinear form. It is proved that the coerciveness of the bilinear
form can be lost at some positive critical value of the friction coefficient, depending
only on the geometry and the elastic properties of the body. An example presented
here, shows that infinitely many solutions can be obtained when the friction coeffi-
cient is larger than the critical value. This result is paving the road towards a theory of
jamming in terms of bifurcation in variational inequality.The particular case where
the elastic body is an isotropic half-space is studied. The corresponding value of the
critical friction coefficient is proved to be infinite in thiscase. In the particular case of
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1 Background

The general contact problem in the theory of linear elasticity reads formally as fol-
lows.
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divσσσ(u)+ fp = 0, in Ω ,

u = up, onΓu,

t def
= σσσ ·n = tp, onΓt ,

un−gp ≤ 0, tn ≤ 0,
(

un−gp)tn = 0,

and “tangential boundary conditions”,
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onΓc,

(1)

whereΩ denotes some smooth bounded open set inR2 or R3, Γu ∪Γt ∪Γc = ∂Ω
denotes a splitting of the boundary into three disjoint parts, andn is the outward
unit normal. As usual,u is the (unknown) displacement,σσσ(u) is the Cauchy stress
associated with this displacement by the linear elastic constitutive law, andt = σσσ ·n
denotes the surface tractions. Any vector fieldv defined on part of the boundary can
be splitted into its normal and tangential parts:v = vnn+ vt . The loading conditions
are defined byup (the surface displacement prescribed onΓu), tp (the surface tractions
prescribed onΓt), fp (the prescribed body forces), andgp (the initial gap with the
obstacle measured algebraically along the outward unit normaln to ∂Ω ).

The simplest tangential boundary condition onΓc is the frictionless one:

tt = 0, onΓc,

in which case, problem (1) reduces to the so-called Signorini problem. The existence
and uniqueness of the solution to the Signorini problem under appropriate regularity
assumptions about the data was proved by Fichera in 1964. This immediately inspired
the theory of variational inequalities [10] which in turn permitted to solve a wide class
of so-called free boundary problems.

Going back to contact problems in linear elasticity, the problem of taking more
realistic tangential boundary conditions into account soon emerged [2], focusing in
particular on the Coulomb friction law:

|tt | ≤ −F tn, and,

∣

∣

∣

∣

∣

|tt |<−F tn ⇒ u̇t = 0,

|tt |=−F tn ⇒ tt =−λ u̇t with λ ∈R+,

or equivalently:
∀v, tt ·

(

v− u̇t
)

−F tn
(

|v|− |u̇t |
)

≥ 0, (2)

whereF > 0 is a given friction coefficient and the dot refers to a time-derivative. Due
to this time-derivative, the corresponding problem (1) becomes anevolutionproblem,
which is sometimes called the Signorini problem with quasi-static Coulomb friction.
This problem turned out to be extremely challenging. Existence of a solution was
proved only provided that the friction coefficient was smallenoughF < Fc (for a
recent account of the results about solvability, see [3]). Examples of multiple solu-
tions have been constructed in the case of large friction coefficients [7], and it has
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still not been established whether uniqueness holds true for small friction coefficients
although it has been found to be plausible in the case of a half-space [1].

In the Signorini problem with quasi-static Coulomb friction, the contact zone (the
points on the boundary that are pressed against the obstacle) is expected to consist of
a sticking zone and a slipping zone. These zones may evolve with time. This study
focuses on the situation where the obstacle is moving at a constant velocity and we
look for a steady solution to the frictional contact problem. This problem is simpler
than the previous one because no sticking zone can exist and slipping must occur
everywhere in the contact zone. Thanks to this simple remark, it turns out that the
mathematical structure of the problem can be completely understood. It is hoped that
this analysis will yield new insights into the more general and more difficult Signorini
problem with quasi-static Coulomb friction. In any case, the particular situation in-
vestigated in this paper is obviously relevant to practicalengineering situations and
this study is therefore of interest for its own sake.

2 Global sliding frictional contact problems

2.1 The formal problem

Let Ω be a smooth bounded open set inR2 orR3. The domainΩ is the natural ref-
erence configuration of some linearly elastic body obeying the following constitutive
law:

σσσ =LLL : εεε ,
whereσσσ is the Cauchy stress tensor,εεε = (∇u+ t∇u)/2 is the linearized strain tensor,
andLLL(x) is the fourth order tensor of the elastic moduli, which possibly varies in the
body and is assumed to satisfy the usual symmetry and positivity assumptions:

εεε :LLL : εεε ′ = εεε ′ :LLL : εεε , εεε :LLL : εεε ≥ α εεε : εεε,

for some constantα > 0, and allεεε,εεε ′. In what follows, we will use the notation:

σσσ(u) =LLL :
(

∇u+ t∇u
)

/2.

Let us consider an obstacle moving at a constant velocityw while constantly
showing the same geometry (see figure 1). InR2, this means that the obstacle is
either a line moving at velocityw parallel to the line or a circle rotating around its
center. In the latter case, the obstacle will be either the exterior or the interior of the
circle. InR3, the obstacle may be either a plane moving at velocityw parallel to
the plane or an arbitrary surface of revolution rotating around its own axis. But, as
suggested by one of the anonymous referee, it could also be anhelical surface, like a
screw.

The problem under investigation is that of finding a steady displacement (one
which remains constant with time) inΩ , which is consistent with the unilateral con-
tact condition complemented with the Coulomb friction law on partΓc of the bound-
ary. Since the obstacle has a constant geometry, the unilateral condition reduces to
the usual Signorini one:

un−gp ≤ 0, tn ≤ 0,
(

un−gp)tn = 0.
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Fig. 1 Steady sliding frictional contact problem.

Since the obstacle is moving and only a steady displacement is sought, the sticking
zone must be empty and all the points in the contact zone will undergo slipping at
velocity w. It should be kept in mind that, in the contextlinearizedelasticity, with
n denoting the outward unit normal in the reference configuration andn′ that in the
deformed configuration, the surface tractiont can be indifferently written eithert =
σσσ · n′ or t = σσσ · n, since the difference is of a higher order. In the same spirit, the
normal and tangential parts oft can be indifferently defined using eithern or n′.
The “tangential boundary condition” expressing Coulomb friction with slipping at
velocityw, in the context oflinearizedelasticity, therefore reads as follows:

tt = F tnwt/|wt |.

This last equation implicitly involves the fact that the velocity w at the point of the
obstacle first met by the outward normal to the body at some point of the boundary,
has been attached to this point, so thatw defines also a vector field onΓc.

Hence, the problem under investigation is that of finding a displacement fieldu
in Ω satisfying:
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divσσσ(u)+ fp = 0, in Ω ,

u = 0, onΓu,

t def
= σσσ ·n = tp, onΓt ,

un−gp ≤ 0, tn ≤ 0,
(

un−gp)tn = 0,

tt = F tnwt/|wt |,

∣
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∣

∣

∣

onΓc,

(3)

where the velocity fieldw onΓc is assumed to be given and independent of time. The
body was taken to be clamped onΓu (up ≡ 0), in order to slightly simplify the writing,
but this is no restriction of generality.
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2.2 A weak formulation

In this section, the bounded open setΩ is assumed to be of classC 1,1, that is, to
be a Lipschitz set with outward unit normaln to the boundary∂Ω being Lipschitz-
continuous on∂Ω . Let Γu, Γc, Γt be three nonintersecting Lipschitz open subsets of
the submanifold∂Ω , such that∂Ω = Γu∪Γc∪Γt . The setsΓc or Γt may be empty but
notΓu.

Some data with the following regularity are given:fp ∈ L2(Ω), tp ∈ L2(Γt), gp ∈
H1/2(Γc), LLL ∈ L∞(Ω) andwt/|wt | is assumed to be a Lipschitz-continuous vector
field onΓc. The elastic energy naturally defines the symmetric bilinear form:

a(u,v) def
=

∫

Ω
εεε(u) :LLL : εεε(v),

on the Hilbert space:

V
def
=
{

u ∈ H1(Ω)
∣

∣ u = 0 onΓu

}

.

The bilinear forma(·, ·) is trivially continuous onV. The fact that it is also coercive
(as defined in Appendix A) is also true, although it is difficult to prove, and this is
known as the Korn inequality. Next, set:

H
def
=
{

v ∈V
∣

∣ ∀w ∈V with w = 0 onΓc, a(v,w) = 0
}

.

which is clearly a nonempty closed subspace ofV. Hence,H endowed with the norm
of V is a Hilbert space.

Theorem 1 For u,v ∈ H such thatt(u) can be defined as an element of L2(Γc), we
set:

b(u,v)
def
=
∫

Γc

tn(u)vt ·wt/|wt |,

Then, b(·, ·) can be uniquely extended as a continuous bilinear form on H.

Proof First, let us recall some basic difficulties about the spacesH1/2(∂Ω) and
H−1/2(∂Ω) and the standard definitions introduced in [9] to overcome these diffi-
culties. LetΣ be a Lipschitz open subset of∂Ω . Forv∈ H1/2(Σ), the extension ¯v of
v by zero on∂Ω \Σ may fail to be inH1/2(∂Ω). On the dual side, the restrictiont|Σ
to Σ of somet ∈H−1/2(∂Ω) may also failto be inH−1/2(Σ). This led to formulating
the following definition ([9]). Set:

H1/2
00 (Σ) =

{

v∈ H1/2(Σ)
∣

∣ v̄∈ H1/2(∂Ω)
}

.

To explain why the notation 00 is used (instead of 0), it should be recalled here that
C∞

c (Σ) is dense inH1/2(Σ). SinceΣ is a Lipschitz subset of∂Ω , one can find a
positive Lipschitz-continuous functionρ : Σ → R which vanishes at the boundary
∂Σ of Σ at the same rate as the distance function to the boundary:

∀x0 ∈ ∂Σ , lim
x→x0

ρ(x)
d(x,∂Σ)

= 1.
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The definition ofH1/2
00 (Σ) is equivalent (for a proof, see [9]) to:

H1/2
00 (Σ) =

{

v∈ H1/2(Σ)
∣

∣ ρ−1/2v∈ L2(Σ)
}

. (4)

The spaceH1/2
00 (Σ) is a Hilbert space for the norm:

∥

∥v
∥

∥

H
1/2
00

def
=

(

∥

∥v
∥

∥

2
H1/2 +

∥

∥ρ−1/2v
∥

∥

2
L2

)1/2

,

(two different possible functionsρ yield equivalent norms). The dual spaceH1/2
00

′
(Σ)

is larger thanH−1/2(Σ) and the restriction toΣ defines a continuous linear mapping

H−1/2(∂Ω) 7→ H1/2
00

′
(Σ).

DefineΣ as the interior of∂Ω \Γu in ∂Ω . It is a Lipschitz open subset of∂Ω .

Takeu ∈ H andv ∈ H1/2
00 (Σ) arbitrary. Since the trace operator is linear continous

and surjective fromV ontoH1/2
00 (Σ), v is the trace onΣ of someṽ ∈V. Sinceu ∈ H,

the expression:

a(u, ṽ),

does not depend on the particular choice ofṽ ∈V and depends only onv ∈ H1/2
00 (Σ).

Since this expression is linear continuous with respect tov ∈ H1/2
00 (Σ), it defines an

elementt ∈ H1/2
00

′
(Σ) to which the generalized Green’s formula applies:

∀v ∈ H,
〈

t,v
〉

H
1/2
00

′
,H

1/2
00

= a(u,v).

With u ∈V, it is not possible to definet =σσσ(u) ·n on∂Ω , in general. However, with
u ∈ H, we have divσσσ(u) = 0, and the use of Green’s formula makes it possible to

definet =σσσ(u) ·n onΣ , as an element of the dual spacet ∈ H1/2
00

′
(Σ), as well as the

normal and tangential partstn,tt . It can also be seen thatt(u) is supported inΓ c (it
vanishes onΓt ). Therefore, for allu,z∈ H with zt = 0 onΓc, the bilinear form:

∫

Γc

tn(u)zn =
〈

t,z
〉

H
1/2
00

′
,H

1/2
00

= a(u,z),

is well-defined and continuous with respect to the norm ofV.
To obtain the conclusion of the theorem, it is now only neededto prove that if

v ∈ H, then:

vt ·wt/|wt |

is the restriction toΓc of somez∈ H1/2
00 (Σ). But this should be clearly apparent from

the fact thatwt/|wt | is assumed to be Lipschitz-continuous onΓc and the definition (4)

of H1/2
00 (Σ). ⊓⊔
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Displacement fieldsu ∈ V have a trace on∂Ω , which belongs toH1/2(∂Ω) ⊂
L2(∂Ω), as well as the normal and tangential partsun,ut . This fact can be used to
define the continuous linear forml onV:

l(v) def
=
∫

Ω
fp ·v+

∫

Γt

tp ·v,

which represent the external forces prescribed. Letu0 be the unique element ofV
such that:

∀v ∈V, a(u0,v) = l(v),

which is an elastic problem whereΓc is free of surface traction. Withu ∈ u0+H and
v ∈ H, b(u,v) is well-defined and one has:

b(u,v) = b(u−u0,v).

Finally, we set:

K
def
=
{

v ∈ u0+H
∣

∣ vn ≤ gp onΓc

}

,

which is clearly a closed convex subset ofV. Under the compatibility condition that:
〈

u0n−gp〉+ def
= max

{

u0n−gp,0
}

,

has support contained in the interior ofΓc, it is also nonempty. This compatibility
condition will be assumed to hold true in what follows. It is now possible to obtain
the weak formulation of the steady sliding contact problem,as proposed.

Problem I. Findu ∈ K such that:

∀v ∈ K, a(u,v−u)−Fb(u,v−u)≥ l(v−u).

Standard use of Green’s formula makes it easy to prove the following proposition.

Proposition 1 Any regular solution of problem (3) is a solution of problem I, and
conversely, any regular solution of problem I is a solution of problem (3).

To prove the existence and uniqueness of a solution to problem I, it will be con-
venient to shift the unknown functionu as follows:

ū def
= u−u0.

Set:
K̄

def
=
{

v̄ ∈ H
∣

∣ v̄n ≤ gp−u0n onΓc

}

,

which is clearly a nonempty closed convex subset ofH (under the above compatibility
condition betweenu0 andgp), so that problem I can be equivalently rewritten:

Problem I. Find ū ∈ K̄ such that:

∀v̄ ∈ K̄, a(ū, v̄− ū)−Fb(ū, v̄− ū)≥ 0.
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Theorem 2 The bilinear form:
{

H ×H → R
ū, v̄ 7→ a(ū, v̄)−Fb(ū, v̄)

is continuous on H×H (recall that H is endowed with the norm of V). There exists
uniquelyFc ∈ ]0,+∞] such that the above bilinear form is coercive (as defined in
Appendix A) for0≤ F < Fc, and is not coercive for anyF > Fc.

Proof A corollary of the Korn inequality is that
√

a(u,u) is a norm onV, which is
equivalent to the norm induced byH1. It is therefore also a norm onH. Theorem 1
states thatb(·, ·) is continuous onH:

∀u,v ∈ H, b(u,v)≤ B
√

a(u,u)
√

a(v,v), (5)

for someB > 0, so the same is true fora(·, ·)−Fb(·, ·). But, inequality (5) entails
that the bilinear form is coercive for allF such that:

0≤ F < 1/B.

Let us now assume that it is not coercive in the case of someF0, that is:

a(v0,v0)−F0b(v0,v0)< 0,

with somev0 ∈ H. This entails:

∀F > F0, a(v0,v0)−Fb(v0,v0)< 0,

that is, the bilinear form is not coercive either, with anyF > F0. This completes the
proof. ⊓⊔

Straightforward application of the Lions-Stampacchia theorem (theorem 6 in Ap-
pendix A) now yields the following corollary.

Corollary 1 LetF ∈ [0,Fc[ be arbitrary. Then, problem I has a unique solution.

Remark 1The above existence and uniqueness result was obtained for an arbitrary
given vector fieldw on Γc, provided thatwt/|wt | is Lipschitz-continuous onΓc. The
vector fieldw is allowed to be fairly general and does not need to originatefrom a
moving rigid obstacle with invariable geometry. However, one must adress the ques-
tion of knowing whether some geometries of obstacle must be excluded of the theory
because the resulting vector fieldwt/|wt | escape from being Lipschitz-continuous on
Γc. For bidimensional problem, it is readily seen thatwt/|wt | is either the constant
+1 or −1, whatever the geometry of the obstacle is. So, no particular situation is
excluded from the analysis in the bidimensional case. In thethree-dimensional case,
some particular situations must be excluded. One example isthe situation where the
obstacle is a surface of revolution rotating around its own axis. The case whereΓc can
meet a point belonging both to the obstacle surface and to therevolution axis must be
excluded. Indeed, such a point has vanishing velocityw and the vector fieldwt/|wt |
is not Lipschitz-continuous on a neighbourhood of that point. I don’t know whether
this difficulty can be overcome by refining the mathematical analysis or not.
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It turns out that the general steady sliding frictional contact problem in linear
elasticity is governed by a variational inequality associated with some non-symmetric
bilinear form. Theorem 2 states that there exists a (nonzero, possibly infinite) critical
value of the friction coefficient that deletes the coercivity of that bilinear form. This
critical value depends only on the geometry of the problem (that is,Ω , Γu, Γc, Γt , and
wt/|wt |) and the elastic propertiesLLL(x) of the body, butnot on the loading (that is,
fp, tp andgp). The following two questions arise here. Is it possible that the critical
coefficientFc can be finite ? And, if so, what happens whenF > Fc ? The aim of
the next subsection is to give an example which helps to answer these questions.

2.3 Analysis of an example

The example given in this section is on similar lines to that presented by Hild [7], in
a slightly different context.

Let Ω ⊂ R2 be the triangle having the verticesA = (0,0), B = (1,0) andC =
(xc,yc) (wherexc ∈ ]0,1[ andyc > 0 will be fixed later on). We takeAB asΓc, BC
asΓu andAC asΓt . This geometry does not meet the regularity assumption madeat
the beginning of section 2.2, but it can readily be checked that all the results given
in section 2.2 apply to this particular geometry. It will be assumed that the body
remains free of body forcesfp ≡ 0 and thatΓt remains free of surface tractiontp ≡ 0.
The rigid obstacle will be the half-spacey< 0, so thatgp ≡ 0, and is assumed to move
at a constant velocityw> 0 along thex axis. The material is assumed to be linearly
elastic and homogeneous isotropic with Young’s modulusE = 1 and Poisson ratio
ν ∈ ]−1,1/2[.

The aim here is to analyse the corresponding steady sliding frictional contact
problem. It can be easily checked that the null displacementfield always gives a
solution to the problem. From corollary 1, it is known that ifF < Fc, then there
exist no solutions other than the null one. Therefore, if we are able to find a nonzero
solution to the steady sliding frictional contact problem,this will provide us with an
example whereFc must be finite.

x

y

w

C

A Bxc

yc

Fig. 2 Geometry of the steady sliding frictional contact problem.
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In line with Hild [7], only linear displacement fields (that is, displacement fields
whose both components are linear functions of the space variablesx andy) will be
considered. SinceBC is clamped, such a linear displacement field is fully determined
by the displacement of pointA. Only cases whereAB remains in contact with the
moving obstacle will be considered, so that the displacement of pointA will be taken
to be of the form(δ ,0), and the displacement field inΩ will be fully determined by
δ :

ux(x,y) = δ
[

(1− x)− (1− xc)y/yc

]

, uy(x,y) = 0.

The corresponding stress fieldσσσ(u) is constant inΩ , and has the following compo-
nents:

σxx =−
δ (1−ν)

(1−2ν)(1+ν)
, σxy =−

(1− xc)δ
2yc(1+ν)

, σyy =−
δν

(1−2ν)(1+ν)
,

so that its divergence vanishes. The outward unit normal onΓt has the following
components:

nx =−yc/
√

x2
c + y2

c, ny = xc/
√

x2
c + y2

c.

Hence, the surface traction vanishes identically onΓt if and only if ν > 0 and:

xc = 1−2ν, yc = (1−2ν)
√

ν
1−ν

, (6)

which will be assumed from now on. The surface traction onΓc which has(0,−1) as
outward unit normal, reads as:

tx =
(1− xc)δ
2yc(1+ν)

, ty =
δν

(1−2ν)(1+ν)
.

This is consistent with sliding in the Coulomb friction law if and only if:

δ ≥ 0, F =
(1−2ν)(1− xc)

2νyc
=

√

1−ν
ν

. (7)

In conclusion, if (6) and (7) are assumed to hold, then the steady sliding frictional
contact problem will have infinitely many solutions:δ ≥ 0 can be chosen arbitrarily.

2.4 Discussion

Frictional contact problems in linear elasticity for whicha steady solution is expected
are very commonly encountered. In particular, every machine, like a car engine, en-
ter this class. It is common experience that, if such a steadysliding equilibrium can
be met in some circumstances, it can happen that it is not met in some other cir-
cumstances like in the case where oxydation took place, producing an increase of the
friction coefficient. In such a situation, the machine can beseen to be unable anymore
to run steadily. This phenomenon is calledjamming, or seizure.
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The above analysis provides a germinal theory of jamming in terms of bifurcation
in variational inequality. Indeed, the analysis has reduced the steady sliding frictional
contact problem to that of findingu ∈ K, such that:

∀v ∈ K, a(u,v−u)−F b(u,v−u)≥ 0,

whereK is some closed convex cone in a Hilbert space,a(·, ·) the bilinear form asso-
ciated with the elastic energy (it defines, as usual, a continuous coercive symmetric
bilinear form on the Hilbert space),F is the friction coefficient andb(·, ·) a (possi-
bly non-symmetric) continuous bilinear form. As a consequence, if F ≥ 0 is small
enough, the steady sliding frictional contact problem has one and only one solution.
But, coercivity can be deleted by some finite critical valueFc > 0 of the friction
coefficient. Examples of multiple solutions forF ≥ Fc can be exhibited. It is in-
teresting to note that the critical valueFc depends on the geometry of the problem
and the elastic properties, but not on the force which is usedto press the components
together.

These facts must be paralleled with the familiar picture of Euler buckling of a
straight inextensible elastic rod with one clamped end and the other end submitted
to a given compressive axial force of intensityF > 0. The problem of finding small
deflections from the straight configuration reduces to that of finding u ∈ L, such that:

∀v ∈ L, a(u,v−u)−F b(u,v−u) = 0,

whereL is some closed linear subspace in a Hilbert space,a(·, ·) the bilinear form as-
sociated with the elastic energy (it defines, as usual, a continuous coercive symmetric
bilinear form on the Hilbert space), andb(·, ·) a symmetric continuous bilinear form.
A familiar analysis states that there is a finite critical value Fc > 0 (the Euler crit-
ical load) of the forceF, such that the overall bilinear form is coercive forF < Fc

and the straight configuration is the only possible equilibrium, and such that the co-
ercivity is deleted forF = Fc. A a consequence, infinitely many curved equilibrium
configurations are obtained forF = Fc : this is Euler buckling.

Let us conclude the discussion by mentionning that the discrete (or discretized)
counterpart of the steady sliding frictional contact problem was studied in [8], using
the theory of linear complementary problems. A critical valueFc of the friction co-
efficient was obtained, but no information about the behaviour of that critical value
when refining the mesh was accessible. The analysis of the continuum problem in
this paper fills the gap.

3 2-D local sliding frictional contact problems

3.1 The formal problem

Let us consider the case of an isotropic homogeneous linearly elastic two-dimensional
half-space defined byz> 0. The Poisson ratio is denoted byν ∈ ]−1,1/2[ and the
unit forces are chosen so that the Young’s modulusE = 1. Prescribing the following
conditions at infinity:

lim
∞

σσσ(u) = 0, u = O
(

log(r)
)

, as r → ∞,
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and the compactly supported surface traction distributiont on the boundary, the sur-
face displacementu is expressed as:

1
2(1−ν2)

dut

dx
=

1
π

I ∞

−∞

tt(t)
t − x

dt +
1−2ν

2(1−ν)
tn(x),

1
2(1−ν2)

dun

dx
=

1
π

I ∞

−∞

tn(n)
t − x

dt −
1−2ν

2(1−ν)
tt(x),

where the sign
H

recalls that the integral should be understood in terms of the Cauchy
principal value. The above expression is the explicit form of the Neumann-Dirichlet
operator of the isotropic homogeneous linearly elastic two-dimensional half-space.
The derivation of this explicit form is sketched in [1]. The surface displacement is
obtained up to an arbitrary additive constant, which is interpreted as being a rigid
motion. The arbitrary rigid motion cannot be fixed by prescribing appropriate condi-
tions at infinity since the displacement field is generally infinite at infinity. In addi-
tion, although the stress field is zero at infinity, it is generally not square integrable, so
that elastic solutions in the two-dimensional half-space generally have infinite elastic
energy. In particular, it is not possible to use the elastic bilinear form a(·, ·) of the
half-space as in the case of the bounded body to analyse contact problems on the
2-D elastic half-space. However, it was shown in [1] how the explicit form of the
Neumann-Dirichlet operator can be used to introduce a bilinear forma(·, ·), which
can play exactly the same role as the elastic bilinear form. This trick will also be used
here to analyse the steady sliding frictional contact problem.

Consider some rigid obstacle, the geometry of which is defined by the equation
−z= ψ(x) (x∈ ]−1,1[), moving at a constant velocityw> 0 alongx, which is as-
sumed to be parallel to the boundary of the half-space (see figure 3). Set:

ū=
u

2(1−ν2)
, ψ̄ =

ψ
2(1−ν2)

, and γ =
1−2ν

2(1−ν)
∈ ]0,3/4[ .

The steady sliding frictional contact problem is formally that of findingt(x), ū(x) :
]−1,1[→R such that:

•
1
π

I 1

−1

tn(t)
t − x

dt − γ tt(x) = ū′n(x),

•
1
π

I 1

−1

tt(t)
t − x

dt + γ tn(x) = ū′t(x),

• ūn ≤ ψ̄ , tn ≤ 0,
(

ūn− ψ̄
)

tn ≡ 0,

• tt =−F tn,

•

∫ 1

−1
tn(t)dt =−P,

whereP> 0 is the given normal component of the prescribed total forceexerted on
the moving obtacle. Focusing on the normal components, thisformal problem reduces
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E = 1
ν

x

P

w

Fig. 3 Geometry of the problem.

to findingtn(x), ūn(x) : ]−1,1[→R such that:

•
1
π

I 1

−1

tn(t)
t − x

dt + γF tn(x) = ū′n(x), (8)

• ūn ≤ ψ̄ , tn ≤ 0,
(

ūn− ψ̄
)

tn ≡ 0,

•

∫ 1

−1
tn(t)dt =−P.

3.2 A weak formulation

Some useful facts, detailed proof of which can be found in [1], are first going to be
recalled. With arbitraryt ∈ H−1/2

(

]−1,1[
)

, the following convolution products:

t ∗ log| · |, t ∗ sgn(·),

(where sgn(·) is the sign function) define distributions overR whose restrictions to
the interval]−1,1[ are inH1/2

(

]−1,1[
)

. In addition, the bilinear form defined by:

t1, t2 7→ −
〈

t1∗ log|x|, t2
〉

H1/2,H−1/2
,

is symmetric and positive definite. It therefore defines a scalar product on the space
H−1/2

(

]−1,1[
)

, and this scalar product induces a norm that is equivalent tothat of
H−1/2 (see [1] for a proof). The bilinear form:

t1, t2 7→
〈

t1 ∗ sgn(x), t2
〉

H1/2,H−1/2
,

can easily be seen to be skew-symmetric. It is continuous onH−1/2×H−1/2. As a
result, the bilinear form:

b
(

t1, t2
) def
= −

1
π

〈

t1∗ log|x|, t2
〉

H1/2,H−1/2
+

γF

2

〈

t1 ∗ sgn(x), t2
〉

H1/2,H−1/2

is continuous onH−1/2×H−1/2 and coercive in the sense defined in Appendix A, for
all F ≥ 0.
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An elementt ∈ H−1/2
(

]−1,1[
)

will be said to be nonpositive (notationt ≤ 0) if:

∀v∈ H1/2 with v≥ 0,
〈

t,v
〉

H−1/2,H1/2 ≤ 0.

This implies, in particular, thatt is a nonpositive bounded measure on]−1,1[. Setting:

K
def
=
{

t̂ ∈ H−1/2(]−1,1[
) ∣

∣ t̂ ≤ 0,
〈

t̂,1
〉

=−P
}

,

where 1∈ H1/2 is the function which identically takes the value 1, we have the fol-
lowing weak formulation for the formal problem (8) governing the normal component
tn of the surface traction exerted by the moving obstacle.

Problem II. Let F ,P∈R be nonnegative, and̄ψ ∈ H1/2
(

]−1,1[
)

. Find tn ∈ K such
that:

∀t̂ ∈ K, b
(

tn, t̂ − tn
)

≥
〈

ψ̄ , t̂ − tn
〉

H1/2,H−1/2.

Straightforwardly applying the Lions-Stampacchia theorem (theorem 6) gives:

Theorem 3 Problem II has a unique solution.

Remark 2Using tt = −F tn and the explicit knowledge of the fundamental solu-
tion to the Neumann problem on the isotropic homogeneous linearly elastic two-
dimensional half-space (expressions for the displacementfield and the stress field are
recalled in [1]), the corresponding displacement and stress field in the half-space can
be expressed as a convolution with the solution of problem II. The displacement is
infinite at infinity if and only ifP> 0 and the stress field is square integrable if and
only if P= 0, that is, if it vanishes identically.

Remark 3The bilinear formb(·, ·) is symmetric if and only if the friction coefficient
F = 0. Therefore, the unique solution of the frictionless problem is characterized as
the unique solution of a minimization problem. Note, however, that this minimization
problem isnot that of elastic energy, since the elastic energy in the half-space of the
solution is infinite wheneverP > 0. In the caseF > 0 where friction is taken into
account, the bilinear formb(·, ·) is not symmetric and the unique solutiontn of the
variational inequality is not characterized by a minimization problem. Note that the
contact zone dependsa priori on the value of the friction coefficientF .

Remark 4Note that the proof of theorem 6 is constructive and yields therefore a
computational method for obtaining approximate solutionsto tn in the case of a mov-
ing obstacle with the arbitrary geometrȳψ ∈ H1/2. In the next section, it is proposed
however, to review some simple geometries with which an exact explicit solution can
be exhibited.

3.3 Some exact solutions

These explicit exact solutions were presumably first obtained by Galin [5].
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3.3.1 The case of a moving rigid flat punch

Let us take the case where the moving obstacle is a flat rigid punch with a finite width
2a. This geometry leads to selectinḡψ ≡ 0∈ H1/2

(

]−a,a[
)

. Trying to find a solution
with active contact everywhere under the punch, we are led tolook for a function
satisfying:

•
1
π

I a

−a

tn(t)
t − x

dt+ γF tn(x) = 0, for a.a.x∈ ]−a,a[ ,

•

∫ a

−a
tn(t)dt =−P.

Applying a theorem of Söhngen, which is recalled in [1] (theorem 13 in [1]), the

unique solution inL1+(−a,a)
def
= ∪p>1Lp(−a,a) is given by:

tn(x) =
−P cosπα

π(a+ x)1/2+α(a− x)1/2−α ,

=
−P

π
√

1+ γ2F 2
×

1

(a+ x)1/2+α(a− x)1/2−α ,

where:

α =
1
π

arctanγF ∈ ]0,1/2[ .

This function is negative and belongs toH−1/2
(

]−a,a[
)

. It is therefore the unique
solution to problem II with the specific geometry of the flat punch.

−a +a

x

w

P

Fig. 4 Normal component of traction induced by a moving rigid flat punch at the surface of an elastic
half-space.

The normal pressure under the punch is singular at both edges, but the singularity
is weaker in the front and stronger at the rear edge of the punch. The pressure always
reaches its unique local minimum in the front half of the punch at the abscissa:

x= 2αa ∈ [0,a[ .



16 Patrick BALLARD

3.3.2 The case of a moving rigid parabola

Let us take the case where the moving obstacle is a rigid parabola with radius of
curvatureR̄/(2(1− ν2)) at the minimum. The corresponding function̄ψ reads as
follows:

ψ̄(x) =
x2

2R̄
.

The unknown normal componenttn of the traction exerted by the moving parabola is
sought for in the formtn(x) = p((x−c)/a) with (x−c)/a∈ [−1,1], wherep is some
unknown function andc anda are real constants. These unknowns must satisfy:

•
1
π

I 1

−1

p(r)
r − s

dr + γF p(s) =
c+as

R̄
, for a.a.s∈ ]−1,1[ ,

•

∫ 1

−1
p(r)dr =

−P
a

.

Applying once more Söhngen’s theorem (theorem 13 in [1]), all the solutions in
L1+(−1,1) can be written:

tn(c+as) = p(s) =−
1

(1+ γ2F 2)R̄
×

1
π

I 1

−1

(1+ r)
1
2+α(1− r)

1
2−α

(1+ s)
1
2+α(1− s)

1
2−α

.
c+ar
r − s

dr

+
γF (c+as)

(1+ γ2F 2)R̄
−

P

πa
√

1+ γ2F 2
×

1

(1+ s)1/2+α(1− s)1/2−α ,

(9)

where:

α =
1
π

arctanγF ∈ ]0,1/2[ .

This expression has the following limits:

lim
s→−1+

(1+ s)1/2+α(1− s)1/2−α p(s) = −
P

πa
√

1+ γ2F 2

−
1

(1+ γ2F 2)R̄
×

1
π

∫ 1

−1

(

1− r
1+ r

)1/2−α
(c+ar)dr,

lim
s→+1−

(1+ s)1/2+α(1− s)1/2−α p(s) =−
P

πa
√

1+ γ2F 2

+
1

(1+ γ2F 2)R̄
×

1
π

∫ 1

−1

(

1+ r
1− r

)1/2+α
(c+ar)dr.

If one of these limits does not vanish, then the surface traction at the corresponding
edge of the contact zone will be singular. Using the asymptotic estimate of the Hilbert
transform of a function with power singularity at the edge (theorem 8 in [1]) in the
equilibrium equation (8), it can be readily checked that this singularity of the surface
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traction at the edge of the contact zone, would induce a singularity of u′n(x) just
outside the contact zone, which would result in the penetration of the half-space into
the rigid obstacle just outside the contact zone. Since thispossibility must be ruled
out, the above two limits must vanish. These two limits are equal if and only if:

∫ 1

−1

c+ar

(1+ r)1/2−α(1− r)1/2+α dr = 0. (10)

The change of variableu= log 1+r
1−r and the residue theorem results in:

∫ 1

−1

1

(1+ r)1/2−α(1− r)1/2+α dr =
∫ +∞

−∞

e(1/2+α)u

1+eu du=
π

cosπα

∫ 1

−1

(

1− r
1+ r

)1/2−α
dr =

∫ +∞

−∞

2e(1/2+α)u

(1+eu)2 du=
π(1−2α)

cosπα
,

so that condition (10) is equivalent to:

c=−2αa. (11)

Then, since:

∫ 1

−1

(

1− r
1+ r

)1/2−α
r dr =−

∫ +∞

−∞

2e(1/2+α)u(1−eu)

(1+eu)3 du=−
π(1−2α)2

2cosπα
,

the common value of the two limits vanishes if and only if:

a2 =
PR̄

2π(1/4−α2)
. (12)

P

w

x

(1−2α)a−(1+2α)a

−tn(x)

Fig. 5 Rigid parabola moving at the surface of an elatic half-space.

From now on,c anda are taken as in formulae (11) and (12). Based on step 1
(with a(x)≡ 1) in the proof of theorem 14 of [1], we have the following identity, for
s∈ ]−1,1[:

1
π

I +1

−1

(

1− r
1+ r

)1/2−α dr
r − s

= tanπα
(

1− s
1+ s

)1/2−α
−

1
cosπα

,
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which entails that:

1
π

I +1

−1

(1− r)1/2−α(1+ r)1/2+α

r − s
dr = tanπα (1− s)1/2−α(1+ s)1/2+α −

s+2α
cosπα

.

Upon injecting the latter identity into formula (9), it can be seen that(1+s)1/2+α(1−
s)1/2−α p(s) is a second order polynomial. Since this polynomial vanishes ats=±1,
formula (9) simplifies into:

p(s) =C (1+ s)1/2−α(1− s)1/2+α ,

with some constantC which has to be determined by the condition
∫+1
−1 p(s)ds=

−P/a. This gives:

tn(x) =
−P cosπα

2πa2(1/4−α2)

[

(1+2α)a+ x
]1/2−α[

(1−2α)a− x
]1/2+α

,

=
−1

R̄
√

1+ γ2F 2

[

(1+2α)a+ x
]1/2−α[

(1−2α)a− x
]1/2+α

.

The contact zone[−(1+2α)a,(1−2α)a] is shifted towards the rear of the parabola
and the maximum amplitude of the surface traction is reachedatx=−4αa, which is
always in the rear half of the contact zone.

The above functiontn(x) is negative and its extension by 0 outside the inter-
val ]−(1+2α)a,(1−2α)a[ belongs toH−1/2. It is therefore the unique solution to
problem II in the case of the specific geometry of the parabola.

3.4 Miscellaneous extensions

3.4.1 Handling inertial effects

In all the above analysis, inertial effects have been neglected, and since the half-space
is assumed to be free of body forces, the stress field in the half-space satisfies:

divσσσ(u) = 0.

However, it makes sense to look for a steady solution (that is, a constant displacement
field in the moving frame)without neglecting the inertial forces. In this case, the
equilibrium equation has to be replaced by:

divσσσ(u) = ρw2 ∂ 2u
∂x2 .

Introducing the velocitiescp > cs of the pressure and shear waves in the isotropic
elastic medium:

c2
p =

1−ν
(1+ν)(1−2ν)

E
ρ
, c2

s =
1

2(1+ν)
E
ρ
,
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the fundamental solution of the corresponding Neumann problem on the half-space
is recalled in Appendix B in the subsonic casew < cs < cp. It yields the following
expression for the corresponding Neumann-Dirichlet operator.

dut

dx
=

2(1+ν)
E

βs
(

1−β 2
s

)

R
1
π

I ∞

−∞

tt(t)
t − x

dt +
2(1+ν)

E

(

1+β 2
s

)

−2βpβs

R
tn(x),

dun

dx
=

2(1+ν)
E

βp
(

1−β 2
s

)

R
1
π

I ∞

−∞

tn(n)
t − x

dt −
2(1+ν)

E

(

1+β 2
s

)

−2βpβs

R
tt(x),

where:

βp =

√

1−
w2

c2
p
,

βs =

√

1−
w2

c2
s
,

R= 4βpβs−
(

1+β 2
s

)2
.

The functionR(w) has one and only one root on the interval]0,cs[. This root is the
velocity of the Rayleigh waves and is denoted bycr . The functionR(w) is positive
in ]0,cr [ and negative in]cr ,cs[. This expresses the fact that a resonance actually
occurs atw= cr and the steady sliding frictionless contact problem is never uniquely
solvable whenw∈ ]cr ,cs[. From now on, it is assumed thatw∈ ]0,cr [, so thatR> 0.

Setting:

ūn =
E

2(1+ν)
R

βp
(

1−β 2
s

) un,

γ̄(w) =
(

1+β 2
s

)

−2βpβs

βp
(

1−β 2
s

)

(

γ̄(0) = γ =
1−2ν

2(1−ν)

)

,

it can be easily checked that the steady sliding frictional contact problem involving
inertial effects is still governed by the formal problem (8)in which γ is replaced by
the new constant̄γ(w) defined above. Hence, everything that is said in the analysisin
sections 3.2 and 3.3 applies to this new situation. In particular, providedw< cr , the
steady sliding frictional contact has a unique solution, defined by sometn ∈ H−1/2.
Explicit exact solutions are obtained in the case of a movingflat punch and a moving
rigid parabola.

3.4.2 Local sliding frictional contact problems involvingmassive bodies

Let us consider a contact problem involving some massive elastic body with smooth
boundary. If the analysis is restricted to the situation where the diameter of the con-
tact zone remains very small in comparison with both the radius of curvature of the
boundary near the contact zone and the thickness of the body at the contact zone,
then the displacement and stress fields in the elastic body are locally very close to
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the ones that would be induced in a half-space by the same contact pressure. Now,
let us assume that two such elastic bodies, possibly made of different materials and
indexed respectively by 1 and 2, come into contact. The analysis is restricted to the
two-dimensional setting and the geometry is assumed to be consistent with steady
sliding. For example, one can take body 1 to be a fixed body withan arbitrary smooth
geometry and body 2 to be a cylindar, rotating steadily around its axis of revolution
(see figure 6). Restricting the analysis to the situation where the contact zone remains

z

x

P

P

wψ(x)

1

2

Fig. 6 Steady sliding local frictional contact problem.

very small in comparison with each of the radii of curvature of the bodies, and taking
the spatial coordinatex along the contact zone (in the direction of the sliding of 1
with respect to 2) andz along its normal (the outward normal to body 2), the normal
component of the displacements induced at the surface of bodies 1 and 2 by a surface
traction 1→ 2 with components(tx =−F tz, tz) reads:

u′z1(x) =−
2(1+ν1)

E1

βs1
(

1−β 2
s1

)

R1

1
π

I
tz(t)
t − x

dt

+
2(1+ν1)

E1

(

1+β 2
s1

)

−2βp1βs1

R1
F tz(x),

u′z2(x) =
2(1+ν2)

E2

βs2
(

1−β 2
s2

)

R2

1
π

I
tz(t)
t − x

dt

+
2(1+ν2)

E2

(

1+β 2
s2

)

−2βp2βs2

R2
F tz(x),

with the same notations as in the previous section. The geometry of the initial gap
between the two solids is defined by some functionψ , up to some arbitrary additive
constant, so that the non-penetration condition can be written:

∀x, uz2(x)−uz1(x)≤ ψ(x),
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(see figure 6). Setting:

δ ūz(x)
def
=

uz2(x)−uz1(x)

2(1+ν1)
E1

βs1

(

1−β 2
s1

)

R1
+ 2(1+ν2)

E2

βs2

(

1−β 2
s2

)

R2

,

ψ̄(x)
def
=

ψ(x)

2(1+ν1)
E1

βs1

(

1−β 2
s1

)

R1
+

2(1+ν2)
E2

βs2

(

1−β 2
s2

)

R2

,

γ̄(w) def
=

− 2(1+ν1)
E1

(

1+β 2
s1

)

−2βp1βs1

R1
+ 2(1+ν2)

E2

(

1+β 2
s2

)

−2βp2βs2

R2

2(1+ν1)
E1

βs1

(

1−β 2
s1

)

R1
+ 2(1+ν2)

E2

βs2

(

1−β 2
s2

)

R2

,

it can be seen that the normal componenttz of the contact traction 1→ 2 is governed
by the formal problem:

•
1
π

I ∞

−∞

tz(t)
t − x

dt + γ̄(w)F tz(x) = δ ū′z(x),

• δ ūz ≤ ψ̄ , tz ≤ 0,
(

δ ūz− ψ̄
)

tz ≡ 0,

•

∫ ∞

−∞
tz(t)dt =−P.

Hence, the whole analysis in sections 3.2 and 3.3 applies to this new situation. In par-
ticular, providedw< cr1,cr2, the contact pressuretz obeys some variational inequality
in H−1/2 which has a unique solution, thanks to the Lions-Stampacchia theorem. An
approximation of this unique solution can be computed by implementing the method
in the proof of the theorem. In the case where the initial gap is a quadratic func-
tion (for example, in the case of two cylinders), then this unique solutiontz of the
variational inequality is explicitly known. The analysis naturally encompasses these
situations where the inertial effects (ρ1,ρ2 → 0) and/or the friction (F → 0) are ne-
glected, as limiting cases.

4 3-D local sliding frictional contact problems

In this last section, it is proposed to describe how the results obtained in section 3.2
can be transposed to a three-dimensional setting. Considerthe isotropic homogeneous
linearly elastic three-dimensional half-spacez> 0, with Poisson ratioν ∈ ]−1,1/2[,
Young’s modulusE = 1, and the following condition at infinity: lim∞ u = 0.

Let us also take some rigid obstacle, the geometry of which isdefined by some
equation−z= ψ(x,y) (x,y ∈ ]−1,1[), moving at a constant velocityw > 0 along
x, which is assumed to be parallel to the boundary of the half-space (see figure 3).
Using the results given in Appendix C, the steady sliding frictional contact problem
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is formally that of findingtn(x,y),un(x,y) : ]−1,1[2 →R such that:

•
1−ν2

πE

∫ 1

−1

∫ 1

−1

tn(r,s)
√

(x− r)2+(y− s)2
dr ds

+F
(1+ν)(1−2ν)

2πE

∫ 1

−1

∫ 1

−1

(x− r)tn(r,s)
(x− r)2+(y− s)2 dr ds= un(x,y),

• un ≤ ψ , tn ≤ 0,
(

un−ψ
)

tn ≡ 0.

Set:

ū=
πEu

1−ν2 , ψ̄ =
πEψ
1−ν2 , and γ =

1−2ν
2(1−ν)

∈ ]0,3/4[ ,

so that the formal problem now consists in findingtn, ūn : ]−1,1[2 →R such that:

•

∫ 1

−1

∫ 1

−1

tn(r,s)
√

(x− r)2+(y− s)2
dr ds (13)

+ γF

∫ 1

−1

∫ 1

−1

(x− r)tn(r,s)
(x− r)2+(y− s)2 dr ds= ūn(x,y),

• ūn ≤ ψ̄, tn ≤ 0,
(

ūn− ψ̄
)

tn ≡ 0. (14)

To obtain a weak formulation of the formal problem (14) in thespirit of section 3.2,
we set:

K
def
=
{

t̂ ∈ H−1/2(]−1,1[2
) ∣

∣ ∀v∈ H1/2 with v≥ 0,
〈

t̂,v
〉

H−1/2,H1/2 ≤ 0
}

,

which is a nonempty closed convex subset ofH−1/2, and:

b( f ,g)
def
=

〈

f ,g∗
1

√

x2+ y2

〉

H−1/2,H1/2
+ γF

〈

f ,g∗
x

x2+ y2

〉

H−1/2,H1/2
,

which is a continuous, coercive (as defined in Appendix A) bilinear form onH−1/2 in
view of proposition 3 in Appendix C. We then obtain the following weak formulation
for the formal problem (14) governing the normal componenttn of the surface traction
exerted by the moving obstacle.

Problem III Let F ∈R be nonnegative and̄ψ ∈ H1/2
(

]−1,1[2
)

. Find tn ∈ K such
that:

∀t̂ ∈ K, b
(

tn, t̂ − tn
)

≥
〈

ψ̄ , t̂ − tn
〉

H1/2,H−1/2.

Straightforwardly applying the Lions-Stampacchia theorem (theorem 6) gives:

Theorem 4 Problem III has a unique solution.
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Remark 5Using tx = −F tn and the explicit knowledge of the fundamental solu-
tion to the Neumann problem on the isotropic homogeneous linearly elastic three-
dimensional half-space (expressions for the displacementfield and the stress field
are recalled in Appendix C), the corresponding displacement and stress field in the
half-space can be expressed as a convolution with the solution to problem III.

Remark 6If ψ is positive, the obstacle moves above the half-space with nocontact.
In that situation, the unique solution to problem III is obviouslytn ≡ 0. The situation
differs from the case of the two-dimensional half-space, where it was only possible to
defineψ up to an arbitrary additive constant, since the displacement field in the half-
space was infinite at infinity. We were obliged to parametrizethe problem by the total
normal forceP exerted on the moving obstacle. In the three-dimensional setting, the
situation is different, and the problem is parametrized here by the prescribed height
of the obstacle (this information is embedded in the data of the functionψ). However,
even in this three-dimensional setting, it is possible to take a similar problem to the
one addressed in section 3.2, where the height of the moving obstacle is free and the
total normal forceP exerted on the moving obstacle is prescribed. The corresponding
formal problem is that of findinḡδ ∈R andtn, ūn : ]−1,1[2 →R such that:

•

∫ 1

−1

∫ 1

−1

tn(r,s)
√

(x− r)2+(y− s)2
dr ds (15)

+ γF

∫ 1

−1

∫ 1

−1

(x− r)tn(r,s)
(x− r)2+(y− s)2 dr ds= ūn(x,y),

• ūn ≤ δ̄ + ψ̄, tn ≤ 0,
(

ūn− δ̄ − ψ̄
)

tn ≡ 0, (16)

•

∫ 1

−1

∫ 1

−1
tn(r,s)dr ds=−P.

Setting:

K′ def
=
{

t̂ ∈ H−1/2(]−1,1[2
) ∣

∣ t̂ ≤ 0,
〈

t̂,1
〉

=−P
}

,

where 1∈ H1/2 is the function identically taking the value 1, we obtain thefollowing
weak formulation for the formal problem (16) governing the normal componenttn of
the surface traction exerted by the moving obstacle.

Problem III’. Let F ,P ∈ R be nonnegative, and̄ψ ∈ H1/2
(

]−1,1[2
)

. Find tn ∈ K′

such that:

∀t̂ ∈ K′, b
(

tn, t̂ − tn
)

≥
〈

ψ̄ , t̂ − tn
〉

H1/2,H−1/2.

Straightforwardly applying the Lions-Stampacchia theorem (theorem 6) gives:

Theorem 5 Problem III’ has a unique solution.



24 Patrick BALLARD

Appendix A: the Lions-Stampacchia theorem

The material presented in this Appendix is reproduced from [10].
Let H be an arbitrary Hilbert space, the scalar product and norm ofwhich are

denoted by(·, ·) and‖ · ‖. A bilinear forma : H ×H →R is said to be:

• continuous, if there exists a real constantC such that:

∀u,v∈ H,
∣

∣a(u,v)
∣

∣≤C‖u‖‖v‖,

• coercive, if there exists a real constantα > 0 such that:

∀u∈ H, a(u,u)≥ α‖u‖2.

Theorem 6 (Lions-Stampacchia)Let a(·, ·) be a coercive, continuous bilinear form
on a Hilbert space H, and let K be a nonempty closed convex subset of H. Given an
arbitrary ϕ ∈ H ′, there exists uniquely u∈ K such that:

∀v∈ K, a(u,v−u)≥ 〈ϕ ,v−u〉. (17)

In addition, if a issymmetric, then u is characterized by being the unique minimizer
of the functional:

1
2

a(v,v)−〈ϕ ,v〉,

over K.

Proof Based on the Riesz-Fréchet representation theorem, thereexists uniquelyf ∈
H such that:

∀v∈ H, 〈ϕ ,v〉= ( f ,v).

Similarly, given an arbitraryu ∈ H, the mappingv 7→ a(u,v) is a continuous linear
form, and there existsAu∈ H such that:

∀v∈ H, a(u,v) = (Au,v).

Obviously,A : H → H is a linear mapping such that:

∀u∈ H, ‖Au‖ ≤C‖u‖,

∀u∈ H, (Au,u)≥ α ‖u‖2.

The variational inequality (17) amounts to findingu∈ K such that:

∀v∈ H, (Au,v−u)≥ ( f ,v−u).

Arbitrarily takingρ > 0, the latter inequality can be rewritten:

∀v∈ H, (ρ f −ρAu+u−u,v−u)≤ 0,

or equivalenty:

u= proj
[

ρ f −ρAu+u,K
]

.
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The original problem therefore reduces to that of finding a fixed point of the mapping:

Sv= proj
[

ρ f −ρAv+ v,K
]

.

Therefore, the claim will follow from Banach fixed point theorem provided that the
mappingS is a strict contraction, that is, there existsL < 1 such that:

∀v1,v2 ∈ K, ‖Sv1−Sv2‖ ≤ L‖v1− v2‖,

for some appropriate value ofρ . But, in view of the contraction property of the pro-
jection ontoK, we obtain:

‖Sv1−Sv2‖
2 ≤

∥

∥(v1− v2)−ρ(Av1−Av2)
∥

∥

2
,

≤
∥

∥v1− v2
∥

∥

2
−2ρ

(

Av1−Av2,v1− v2
)

+ρ2
∥

∥Av1−Av2
∥

∥

2
,

≤ (1−2ρα +ρ2C2)
∥

∥v1− v2
∥

∥

2
,

and the constant between brackets in the last term is made to be smaller than 1 by
taking1 ρ in

]

0,2α/C2
[

. It should now be clear that the desired conclusion follows
from Banach’s fixed point theorem.

In the particular case wherea is symmetric, thena defines a new scalar product on
H the associated norm of which is equivalent to that ofH. Based on the Riesz-Fréchet
representation theorem, there exists uniquelyg∈ H such that:

∀v∈ H, 〈ϕ ,v〉= a(g,v).

The variational inequality (17) can therefore be rewrittenequivalently:

∀v∈ H, a(g−u,v−u)≤ 0,

which states thatu is simply the projection ofg ontoK. Thus,u achieves the mini-
mum:

min
v∈K

a(g− v,g− v),

or equivalently:

min
v∈K

[

a(v,v)−2a(g,v)
]

,

or equivalently:

min
v∈K

[1
2

a(v,v)−〈ϕ ,v〉
]

.

⊓⊔

1 when the solution is to be computed numerically, the best choice of ρ is α/C2.
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Appendix B: moving line load on the surface of a half-space

The material presented in this Appendix is adapted from the book [4].
Let us consider an isotropic homogeneous linearly elastic half-space. Some or-

thonormal Cartesian coordinate system(x,y,z) is chosen so that the half-space is
defined by:z> 0. Since only the plane strain situation will be considered here, it is
convenient to take:

Ω =
{

(x,z) ∈R2 ; z> 0
}

,

to denote a corresponding two-dimensional “slice” of the half-space. The Young’s
modulus is denoted byE, the Poisson ratio byν ∈ ]−1,1/2[ and the volumic mass
by ρ . We takecp > cs to denote the velocities of the pressure and the shear waves in
the isotropic elastic medium:

c2
p =

1−ν
(1+ν)(1−2ν)

E
ρ
, c2

s =
1

2(1+ν)
E
ρ
.

Let us consider the situation where some homogeneous force(Fx,Fz) concen-
trated along the moving linex=wt, z= 0 of the boundary is applied to the half-space
which is assumed to be free of body forces. A steady displacement field is sought,
that is, a displacement field which is constant in the moving frame. The variablesx
andz will be also used in the moving frame. As usual,u is taken to denote the dis-
placement,εεε(u) to denote the associated linearized strain tensor, andσσσ(u) to denote
the corresponding Cauchy stress tensor.

Only thesubsonicsituation:

0< w< cs < cp

will be considered here. We therefore set:

βp =

√

1−
w2

c2
p
,

βs =

√

1−
w2

c2
s
,

R= 4βpβs−
(

1+β 2
s

)2
.

The functionR(w) has one and only one root on the interval]0,cs[. This root, which
is the velocity of the Rayleigh waves, is denoted bycr . In what follows, the specific
valuew= cr is excluded.

Theorem 7 Let (Fx,Fz) ∈R2 be taken arbitrarily. All the tempered distributionsu ∈
S ′
(

Ω ;R2
)

such that:

∀ϕϕϕ ∈C∞
c

(

Ω ;R2),
〈

σi j (u),ε ji (ϕϕϕ)
〉

S ′,S
−ρw2

〈

∂uk

∂x
,

∂ϕk

∂x

〉

S ′,S

= Fx ϕx(0,0)+Fzϕz(0,0),
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(C∞
c (Ω ;R2

)

stands, as usual, for the space of C∞ test-functions compactly supported
in the closed half-spaceΩ ) are given by:

ux = FxU0
xx(x,z)+FzU

0
xz(x,z)+Dx+Ω z+(1−ν2)xΣ/E,

uz = FxU0
zx(x,z)+FzU

0
zz(x,z)+Dz−Ω x−ν(1+ν)zΣ/E,

where Dx, Dz, Ω , Σ are four arbitrary real constants, and U0xx, U0
xz, U0

zx, U0
zz are the

four functions in C∞(Ω ;R) defined by:

U0
xx = −

1+ν
πE

{

2βs

R
log
(

x2+β 2
pz2)−

βs(1+β 2
s )

R
log
(

x2+β 2
s z2)

}

,

U0
xz = −

2(1+ν)
πE

{

1+β 2
s

R
arctan

x
βpz

−
2βpβs

R
arctan

x
βsz

}

,

U0
zx = −

2(1+ν)
πE

{

2βpβs

R
arctan

x
βpz

−
1+β 2

s

R
arctan

x
βsz

}

,

U0
zz =

1+ν
πE

{

βp(1+β 2
s )

R
log
(

x2+β 2
pz2)−

2βp

R
log
(

x2+β 2
s z2)

}

.

The corresponding Cauchy stress field is given by the three functions in C∞(Ω ;R)
defined by:

σxx(u) = −
Fx

πR

{

2βs
(

2β 2
p −β 2

s +1
) x

x2+β 2
pz2 −2βs

(

1+β 2
s

) x
x2+β 2

s z2

}

−
Fz

πR

{

βp
(

1+β 2
s

)(

2β 2
p −β 2

s +1
) z

x2+β 2
pz2 −4βpβ 2

s
z

x2+β 2
s z2

}

+Σ ,

σxz(u) = −
Fx

πR

{

4β 2
pβs

z
x2+β 2

pz2 −βs
(

1+β 2
s

)2 z
x2+β 2

s z2

}

+
Fz

πR

{

2βp
(

1+β 2
s

) x
x2+β 2

pz2 −2βp
(

1+β 2
s

) x
x2+β 2

s z2

}

,

σzz(u) =
Fx

πR

{

2βs
(

1+β 2
s

) x
x2+β 2

pz2 −2βs
(

1+β 2
s

) x
x2+β 2

s z2

}

+
Fz

πR

{

βp
(

1+β 2
s

)2 z
x2+β 2

pz2 −4βpβ 2
s

z
x2+β 2

s z2

}

.

In particular, we can prescribe the supplementary condition: lim∞ σσσ(u) = 0, which
imposesΣ = 0 and determinesσσσ(u) uniquely. The arbitrariness still remaining inu
because of the three constants Dx, Dz, Ω can be interpreted as being some arbitrary
(linearized) rigid displacement.

Proof Perform a Fourier transform with respect tox, then solve the ordinary differen-
tial equation with respect toz, and finally, perform the inverse Fourier transform.⊓⊔
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The explicit knowledge of the fundamental solution makes itpossible to solve
by convolution the Neumann problem with arbitrary, compactly supported, surface
traction distributions(tx, tz):

ux = tx
x
∗U0

xx(x,y)+ tz
x
∗U0

xz(x,z)+Dx+Ω z,

uz = tx
x
∗U0

zx(x,y)+ tz
x
∗U0

zz(x,z)+Dz−Ω x,

where the supplementary condition: lim∞ σσσ(u) = 0 is imposed. The stress field is
therefore uniquely determined. It is inC∞(Ω ;R3), but it is generally not square-
integrable. No energy can therefore be associated with thatsolution. It can also be
seen that the displacement field is infinite at infinity, and wecannot superimpose any
conditions such as: lim∞ u = 0, in order to set the arbitrary rigid displacement. The
only possible procedure here consists in superimposing thecondition:

u = O
(

log(x2+ z2)
)

, as x2+ z2 → ∞,

which entailsΩ = 0, and will always be assumed from now on. In this case, the
surface displacement(ux,uz) must be:

ux = −
2(1+ν)

πE

βs
(

1−β 2
s

)

R
log|x| ∗ tx+

(1+ν)
E

2βpβs−
(

1+β 2
s

)

R
sgn(x)∗ tz+Dx,

uz = −
(1+ν)

E

2βpβs−
(

1+β 2
s

)

R
sgn(x)∗ tx−

2(1+ν)
πE

βp
(

1−β 2
s

)

R
log|x| ∗ tz+Dz.

To eliminate the arbitrary constantsDx, Dz, it is convenient to take a derivative with
respect tox. Taking pv1/x (for “principal value”) to denote the distributional deriva-
tive of log|x|, we obtain the explicit final form of the Neumann-Dirichlet operator:

u′x = −
2(1+ν)

πE

βs
(

1−β 2
s

)

R
pv1/x∗ tx+

2(1+ν)
E

2βpβs−
(

1+β 2
s

)

R
tz,

u′z = −
2(1+ν)

E

2βpβs−
(

1+β 2
s

)

R
tx−

2(1+ν)
πE

βp
(

1−β 2
s

)

R
pv1/x∗ tz.

Appendix C: point load on the surface of a half-space

Let us consider an isotropic homogeneous linearly elastic half-space. Some orthonor-
mal Cartesian coordinate system(x,y,z) is chosen so that the half-spaceΩ is de-
fined by: z> 0. The Young’s modulus is denoted byE, and the Poisson ratio by
ν ∈ ]−1,1/2[.

Theorem 8 Let (Fx,Fz) ∈R2 be taken arbitrarily. All the tempered distributionsu ∈
S ′
(

Ω ;R3
)

such that:

∀ϕϕϕ ∈C∞
c

(

Ω ;R3),
〈

σi j (u),ε ji (ϕϕϕ)
〉

S ′,S
= Fxϕx(0,0,0)+Fzϕz(0,0,0),
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(C∞
c (Ω ;R3

)

stands, as usual, for the space of C∞ test-functions compactly supported
in the closed half-spaceΩ ) are given by:

ux = FxU0
xx(x,y,z)+FzU

0
xz(x,y,z)+Dx+Ωyz−Ωzy,

uy = FxU0
yx(x,y,z)+FzU

0
yz(x,y,z)+Dy+Ωzx−Ωxz,

uz = FxU0
zx(x,y,z)+FzU

0
zz(x,y,z)+Dz+Ωxy−Ωyx,

where Dx, Dy, Dz, Ωx, Ωy, Ωz are six arbitrary real constants, and U0xx, U0
xz, U0

zx, U0
zz

are the six functions in C∞(Ω ;R) defined by:

U0
xx =

1+ν
2πE

{

1
r
+

x2

r3 +(1−2ν)
[

1
r + z

−
x2

r(r + z)2

]

}

,

U0
xz =

1+ν
2πE

{

xz
r3 − (1−2ν)

x
r(r + z)

}

,

U0
yx =

1+ν
2πE

{

xy
r3 − (1−2ν)

xy
r(r + z)2

}

,

U0
yz =

1+ν
2πE

{

yz
r3 − (1−2ν)

y
r(r + z)

}

,

U0
zx =

1+ν
2πE

{

xz
r3 +(1−2ν)

x
r(r + z)

}

,

U0
zz=

1+ν
2πE

{

z2

r3 +
2(1−ν)

r

}

,
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where r2 = x2+ y2+ z2. The corresponding Cauchy stress field is then given by the
six functions in C∞(Ω ;R) defined by:

σxx(u) =
Fx

2π

{

−
3x3

r5 +(1−2ν)
[

x
r3 −

3x
r(r + z)2 +

x3

r3(r + z)2 +
2x3

r2(r + z)3

]

}

+
Fz

2π

{

−
3x2z
r5 +(1−2ν)

[

z
r3 −

1
r(r + z)

+
x2

r3(r + z)
+

x2

r2(r + z)2

]

}

,

σyy(u) =
Fx

2π

{

−
3xy2

r5 +(1−2ν)
[

x
r3 −

x
r(r + z)2 +

xy2

r3(r + z)2 +
2xy2

r2(r + z)3

]

}

+
Fz

2π

{

−
3y2z
r5 +(1−2ν)

[

z
r3 −

1
r(r + z)

+
y2

r3(r + z)
+

y2

r2(r + z)2

]

}

,

σzz(u) =
Fx

2π

{

−
3xz2

r5

}

+
Fz

2π

{

−
3z3

r5

}

,

σxy(u) =
Fx

2π

{

−
3x2y
r5 +(1−2ν)

[

−
y

r(r + z)2 +
x2y

r3(r + z)2 +
2x2y

r2(r + z)3

]

}

+
Fz

2π

{

−
3xyz
r5 +(1−2ν)

[

xy
r3(r + z)

+
xy

r2(r + z)2

]

}

,

σyz(u) =
Fx

2π

{

−
3xyz
r5

}

+
Fz

2π

{

−
3yz2

r5

}

,

σxz(u) =
Fx

2π

{

−
3x2z
r5

}

+
Fz

2π

{

−
3xz2

r5

}

.

The stress fieldσσσ(u) is therefore uniquely determined and square-integrable. The
displacement fieldu is determined only up to an arbitrary (linearized) rigid displace-
ment, which can be fixed by prescribing the supplementary condition: lim∞ u = 0,
which imposes Dx = Dy = Dz = Ωx = Ωy = Ωz = 0 and determinesu uniquely.

Proof Perform a Fourier transform with respect tox andy, then solve the ordinary
differential equation with respect toz, and finally, perform the inverse Fourier trans-
form. ⊓⊔

The fundamental solution given by theorem 8 yields an explicit form of the
Neumann-Dirichlet operator for the isotropic homogeneouslinearly elastic three-
dimensional half-space.

Corollary 2 Let tx, tz be arbitrary compactly supported distributions in the variable
(x,y)∈R2. Let us consider the Neumann problem in the isotropic homogeneous elas-
tic three-dimensional half-space involving:
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– (compactly supported) surface tractions with components(tx, tz) on the boundary,
– no body forces,
– the following condition at infinity:lim∞ u = 0.

Then, the surface displacement
(

ux(x,y),uy(x,y),uz(x,y)
)

is given by:

ux =
1+ν
πE

{

1−ν
√

x2+ y2
+

νx2

(x2+ y2)3/2

}

x,y
∗ tx(x,y)−

1+ν
πE

{

(1−2ν)x
2(x2+ y2)

}

x,y
∗ tz(x,y),

uy =
1+ν
πE

{

νxy

(x2+ y2)3/2

}

x,y
∗ tx(x,y)−

1+ν
πE

{

(1−2ν)y
2(x2+ y2)

}

x,y
∗ tz(x,y),

uz =
1+ν
πE

{

(1−2ν)x
2(x2+ y2)

}

x,y
∗ tx(x,y)+

1+ν
πE

{

1−ν
√

x2+ y2

}

x,y
∗ tz(x,y),

where the convolution products are understood in the sense of distributions.

Proposition 2 For f ∈ L1(R2;R)∩L2(R2;R), we adopt the following definition of
the Fourier transform:

F [ f ]
def
=

1
2π

∫ +∞

−∞

∫ +∞

−∞
f (x,y)eixξ+iyη dxdy= f̂ (ξ ,η).

Then, we have:

1. F

[

1
√

x2+ y2

]

=
1

√

ξ 2+η2
, 3. F

[

xy

(x2+ y2)3/2

]

=
−ξ η

(ξ 2+η2)3/2
,

2. F

[

x
x2+ y2

]

=
iξ

ξ 2+η2 , 4. F

[

x2

(x2+ y2)3/2

]

=
η2

(ξ 2+η2)3/2
,

Proof

1. This is formulae 3.754.2 & 6.671.14 in [6],
2. use formula 3.723.4 in [6],
3. this is formulae 3.754.3 & 6.691 in [6],
4. this is formulae 3.773.6 & 6.699.12 in [6]. ⊓⊔

Let f ∈ H−1/2(]−1,1[2 ;R) be arbitrary. The extension off by zero outside
]−1,1[2 is in H−1/2(R2;R), and still denoting it byf , the expression:

(

∫R2

| f̂ (ξ ,η)|2
√

1+ ξ 2+η2
dξ dη

)1/2

,

defines a norm and this norm is equivalent to that ofH−1/2(]−1,1[2). Adapting the
proof of theorem 3 in [1], it can actually be seen that the sameconclusion holds true
with the expression:

(

∫R2

| f̂ (ξ ,η)|2
√

ξ 2+η2
dξ dη

)1/2

.
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Hence, in view of proposition 2, the convolution products:

f (x,y)
x,y
∗

1
√

x2+ y2
, f (x,y)

x,y
∗

x
x2+ y2 ,

are inH1/2
loc . The proof of the following proposition is quite straightforward and has

therefore been omitted.

Proposition 3 For arbitrary f ,g∈H−1/2(]−1,1[2 ;R), we define the bilinear forms:

a( f ,g) =

〈

f ,g∗
1

√

x2+ y2

〉

H−1/2,H1/2
= 2π

∫ +∞

−∞

∫ +∞

−∞

f̂ (ξ ,η) ĝ(ξ ,η)
√

ξ 2+η2
dξ dη ,

ã( f ,g) =

〈

f ,g∗
x

x2+ y2

〉

H−1/2,H1/2
=−2π

∫ +∞

−∞

∫ +∞

−∞

iξ f̂ (ξ ,η) ĝ(ξ ,η)
ξ 2+η2 dξ dη ,

which are continuous on H−1/2(]−1,1[2 ;R). The bilinear form a(·, ·) is symmet-
ric and defines a scalar product inducing a norm which is equivalent to that of
H−1/2(]−1,1[2 ;R). The bilinear formã(·, ·) is skew-symmetric.
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