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Abstract The existence and uniqueness of an equilibrium solutiorictidnal con-
tact problems involving a class of moving rigid obstaclestigdied. At low friction
coefficient values, the steady sliding frictional contawitgem is uniquely solvable,
thanks to the Lions-Stampacchia theorem on variationgliakties associated with a
nonsymmetric coercive bilinear form. It is proved that tberciveness of the bilinear
form can be lost at some positive critical value of the fdotcoefficient, depending
only on the geometry and the elastic properties of the bodyexample presented
here, shows that infinitely many solutions can be obtainednathe friction coeffi-
cientis larger than the critical value. This result is pamime road towards a theory of
jamming in terms of bifurcation in variational inequalifyhe particular case where
the elastic body is an isotropic half-space is studied. Tdreesponding value of the
critical friction coefficient is proved to be infinite in thisse. In the particular case of
the frictionless situation, our analysis incidentallyfies the approaches developed
by Lions-Stampacchia (variational inequalities) and Eénarmonic analysis on the
half-space) to contact problems in linear elasticity.
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1 Background

The general contact problem in the theory of linear elagtigads formally as fol-
lows.

diva(u)+f° =0, inQ,
u=uP, only,
t g .n=tp, onf, 1)

Un — gp S O, tn S O, (Un — gp)tn == 07
onrg,

and “tangential boundary conditions”,

where Q denotes some smooth bounded open s@&%or R3, UL U =90Q
denotes a splitting of the boundary into three disjoint §aandn is the outward
unit normal. As usualy is the (unknown) displacemerd;(u) is the Cauchy stress
associated with this displacement by the linear elastistiotive law, and = ¢ -n
denotes the surface tractions. Any vector fieldefined on part of the boundary can
be splitted into its normal and tangential pakts= von 4 v;. The loading conditions
are defined byP (the surface displacement prescribedgntP (the surface tractions
prescribed orfy), fP (the prescribed body forces), agf (the initial gap with the
obstacle measured algebraically along the outward unihatm to 0 Q).

The simplest tangential boundary condition/@ns the frictionless one:

tt=0, onlg,

in which case, problem (1) reduces to the so-called Sighprablem. The existence
and uniqueness of the solution to the Signorini problem uagpropriate regularity
assumptions about the data was proved by Fichera in 196glimhiediately inspired
the theory of variational inequalities [10] which in turrrpetted to solve a wide class
of so-called free boundary problems.
Going back to contact problems in linear elasticity, thebpem of taking more

realistic tangential boundary conditions into accountrsemerged [2], focusing in
particular on the Coulomb friction law:

|tt|<*a@\tn = Ut:O,
[ti| < —Fty, and,
tt| = —Ftn, = ti=-Al withd c¢R",

or equivalently:
Vv, tt-(V—Ut)—ytn(|V|—|Ut|) >0, (2)

where.Z > 0is a given friction coefficient and the dot refers to a tinggieative. Due
to this time-derivative, the corresponding problem (1)drees arevolutionproblem,

which is sometimes called the Signorini problem with qustatic Coulomb friction.
This problem turned out to be extremely challenging. Existeof a solution was
proved only provided that the friction coefficient was snalbugh# < .%. (for a

recent account of the results about solvability, see [3far&ples of multiple solu-
tions have been constructed in the case of large frictiofffic@ts [7], and it has
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still not been established whether uniqueness holds tnsfall friction coefficients
although it has been found to be plausible in the case of espalfe [1].

In the Signorini problem with quasi-static Coulomb frigtighe contact zone (the
points on the boundary that are pressed against the obstelgected to consist of
a sticking zone and a slipping zone. These zones may evotbetiwie. This study
focuses on the situation where the obstacle is moving at staonvelocity and we
look for a steady solution to the frictional contact problérhis problem is simpler
than the previous one because no sticking zone can existligpihg must occur
everywhere in the contact zone. Thanks to this simple repiiatirns out that the
mathematical structure of the problem can be completelgrstdod. It is hoped that
this analysis will yield new insights into the more generad anore difficult Signorini
problem with quasi-static Coulomb friction. In any cases garticular situation in-
vestigated in this paper is obviously relevant to pract&aineering situations and
this study is therefore of interest for its own sake.

2 Global sliding frictional contact problems
2.1 The formal problem

Let Q be a smooth bounded open sefRiA or R3. The domain® is the natural ref-
erence configuration of some linearly elastic body obeyiegollowing constitutive
law:

o=L:g,
whereg is the Cauchy stress tenser= (Ou+'0u)/2 is the linearized strain tensor,
andIL(x) is the fourth order tensor of the elastic moduli, which polgsiaries in the
body and is assumed to satisfy the usual symmetry and posassumptions:

e:L:g=¢:L:¢g, e:L:e>a¢:¢,
for some constard > 0, and alle, &’. In what follows, we will use the notation:
o(u)=L: (Ou+'0u)/2.

Let us consider an obstacle moving at a constant velagityhile constantly
showing the same geometry (see figure 1)IRfy this means that the obstacle is
either a line moving at velocity parallel to the line or a circle rotating around its
center. In the latter case, the obstacle will be either thtermx or the interior of the
circle. In R3, the obstacle may be either a plane moving at velosityarallel to
the plane or an arbitrary surface of revolution rotatinguaidits own axis. But, as
suggested by one of the anonymous referee, it could also bel@al surface, like a
SCrew.

The problem under investigation is that of finding a steadpldicement (one
which remains constant with time) @, which is consistent with the unilateral con-
tact condition complemented with the Coulomb friction lawpart/; of the bound-
ary. Since the obstacle has a constant geometry, the uailandition reduces to
the usual Signorini one:

uh—g°<0, t, <0, (uh—gP)ta=0.
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Fig. 1 Steady sliding frictional contact problem.

Since the obstacle is moving and only a steady displacemeutLight, the sticking
zone must be empty and all the points in the contact zone wikrgo slipping at
velocity w. It should be kept in mind that, in the contditearizedelasticity, with
n denoting the outward unit normal in the reference configomandn’ that in the
deformed configuration, the surface tractioran be indifferently written either=
o-n ort =0 -n, since the difference is of a higher order. In the same spiivét
normal and tangential parts tfcan be indifferently defined using eitheror n’.
The “tangential boundary condition” expressing Coulomibtiion with slipping at
velocityw, in the context ofinearizedelasticity, therefore reads as follows:

tt = ytht/|Wt|.

This last equation implicitly involves the fact that the agity w at the point of the
obstacle first met by the outward normal to the body at somet pdithe boundary,
has been attached to this point, so tvatefines also a vector field dg.

Hence, the problem under investigation is that of findingspldicement field
in Q satisfying:

diva(u)+fP =0, in Q,
u=0, only,
t¥g.n=t", onfy, 3)

Unf gp S O, tn S O, (Un — gp)tn = 07 I_
onle,

tt = ytht/|Wt|,

where the velocity fieldv on I is assumed to be given and independent of time. The
body was taken to be clamped Gn(uP = 0), in order to slightly simplify the writing,
but this is no restriction of generality.
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2.2 A weak formulation

In this section, the bounded open 2tis assumed to be of claggl?, that is, to
be a Lipschitz set with outward unit normalo the boundary Q being Lipschitz-
continuous o Q. Let Iy, I, I} be three nonintersecting Lipschitz open subsets of
the submanifold Q, such thad Q = I, U UT;. The setd¢ or Iy may be empty but
notry.

Some data with the following regularity are givéh:c L?(Q), tP € L2(I}), gP €
HY2(I%), L € L°(Q) andw;/|w| is assumed to be a Lipschitz-continuous vector
field onl.. The elastic energy naturally defines the symmetric bilifiean:

a(u,v) d:ef/ eu):L:g(v),
Q
on the Hilbert space:
v(‘éf{u eHYQ) | u=0 onl'u}.

The bilinear forma(-, -) is trivially continuous orV. The fact that it is also coercive
(as defined in Appendix A) is also true, although it is difficta prove, and this is
known as the Korn inequality. Next, set:

H(‘éf{vev | vYw eV withw=0 onlg, a(v,w):O}.

which is clearly a nonempty closed subspac¥ oflenceH endowed with the norm
of V is a Hilbert space.

Theorem 1 For u,v € H such thatt(u) can be defined as an element 8f L), we
set:

def
b(uv) =" [ to(u) vi -/ i,
c
Then, i§-,-) can be uniquely extended as a continuous bilinear form on H.

Proof First, let us recall some basic difficulties about the spad¢&$(dQ) and
H*l/z(dQ) and the standard definitions introduced in [9] to overconesehdiffi-
culties. LetS be a Lipschitz open subset 8f2. Forv € HY/2(X), the extension of
v by zero ondQ \ = may failto be inHY?(dQ). On the dual side, the restrictiog
to < of somet € H-1/2(9 Q) may also faito be inH~/2(%). This led to formulating
the following definition ([9]). Set:

Hy () = {ve HY2(z) | Ve HY2(00)}.

To explain why the notation 00 is used (instead of 0), it stidad recalled here that
C>(2) is dense inHY/2(%). SinceZ is a Lipschitz subset odQ, one can find a
positive Lipschitz-continuous function : > — IR which vanishes at the boundary
0> of X2 atthe same rate as the distance function to the boundary:

L P(X)
Po€oz, M S a5
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The definition oﬂﬂgéz(Z) is equivalent (for a proof, see [9]) to:

Hoo (2) = {ve HY2(2) | p Ve L¥(z)}. @)

The space-loléz(z) is a Hilbert space for the norm:

def 2 —1/2,1|12 12
Mgz & (B + o 22)

(two different possible functions yield equivalent norms). The dual spa-d%z/(Z)
is larger thari-Fl/Z(Z) and the restriction t& defines a continuous linear mapping
/
H-22(9Q) s HY? (2).
DefineX as the interior oBQ \ I, in dQ. Itis a Lipschitz open subset ofQ.

Takeu € H andv € HééZ(Z) arbitrary. Since the trace operator is linear continous

and surjective fronv ontoHééz(Z), v is the trace otk of someV € V. Sinceu € H,

the expression:

a(u,v),

does not depend on the particular choic& efV and depends only one Hééz(z).

Since this expression is linear continuous with respevtetdﬁééz(Z), it defines an

/
element € Hé(/,z (Z) to which the generalized Green’s formula applies:

WeH, <t,v>Hl/2/Hl/2:a(u,v).
00 > '00

With u € V, it is not possible to define= g (u)-n ondQ, in general. However, with

u € H, we have dio(u) = 0, and the use of Green’s formula makes it possible to
/

definet =g (u)-nonZz, as an element of the dual space Hgéz (2), as well as the

normal and tangential partst;. It can also be seen thiiu) is supported i ¢ (it

vanishes orfy). Therefore, for all,z € H with z. = 0 on [, the bilinear form:

I_ctn(u)zn - <t’Z>H§éZI,H362 =alu.2),
is well-defined and continuous with respect to the norid of

To obtain the conclusion of the theorem, it is now only neetegrove that if
v € H, then:

Ve - W /W |

is the restriction td; of somez € HééZ(Z). But this should be clearly apparent from

the fact thatv /|w | is assumed to be Lipschitz-continuousigand the definition (4)
of HJ2(2). O
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Displacement fieldsi € V have a trace 0@Q, which belongs tH/2(9Q) c
L?(0Q), as well as the normal and tangential pargy. This fact can be used to
define the continuous linear forhonV:

I(v) d:ef/ vt [ Py,
Q JIt

which represent the external forces prescribed.ugebe the unique element &f
such that:
YWev, a(ug,Vv) =1(v),

which is an elastic problem whefgis free of surface traction. With € ug+H and
v € H, b(u,v) is well-defined and one has:

b(u,v) =b(u—ug,Vv).
Finally, we set:
K(j:ef{ve Up+H | va<dP onl‘c},
which is clearly a closed convex subseMofUnder the compatibility condition that:

(Uon—6°)" L max{ uon — g, 0},

has support contained in the interior & it is also nonempty. This compatibility
condition will be assumed to hold true in what follows. It iew possible to obtain
the weak formulation of the steady sliding contact problasproposed.

Problem I. Findu € K such that:

Y e K, a(u,v—u)—Zb(u,v—u) >I(v—u).

Standard use of Green’s formula makes it easy to prove tlenfiolg proposition.

Proposition 1 Any regular solution of problem (3) is a solution of problepahd
conversely, any regular solution of problem | is a solutidpmblem (3).

To prove the existence and unigueness of a solution to prohlé will be con-
venient to shift the unknown functianas follows:
—def
u=u-Uu.

Set: e

K= {\7€H | Vn < ¢ —Uon onl'c},
which is clearly a nonempty closed convex subsét ¢inder the above compatibility
condition betweenig andgP), so that problem | can be equivalently rewritten:

Problem I. Find U € K such that:

WekK, a(u,v-u)—.Zbu,v—u)>0.
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Theorem 2 The bilinear form:
HxH — R
u,v — a(u,v) — Zb(u,v)

is continuous on Hk H (recall that H is endowed with the norm of V). There exists
uniquely.%; € ]0,+] such that the above bilinear form is coercive (as defined in
Appendix A) fol0 < .% < .%¢, and is not coercive for any > %.

Proof A corollary of the Korn inequality is tha{/a(u,u) is a norm orV, which is
equivalent to the norm induced Iby*. It is therefore also a norm dd. Theorem 1
states thab(-, ) is continuous om:

Yu,veH, b(u,v) < By/a(u,u)~/a(v,v), (5)

for someB > 0, so the same is true fa(-,-) —.%b(-,-). But, inequality (5) entails
that the bilinear form is coercive for a¥ such that:

0< ¥ <1/B.
Let us now assume that it is not coercive in the case of séigehat is:
a(vo, Vo) — Fob(vo, Vo) < 0,
with somevg € H. This entails:
V.Z > F, a(vo, Vo) — Fb(vo, Vo) <0,

that is, the bilinear form is not coercive either, with a#y> .%(. This completes the
proof. O

Straightforward application of the Lions-Stampacchiatieen (theorem 6 in Ap-
pendix A) now yields the following corollary.

Corollary 1 Let.# € [0,.%.] be arbitrary. Then, problem | has a unique solution.

Remark 1The above existence and unigueness result was obtained fmbérary
given vector fieldw on I, provided thatv; /|w;| is Lipschitz-continuous ofic. The
vector fieldw is allowed to be fairly general and does not need to origifrata a
moving rigid obstacle with invariable geometry. Howeveareanust adress the ques-
tion of knowing whether some geometries of obstacle muskbleided of the theory
because the resulting vector fielg/|w: | escape from being Lipschitz-continuous on
Ic. For bidimensional problem, it is readily seen tha} |w;| is either the constant
+1 or —1, whatever the geometry of the obstacle is. So, no particita@ation is
excluded from the analysis in the bidimensional case. Intiree-dimensional case,
some particular situations must be excluded. One examie isituation where the
obstacle is a surface of revolution rotating around its owis.& he case wherig can
meet a point belonging both to the obstacle surface and t@todution axis must be
excluded. Indeed, such a point has vanishing velogignd the vector fielav; /|wi|

is not Lipschitz-continuous on a neighbourhood of that pdidon’t know whether
this difficulty can be overcome by refining the mathematicallgsis or not.
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It turns out that the general steady sliding frictional @mttproblem in linear
elasticity is governed by a variational inequality asstaciavith some non-symmetric
bilinear form. Theorem 2 states that there exists a (nonpessibly infinite) critical
value of the friction coefficient that deletes the coergivt that bilinear form. This
critical value depends only on the geometry of the problédat(is,Q, Iy, I, 1, and
w; /|wi|) and the elastic propertidis(x) of the body, bunot on the loading (that is,
fP, tP andgP). The following two questions arise here. Is it possible tha critical
coefficient.%. can be finite ? And, if so, what happens wh&n> .%; ? The aim of
the next subsection is to give an example which helps to artfwsee questions.

2.3 Analysis of an example

The example given in this section is on similar lines to thraspnted by Hild [7], in
a slightly different context.

Let Q C R? be the triangle having the verticés= (0,0), B = (1,0) andC =
(Xe,Ye) (Wherex. € ]10,1] andy; > 0 will be fixed later on). We takéB as/l¢, BC
asl, andAC asl;. This geometry does not meet the regularity assumption rade
the beginning of section 2.2, but it can readily be checkedl &l the results given
in section 2.2 apply to this particular geometry. It will besamed that the body
remains free of body forcd8 = 0 and that; remains free of surface tractioh= 0.
The rigid obstacle will be the half-spagec 0, so thagP =0, and is assumed to move
at a constant velocityw > 0 along thex axis. The material is assumed to be linearly
elastic and homogeneous isotropic with Young’s modius 1 and Poisson ratio
vel-11/2|.

The aim here is to analyse the corresponding steady slidintjohal contact
problem. It can be easily checked that the null displacerfieltt always gives a
solution to the problem. From corollary 1, it is known that#f < %, then there
exist no solutions other than the null one. Therefore, if weeable to find a nonzero
solution to the steady sliding frictional contact problehis will provide us with an
example whereZ; must be finite

R \

Fig. 2 Geometry of the steady sliding frictional contact problem.
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In line with Hild [7], only linear displacement fields (that is, displacement fields
whose both components are linear functions of the spaceablasx andy) will be
considered. SincBC is clamped, such a linear displacement field is fully detagdi
by the displacement of poit. Only cases wherdB remains in contact with the
moving obstacle will be considered, so that the displacemigmoint A will be taken
to be of the form(3,0), and the displacement field @ will be fully determined by
o:

b0ey) = 8[(1=2) — (1=xy/¥e|.  wylxy)=0.

The corresponding stress fieddu) is constant in2, and has the following compo-
nents:

o(1—v) (1—xc)0 ov

=T anary) T Tty YT T a—2vat vy

so that its divergence vanishes. The outward unit normal;dmas the following
components:

M= —Yo/\/Xe+Y2,  Ny=>X/\/X2+Y2

Hence, the surface traction vanishes identicallyahand only if v > 0 and:

v
Xe=1-2v, Ycz(l—ZV)\lﬁv (6)

which will be assumed from now on. The surface tractiorfpwhich has(0, —1) as
outward unit normal, reads as:

o (1—xc)0 - ov

T adtv) YT @ 2v)ry)

This is consistent with sliding in the Coulomb friction lafxaind only if:

550, 9:(172v)(17xc): 17v. %
2vye v

In conclusion, if (6) and (7) are assumed to hold, then thedstsliding frictional
contact problem will have infinitely many solutions2> 0 can be chosen arbitrarily.

2.4 Discussion

Frictional contact problems in linear elasticity for whiglsteady solution is expected
are very commonly encountered. In particular, every magHike a car engine, en-
ter this class. It is common experience that, if such a stsliding equilibrium can
be met in some circumstances, it can happen that it is not msbre other cir-
cumstances like in the case where oxydation took placeyeind an increase of the
friction coefficient. In such a situation, the machine casé&en to be unable anymore
to run steadily. This phenomenon is caljathming or seizure
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The above analysis provides a germinal theory of jammingrims of bifurcation
in variational inequality. Indeed, the analysis has redube steady sliding frictional
contact problem to that of finding € K, such that:

Y eK, a(u,v—u)—.#b(u,v—u) >0,

whereK is some closed convex cone in a Hilbert space;) the bilinear form asso-
ciated with the elastic energy (it defines, as usual, a coatia coercive symmetric
bilinear form on the Hilbert space)? is the friction coefficient ant(,-) a (possi-
bly non-symmetric) continuous bilinear form. As a consewe if # > 0 is small
enough, the steady sliding frictional contact problem hzes @and only one solution.
But, coercivity can be deleted by some finite critical valée > 0 of the friction
coefficient. Examples of multiple solutions fo¥ > .%; can be exhibited. It is in-
teresting to note that the critical valug; depends on the geometry of the problem
and the elastic properties, but not on the force which is tz@dess the components
together.

These facts must be paralleled with the familiar picture ofeE buckling of a
straight inextensible elastic rod with one clamped end aedother end submitted
to a given compressive axial force of intendity> 0. The problem of finding small
deflections from the straight configuration reduces to théihding u € L, such that:

Yel, a(u,v—u)—Fb(u,v—u) =0,

wherelL is some closed linear subspace in a Hilbert spagce,) the bilinear form as-
sociated with the elastic energy (it defines, as usual, aragmis coercive symmetric
bilinear form on the Hilbert space), abd, -) a symmetric continuous bilinear form.
A familiar analysis states that there is a finite criticaluel. > O (the Euler crit-
ical load) of the forcd~, such that the overall bilinear form is coercive for< F;
and the straight configuration is the only possible equiito; and such that the co-
ercivity is deleted folF = F.. A a consequence, infinitely many curved equilibrium
configurations are obtained fbr= F; : this is Euler buckling.

Let us conclude the discussion by mentionning that the elisqior discretized)
counterpart of the steady sliding frictional contact pesblwas studied in [8], using
the theory of linear complementary problems. A criticalweal?; of the friction co-
efficient was obtained, but no information about the behavas that critical value
when refining the mesh was accessible. The analysis of thinoam problem in
this paper fills the gap.

3 2-D local sliding frictional contact problems
3.1 The formal problem

Let us consider the case of an isotropic homogeneous lingladtic two-dimensional
half-space defined by > 0. The Poisson ratio is denoted byc |—1,1/2[ and the

unit forces are chosen so that the Young’s mod#&us 1. Prescribing the following
conditions at infinity:

lim o(u) =0, u=0(log(r)), asr—w,
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and the compactly supported surface traction distribution the boundary, the sur-
face displacement is expressed as:

1 dug 1 1% (1) 1-2v
2(1-v2) dx nfmt—xdtJrZ(l—v)tn(X)’

1 dun 1f°° tn(n)dt 1-2v

21—v2) dx  mf,t—x 2(1—v)tt(x)’

where the sigrf recalls that the integral should be understood in termseo€dwuichy
principal value. The above expression is the explicit fofrthe Neumann-Dirichlet
operator of the isotropic homogeneous linearly elastic-dimoensional half-space.
The derivation of this explicit form is sketched in [1]. Therface displacement is
obtained up to an arbitrary additive constant, which isrimteted as being a rigid
motion. The arbitrary rigid motion cannot be fixed by presicry appropriate condi-
tions at infinity since the displacement field is generalljnite at infinity. In addi-
tion, although the stress field is zero at infinity, it is gextlgmot square integrable, so
that elastic solutions in the two-dimensional half-spaseagally have infinite elastic
energy. In particular, it is not possible to use the elasiiodar forma(-,-) of the
half-space as in the case of the bounded body to analysectqrtzblems on the
2-D elastic half-space. However, it was shown in [1] how the eiplorm of the
Neumann-Dirichlet operator can be used to introduce adaliformay-,-), which
can play exactly the same role as the elastic bilinear foihis ffick will also be used
here to analyse the steady sliding frictional contact probl

Consider some rigid obstacle, the geometry of which is ddfmethe equation
—z=(x) (x€]-1,1[), moving at a constant velocity > 0 alongx, which is as-
sumed to be parallel to the boundary of the half-space (seefR). Set:

— u — 1)} 1-2v
u= -7 (’Ufiz(l—vz)’ and y= 72(1_\/)6]0,3/4[.

The steady sliding frictional contact problem is formalat of findingt(x), ux) :
]—1,1] — R such that:

1
o 2¢ Waonw =g,

T t—x

1
o 2 W=,

T t—x
L4 LTnSq_]7 tn§07 (U_n*@tnzov
L4 tt:_ytn;

/jltn(t)dt -

whereP > 0 is the given normal component of the prescribed total fes@rted on
the moving obtacle. Focusing on the normal componentddtisal problem reduces
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N\

w
X

E=1

v
Fig. 3 Geometry of the problem.
to findingtn(X), Un(x) : ]—1,1] — R such that:

1 (1 ta(t)
o 2f Bty -q, ©

3.2 A weak formulation

Some useful facts, detailed proof of which can be found in4té first going to be
recalled. With arbitrary € H~%/2(]—1,1[), the following convolution products:

telog|-|,  txsgn.),
(where sgfr) is the sign function) define distributions ov@rwhose restrictions to
the interval—1,1[ are inHl/z(]—l, 1[). In addition, the bilinear form defined by:

t1,to — *<tl * |Og|X|,t2>H1/2,H,1/27

is symmetric and positive definite. It therefore defines dasqaroduct on the space
H*l/z(]fl, 1[), and this scalar product induces a norm that is equivaletitatbof

H~1/2 (see [1] for a proof). The bilinear form:
tj_,tz — <t1 * Sgr(X>at2>Hl/2’H71/2’

can easily be seen to be skew-symmetric. It is continuoud ol x H-1/2. As a
result, the bilinear form:

def 1 yF
bta.to) €T (trlogdte) oyt (s e)

is continuous ol ~1/2 x H=1/2 and coercive in the sense defined in Appendix A, for
all. # > 0.
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An element € H~%/2(]—1,1[) will be said to be nonpositive (notatiarx< 0) if:
vv e HY2 with v > 0, {(t,V) 12 12 < O.

This implies, in particular, thatis a nonpositive bounded measurd e, 1]. Setting:

KEtenY2(-11) [ <0, (£1)=-P},

where 1€ H'/2 is the function which identically takes the value 1, we hawefol-
lowing weak formulation for the formal problem (8) govergithe normal component
tn of the surface traction exerted by the moving obstacle.

Problem II. Let.Z,P € R be nonnegative, anf € H¥/2(]—1,1[). Findt, € K such
that:

vieK, b(tn,f*tn) > <4_’7f*tn>H1/2’H71/2-

Straightforwardly applying the Lions-Stampacchia theo(éheorem 6) gives:
Theorem 3 Problem Il has a unique solution.

Remark 2Using t; = —.%t, and the explicit knowledge of the fundamental solu-
tion to the Neumann problem on the isotropic homogeneoesitly elastic two-
dimensional half-space (expressions for the displacefieddiand the stress field are
recalled in [1]), the corresponding displacement and stiied in the half-space can
be expressed as a convolution with the solution of problerilie displacement is
infinite at infinity if and only if P > 0 and the stress field is square integrable if and
only if P =0, that is, if it vanishes identically.

Remark 3The bilinear formb(-, -) is symmetric if and only if the friction coefficient
Z# = 0. Therefore, the unique solution of the frictionless peobis characterized as
the unique solution of a minimization problem. Note, howetreat this minimization
problem isnot that of elastic energy, since the elastic energy in the $yadice of the
solution is infinite whenevel > 0. In the caseZ > 0 where friction is taken into
account, the bilinear forrb(-,-) is not symmetric and the unique solutignof the
variational inequality is not characterized by a minimiaatproblem. Note that the
contact zone dependspriori on the value of the friction coefficien¥ .

Remark 4Note that the proof of theorem 6 is constructive and yieldsédfore a
computational method for obtaining approximate solutiartg in the case of a mov-
ing obstacle with the arbitrary geometfyc H/2. In the next section, it is proposed
however, to review some simple geometries with which antexgulicit solution can
be exhibited.

3.3 Some exact solutions

These explicit exact solutions were presumably first oletioy Galin [5].
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3.3.1 The case of a moving rigid flat punch

Let us take the case where the moving obstacle is a flat rigidipwith a finite width
2a. This geometry leads to selectifig= 0 € HY/2(]—a,a[). Trying to find a solution
with active contact everywhere under the punch, we are lddadk for a function
satisfying:

a
}f @dH ygftn(x) =0, fora.axe ]—a,a[,
mJ_at—X

. /:ltn(t)dt P

Applying a theorem of Sohngen, which is recalled in [1] thtem 13 in [1]), the

unique solution il (—a, a) d:EfUp>1Lp(fa, a) is given by:

tn(X) = —P cosna
m(a+ X)1/2+G (a— X)1/27a ’
B -P 1
T /IR @

where:

1
a= T—Tarctan/ﬁ €10,1/2[.

This function is negative and belongs Itbl/z(]—a, a[). It is therefore the unique
solution to problem Il with the specific geometry of the flahph.

Fig. 4 Normal component of traction induced by a moving rigid flahglu at the surface of an elastic
half-space.

The normal pressure under the punch is singular at both eligethe singularity
is weaker in the front and stronger at the rear edge of thefpdrte pressure always
reaches its unique local minimum in the front half of the guatthe abscissa:

x=20a € [0,a].
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3.3.2 The case of a moving rigid parabola

Let us take the case where the moving obstacle is a rigid plratith radius of
curvatureZ/(2(1— v?)) at the minimum. The corresponding functignreads as
follows:

The unknown normal componetqtof the traction exerted by the moving parabola is
sought for in the fornth (X) = p((x— ¢)/a) with (x—c)/a € [—1,1], wherep is some
unknown function and anda are real constants. These unknowns must satisfy:

L f P _ ., _C+as
. I_Tf,ersdHpr(s)i Z fora.ase]-1,1],

1 _P
. ./71 p(r)dr = R

Applying once more Sohngen’s theorem (theorem 13 in [1])the solutions in
L¥*(—1,1) can be written:

N 1 1 (1 (14039 (1-1)39 crar
ta(c+as) = p(s) =— (1+ yzgzzm'x TT}{1 (1t+s)ita(l_gia 1—s dr
n y7 (c+as P y 1
(1+ szz)%’ may/1+ VZyz (1+3)1/2+a(1_s)1/270’

9)

where: 1
a= Earctan/ﬁ €10,1/2[.

This expression has the following limits:

P
li 1 1/2+a 1— 1/2—a - _
im (1+8757(1-97""p(s) PNaarr s

1 B 1/2—a
1 1/ <1 r> (c+ar)dr,

T+ ye7z m)oa\1e

lim (149)Y279(1—9)Y2%p(s) = — P

- Tyt 27l

1 1L /14r\ Y2
+—(1+y222)% ><7—_[/71 <—1—r> (c+ar)dr.

If one of these limits does not vanish, then the surfaceitmactt the corresponding
edge of the contact zone will be singular. Using the asynpéstimate of the Hilbert
transform of a function with power singularity at the eddgetirem 8 in [1]) in the

equilibrium equation (8), it can be readily checked tha 8ihgularity of the surface
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traction at the edge of the contact zone, would induce a &niguof uj,(x) just
outside the contact zone, which would result in the penetraif the half-space into
the rigid obstacle just outside the contact zone. Sinceptbssibility must be ruled
out, the above two limits must vanish. These two limits angaéd and only if:

! c+ar
/71 (14-r)Y/2-a(1—r)Y/2+a dr = 0. (10)

The change of variable = log 1 l“ and the residue theorem results in:

1 1 . oo g(1/2+) . -
/71 (14r)Y/2-a(1—r)l/2ta r_./foo 1re M Cosma

171 1/2" +eo Del(l/2+aju m(1—2a)
/(1+r) / (14e4)? du= cosra

so that condition (10) is equivalent to:

c=—20a. (12)
Then, since:
/l 1—r 1/2"rdr/+°°2e<1/2+0 “(1-e)  _ _mi-2a)?
i\ 1+r I (1443 - 2cosma

the common value of the two limits vanishes if and only if:

2 PZ%

& T on(lj4—a?) (12)
. —tn(X)
N er
|
|
| X
w 7(142a)a‘ | ‘(1 éa)

Fig. 5 Rigid parabola moving at the surface of an elatic half-space

From now on,c anda are taken as in formulae (11) and (12). Based on step 1
(with a(x) = 1) in the proof of theorem 14 of [1], we have the following idign for
e]l-1,1[:

1 1-n\Y2 % dr 1-s\Y2 e 1
L) ()L
mJ_1 \1+r r—s 1+s cosra
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which entails that:

S+ 2a
dr = tanma (1—s)Y/279(14-9)/2+0 Stea
/1 r-—s cosma

1 erl (17 r)l/2—0(1+r>l/2+a

Upon injecting the latter identity into formula (9), it cas been thatl + s)%/2+% (1 —
§)/2-9p(s) is a second order polynomial. Since this polynomial vargsite = +1,
formula (9) simplifies into:

p(s) = C (1+8)Y29(1—g)"/2%,

with some constan€ which has to be determined by the conditiﬁj‘hl p(s)ds =
—P/a. This gives:

—P cosna 1/2—a 1/2+a
~1

- {(14— 2a)a+ x} e {(1 —2a)a— x} 1/2+a-

N

The contact zong-(1+ 2a)a, (1 — 2a)a) is shifted towards the rear of the parabola
and the maximum amplitude of the surface traction is reaahee- —4aa, which is
always in the rear half of the contact zone.

The above functiony(x) is negative and its extension by 0 outside the inter-
val ]—(1+ 2a)a, (1— 2a)a] belongs taH /2. It is therefore the unique solution to
problem Il in the case of the specific geometry of the parabola

3.4 Miscellaneous extensions
3.4.1 Handling inertial effects

In all the above analysis, inertial effects have been négdeand since the half-space
is assumed to be free of body forces, the stress field in tliespate satisfies:

diva(u) =0.

However, it makes sense to look for a steady solution (thatéenstant displacement
field in the moving frameWwithout neglecting the inertial forces. In this case, the
equilibrium equation has to be replaced by:

2
ox2’

Introducing the velocities, > ¢s of the pressure and shear waves in the isotropic
elastic medium:

diva(u) = pw?

5 1-v 2 1

E
ST arva-2vp ST 20iv) o
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the fundamental solution of the corresponding Neumannlerolon the half-space
is recalled in Appendix B in the subsonic cage< cs < cp. It yields the following
expression for the corresponding Neumann-Dirichlet dpera

du  2(1+v) Bs(1-B2) 1 1™ t(t) ., 2(1+V) (1+B&) —2BpBs
ax E R E?'[,mtfxdt—'— E R ),

dun 21+ v) Bp(1-B2) E}[W () , _ 20+V) (1+B§)72Bpﬁstt(x)

dx E R m) ot—X E R
where:
w2
= 1——
Bp C%,
w2
Bs = 1*0—5,

R= 468~ (1+B2)°.

The functionR(w) has one and only one root on the interi@lcs[. This root is the

velocity of the Rayleigh waves and is denoteddpyThe functionR(w) is positive

in ]0,¢,[ and negative ifc;,cs[. This expresses the fact that a resonance actually

occurs atv = ¢; and the steady sliding frictionless contact problem is newiuely

solvable whemw € |c;, cs[. From now on, it is assumed thate |0, ¢ [, so thatR > 0.
Setting:

. E R

T 20TV Bo(1-p2) ™
(14D -2BBs (. 1-2v
V(W)*W ( 0)=y= m)

it can be easily checked that the steady sliding frictiomaitact problem involving
inertial effects is still governed by the formal problem {@8which y is replaced by
the new constant(w) defined above. Hence, everything that is said in the analysis
sections 3.2 and 3.3 applies to this new situation. In padicprovidedw < ¢, the
steady sliding frictional contact has a unique solutiorfirdel by some;, € H/2,
Explicit exact solutions are obtained in the case of a moflatgpunch and a moving
rigid parabola.

3.4.2 Local sliding frictional contact problems involvingassive bodies

Let us consider a contact problem involving some massiwaielaody with smooth
boundary. If the analysis is restricted to the situation iehibe diameter of the con-
tact zone remains very small in comparison with both theusdf curvature of the
boundary near the contact zone and the thickness of the Hdihg @ontact zone,
then the displacement and stress fields in the elastic badipeally very close to
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the ones that would be induced in a half-space by the samaatquessure. Now,
let us assume that two such elastic bodies, possibly madiéfefesht materials and
indexed respectively by 1 and 2, come into contact. The aisly restricted to the
two-dimensional setting and the geometry is assumed to bsistent with steady
sliding. For example, one can take body 1 to be a fixed bodyavithrbitrary smooth
geometry and body 2 to be a cylindar, rotating steadily agldtsaxis of revolution
(see figure 6). Restricting the analysis to the situationre/kige contact zone remains

W) W
2

Fig. 6 Steady sliding local frictional contact problem.

very small in comparison with each of the radii of curvatufrthe bodies, and taking
the spatial coordinate along the contact zone (in the direction of the sliding of 1
with respect to 2) andalong its normal (the outward normal to body 2), the normal
component of the displacements induced at the surface ié®ddnd 2 by a surface
traction 1— 2 with componentéty = —.%t,,t,) reads:

Coo 214 vy) Ba(1-BF) 1 [ (1)
Ua () =~ E1 Ry = E}[t—xdt
L 2A1+w) (1+B3) — 2Bp1Pa F),
E1 Ry

o 2014 vy) Be(1-B3) 1 [ (1)
Uz (X) = =) R, 7_Tft—xdt
N 2(1+vp) (1+ Bé)*zﬁpzﬁszytz(x),
E, Ry

with the same notations as in the previous section. The gegrokthe initial gap
between the two solids is defined by some functjgrup to some arbitrary additive
constant, so that the non-penetration condition can béenrit

VX, Uz (X) — Uz (X) < (),
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(see figure 6). Setting:

_ def U (X) — U (X
OUz(x) = 22(2) 20 —,
2(14vy) Ba (1-53) L 2Lv) B (1-B3)
E1 Ry E R
- def l.U(X)
i) & . —,
201vy Pa(1F2) | 21tvy) Po(1-B2)
E; Ry E, Ry
2(14vy) (1+B83) ~2BpiBar | 2(1+vy) (1+83) —2Bpobe
— def - El Rl + E2 R2
y(w) = ; > ,
2(1+vq) le(lfﬁsl) 4 2(14v,) Bsz(lfﬁsz)
Ep Ry Ep R

it can be seen that the normal comportgif the contact traction 4> 2 is governed
by the formal problem:

. 711 f Z ttzftz( ot + VW) Fto(x) = SiL,(),

o O0;<y, <0,  (3U—-¢)t;=0,
. / t(t)dt = —P,

Hence, the whole analysis in sections 3.2 and 3.3 appliésso¢w situation. In par-
ticular, providedwv < ¢1, G2, the contact pressutgobeys some variational inequality
in H~-1/2 which has a unique solution, thanks to the Lions-Stampadbieiorem. An
approximation of this unique solution can be computed bylémgnting the method
in the proof of the theorem. In the case where the initial gap guadratic func-
tion (for example, in the case of two cylinders), then thigque solutiont, of the
variational inequality is explicitly known. The analysiatarally encompasses these
situations where the inertial effectgy(p> — 0) and/or the friction.& — 0) are ne-
glected, as limiting cases.

4 3-D local sliding frictional contact problems

In this last section, it is proposed to describe how the tefilitained in section 3.2
can be transposed to a three-dimensional setting. Corklesotropic homogeneous
linearly elastic three-dimensional half-space 0, with Poisson ratiw € |—1,1/2],
Young’s modulu€ = 1, and the following condition at infinity: ligmu = 0.

Let us also take some rigid obstacle, the geometry of whidefmed by some
equation—z = g(x,y) (x,y € |—1,1]), moving at a constant velocity > 0 along
X, which is assumed to be parallel to the boundary of the s (see figure 3).
Using the results given in Appendix C, the steady slidingtional contact problem
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is formally that of findingt(x,y), un(x,y) : ]—1,1[> — IR such that:

// = tnrs )drds

1+v) 1 2v) frt (r,s
+J( + // nl ))Zdrdsun(x,y),
o u <, th <0, (un—(,u)tnzo.
Set:
_ mEu —  TEyY 1-2v
= = = 4
U=1—3 W¥=7—, ad vy 20-V) €10,3/4],

so that the formal problem now consists in findtagi, : ]—1,1[% — R such that:

tan
//\/ )Zdrds (13)
+yy// _rt”rs))zdrds:m(x,y),
e <y, t<0  (h-¢)th=0 (14)

To obtain a weak formulation of the formal problem (14) in #perit of section 3.2,
we set:

KE{ReHY2(-11P) | we HY2withv=0,  (EV)y 1202 <O},

which is a nonempty closed convex subseitof/2, and:

b(f, g)def<fg*;> . <fg* X >
’ /X242 H-1/2 H1/2 2+y2 H- 1/2H1/2

which is a continuous, coercive (as defined in Appendix Apb#r form orH /2 in
view of proposition 3 in Appendix C. We then obtain the foliogyweak formulation
for the formal problem (14) governing the normal comporngaf the surface traction
exerted by the moving obstacle.

Problem Ill Let .# € R be nonnegative an@l € HY/2(]—1,1[%). Findt, € K such
that:

VfG I‘<7 b(tn, ) <Ll_] >H1/2,H71/2'

Straightforwardly applying the Lions-Stampacchia theo(éheorem 6) gives:

Theorem 4 Problem Il has a unique solution.
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Remark 5Using ty = —.%t, and the explicit knowledge of the fundamental solu-
tion to the Neumann problem on the isotropic homogeneoestiy elastic three-
dimensional half-space (expressions for the displaceffieldt and the stress field
are recalled in Appendix C), the corresponding displacdrard stress field in the
half-space can be expressed as a convolution with the gpltdiproblem III.

Remark 61f  is positive, the obstacle moves above the half-space wittontact.
In that situation, the unique solution to problem Il is obwslyt, = 0. The situation
differs from the case of the two-dimensional half-spacesrglit was only possible to
definey up to an arbitrary additive constant, since the displacefied in the half-
space was infinite at infinity. We were obliged to paramettieeproblem by the total
normal forceP exerted on the moving obstacle. In the three-dimensioti@hgethe
situation is different, and the problem is parametrizea:hsr the prescribed height
of the obstacle (this information is embedded in the dath@fiinctiony). However,
even in this three-dimensional setting, it is possible k& ta similar problem to the
one addressed in section 3.2, where the height of the motisi@de is free and the
total normal force® exerted on the moving obstacle is prescribed. The correipon
formal problem is that of finding € R andty,un : ]—1, 1[2 — R such that:

tan

//\/ )Zdrds (15)
+Vy/ / —r tan))zdrdS:U_n(X,y),

o M<3+y, %<0, (Jn—a—u?)tnzo, (16)

1,1
//tn(r,s)drds:f
-1J1

K/def{ cH 1/2(]7171[2) | t<o, <f,1>:—P},

Setting:

where 1€ H1/2 is the function identically taking the value 1, we obtain thkowing
weak formulation for the formal problem (16) governing tleemal componertt, of
the surface traction exerted by the moving obstacle.

Problem III'. Let.#,P € R be nonnegative, anfi € HY/2(]—1,1[%). Findt, € K’
such that:

er K/7 b(tmf_tn) Z <l1uaf_tn>Hl/2’H—l/2'

Straightforwardly applying the Lions-Stampacchia theo(éheorem 6) gives:

Theorem 5 Problem III' has a unique solution.
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Appendix A: the Lions-Stampacchia theorem

The material presented in this Appendix is reproduced frbdj.
Let H be an arbitrary Hilbert space, the scalar product and normhi¢h are
denoted by(-,-) and|| - ||. A bilinear forma: H x H — R is said to be:

e continuousif there exists a real consta@tsuch that:
vuveH,  [auy)| < Cllull|v],
e coercive if there exists a real constant> 0 such that:
YueH,  a(uu)>alul?

Theorem 6 (Lions-Stampacchia) et &-,-) be a coercive, continuous bilinear form
on a Hilbert space H, and let K be a nonempty closed convexesalb$l. Given an
arbitrary ¢ € H’, there exists uniquely @ K such that:

WeK, a(u,v—u) > (¢,v—u). 17)

In addition, if a issymmetric then u is characterized by being the unique minimizer
of the functional:

1
5 a(V,V) - <¢7V>a
over K.

Proof Based on the Riesz-Fréchet representation theorem, éRists uniquelyf €
H such that:
YWeH, (¢,v) = (f,v).

Similarly, given an arbitrary € H, the mapping/ — a(u,v) is a continuous linear
form, and there exist8u € H such that:

YWeH, a(u,v) = (Au,v).
Obviously,A: H — H is a linear mapping such that:

vueH,  |[Aul <Cllul,
YueH,  (Auu)>aul?

The variational inequality (17) amounts to findiag K such that:
YWeH, (Au,v—u) > (f,v—u).
Arbitrarily taking p > 0, the latter inequality can be rewritten:
YweH, (pf —pAu+u—u,v—u) <0,

or equivalenty:
u=proj|pf — pAu+u,Kj.
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The original problem therefore reduces to that of finding edigoint of the mapping:
Sv=proj|pf — pAv+y, K}.

Therefore, the claim will follow from Banach fixed point them provided that the
mappingSis a strict contraction, that is, there exikts: 1 such that:

VV]_,VZGK, ||SV178\QH SLHV1*V2||7

for some appropriate value pf But, in view of the contraction property of the pro-
jection ontoK, we obtain:

2
15w~ Sw|1? < [[(v1 —v2) — p(Av — Avy) ||,
2 2
< |lvi— V2" — 2p (Avs — Ao, V1 — Vo) + p?||Avy — Ava |7,
< (1-2pa+p?C?)|lvy— V2H2,
and the constant between brackets in the last term is made smhbller than 1 by
taking' p in 10, Za/CZ[. It should now be clear that the desired conclusion follows
from Banach'’s fixed point theorem.
In the particular case wheeds symmetric, thema defines a new scalar product on

H the associated norm of which is equivalent to thatoBased on the Riesz-Fréchet
representation theorem, there exists uniqgetyH such that:

WeH,  ($.v)=a(gV).
The variational inequality (17) can therefore be rewrigeuivalently:

YWeH, alg—uv—u)<o0

— ?

which states that is simply the projection o onto K. Thus,u achieves the mini-
mum:

mina(g—v,g—v),

or equivalently:

(,Qi;? [a(v,v) —2a(g,v)],

or equivalently:

@i&][%a(v,v) - <¢,v>] .

1 when the solution is to be computed numerically, the besicehaf p is a /C?.
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Appendix B: moving line load on the surface of a half-space

The material presented in this Appendix is adapted from ok j4].

Let us consider an isotropic homogeneous linearly elagti:dpace. Some or-
thonormal Cartesian coordinate systéry,z) is chosen so that the half-space is
defined byz > 0. Since only the plane strain situation will be considerecehit is
convenient to take:

o {(x,z) €R?; z>o},

to denote a corresponding two-dimensional “slice” of thé-space. The Young'’s
modulus is denoted b, the Poisson ratio by € |—1,1/2[ and the volumic mass
by p. We takec, > cs to denote the velocities of the pressure and the shear waves i
the isotropic elastic medium:

5 1-v E ) 1 E

= (1+v)(1-2v) p’ G 2(1+v) p

Let us consider the situation where some homogeneous {6%cE;) concen-
trated along the moving lime=wt, z= 0 of the boundary is applied to the half-space
which is assumed to be free of body forces. A steady displaoéfield is sought,
that is, a displacement field which is constant in the moviagnke. The variables
andz will be also used in the moving frame. As usualis taken to denote the dis-
placementg(u) to denote the associated linearized strain tensorggngito denote
the corresponding Cauchy stress tensor.

Only thesubsonicsituation:

O<w<cs<Cp

will be considered here. We therefore set:

W2
Bp: 1——2,
o
W2
BS: 1_C_§,

R= 4B~ (1+B2)"

The functionR(w) has one and only one root on the interM@ks|. This root, which
is the velocity of the Rayleigh waves, is denotedcbyln what follows, the specific
valuew = ¢ is excluded.

Theorem 7 Let (Fy, F7) € R? be taken arbitrarily. All the tempered distributions=
&' (Q;R?) such that:

V¢ €CP(Q;R),

) e Ouk 0« _
<0|J (u), &ji (¢)>y},!y - PVV2<W; W>y/y = F«¢x(0,0) + F2¢,(0,0),
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Cc2(Q; ]RZ) stands, as usual, for the space &f @st-functions compactly supported
in the closed half-spac@) are given by:

U = FUS (X, 2) + F,Ud(x, 2) + Dy + Q2+ (1 — v x 3 JE,
Uy = FkU(x,2) + F,UY(X,2) + D, — Qx— v(1+v)zZ JE,

where O, D,, Q, = are four arbitrary real constants, and3J U2, UZ, UY, are the
four functions in ©(Q;R) defined by:

ud = ﬂ{Zﬁsl g(X +B2 22) Bs(ll;rﬁsz) |Og(X2+[35222)},

ne
_2+v)f14+p2 2BpBs X
ud = — — { = arctan[?Z - arctan[zZ },
o _  2(1+V) [2BpPs x 142 X
Uy = — - { R arc tanﬁ R arctanﬁt}
USZ: 1:EV{BD(1I;LBSZ) |Og( +Bp22) Bp |Og( +BSZZ)}

The corresponding Cauchy stress field is given by the threetiins in C’(Q;R)
defined by:
Oxx(U) = —B{ZBS(ZBZ—BZ‘*‘ )7 2[35( +B2)L}
p Ps X2 1 222 s) 2+ p2z2

F z

- —{ﬁp(l‘f'ﬁs) (ZBS—B_3+ 1)@ ABppBs X2+B222}+Z7

Fe
O(U) = —H—R{w Bsx2+ 5z Bs(1+B§)2ﬁzﬁszzz}

F; -~
+ H—R{ZBD(H BSZ)W —2Bp(1+BS) X2+Xﬁszzz}v

F
) = 1 {2 ) s 2B D) |

F z

+—{5p( +B§)2W 5sz 5222}

In particular, we can prescribe the supplementary conditiim., o (u) = 0, which
imposes> = 0 and determines (u) uniquely. The arbitrariness still remaining in
because of the three constantg D, Q can be interpreted as being some arbitrary
(linearized) rigid displacement.

Proof Perform a Fourier transform with respecitdhen solve the ordinary differen-
tial equation with respect tp and finally, perform the inverse Fourier transforntl
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The explicit knowledge of the fundamental solution makesossible to solve
by convolution the Neumann problem with arbitrary, compastipported, surface
traction distributiongty, t,):

Uy = ty Ud(xy) +t; % Ud(x,2)+Dx+Qz
Uy =ty x UL(X,Y) +t, % UY(X,2) + D, — QX

where the supplementary condition: lir@(u) = 0 is imposed. The stress field is
therefore uniquely determined. It is ©(Q;R?), but it is generally not square-
integrable. No energy can therefore be associated withstilation. It can also be
seen that the displacement field is infinite at infinity, andcaenot superimpose any
conditions such as: ligiu = 0O, in order to set the arbitrary rigid displacement. The
only possible procedure here consists in superimposingdhdition:

u=0(log(X*+2)), asx?+2Z — o,

which entailsQ = 0, and will always be assumed from now on. In this case, the
surface displacemefy, u;) must be:

2(14v) Bs(1-B2) (1+Vv) 2BpPs— (1+P2)

i = log|x| *tx + E R SgN(x) *tz+ Dy,
1+ v) 2BpBs— (1+ B2 2(1+v 1-B2
uZ:_( = ) 2Pobs F\S Bs)sgr(x)*tx— (nE ) Bo RBS) log|X| *t,+ D.

To eliminate the arbitrary constarilg, D, it is convenient to take a derivative with
respect tox. Taking pv I/x (for “principal value”) to denote the distributional deaiv
tive of log|x|, we obtain the explicit final form of the Neumann-Dirichlg@erator:

U = 72(:;;") BS(lF\: Bé) PV 1/Xxtx+ 2(1; V) ZBPBS_R(1+BSZ) G,
L2 () 20 By

Appendix C: point load on the surface of a half-space

Let us consider an isotropic homogeneous linearly elasifedpace. Some orthonor-
mal Cartesian coordinate systemy,z) is chosen so that the half-spateis de-
fined by:z > 0. The Young’s modulus is denoted I and the Poisson ratio by
vel-11/2|.

Thegem 8 Let(Fx, ) € R2 be taken arbitrarily. All the tempered distributionse
&' (Q;R®) such that:

6 CT(@RY). (0j(W).€i(4)) , = Fhx(0.0.0)+F::(0.0.0),
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Cc2(Q; ]R3) stands, as usual, for the space &f @st-functions compactly supported
in the closed half-spac@) are given by:

U = FxUQ(%,¥,2) + F2UQ(X Y, 2) + Dx+ Qyz— sy,
Uy = RUp (XY, 2) + FUQ (X Y,2) + Dy + QX — QxZ

U = KUL(X,Y,2) + FUY(X,Y,2) + D, + Qcy — QyX,

ZX

where 3, Dy, D;, Qy, Qy, Q, are six arbitrary real constants, andJ U2, UZ, UZ,
are the six functions in @ Q;R) defined by:

1 X2
?ﬂ—s“l—”)[m‘m]}’




30 Patrick BALLARD

where P = x2 +y?+ 2. The corresponding Cauchy stress field is then given by the
six functions in €(Q;R) defined by:

R 33 3X X 20
OrlU) = Zr{ T (- “Ls <r+z>2+r3<r+z>2+r2<r+2>3}}

F, [ 3%z z 1 X2
JrZr{r—5+(1 2v )[r3 r(r+z)Jr r3(r +z r2(r 2}}
X 2
IpylU) = %T{_?’;(—yz+(l 2v) {ri?’ a r(rjiz)2 * (sz Xy2 3]}
F [ 3yz z 1 y?
+ZT{_r—5Jr(l_zv)[r_3_r(r+z)Jr r3(r +z r2(r 2}}

F [ 3xZ F,| 328
O AT

Gy(U) = 2

r(r+2)?2 + r3(r+2?2 + r2(r+2?3

F, 3xyz Xy Xy
+ZT{_r—5+(l 2V)[r3(r+z)Jrrz(rJrz)Z]}’
Fe [ 3xyz| R [ 37
Oyz(U) = Z‘[{ 5 }+ E_[{ w5 (

K 3%%z F, 3XZ
TealU) = Er{ 5 }+ET{ FEN e

The stress fieldr(u) is therefore uniquely determined and square-integrabke T
displacement field is determined only up to an arbitrary (linearized) rigid glace-
ment, which can be fixed by prescribing the supplementarditon: lim,u = 0,
which imposes P= Dy = D, = Qyx = Qy = Q, = 0 and determines uniquely.

y X2y 23y ] }

Proof Perform a Fourier transform with respect@@ndy, then solve the ordinary
differential equation with respect i and finally, perform the inverse Fourier trans-
form. O

The fundamental solution given by theorem 8 yields an eitplarm of the
Neumann-Dirichlet operator for the isotropic homogenelinsarly elastic three-
dimensional half-space.

Corollary 2 Let t,t, be arbitrary compactly supported distributions in the \zdolie
(x,y) € R Let us consider the Neumann problem in the isotropic homeges elas-
tic three-dimensional half-space involving:
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— (compactly supported) surface tractions with compon@gft) on the boundary,

— no body forces,
— the following condition at infinitytim. u = 0.

Then, the surface displacemdni (X, y), uy(X,Y), Uz(x,y)) is given by:
C14v| 1-v vx? Xy 1+v | (1-2v)x Xy,
"= TE { Sy (x2+y2)3/2} Py - = { 202wy [ Y

Lt % 1+ 1-2
v nEV{(XZJ‘:);Z)?’/Z} Ffxy) - nEV{((szr‘;)%/} ¥ t,(x,y),

b= D2 ey PV Y Ay
TmE 2@y | T e (e T

where the convolution products are understood in the sehdiswibutions.

Proposition 2 For f € LY(R?;R)NL%(R?;R), we adopt the following definition of
the Fourier transform:

—+00 +oo
J[ def 1 / / Xy IXE+Iyr]dXd (E n)

Then, we have:

gzl 1 _ 1 Xy . —&n
- J[\/X“ryz] /& n? > 9[()(2”2)3/2} (8240?32

[ x i& . NG n?

= 4. 9
‘/L@Hﬂ} §2+n?’ J[(x2+y2>3/2 (§2+n?)%/2’
Proof

1. Thisis formulae 3.754.2 & 6.671.14 in [6],
2. use formula 3.723.4in [6],

3. thisis formulae 3.754.3 & 6.691 in [6],

4. thisis formulae 3.773.6 & 6.699.12 in [6]. O

Let f € H-Y/2(]—1,1]%;R) be arbitrary. The extension df by zero outside
]—1,1%is in H-Y2(R2;R), and still denoting it byf, the expression:

)2 /2
/ _IfEn? dé dn
R2 /1+ EZ+ 2 ’
defines a norm and this norm is equivalent to thatiof/2(]—1, 1[?). Adapting the
proof of theorem 3 in [1], it can actually be seen that the saamelusion holds true

with the expression:
f(E.m)P 1/2
/ HENE gegn)
R2 /EZ+ 2
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Hence, in view of proposition 2, the convolution products:

f(x )X:kyil Fxy) ¥ 2
7y \/m’ ’y X2+y2’

are in Hlo/c The proof of the following proposition is quite straightfeard and has
therefore been omitted.

Proposition 3 For arbitrary f,g € H=1/2(]-1,1]2;R), we define the bilinear forms:

a(f,g)= <f,g*;> :2n/+°°/+defdn,
/X2+y2 H-1/2 41/2 —oo J—co \/EZT"IZ

. X o e g f( g¢,n
a(f’g>< 9 X2+y2>H vopye Zn/ / 52+)'7(2 )dEdn’

which are continuous on H'2(]—1,1[%;R). The bilinear form &,.) is symmet-
ric and defines a scalar product inducing a norm which is ealgnt to that of
H-%/2(]—1,1[*;R). The bilinear formé(-, ) is skew-symmetric.
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