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Reliable Provision of Ancillary Services from
Aggregated Variable Renewable Energy Sources

through Forecasting of Extreme Quantiles
Simon Camal Member, IEEE, Andrea Michiorri, and George Kariniotakis, Senior Member, IEEE

Abstract—Virtual power plants aggregating multiple renew-
able energy sources such as Photovoltaics and Wind are promis-
ing candidates for the provision of balancing ancillary services.
A requisite for the provision of these services is that forecasts of
aggregated production need to be highly reliable in order to mini-
mize the risk of not providing the service. Yet, a reliability greater
than 99% is unattainable for standard forecasting models. This
work proposes alternative models for the day-ahead prediction of
the lowest quantiles (0.1% to 0.9 %) of renewable Virtual power
plant production. The proposed approaches derive conditional
quantile forecasts of aggregated Wind/PV/Hydro production,
obtained from tailored parametric models and machine learning
models, including a Convolutional Neural Network architecture
for predicting extremes. Reliability deviation is reduced up to 50
% and probabilistic skill score up to 18% compared to Quantile
Regression Forest. Forecasting models are subsequently applied
to the provision of downward reserve capacity by a renewable
Virtual power plant. Increased forecasting reliability leads to a
higher reliability of the reserve capacity, but reduces the average
reserve volume offered by the renewable aggregation.

Index Terms—Aggregation, Extremes, Forecasting, Reliability,
Renewables, Reserve, Virtual Power Plants

I. NOMENCLATURE

Variables

.̂ Predicted variable
ϵ Exceedances from reference quantile
D Generic term for distribution
F. CDF forecast of production
f Filter of convolutional neural network
Φ Feature map of convolutional neural network
L Likelihood function
R Reserve bid
x Features of aggregated production forecast
y Aggregated renewable production
u Threshold value of Extreme Value Theory
z Indicator variable of components in mixture
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Parameters and indices
α0 Rate of Dirichlet prior distribution
c Clustering index
c0 Concentration of Gamma prior distribution
C Number of conditioning partitions
d Index of explanatory feature
D Number of explanatory features
∆T Validity period of reserve bid
ϕ Precision of marginal component in mixture
F. Set of convolutional feature maps
γ Shape of Generalized Pareto distribution
kn Kernel size of convolutional filter or min-pooling
k Threshold of Extreme Value Theory
h Prediction horizon
H Set of prediction horizons
λ Mean of component in Beta mixture
m Index of marginal component in mixture
nτ Number of quantiles in the quantile interval
M Number of marginal components in mixture
µ Mean of marginal component in Gaussian mixture
µ0 Mean of prior distribution
ω Inter-mean distance of Beta mixture components
π Probability of component in mixture
p Index of plant in aggregation
P Number of plants in aggregation
ρ Thickness of exponential distribution
r0 Rate of Gamma prior distribution
su, sv Stride parameters of convolutional filter
S Number of energy sources in aggregation
σ Scale of Generalized Pareto distribution
t Forecasting runtime
T Length of evaluation period
T Prediction set
θ Parameter vector
τ Quantile value of production forecasts
τR Maximum accepted frequency of underfulfillments
v0 Variance of prior distribution

II. INTRODUCTION

A. Motivation

Power system operators expect Variable Renewable Energy
(VRE) to contribute to the stability of power systems

by providing frequency control through Ancillary Services
(AS), which are increasingly procured by dedicated markets
[1]. Wind farms have already demonstrated their technical
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capacity to provide AS such as frequency control [2], while
photovoltaics (PV) plants can also be equipped with suitable
systems for active power regulation [3]. However, uncertainties
regarding weather conditions make it difficult for a single
Wind or PV plant to guarantee power reserve capacities.
In contrast, aggregated Wind and PV plants dispersed over
different climate zones and controlled by a Virtual Power Plant
(VPP) are able to provide significant volumes of active power
reserve [4].

In order to be accepted by TSOs, a reserve capacity offer
of a VRE-based VPP must have a reliability level close
to that observed for a single dispatchable plant (i.e. in the
range of 99%-99.9%). Without the contribution of storage
to compensate for deviations between the offered volume of
reserve and the actual observed capacity, reserve offers rely
on a highly reliable forecast of the total production of the
VRE-VPP. This can be done by predicting very low quantiles
of the expected distribution of the VRE-VPP production with
nominal values ranging from 1% to 0.1%. It is known that
state-of-the-art probabilistic forecasting models are accurate
on non-extremal quantiles (e.g. between 5% and 95%, [5])
but are unreliable for extremal quantiles. This behaviour has
been demonstrated on the case of quantile regression models
(see for instance [6]) and explained by the challenges posed by
the sparsity of the data useful for the modelling of extremes.
The effect of sparsity is amplified when considering that
conditioning the prediction model on contextual information
e.g. expected weather variables is beneficial for the prediction
of extremes. The present paper investigates alternative ap-
proaches to improve the forecasting performance on very low
quantiles of aggregated VRE production. A correlated question
addressed in this paper is to assess if an improved forecasting
performance on low quantiles translates into a higher value for
reserve provision from a VRE-VPP (i.e. here higher reliability
of reserve capacities).

In the existing forecasting literature, two methods are gen-
erally put forward to improve the forecast of very low quan-
tiles: either develop parametric models specifically adapted to
extremes, or adjust non-parametric models so that they can
more efficiently learn rare patterns. The next section presents
related works on these two approaches in the context of VRE
production forecasting.

B. Related Research

The issue of improving forecast reliability for extreme
values is increasingly important in power systems. Recently
solutions have been proposed for different applications such as
setting transmission transfer capacity [5], forecasting overhead
conductor ampacity [7] and wind production [6].

The first family of models for forecasting extremes consists
in censoring the forecast Cumulative Density Function (CDF)
using a parametric distribution specifically adapted to the
tail of the distribution. A simple example is given by the
exponential distribution. In [5], very high quantiles of VRE
production are modelled by an exponential distribution. An
extension of this methodology is proposed by [8] in the context
of Dynamic Line Rating, who fit the distribution on clusters of

quantile pairs. The principal weakness of this approach is its
lack of theoretical background, in particular its convergence
properties.

The Extreme Value Theory (EVT) proposes a more robust
framework for the prediction of extremes, which are modelled
with a Pareto distribution [9]. Few publications have dealt
with EVT in the context of renewable production forecasting,
with the exceptions of [5], [6] and [10] who propose EVT
forecasts of extremal quantiles of VRE production. In [6], a
gradient boosting model predicts non extremal quantiles that
are further ranked by a similarity measure. Extreme levels of
these predictions serve to fit the Pareto distribution modelling
the distribution tail. In [10], extreme quantiles of net-load are
predicted by integrating EVT into an additive model that is
conditioned on a grid of weather prediction for the region of
interest.

In the context of renewable power forecasting, it is es-
tablished that the Gaussian distribution is not suitable to
model the uncertainty in production [11]. For better statistical
behaviour, an alternative parametric approach consists of the
inference of a mixture of Gaussian distributions as done by
the Mixture Density Network (MDN) of [12]. The MDN
combines a mixture of Gaussian distributions with a non-
linear relationship between explanatory variables and response.
However the performance of the MDN on low quantiles was
not in the scope of this study. A mixture better adapted to
the prediction of extremes than the Gaussian Mixture is the
Beta mixture proposed by [13] to predict distribution tails
for processes bounded in the [0, 1] interval. The regression
case studies of this work have low dimensionality and do not
relate to forecasting or power systems, so it appears difficult
to directly apply this approach to the problem tackled here.

As an alternative to parametric models, non-parametric
machine learning models have recently emerged that rely
on neural networks specifically designed for an improved
prediction of extremes. As an example, the approach proposed
by [14] derives an auto-encoder stacking Long Short Term
Memory (LSTM) layers, which improves the detection of ex-
treme situations compared to a univariate time series model. In
[15], neural networks model different wind production events
that can be classified as extreme for power system operation,
such as large production ramps, severe variability and NWP
failures to anticipate the weather front. Both of the machine
learning models presented above integrate extreme events,
but do not specifically address the problem of probabilistic
regression on very low quantiles.

Finally, convolutional Neural Networks (CNNs) constitute
another type of neural network that have been successfully
implemented in the context of PV [16] and Wind [17] produc-
tion forecasting. They have also been used to detect extreme
weather patterns [18], but to the authors’ knowledge have not
been applied to forecasting extremes of renewable production.

C. Key Contributions of the Present Work

The research question posed by this work is how to adapt
candidate forecasting models for low quantile predictions, so
that they reach the required performance for reserve provision
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by a VRE-VPP operating without storage. The question is
answered by an adaptation methodology that enables forecast-
ing practitioners (either developers or end-users) to select the
type of model as a function of the obtained performance in
terms of forecasting score and value for reserve provision.
The simplicity and interpretability potential of the different
model types may be additional selection criteria. The main
contributions of this paper are:

1) A methodology to forecast low quantiles of VRE-
based VPP production, exploring alternative ap-
proaches based on statistical and machine learning mod-
els. Existing forecasting approaches for low quantiles
[6], [10] address problems of low dimensionality (single
VRE source, load). However they do not scale well with
the size and heterogeneous type of explanatory variables
required to predict the production of a VRE-VPP. Also,
these papers present approaches that are centered on
parametric approaches for low quantiles. The method-
ology proposed here encompasses both parametric and
neural-network approaches, therefore covering a broader
scope of forecasting models.

2) The methodology is validated on the complex case of a
VPP composed of three different types of renewable
energy source, which makes the forecasting exercise
more challenging: the different contributions of energy
sources to the aggregate VPP production vary over time,
and the influence of available data at the site level on
low quantiles of production is not well known. This VPP
configuration corresponds to a real world problematic
but it is not a standard forecasting case in the abundant
literature on VRE forecasting.

3) Specific developments are proposed to adapt three
families of forecasting models to produce accurate
prediction of low quantiles of aggregated VRE produc-
tion. Conditional statistical models based on exponen-
tial distributions and EVT extend existing approaches
dealing with single renewable energy sources e.g. [6],
by selecting features that are meaningful to model the
impact of uncertain weather conditions on low quantiles
of aggregated renewable production. A CNN regression
method improves existing CNN approaches for RES
forecasting on non-extremal quantiles [19] with the
integration a specific ordering of VRE plants in the input
data, a min-pooling layer and training on a skill score
for tails. Finally the mixture of distributions in an MDN
is adapted to the problem of finding low quantiles of an
aggregation of VRE plants whereas the work of [12]
considered a single VRE plant and did not evaluate
the performance of the predicted distribution on low
quantiles.

4) The proposed forecasting models are applied as inputs
to a reserve capacity offer by a VRE-VPP, which is an
important use case not covered by other works propos-
ing extreme quantile predictions. Relationships between
forecasting performance and reserve offer reliability are
evaluated.

The present paper is organized as follows: the forecasting

methodology is presented in Section III, and applied on a case
study of day-ahead aggregated production forecast in Section
IV. After presenting the evaluation metrics in Section V, the
results are discussed in Section VI.

III. METHODOLOGY

Maximizing the reliability of an offered reserve volume R
(active power) can be formalized in (1) as the problem of
finding a time-dependent offer R, such that the frequency of
events where the available production y is lower than R is at
most τR during a testing period of length T . The frequency of
such events is called hereafter the Rate of Under-Fulfillment
(RUF) [20], and τR is in the range of [0.1%− 1%].

RUF (R, y) :=
1

T

∑
i∈[1,T ]

1yi<Ri ≤ τR (1)

Consider now that the VPP is asked to formulate its offer on
a short-term reserve market. The gate closure time of the mar-
ket is assumed to be at a day-ahead horizon as implemented in
the European Frequency Containment Reserve (FCR) cooper-
ation [21] and in the German market for automatic Frequency
Restoration Reserve (aFRR) [22]. The market procures reserve
capacity for the 24 hours of the next day, which corresponds
to the interval of prediction horizons H. Due to the inherent
uncertainty of the VRE production and the absence of storage
in the VPP, the reserve offer problem expressed above requires
the derivation of a probabilistic forecast of the VPP production
ŷ that aims in (2) at minimizing the reliability deviation of a
quantile forecast ŷ(τ), where τ is a low quantile value, τ ≤ τR.
This forecast will be used as a basis for the reserve capacity
offer. Recall that the reliability of a probabilistic forecast
corresponds to its property of being in line with the conditional
relative frequencies of the observations [23]. In the long run, a
reliable 0.1% quantile forecast would be superior to the actual
VPP production during 0.1% of the time. Forecasts issued at
the different prediction runtimes t ∈ T evolve conditionally
to the values taken by the matrix x of explanatory variables
(also called features) available for the P plants in the VPP.

min
ŷ

| 1
T

∑
i∈[1,T ]

1
yi<ŷ

(τ)
i

− τ |

ŷ
(τ)
t+h : =F−1

ŷ (τ |xt+h), ∀t ∈ T , h ∈ H (2)

Finally, the predicted quantile of the VPP production can be
converted into a reserve offer R in (3) by taking the minimum
of the predicted production over the validity period ∆T of the
reserve offer. By doing so, the capacity is guaranteed over
the entire validity period [24] assuming that the observed
reliability deviation of the forecast is within its expected
bounds.

Rt+h = min
t′∈∆T (t+h)

ŷ
(τ)
t′ ∀t ∈ T , h ∈ H (3)

The methodology followed to develop forecasting models
for low quantiles of VPP production following three alter-
native approaches is presented in the next subsections and
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Fig. 1: Methodology workflow: Proposed approaches for forecasting low quantiles of VPP production. Each approach is
developed in the designated Sections III.A to III.C

ilustrated in Fig. 1. In this work a day-ahead forecasting
horizon is assumed in order to align on the reserve capacity
market closure. At this horizon level, explanatory variables
of VRE production are known to be principally Numerical
Weather Predictions (NWP). The dataset describing the VPP
corresponds to a collection of features X constituted by NWP
variables for all VRE plants in the VPP and the entire range of
prediction horizons, associated to the vector y of VPP produc-
tion observations along the horizon. A first approach consists
in parametric regression models of low quantiles conditioned
by information on the VPP production, presented in Section
III-A: an exponential distribution and a generalized Pareto
distribution derived from EVT. The other two approaches are
based on neural networks: a CNN regression presented in
Section III-B and a Mixture Density Network approach in
Section III-C.

A. Conditional Parametric Models

The parametric distributions proposed by [5] and [6] to
predict extremes of VRE production adapt predictions by a
conditioned inference of the parameters θ of a distribution D.
Forecasts on low quantiles are then retrieved by inverting in
(4) the quantile function of the distribution conditioned by a
pre-processed set of explanatory variables xD representative

of the dynamic contributions of the various plants in the VPP.
For better readability, temporal indices are omitted in what
follows unless necessary for the understanding of the model
structure.

ŷ(τ) = F−1
D (τ |θ(xD)) (4)

1) Exponential distributions: This subsection presents the
first conditioned parametric model, namely an exponential
distribution. The choice of an exponential distribution to
predict low quantiles is justified by the out-of-sample dis-
tribution of exceedances ϵ, formulated in (6) as the positive
distance between a predicted reference low quantile ŷ(τref ) and
production [25]. The reference quantile is empirically chosen
as the lowest nominal quantile value for which a standard
forecasting model such as QRF remains reliable (e.g. 1%). An
advantage of this distribution is the simplicity of the inference:
θ corresponds here to a unique parameter, the thickness ρ
conditioned by the pre-processed set for the exponential distri-
bution xexp. Finally the low quantile prediction can be retrieved
in (7) by inverting the quantile function of the exponential
distribution.
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ϵ : =[ŷ(τref ) − y]+ (5)

Fexp,ϵ(τ |xexp) ∼ τref (1− e−ρ(xexp)ϵ), ϵ ≥ 0 (6)

ŷ
(τ)
t+h = F−1

exp,ϵ(τ |ρ(x
exp
t+h))), ∀t ∈ T ,∀h ∈ H (7)

The forecasting method is presented in more detail in
Algorithm 1. It starts by deriving forecasts from a standard
model such as QRF on the reference quantile and for the
median. Then two choices of feature selection are proposed
to condition the model based on a feature set xexp:

• following [5], equally-spaced intervals of median produc-
tion forecast,

• as an original approach, clusters obtained by unsupervised
learning based on median production forecasts and aug-
mented with selected NWP features from different sites
of the VPP.

The latter feature selection method is performed by k-means
clustering on an empirically chosen set of variables. This
feature set xcluster is presented in (8), and includes the median
VPP production forecast, augmented with the minimum, mean
and maximum value of each NWP variable d ∈ Ds, where
Ds is the number of distinct NWP variable per energy source
s in the VPP. This set is thought to better characterize the
potentially low production regimes of the VRE-VPP due
to the integration of multivariate information from weather
predictions on all plants of the VPP. Additionally, and of a
more even population of cluster with k-means compared to
equally-spaced intervals of production levels.

xcluster =


{minp∈[1,Ps] x

d
p,t, t ∈ T , d ∈ Ds, s ∈ S}

{meanp∈[1,Ps]x
d
p,t, t ∈ T , d ∈ Ds, s ∈ S}

{maxp∈[1,Ps]x
d
p,t, t ∈ T , d ∈ Ds, s ∈ S}

{ŷ(50%)
t , t ∈ T }


2) Extreme Value Theory: Distributions of extremes with

higher versatility than the exponential model formulated above
can be inferred with the EVT. This work follows a Peak-Over-
Threshold (POT) approach, which collects observations over
a chosen threshold u, taken in (14) as the k-highest value of
the sorted available record. Since the present article focuses
on minima of VPP production and the POT works on maxima,
the POT approach is applied to y∗ = −y.

u = y∗k,N , y∗1,N ≤ ... ≤ y∗k,N ≤ y∗N,N (14)

Pickland’s theorem [9] stipulates that the distribution of the
maxima of the i.i.d variable of y∗ above the threshold u con-
verges towards a Generalized Pareto Distribution (GPD). The
GPD is defined by its parameter vector θ : ={u, σ, γ}, where
γ defines the overall shape of the distribution of extremes
and σ quantifies the spread of extreme values. Similarly to
the exponential model above, the present work proposes a
conditional estimation of the GPD parameters as a function
of selected features for the EVT xEVT. The prediction of the
low quantile of VPP production is obtained directly in (15)
from the quantile of the survivor function modelled by the
GPD of F̄y∗,GPD, where F̄ = 1− F .

ALGORITHM 1
Low quantile prediction by exponential distribution
Input:

• Explanatory variables x
• Feature selection choice for the exponential model xexp

• Number of conditioning partitions C
• Reference quantile value, τref

Output: Quantile forecast ŷ(τ)

1: VPP production forecast at reference quantile and median
quantile, on validation and testing set

ŷ
(τ ′)
QRF = F−1

ŷ,QRF (τ
′|x), τ ′ = {τref, 50%} (8)

2: switch (Choice of feature selection for the exponential
model xexp)

3: case xexp : = ŷ(50%):
4: Classify production levels in equally-spaced intervals

Rc, c ∈ C, on validation set indexed by {j, j ∈ [1, N ]}

[R0, ..., Rc, ..., RC ] : =∪c∈N+∩[0,C−1][
c

C
:
c+ 1

C
] (9)

Card({ŷ(50%)
j ∈ Ic, j ∈ [1, N ]}) = Nc, ∀c ∈ C

(10)

5: case xexp : =xcluster:
6: Pre-process features for clustering xcluster
7: Classify features xexp in clusters Rc, c ∈ C via k-means

[R0, ..., Rc, ..., RC ] : = k-means(xcluster, C) (11)

8: Compute exceedances ϵ, on validation set, cf. (6)
9: Estimate exponential thickness ρc by maximum likelihood

for each interval or each cluster, on validation set

ρc =
1

1
Nc

∑N
i=1 ϵi1xexp

i ∈Rc

∀c ∈ C (12)

10: Retrieve conditional thickness ρ(xexp
t+h) on testing set Tte

ρ(xexp
t+h) = ρc : x

exp
t+h ∈ Rc, ∀t ∈ Tte,∀h ∈ H (13)

11: Conditional prediction on testing set Tte, cf. (7)

ŷ(τ) = F̄−1
y∗,GPD(τ |θ(x

EVT)) (15)

The EVT model of [6] is fitted on samples of non-extremal
predictions that have the highest similarity with past obser-
vations. However in the present problem, it is likely that
extremes of the total VPP production depend not only on the
expected total production level but also at a significant extent
on extreme realizations of the uncertain multivariate weather
conditions experienced by each plant in the VPP. Therefore,
the present work proposes to condition the EVT parameters on
a clusterized set based on the set xcluster presented above for
the exponential model. The quantile function expressed in (15)
is then derived in (16) for each cluster c ∈ C. The shape of the
distribution of extremes γc is allowed to vary as a function of
the different production regimes described by the clusters, but
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should not be impacted by short-term variations of weather
variables. Conversely, the scale factor σ, which quantifies the
spread of extreme values, is assumed to be dependent also on
the variations of explanatory values σc(x

EVT).

F̄−1
y∗,c(τ |xEVT) = uc +

σc(x
EVT)

γc
[(

τ

F̄c(uc)
)−γc − 1], ∀c ∈ C

(16)

Not all of the DEVT features of xEVT may be beneficial to
the quantification of uncertainty. Adding too many parameters
may add noise and ultimately prevent the model from detecting
extreme conditions. We propose here to select features using
a feature selection algorithm presented in the Algorithm 4
reported in Appendix A. Features are integrated into the
conditional estimator of scale as long as the Akaike Infor-
mation Criterion (AIC) improves, and the overall scale value
is positive. After feature selection, the parameters are inferred
by Maximum Likelihood Estimation. The entire forecasting
model of low quantiles by EVT is reported in Algorithm 2.

ALGORITHM 2
Low quantile prediction by EVT
Input:

• Explanatory variables x
• Number of conditioning partitions C
• Threshold value k

Output: Quantile forecast ŷ(τ)

1: Compute complementary VPP production y∗ = −y
2: Classify features xEVT in clusters Rc, c ∈ C via k-means
3: Forward selection of features for the scale parameter

σc(x
EVT),∀c ∈ C (cf. Algorithm 4)

4: Identify the threshold uc,∀c ∈ C on validation and testing
sets

5: Estimate scale σc(x
EVT) and shape γc,∀c ∈ C by likeli-

hood maximization of the GPD on validation set
6: Retrieve conditional threshold and parameters on testing

set Tte
7: Conditional prediction on testing set Tte, cf. (16)

B. Convolutional Neural Network Regression Model

A CNN quantile regression is proposed as a direct approach
to forecast very low quantiles of aggregated VRE production.
The complete algorithm of the prediction of low quantiles by
this model is presented in Algorithm 3. The regression model
consists of three adaptations of standard CNN regression to
the present problem, detailed in the subsections below.

1) Configuration of the feature space: The configuration
of the proposed CNN model is illustrated in the lower central
image of Figure 1. The CNN network takes as input a 3D
matrix of features gathering all the information on the various
plants in the aggregation, that can be organized following the
requested horizons of the prediction model.

In this model the different channels of the CNN correspond
to the different prediction horizons h ∈ H, plants in the VPP

are organized in rows and the various explanatory variables or
features for each plant are in the columns of each ’image’
associated to a specific horizon h. Batches of such input
matrices are obtained by slicing the available dataset in periods
of length H. Learning is done by applying a sequence of
multiple 2D convolutional filters, followed by intermediate
layers presented in Algorithm 3. The rationale of applying 2D
convolutional filters on a feature space organized by prediction
horizon is that the network will learn dependencies across
plants and energy source for each prediction horizon indepen-
dently. This will result in a sequence of abstract representations
of the multivariate weather conditions experienced with the
VPP over the entire horizon interval. At the final layer of the
CNN, a direct relationship between this sequence of weather
representations and the sequence of observed VPP production
can be derived, therefore conserving the temporal correlation
in the spaces of the features and of the response.

The first convolutional layer applies on x a filter f (1) with
a 2D convolutional kernel kn of size (ku, kv) on rows and
columns of the input matrix. A stride parameter st = (su, sv)
adds distance between kernels in order to reduce the dimen-
sionality of the convolutional layer. The filter learns a weight
matrix w on all pixel indices (i

′
, j

′
) of the input matrix,

and a constant bias term b(1). The pixels of the resulting
feature map Φ

(1)
ij represent the filtered relationships between

contiguous plants and features in the input matrix. A 3D
convolutional layer would also filter the information across
channels, which means here across prediction horizons. This
might be beneficial in a different problem such as forecasting
at intraday horizons where the temporal correlation between
features is high, or the generation of trajectories. This goes
beyond the scope of the present study.

Φ(1) = xh ⊛ f (1)(kn) + b(1) (17)

Φ
(1)
ij =

ki∑
u=1

kj∑
v=1

xh,i′ j′wuv + b(1), (18)

i
′
= u.su + ki − 1,

j
′
= v.sv + kj − 1

The ordering of different VRE plants and associated features
in the VPP input matrix is important for the learning process
of the CNN model. If VRE plants follow a random order
in the input matrix (cf. right of Fig. 2), then learning first
focuses on the dependency between features of individual
plants (e.g. one Wind plant and one PV plant) before learning
the smoothing effect of aggregation over all energy sources in
the VPP. In contrast, VRE plants can be ranked contiguously
by energy source as on the left of Fig. 2. Consider for example
that the vectors xs1,. in Fig. 3 correspond to the Ps1 Wind
farms in the VPP. Then, the F1 different feature maps of
the first convolutional layer of the CNN Φ(1),. learn cross-
plant information on the impact of weather diversity on the
wind production process. The F2 feature maps of the second
convolutional layer Φ(2),. combine the information from the
first layer, and will learn the dependencies between Wind
and the other energy sources (e.g. PV, Hydro). Given that
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Fig. 2: Ordering of VRE plants in the VPP data input matrix

Input matrix

Convolutional
layer 1

Convolutional
layer 2

Fig. 3: Sequence of convolutional filters on the input matrix
where VRE plants are ranked by energy sources s1, ..., s, ...,S

the objective of the network is to detect minimal levels of
production, these will be identified more easily among plants
of the same energy source, which are likely to have conditions
more correlated than with plants of a different energy source.
Therefore, the former approach is implemented, where plants
are ranked contiguously by energy source.

Note that in a VPP configured for AS provision, VRE plants
are recruited in order to obtain a high diversity of climate
conditions in the portfolio. Consequently, the spatio-temporal
correlation between plants of the same energy source is low,
and the placement in the input space based on geographical
location is not of primary importance. If the problem is scaled
to a large number of VRE plants where multiple plants are
located in the same region, the configuration of the input space
should integrate a placement rule that would preserve as much
as possible spatial relations in all regions.

2) Min-pooling layer: In classification problems, a sub-
sampling step called pooling extracts synthetic results from
feature maps, by taking averages or maxima over a defined
window. This is efficient for detecting whether an edge is
present in a part of an image, and improves the invariance of
learning. We propose instead here to integrate a min-pooling
layer illustrated in Fig. 4. This layer extracts in (19) the mini-
mum value obtained in a local area of the network by filtering
the previous layer with a kernel knminpool. The rationale is that
this layer detects the minimum value of features in a local
area of the previous layer. Applied to the entire network, min-
pooling helps detect low values of the features, e.g. in the

Fig. 4: Principle of min-pooling layer in the proposed CNN
model

first layer of the network the minimum wind speed forecast
across all wind farms in the VPP. The effect of such minimum
values is then propagated through the CNN until it is evaluated
on the observed aggregated production. Linking minimum
values of filtered input weather variables with low quantiles
of VRE production is justified by the fact that the most
influential variables on VRE production at day-ahead horizons
exhibit positive correlation with the production of the different
energy sources (e.g. wind speed forecast and wind power, solar
irradiance forecast and PV production, precipitation forecast
and run-of-river Hydro production). Without the min-pooling
layer, the gradient of the loss function with respect to the
convolutional filter weights depends on all input variables,
and therefore low values of expected weather conditions will
be smoothed out during learning. Consequently, min-pooling
facilitates the learning patterns of extremely low levels of
aggregated VRE production.

Φ
(l)
minpool = min({Φ(l−1)

i,j , (i, j) ∈ knminpool}) (19)

Finally, the last layer is connected to multiple outputs
through fully-connected layers. The outputs are nodes asso-
ciated with a specific loss for each quantile to be predicted in
the interval of interest, i.e. [0.1%-0.9%].

3) Specific loss function for low quantiles: We propose to
test two different loss functions for the prediction of low
quantiles. A first loss function is the well-known pinball
function used for quantile regression [26]. The Skill Score
SkSc is obtained in (20) by averaging the pinball losses over
the entire interval of low quantiles [τmin, τmax] of size nτ . The
score is negatively oriented here to minimize the CNN loss
function during gradient descent.

SkSc(y, ŷ) = − 1

nτ

τmax∑
τ=τmin

(1y−ŷτ − τ)(y − ŷτ ) (20)

The second loss function corresponds to a weighted version
of the Quantile Score called hereafter wQS that has been
proposed for the evaluation of the forecast of extremes, see
for instance in [27] and [28]. Following [27], in the case of
low quantiles (left tail of the distribution), the wQS weights
in (21) the pinball losses of the different quantiles by a factor
(1 − τ)2. This factor enables a better balance between the



8

losses associated to lowest and highest quantiles in the quantile
interval.

wQS(y, ŷ) =
1

nτ

τmax∑
τ=τmin

(1− τ)2(τ − 1y−ŷτ )(y − ŷτ ) (21)

Both loss functions in (20) and (21) are convex but non-
differentiable when the error y− ŷ is zero due to the presence
of the indicator function. In order to apply gradient descent,
the pinball loss is reformulated as element-wise maximum of
the penalized error max1≤i≤n(τ − 1)(y− ŷ), τ(y− ŷ)) (refer
e.g. to the pinball loss function implemented in Tensorflow
[29]). Then a smooth approximation can be applied to error
levels close to zero via a Huber loss [30] in order to obtain a
fully differentiable loss function. However, even without this
approximation it is possible to perform gradient descent on
this element-wise maximum function thanks to the automatic
differentiation algorithms implemented in state-of-the-art li-
braries such as Tensorflow or PyTorch. At zero error, these
librairies fix arbitrarily the value of the function error gradient
to zero [31]. The impact of this choice has been shown to
be neglectible in a simple setup with SGD presented in [31],
especially if batch normalization is implemented as it is the
case in Algorithm 3.

ALGORITHM 3
Prediction of multiple low quantiles by CNN
Input:

• Explanatory variables x
• Stride and window parameters of kernels kn, knminpool
• Number of convolutional layers L

Output: Quantile forecast ŷ(τ)

1: Features x are arranged in volumes with height corre-
sponding to all plants in the VPP, width to features and
channels to prediction horizons.

2: VRE plants are ranked contiguously by energy source.
3: for l in L convolutional layers: do
4: Filter Φ(l) is convolved with the previous layer Φ(l−1),

corrected by a bias term b(l): Φ(l) = Φ(l−1)⊛f (l)+b(l)

5: Min-pooling, cf (19)
6: Exponential Linear Unit activation
7: Batch normalization on the feature axis to ensure effi-

cient backpropagation
8: end for
9: Flatten layer: The FL feature maps in the last convolu-

tional layer Φ(L) are flattened: yflat = [Φ(L),j ,∀j ∈ FL)]
10: Output layer: the predicted production at all horizons

ŷ
(τ)
h,i ∈ H is associated to an observed batch of production

values yh,i, where i is the index of a batch in the training
set

11: Training on the Skill Score cf. (20) through Stochastic
Gradient Descent (SGD).

12: Conditional prediction on batches of testing set Tte

C. Mixture Density Network

The Mixture Density Network (MDN) combines the flex-
ibility of mixtures to capture extremes with the capacity of
a neural network g(.) to approximate non-linear relationships
between features and response variables. Three classical archi-
tectures of neural networks are tested as regression function
in this paper: the Fully-Connected Neural Network (FCNN)
called also Multi Layer Perceptron, a CNN without min-
pooling layer, and a Long Short Term Memory (LSTM)
network. In order to predict the low quantiles of the expected
distribution of the VPP production, it is proposed here to
formulate a specific mixture distribution that is (1) adapted to
a VRE-VPP and (2) has good forecasting performance on its
lowest quantiles. Consider that the random variable associated
to the VPP production y follows in (22) a mixture of M
components, where each component m is associated with a
probability πm, such that

∑M
m=1 πm(x) = 1.

y ∼
M∑

m=1

πm(x)fm(θm(x))

g(x) = (πm(x), θm(x) : m ∈ M) (22)

The density of the response variable is obtained in (23) by
integrating the Bayes chain rule over the range of parameter
values.

p(yt|xt) =

∫
θ

M∑
m=1

πm(xt)fm(yt|xt, θm)p(θ|yt, xt)p(θ)dθ

(23)

A standard approach consists in proposing a mixture of
Gaussian components. The parameters θm of the components
are generally estimated by Expectation-Minimization without
assuming problem-specific values for the parameters, i.e. the
mean and variance of each component. In contrast, we intro-
duce here a priori knowledge on the mixture to model that the
distribution should reflect the aggregated behaviour of multiple
plants in the VPP. In particular, the means and variances of the
different components are inferred via a bayesian approach de-
tailed in Appendix B where the hyper-parameters correspond
to the means and variances of the production of each plant in
the VPP. This formulation of the Gaussian mixture is adapted
to the context of aggregated VRE production. The limit of this
formulation is that it is not guaranteed to perform well on low
quantiles: its performance will be evaluated in Section VI.

A second alternative mixture distribution is a special Beta
mixture proposed by [13] that is well suited to the modelling
of extremes. The parameters of the mixture components pre-
sented in Appendix B are inferred to model the shape of the
distribution, without direct link to the plants composing the
VPP. The adaptation of this mixture to the present problem
consists in integrating it into a MDN.

Finally, the mixture parameters of both Gaussian MDN and
Beta MDN are inferred via the Stochastic Variational Inference
(SVI) method developed by [32], chosen for its ability to work
on mixture distributions of the exponential family (comprising
Gaussian and Beta) and its gradient-descent approach compat-
ible with MDNs.
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Energy source s PV Wind Hydro

Number of plants Ps 9 3 3
Installed capacity [MW] 9 32 12
Solar radiation GHI [W/m2] x x
Total cloud cover [-] x
Air temperature 2 m [K] x
Hourly rainfall [mm/h] x
Daily cumulated rainfall [mm/day] x
Zonal, meridional wind speed at 100m [m/s] x

TABLE I: VPP plants description and NWP by energy source

IV. CASE STUDY

A. Data description

The merits of the models developed for extremes are
compared with those of QRF on a case study concerning a
VPP with 3 different energy sources: PV, Wind and run-of-
river Hydro. The number of plants P in the VPP equals 15
plants located in several climates in France (moderate warm
continental, moderate cold continental, atlantic, see Fig. 5).
The production data comprises 9 months of measurements
at 30 minutes resolution between July 2015 and February
2016, constituting a total dataset of 9600 samples.The training,
validation and testing of models is done by a 7-fold cross-
validation on weekdays. Additional details on the installed
capacities and retrieved NWP per energy source are given in
Table I.

The NWPs are retrieved from the ECMWF HRES service,
which is a state-of-the art solution for short-term weather fore-
cast. Note that forecasts at higher resolution such as AROME
from MeteoFrance are expected to have lower weather fore-
casting errors, especially in specific climate zones where the
higher spatio-temporal resolution of the NWP model improves
forecasting performance. The impact of such improved NWP
on the proposed methods in this study is an interesting
perspective for future work. NWPs issued at 00h00 on the
previous day are used in order to participate in a day-ahead
reserve offer mechanism. The resulting forecasting horizon is
thus comprised between 24h and 48h.

B. Hyperparameters

The hyperparameters values of the Gaussian and Beta
Mixture are reported in Table II. The mean and precision
parameters of the Gaussian Mixture are fitted on the past
observed mean µp and variance vp of each plant p in the
aggregation. The hyperparameters of the Beta Mixture reflect
a low level of knowledge a priori, e.g. the concentration
rates of the two Beta components α0

π are assumed to be
equal, and the parameters of the precision ϕ describe a low
precision a priori. These hyperparameter values let therefore
the Bayesian inference optimize the final posterior values of
the Beta mixture parameters in a large range of possible
values. The sensitivity of the inference to different choices
of hyperparameters is beyond the scope of this work.

The characteristics of the CNN regression models (number
of layers, dimensions of filters) are established via grid search.
Note however that a more systematic tuning of the depth
and filter characteristics of the CNN is out of the scope of

Parameter Gaussian Mixture Beta Mixture

π α0
π = ( 1

P , ..., 1
P ) α0

π = (0.5, 0.5)

µ
µ0
µ = {µp, p ∈ [1,P]}

v0µ = {3, p ∈ [1,P]}
α0
µ = 1

β0
µ = 1

ϕ
c0 = {v−1

p , p ∈ [1,P]}
r0 = {3, p ∈ [1,P]}

c0 = 1
r0 = 0.1

ω - α0
ω = 1

β0
ω = 1

TABLE II: Hyperparameters of distribution mixtures

Parameter Model Value Range

Number of clusters Exponential [2,4,...,32]
Number of clusters EVT [2,3,4,5]
Reference quantile Exponential [1%, 2%, ..., 5%]

Threshold k EVT [90%, 91%, ..., 99%]

TABLE III: Parameter ranges for parametric models

the present paper. As the CNN model is run on CPU only
and with limited memory capacity, a Principal Component
Analysis (PCA) is applied to the complete feature set in order
to reduce the computational burden. A smaller subset of 3
features per plant in the VPP is retrieved, explaining 90% of
the original variance. Note that the PCA step can be skipped
if the model is run on GPU or memory capacities are not
heavily constrained, without any impact on the rest of the
CNN implementation.

EVT and exponential models have been fitted on a grid
of parameter values reported in Table III that include the
numbers of clusters, the reference quantile nominal value for
the exponential model and the threshold k for the EVT. The
sensitivity of the performance of all variants of these models
with respect to the number of clusters has been analyzed (not
shown here for brevity) and only the best performing models
are presented in the Result section. The number of clusters for
the EVT is smaller than for the exponential model because
the number of available points above the threshold k is small.
The threshold is evaluated as a function of the maximization
of the likelihood and of the stationarity of the series of peaks
(optimal value is k = 0.97).

C. Application to Reserve provision

Finally, forecasts obtained by each method are converted
into offers of reserve capacity by the VRE-VPP. For sim-
plicity, only downward reserve activation is considered and
two validity periods for the offer are tested, 1h, 2h 4h. The
latter value corresponds to the current rules in the aFRR
German market at the time of writing, while 1 h is a potential
future standard value that can be expected from the ongoing
effort to harmonize European short-term markets for balancing
capacity.

V. EVALUATION METRICS AND IMPLEMENTATION

As this paper focuses on forecasted extremes, the evaluation
metrics are specifically chosen for the assessment of proba-
bilistic performance on the lowest quantiles of the distribution
and include:
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Fig. 5: Localization of Wind, PV, and Hydro plants in the VPP.

• the weighted version of the Quantile Score (wQS)
adapted to tails, converted in logarithm form for better
readibility;

• Reliability on low quantiles, including uncertainty bars
accounting for sampling effect [33];

• Sharpness of prediction on low quantiles.

The sharpness Sh on the quantile interval [τmin, τmax]
writes as in (24) for an evaluation period T . The quantile
interval [0.1%-0.9%] predicted by the CNN trained either on
the SkSc (grey lines) or on the wQS (blue lines) are illustrated
on two days in Fig. 6. The interval of the CNN with wQS is
much narrower than the interval of the CNN with SkSc. The
width of this interval varies during the day, for instance in
this summer period it is larger around noon where the PV
contribution is maximum, as visible in the second day with
sunshine and no wind.

Sh(ŷ) =
1

T

T∑
t=1

(ŷ
(τmax)
t − ŷ

(τmin)
t ) (24)

The performance of reserve offers is evaluated via metrics
that quantify the technical reliability of the reserve capacity
and characterize the offered volumes:

• Frequency of reserve under-fulfillment quantified by the
RUF (1)

• Maximum Reserve deficit maxi∈[1,T ](Ri − yi)1yi−Ri

Finally, the code implementation is done in R for the
parametric models and in Python for the CNN and MDN. The
following packages have been essential in the implementation:
quantregForest for the QRF [34], extRemes for the
EVT [35], keras and tensorflow for the CNN and MDN.
Code is run using only CPU (no GPU) on an Intel Xeon
2.40 GHz, 128 Go 32 cores. Training the machine learning
models on the entire set of training batches takes the following
approximate computational time: 40 minutes for the MDN, 35
minutes for the CNN, 10 minutes for the QRF, and 2 minutes
for the k-means clustering.
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Fig. 6: Illustration of the interval of predicted quantiles from
the CNN trained on SkSc and wQS. The orange line is the
actual VPP production. 0.001 and 0.009 stands for 0.1%
quantile and 0.9% quantile respectively.

VI. RESULTS

The performance of models for forecasting very low quan-
tiles of VRE-VPP production is summarized in Table IV and
compared with QRF. Models are compared on three results:
the average reliability deviation on the quantile range [0.1%
- 0.9 %], the weighted QS (in log form for a more compact
presentation of the low scores obtained), and the sharpness
between the 0.9% and 0.1 % quantiles.

The most reliable model is the exponential distribution
based on k-means clustering, which halves the reliability
deviation of the QRF. The reliability of the exponential
distributions improves with a lower reference quantile. The
number of k-means clusters has also a significant impact
on reliability: low numbers of clusters impede discrimination
and high numbers of clusters limit the capacity to generalize
observations. The reliability diagram in Fig. 7 shows that the
reliability of exponential distributions is best in this case for
medium-sized clusters (16 clusters). Note that sharpness does
not improve compared to QRF.

The EVT model depends on the combined influence of the
threshold value k, which determines the range of production
values considered as peaks, and of the number of clusters
characterizing the production regime. The most reliable EVT
configuration combines a high threshold of 97% with a small
number of clusters (2). The global forecasting score has
improved compared to QRF (-7.04 vs -7.01 in log wQS), but
not the reliability (-0.12% vs -0.10%). It seems that the gain
in sharpness due to clusterization leads to biased predictions
of extremes.

The MDNs with Beta Mixture rank in the top 3 methods
in terms of forecasting score, with a slight improvement
in sharpness compared to QRF (2.0% - 2.2% vs 2.5%).
The reliability deviation shows that Beta MDN forecasts are
too conservative, which is on the safe side for the present
application (reserve underfulfillments are minimized) but leads
to limited value (reserve volumes based on these forecasts will
be small). The MDN with Gaussian Mixture, albeit applied to
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logit-transformed production series, constantly predicts values
close to zero for all quantiles, resulting in reliability deviation
around 2% and sharpness equal to zero.

Finally, Table IV indicates that a CNN quantile regression
model configured for a VRE-VPP and trained for very low
quantiles as explained in Section III-B has the best forecasting
score (-7.21) and the best sharpness (1.6%) of all models.
Beyond the CNN architecture, the two specific characteristics
namely min-pooling and training on Skill-Score are key to
improving reliability. Fig. 7 shows that:

• Training the CNN on the SkSc instead of the wQS signif-
icantly improves the reliability. In the quantile regression
with wQS observed forecast levels are too low, suggesting
that learning on this score is not discriminative enough
for very low quantiles.

• For quantiles below 0.4%, the CNN integrating the
min-pooling layer (red curve) shows adequate reliability
whereas the CNN without min-pooling (violet curve)
generate uncalibrated forecasts with deviations outside
the uncertainty bars. We observe the opposite on quantiles
above 0.6% (i.e. min-pooling degrades reliability). As it is
at the lowest quantiles that the QRF model is not reliable,
we can conclude that min-pooling helps improve forecasts
of extremes of VPP production compared to the reference
QRF model.

The methods with best forecasting performance are used
to simulate the offering of downward reserve capacity by the
VRE-VPP. The reserve capacity is derived from forecasts at
quantiles between 0.1% and 0.9% and length of reserve valid-
ity period equal to 1h, 2h and 4h. Offers based on forecasts
from the exponential model (with 16 clusters from k-means
and 3% reference quantile) and from the CNN (with min-
pooling and Skill-Score loss function) are compared to offers
based on QRF forecasts. Table V summarizes the technical
performance of the reserve offer based on a 0.1% quantile
forecast and different lengths of the reserve validity period.
The exponential model produces the most reliable forecasts
and this translates into the most reliable reserve offer with
lower RUF than the QRF on the different validity periods con-
sidered. In contrast, as forecasts from the exponential are lower
on average than the QRF forecasts, the volume of reserve
capacity is smaller for the exponential-based offer compared
to the QRF-based offer. Interestingly, the maximum observed
reserve deficit is smaller for the exponential-based offer when
the period length equals to 1h, i.e. close to the temporal
resolution of the VPP quantile forecast. At a higher period
length of 4h, the RUF reduces for all forecasting models, and
the QRF which is less sharp and more variable in time than the
CNN as a smaller RUF than the CNN. This result suggests that
retaining the minimum forecast value over a validity period
longer than the forecast temporal resolution may increase the
technical reliability of a reserve offer when the low quantile
forecast shows a significant temporal variability. CNN-based
reserve offers limit significantly the risk of large values of
reserve deficits. This is because the CNN forecasts are lower
on average, which also causes lower average reserve volumes
and standard deviation.
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Fig. 7: Reliability diagram of QRF, exponential distributions
with k-means clusters and 1% reference quantile, CNN regres-
sion with different configurations. The shaded area represents
the 5%-95% cosistency interval of acceptable reliability devi-
ations due to the sampling effect [33]

Lastly, Fig. 8 presents the average reserve capacity and
RUF obtained as a function of the different validity period
lengths and forecast quantile values between 0.1% and 0.9%.
As expected, a shorter length of the validity period increases
the average reserve volume offered at a constant quantile value
of the forecast. Interestingly, offers based on QRF forecast
at quantiles 0.1% - 0.3 % obtain results close to those of
offers based on exponential forecast at higher quantiles 0.4%
- 0.6 %. The reasons for this behaviour should be further
studied, e.g. the impact of the parametrization of the expo-
nential model based on the QRF output, or an approximate
exponential learning process of extremes within the QRF albeit
the estimated quantiles are unreliable. The CNN achieves
the best RUF at quantiles below 0.3%, but this result is
achieved due to small volumes of reserve offer on average. The
non-dominated solutions in terms of maximizing the average
reserve capacity and minimizing RUF are obtained from the
exponential model for quantiles below 0.5 %, where the QRF
starts to be unreliable. This result is valid for all validity period
lengths tested, which indicates robustness of the reserve offer
methodology based on reliable forecasts of low quantiles.

VII. CONCLUSION

This paper proposes specific models for forecasting ex-
tremes of a VRE-based VPP production with improved relia-
bility compared to decision-tree based approaches on very low
quantiles (i.e. below 1%). The first type of models consists of
parametric models, namely an exponential distribution and an
EVT model, conditioned by information on VPP production
and weather forecasts. The case study shows that conditioning
by k-means clustering on production forecasts and weather
conditions improves reliability of the exponential model based
on an upper bound reference quantile obtained from QRF,
whereas the EVT has a higher sharpness but worse reliability.
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Model Best configuration Average reliability deviation Log wQS Sharpness [% Pn]

QRF 500 trees -0.10% -7.01 2.5%

Conditional exponential,
forecast clusters

1% reference quantile,
10 clusters -0.15% -7.07 3.0%

Conditional exponential,
k-means clusters

3% reference quantile,
16 clusters -0.05% -7.03 2.5%

EVT 2 clusters, k = 0.97 -0.12% -7.04 1.8%

Quantile regression
CNN

minpooling, SkSc
f=16-32-64x5,kn=(2,2),st=(1,1) -0.10% -7.21 1.6%

Quantile regression
CNN

minpooling, wQS
f=16-32-64x5,kn=(2,2),st=(1,1) -0.11% -7.08 0.5%

Beta mixture
FCNN 7 layers, 60 nodes +0.16% -7.19 2.2%

Beta mixture
LSTM 4 layers, 1 cell per horizon +0.20% -7.17 2.0%

TABLE IV: Summary of forecasting scores for the best of configurations of all models proposed

Method Product length RUF [%] Max Reserve Deficit [% Pn] Reserve average [% Pn] Reserve s.d. [% Pn]

QRF 1h 0.064 11.0 8.2 5.8
exponential 1h 0.047 8.7 7.0 5.6

CNN 1h 0.058 1.1 3.5 1.6

QRF 4h 0.030 7.5 6.7 4.8
exponential 4h 0.026 8.1 5.5 4.5

CNN 4h 0.035 0.8 2.9 1.3

TABLE V: Summary of results of downward reserve capacity offer with selected best forecasting methods compared to QRF
benchmark, for τ = 0.1%. [% Pn] means results are given w.r.t to the normalized production of the VPP
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The second type of model necessitates neural networks.
Quantile regression with CNN, configured for extremes with
a specific min-pooling layer which captures minimal values of
features, strikes a good balance between increased reliability
on the lowest quantiles and improvement of global score with
respect to QRF. Min-pooling may lead to discard information
conveyed by features that are negatively correlated to the ag-
gregated VRE production, therefore other filtering or pooling
techniques should be studied to obtain better performance over
the entire interval of low quantiles. Mixture density networks
are effective when based on Beta distributions, which are
coherent with the bounded process of aggregated production.
A Beta Mixture trained by a neural network, either fully-
connected or LSTM, reaches one of the best performances
in terms of global score but is too conservative to achieve
acceptable reliability. The direct estimation of a Beta Mixture
conditioned on the features of the VPP, without the complex
integration of a neural network would be an interesting topic
of further research. The computational complexity of the
machine-learning models proposed here grows linearly with
the number of features associated. So for a large VPP contain-
ing hundreds of plants, computationally efficient approaches
would be needed to ensure that the proposed methods remain
scalable. These include Extremely Randomized Trees instead
of QRF and solving the CNN with GPU. For even larger
dimensions of the VPP, transfer learning or specific statistical
methods adapted to high dimension should be studied.

In conclusion, the simple model of conditional exponential
distributions may suffice for the implementation of highly
reliable forecasts of VRE-VPP production in practical ap-
plications such as reserve offer or unit commitment under
extreme VRE scenarios. But the CNN regression constitutes an
alternative because it provides sharp predictions and an opti-
mization of its architecture could lead to further improvements
in applications implicating VPPs. Both forecasting models
can be used to derive reserve offers for VRE-based VPPs
that minimize the probability of reserve under-fulfillments. In
order to better prepare reserve dispatch within the VPP or
interaction with a storage system, future work is needed to
model temporal dependencies and predict very low quantiles
at intraday horizons when VPP dispatch decisions need to be
taken.
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APPENDIX A
COMPLEMENTARY MATERIAL ON THE EVT MODEL

This appendix contains Algorithm 4, which selects features
relevant for the conditioning of the scale parameter of the EVT
model.

APPENDIX B
COMPLEMENTARY MATERIAL ON THE MDN MODEL

1) Inference of Gaussian Mixture: In a Bayesian inference
of a mixture problem, the mixture proportion is associated in

Algorithm 4 Feature selection algorithm for conditional scale
of EVT model

1: Initialize
Compute maximum likelihood of unconditional model
L(0)(γ, σ(0))
Evaluate AIC(0) = 2DEVT − 2lnL(0)

2: while j ≥ DEVT do
3: Add feature xj to the scale σ(j)(x) = σ(j−1) + σj .xj

4: Compute maximum likelihood L(j)(γ, σ(j)(x))
5: if AIC(j) < AIC(j−1) and σ(j)(xi) > 0, ∀xi then
6: σ(j) = (σ(j−1), σj)
7: else
8: σ(j) = σ(j−1)

9: end if
10: end while

(25) with a prior Dirichlet distribution, with the hyperparam-
eter rate vector α0

m. The prior distributions for the means of
mixture components follow as in (26) a conjugate Gaussian
distribution with hyper-parameters µ0

µm, σ0
µm. The conjugate

priors for precisions are taken in (27) as a Gamma distribution
with hyperparameters c0m, r0m.

πm ∼ Dir(α0
πm) (25)

µm ∼ N (µ0
µm, σ0

µm) (26)

ϕm ∼ Γ(c0m, r0m) (27)

Then each component is associated with one of the VRE
plants in the VPP. The hyper-parameters of the component
are taken as the mean and variance of production of the
corresponding plant. The prior distribution of the proportions
is fitted on the shares of installed capacity of the aggregated
plants. Finally, the response variable y is transformed from
the bounded space [0, 1] to R by applying the logit transform,
by doing so the Gaussian mixture, unbounded in nature, can
operate in an unbounded space.

2) Inference of Beta Mixture: Gaussian Mixtures are not
able to capture fat tails and can not be directly applied to a
bounded process such as renewable generation. Instead, the
flexible Bayesian Beta Regression proposed by [13] has a
bounded likelihood and can accommodate various types of
tails and asymmetries [13]. This mixture is defined by two
Beta densities which are re-parametrized to share a common
precision parameter ϕ.

The random variable associated with the VPP production y
now follows (28),

y ∼
2∑

m=1

πmBe(λm, ϕ) (28)

The choice of prior distributions is tailored to the behavior
of Beta distributions. We define Beta priors on the common
mean µ =

∑2
m=1 πmλm and the distance between marginal

means ω, and a Gamma prior on the common precision ϕ
because a low common precision is assumed to be probable
compared to a high common precision. The mixing proportions
are assumed to follow a Dirichlet distribution, parametrized
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by the two concentration rates α0
π1, α

0
π2 of the two mixture

components.

π ∼ Dir(α0
π1, α

0
π2) (29)

µ ∼ Be(α0
µ, β

0
µ) (30)

ω ∼ Be(α0
ω, β

0
ω) (31)

ϕ ∼ Γ(c0ϕ, r
0
ϕ) (32)
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