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PDMP characterisation of event-chain Monte Carlo algorithms for particle

systems

Athina Monemvassitis,∗ Arnaud Guillin,† and Manon Michel‡

Laboratoire de Mathématiques Blaise Pascal UMR 6620,

CNRS, Université Clermont-Auvergne, Aubière, France.

Abstract

Monte Carlo simulations of systems of particles such as hard spheres or soft spheres with singular

kernels can display around a phase transition prohibitively long convergence times when using tradi-

tional Hasting-Metropolis reversible schemes. Efficient algorithms known as event-chain Monte Carlo

were then developed to reach necessary accelerations. They are based on non-reversible continuous-

time Markov processes. Proving invariance and ergodicity for such schemes cannot be done as for

discrete-time schemes and a theoretical framework to do so was lacking, impeding the generalisation

of ECMC algorithms to more sophisticated systems or processes. In this work, we characterize the

Markov processes generated in ECMC as piecewise deterministic Markov processes. It first allows us

to propose more general schemes, for instance regarding the direction refreshment. We then prove the

invariance of the correct stationary distribution. Finally, we show the ergodicity of the processes in

soft- and hard-sphere systems, with a density condition for the latter.
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I. INTRODUCTION

Since the introduction of the Markov-chain Monte Carlo method (MCMC) [1], continuous

particle systems evolving according to pairwise and central interactions have filled the part

of both an important scientific motivation in itself and a formidable testbed and accelerator

for MCMC development. Indeed, despite the simplicity of the interactions (e.g. hardcore,

Lennard-Jones or powerlaw-decaying repulsions), the behaviours displayed by these systems

are rich. They are however described by high-dimensional integrals, whose analytical resolu-

tion remains ouf of reach. Their MCMC numerical evaluation by a discrete sum over a large

collection of system configurations has thus been an important focus of the computational

physics [2–4] as well as of the probability community [5] for example. MCMC methods rely

on Markov processes to produce system configurations in a random sequence. Such sequence

should preferrably exhibit the least correlations possible between two succeeding states, in

order to minimise the asymptotic error on the integral estimation [6]. Typically, reversible

Markov processes rely on move rejections for correctness and display a diffusive dynamics [7].

They then show important correlations, which can furthermore be greatly increased in pres-

ence of critical slowing down phenoma at phase transitions [8]. The development of MCMC

methods which can break free from any diffusive behavior and slow physical time scales

has thus been instrumental to reach system sizes big enough to control finite-size effects, as

achieved by the rejection-free cluster algorithms in lattice-spin sytems [9, 10].

In continuous particle systems, the lack of a natural involution symmetry, necessary to

ensure the reversibility and correctness of cluster methods, has led to the development of non-

reversible MCMC methods[11, 12], among which Event-Chain Monte Carlo (ECMC) [13, 14].

By producing persistent global moves forming up a sequence of ballistic trajectories of single

particles, the accelerations brought by ECMC allowed to resolve the heavily-debated ques-

tion of the scenario for the melting of bidimensional hard disks [4, 15] and to investigate

the same phenomenon with power-law decaying interactions [16]. These successes have thus

motivated the application of ECMC algorithms to other classic systems in statistical physics

(polymers [17], continuous spins [18, 19]) and started the development of generalized and ac-

celerated ECMC variant (e.g. generalisation to n-body interactions [20], Forward ECMC [21],

Newtonian ECMC [22, 23]). Stemming from this research line in statistical physics, similar
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non-reversible Markov processes as the ones used in ECMC were applied to sampling prob-

lems in statistical Bayesian inference [24, 25] and were mathematically framed as Piecewise

Deterministic Markov Processes (PDMP) [26, 27], leading to the general name of Piecewise

Deterministic Monte Carlo (PDMC). Piecewise deterministic Markov processes have already

been studied in queuing theory [27], biology [28, 29] and physics, see for example [30] for a

review of a variety of PDMP applications. Now under focus in Bayesian statistics, efforts

have been made towards a rigorous analysis of the properties of invariance, ergodicity and

convergence of the processes found in PDMC [25, 31, 32].

In this work, we push this analytical effort and characterize the PDMP generated by

ECMC in bidimensional disk systems. This allows to prove the invariance of the commonly-

used schemes and gives a framework to do so for future algorithmic upgrades or applications.

In particular, we show how the refreshment of the direction of the ballistic trajectories can be

described by a boundary effect instead of a Poisson process, as commonly found in PDMC in

the statistics literature. Doing so reflects better the algorithmic implementations as done in

physics, as fixed-time refreshment schemes can greatly ease the computations. Furthermore,

this allows us to give conditions on valid refreshment schemes, opening up to a larger choices

of strategies than the exponential refreshment generated by a Poisson process or the uniform

one as obtained by a fixed-time scheme. Finally, we study the ergodicity property of those

processes for soft and hard disks. We use the Harris recurrence theory [33–35] starting from

the uniform continuity property of the process [36, 37] and adapting the proof done in [38].

In presence of hardcore repulsions, even at low densities and for reversible Markov chains,

proving ergodicity is a hard problem, first starting with a usually simple task such as showing

irreducibility. Here, we follow the approach used in [5] for a reversible Markov chain, so as to

show connectivity of the state space, but obtain ergodicity for higher densities.

In the present paper, we start by introducing the ECMC method and its implementation

in disk systems in Section II. We then present the PDMP characterisation of ECMC and in

particular of its refreshment strategy in Section III. This allows us to derive the invariance in

Section IV through a generator characterization and the ergodicity in Section V.

3



II. EVENT-CHAIN MONTE CARLO FOR SOFT- AND HARD-SPHERE SYSTEMS

A. Soft- and hard-sphere systems

Event-chain Monte Carlo algorithms were first developed for hard- and soft-sphere sys-

tems in a periodic bidimensional box [13, 14]. Both systems share a common description,

and henceforth we will only use subscripts S or H when making statements restricted to

respectively the soft- or hard-sphere systems.

For both systems, a configuration of the N ∈ N spheres of radius σ ∈ R∗+ in a peri-

odic box of length L ∈ R∗+ is completely characterized by the sphere positions x = (xi =

(xi,0, xi,1))i∈J1,NK ∈ Ω(N) ⊂ (R/LZ)2N . The configuration set Ω(N) of valid configura-

tions is an open set, completely defined according to the excluded minimal pairwise distance

dpair ∈ R+, as,

Ω(N) = {x ∈ (R/LZ)2N ; ∀(i, j) ∈ J1, NK2, i 6= j, (xi, xj) ∈ Ωpair}, (1)

with Ωpair the open set of valid pair of positions,

Ωpair = {(x, x′) ∈ (R/LZ)4; d(x, x′) > dpair} (2)

where d is the L-periodic distance d : (R/LZ)4 →
[
0, L√

2

]
, which corresponds for any pair of

positions (x = (x0, x1), x′ = (x′0, x
′
1)) ∈ (R/LZ)4 to the minimal distance between all their

periodic copies,

d(x, x′) =

√√√√ 1∑
k=0

min(|xk − x′k|, L− |xk − x′k|)2. (3)

The configuration set Ω(N) presents the boundary,

∂Ω(N) = {x ∈ (R/LZ)2N ; ∀(i, j) ∈ J1, NK2, i 6= j, (xi, xj) ∈ Ωpair ∪ ∂Ωpair} \ Ω,

with

∂Ωpair = {(x, x′) ∈ (R/LZ)4; d(x, x′) = dpair}.

Form now on, we will drop the dependence in N of Ω(N) for simplicity, when there is no

possible confusion on the number N of spheres involved.
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Sphere configurations then follow at equilibrium a Boltzmann distribution,

∀x ∈ Ω, π(x) ∝
∏

1≤i<j≤N
exp[−βu(d(xi, xj))], (4)

with β the inverse temperature, set to 1 in the following, and u :]dpair,+∞[→ R+ a continuous

and piecewise differentiable function, which codes for the potential energy arising from the

pairwise interactions and depending only on the pairwise periodic distance. We define by

continuity the extended distribution π̃,

∀x ∈ Ω ∪ ∂Ω, π̃(x) ∝ limr→d+pair
exp

[
−βu(r)

∑
1≤i<j≤N 1∂Ωpair

((xi, xj))
]

× exp
(
−β
∑

1≤i<j≤N u(d(xi, xj))(1− 1∂Ωpair
((xi, xj)))

] (5)

Explicitely, for soft spheres,
ΩS = (R/LZ)2N \ {x ∈ (R/LZ)2N ;∃(i, j) ∈ J1, NK2, i 6= j, d(xi, xj) = 0}

dS,pair = 0

ΩS,pair = {(x, x′) ∈ (R/LZ)2; d(x, x′) > 0},

(6)

and the interactions are ruled for any pair interdistance r ∈ R∗+,by

uS(r) =


(
σ
r

)γ − ( σrc)γ for r ≤ rc

0 otherwise
, (7)

with rc ∈
]
0, L2

]
a cut-off length. It leads to the soft-sphere equilibrium distribution πS and

corresponding extended one π̃S , ∀x ∈ ΩS , πS(x) ∝
∏

1≤i<j≤N exp[−βuS(d(xi, xj))]

∀x ∈ ΩS ∪ ∂ΩS , π̃S(x) = 1Ω(x)π(x).
(8)

Now, for hard spheres,
ΩH = (R/LZ)2N \ {x ∈ (R/LZ)2N ; ∃(i, j) ∈ J1, NK2, i 6= j, d(xi, xj) ≤ 2σ}

dH,pair = 2σ

ΩH,pair = {(x, x′) ∈ (R/LZ)2; d(x, x′) > 2σ}.

(9)

For hard-sphere systems, there is no interaction apart from the hard-core repulsions which

are already encoded in the non-zero dH,pair, so that we have for any r ∈]2σ,+∞[,

uH(r) = 0, (10)
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and the hard-sphere equilibrium distribution πH (resp. the extended distribution π̃H) is then

the uniform one on ΩH (resp. on ΩH ∪ ∂ΩH),

 ∀x ∈ ΩH , πH(x) ∝ 1ΩH
(x)

∀x ∈ ΩH ∪ ∂ΩH , π̃H(x) ∝ 1ΩH∪∂ΩH
(x).

(11)

B. Event-chain Monte Carlo

Sampling configurations in a set Ω according to a target probability distribution π is

achieved in a MCMC method through the recursive application of a Markov kernel, denoted

as K, such that π is left invariant, equivalently, such that the global balance condition πK = π

is satisfied, i.e.,

∫
x′∈Ω

π(dx′)K(x′, dx) =

∫
x′∈Ω

π(dx)K(x,dx′) = π(dx). (12)

The seminal Metropolis algorithm [1], was first developed for sampling from sphere sys-

tems by enforcing a sufficient condition to the global balance, the detailed balance, i.e.

π(dx′)K(x′,dx) = π(dx)K(x,dx′) for every pair of configurations (x, x′) ∈ Ω, through the

following choice for K,

K(x, dx′) = q(x′|x)a(x′|x)dx′ +

(
1−

∫
y∈Ω

q(y|x)a(y|x)dy

)
δx=x′ , (13)

where q identifies with the proposal distribution, a common choice (e.g. as studied in [5])

verifying
∫

Ω q(x
′|x)dx′ = 1 being,

q(x′|x) =
1

h2vol(B1)
1B1

(
x− x′

h

)
, (14)

with h ∈]0, 1] and B1 the unit ball of R2, and where a identifies with the acceptance rate,

a(x′|x) = min

(
1,
π(x′)

π(x)

)
, (15)

generalized in [39] to,

a(x′|x) = min

(
1,
q(x|x′)
q(x′|x)

π(x′)

π(x)

)
, (16)
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for an asymmetric proposal distribution q.

Event-chain Monte Carlo algorithms [13, 14] were developed so that only the necessary

condition of global balance is satisfied, while the detailed-balance one is broken. This is

achieved by generating a non-reversible Markov process through the exploitation of the pair-

wise translational invariance or mirror symmetry for any pair of spheres (i, j) ∈ J1, NK2, i.e.

∇ · u(d(xi, xj)) = 0 (resp. ∇ · H(d(xi, xj)) = 0 in the limit of hard spheres systems, H be-

ing the Heaviside function). ECMC schemes are now also generalized to systems presenting

general n-body interactions by exploiting the global translational invariance (∇ · u = 0), see

[20].

The initial introduction of these methods relied on taking an infinitesimal limit and using

continuous-time Markov processes, while extending the state x to (x, v), with v an auxiliary

variable, commonly referred to as the lifting variable, following [40]. The purpose of such

variable is to introduce persistence into the proposal distribution while ensuring the process

remains Markovian. In bidimeniosal sphere systems, the state space Ω is thus extended to

Ω × V with V = {(1, 0), (0, 1)} × J1, NK, associated with the measure µV = µD ⊗ µN where

µD and µN are the counting measures over D = {(1, 0), (0, 1)} and J1, NK respectively. The

Markov process should then be targetting as stationary distribution π ⊗ µV . For any pair

of configurations (x, v = (e, i)), (x′, v′ = (e′, i′)) ∈ (Ω × V)2 the acceptance is set to 1 (i.e.

a((x′, v′)|(x, v)) = 1). The auxiliary variable v = (e, i) codes for proposing moves of the i-th

sphere along the direction e, setting,

qε((x
′, (e′, i′)))|(x, (e, i)))

= (1− r)δ(e− e′)δ(i− i′)δ(xi + εe− x′i)
∏
j 6=i

δ(xj − x′j)
∏
j 6=i

pε(xi, xj , e) (physical move)

+ (1− r)δ(e− e′)(1− δ(i− i′))δ(x− x′)(1− pε(xi, xi′ , e))
∏
j 6=i,i′

pε(xi, xj , e) (lifting move)

+ rδ(x− x′)µV(de′,di′) (refreshment)

(17)

with ε ∈ R∗+ the step magnitude, 0 < r < 1, the refreshment probability and pε the factor

probability [14] for (xi, xj) ∈ Ωpair,

pε(xi, xj , e) = min

(
1,1Ωpair((xi + εe, xj))

exp(−u(xi + εe, xj))

exp(−u(xi, xj))

)
, (18)
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which builds up a factorized variant of the usual Metropolis probability (15) and which also

satisfies detailed balance in a skewed form, as

exp(−u(xi, xj))
∏
j 6=i

pε(xi, xj , e) = exp(−u(xi + εe, xj))
∏
j 6=i

pε(xi + εe, xj ,−e). (19)

The idea behind this choice for the proposal distribution qε is to propose physical moves (i.e.

updates of x) by moving the i-th sphere by +εe until a rejection triggered by another sphere i′

through its pairwise interaction with i occurs. Then, the physical move is replaced by a lifting

one (i.e update of v from v = (e, i) to v′ = (e, i′)) and the i′-th sphere is now the one being

updated by +εe increment. Eventually, the proposal distribution includes a refreshment term

in order to ensure irreducibility, which can also halt the persistent physical moves to update

v.

Nonetheless, in spite of the property (19) of the factor probabiliy pε, the proposal distri-

bution (17) does not define a valid MCMC scheme for finite ε since rejections of the physical

move from multiple pairs at once are not accounted for, i.e.,∫
dx′de′di′qε((x

′, (e′, i′))|(x, (e, i))) = 1−(1−r)
[
1−
∑
i′ 6=i

(
1−N−2

N−1
pε(xi, xi′ , e)

) ∏
j 6=i,i′

pε(xi, xj , e)
]

< 1.

(20)

A solution is to add the following lifting move,

(1− r)δ(e+ e′)δ(i− i′)δ(x−x′)
N−1∑
k=2

∑
1≤j1<···<jk≤N

k∏
m=1

(1−pε(xi, xjm , e))
∏

j 6∈(i,j1,...,jk)

pε(xi, xj , e),

which replaces the rejected physical move by a flip of e. This however comes at the cost of

extending the set D to include backward moves, i.e. {(−1, 0), (0,−1)}. Fortunately, in the

infinitesimal limit ε → 0 corresponding to the continuous-time limit, this multiple rejection

term is of order O(ε2), as pε(xi, xj , e)
ε→0∼ 1 − ε〈∇u(xi, xj), e〉+[48], whereas the other terms

in the proposal distribution qε are at least of order O(ε),

qε((x
′, (e′, i′)))|(x, (e, i)))

= (1− r)δ(e− e′)δ(i− i′)δ(x′i + εe− xi)

∏
j 6=i

δ(x′j − xj)

1− ε
∑
j 6=i
〈∇u(xi, xj), e〉+


+ (1− r)δ(e− e′)(1− δ(i− i′))δ(x− x′)ε〈∇u(xi, xi′ , e〉+ + rδ(x− x′)µV(de′,di′) +O(ε2)

,

(21)
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FIG. 1: Illustration of moves produced from an ECMC algorithm in a system of soft spheres. The

grey sphere, set by the label i, is updated along the direction e = (1, 0) (physical move, a) until a first

event occurs, here with the j-th sphere (in red, b). The label then is updated from i to j (lifting move,

c) and it is the j-th sphere which is now being updated along e before being stopped at a refreshment

time (d), where a new label and direction (in blue, d) is resampled and from which a new chain of

physical and lifting moves is produced (e).

leading in this infinitesimal limit to∫
Ω×V

qε((x
′, v′)|(x, v))dx′dv′ =

∫
Ω×V

qε((x, v)|(x′, v′))dx′dv′ = 1−O(ε2).

Thus, Markov processes generated by ECMC are composed of chains of ballistic trajectories

following the direction e of spheres successively set by the label i, updated at events ruled by

Poisson clocks stemming from the continuous-time limit and of total rate
∑

j 6=i〈∇u(xi, xj)·e〉+.

An illustration can be found in Figure 1. As the acceptance function a is always returning 1,

these schemes have been referred to as rejection-free. A pseudocode implementation is exhib-

ited in Algorithm 1 and shows how to sample the sequence of ballistic trajectories separated

by the Poisson events.

As can be seen from the above informal derivation, the description of ECMC schemes in

term of an infinitesimal limit of some finite schemes may appear cumbersome. In the next

section, after introducing piecewise deterministic Markov processes (PDMP), we show how

they offer a robust analytical framework for the analytical description of such scheme, making

the derivation of some properties, e.g. invariance of a given distribution, more straightforward

and allowing to properly describe schemes relying on a fixed-time refreshment.
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Algorithm 1 ECMC implementation for soft disks outputting a set S of n samples

Set S = {}

Set x ∈ Ω

for k = 1 to k = n do

Sample uniformly (e, i) ∈ {(1, 0), (0, 1)} × J1, NK

Set ER an exponential random variable with parameter 1

Set ∆R = − 1
r lnER

while ∆R > 0 do

for j = 1 to j = N , j 6= i do

Set Ej an exponential random variable with parameter 1

Compute ∆j such that
∫∆j

0
〈∇u(xi + se, xj), e〉+ds = −ln(Ej)

end for

Set ∆Ev, jEv = minj 6=i(∆j), argminj 6=i(∆j), xi ← xi + emin(∆R,∆Ev)

if ∆R > ∆Ev then

Set (e, i)← (e, jEv)

Set ∆R ← ∆R −∆Ev

end if

end while

Add x to S

end for

return S

III. PIECEWISE DETERMINISTIC MARKOV PROCESSES IN ECMC ALGO-

RITHMS FOR MULTIPARTICLE SYSTEMS

A. Definition of a PDMP

Piecewise Deterministic Markov Processes have been formalized by Davis in his seminal

paper [26] and book [27]. Briefly, and to fit to our setting, a PDMP {Xt, Vt}t≥0, defined on

a space Ω×V, refers to a Markov process composed of ballistic trajectories whose succession

is ruled by a Poisson process. In more details, once an initial state (X0, V0) ∈ Ω × V is set,

the process evolves ballistically according to a deterministic differential flow (φt)t≥0, until an

event occurs or the process reaches the domain boundary. Events are characterized by their

rate λ : Ω × V → R+ and a Markov kernel Q, defined on (Ω× V,B(Ω× V)), which updates

10



{Xt, Vt}. At the boundary, for (x, v) ∈ ∂Ω×V, the differential flow would cause an exit from

Ω × V for the subset Γ∗ = {(z, v′) ∈ ∂Ω × V; ∃(t, (x, v)) ∈ R+ × Ω × V, φt(x, v) = (z, v′)},

referred in the following as the exit boundary. On this exit boundary, it is then another

Markov kernel Qb, called the boundary kernel and defined on (Γ∗,B(Ω× V)), which updates

the process.

For (x, v) ∈ (Ω × V) and f in a suitable functional space, say continuously differentiable

function as an example [49], on (Ω∪ ∂Ω)×V, the infinitesimal generator (or strong generator

[27]). associated with a PDMP is,

Af(x, v) = Dφf(x, v) + λ(x, v)

(∫
Ω×V

f(x′, v′)Q((x, v), dx′dv′)− f(x, v)

)
(22)

with Dϕ defined as,

Dφf(x, v) =

 lim
t→0+

f(φt(x,v))−f(x,v)
t if this limit exists.

0 otherwise.
(23)

Now, on the exit boundary (x, v) ∈ Γ∗, we have the boundary condition,

f(x, v) =

∫
V
f(x′, v′)Qb((x, v), dx′dv′). (24)

Note that it is actually not necessary to specify Qb for boundary points

which the process never actually hits and in the following we will note this

set of reachable exit boundary points Γ = {(z, v′) ∈ Γ∗;∃(x, v) ∈ Ω ×

V, P (No event occured before reaching (z, v′) starting from (x, v)) > 0}, as in [26].

B. Generator characterisation of PDMP in ECMC algorithms for multiparticle sys-

tems

We now characterize the stochastic processes produced by ECMC algorithms as PDMP,

in the first and most common forms of ECMC schemes, as introduced in [13, 14]. A PDMP

characterisation can be done either algorithmically, as done up until now in statistical physics

and as presented in section II B, or by its generator as presented in the previous section and

as done more recently in the context of Bayesian inference [24, 38]. In this section, we exhibit

a generator characterisation of PDMP in ECMC, which is particularly helpful to prove the

invariance of a given probability distribution.
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We first present a generator description common to previous PDMP characterisation of

sampling algorithms and which is only valid for refreshment relying on a Poisson process. We

then introduce another valid writing, which deals with the refreshment part as a boundary

effect. In that way, it allows for more freedom in its choice, while better reflecting the algorith-

mic implementation based on fixed-time refreshment schemes as popularly used in statistical

physics.

1. Standard exponential refreshment strategy

Differential flow φ. After extension of the state space from x ∈ Ω ∼ π to (x, v) ∈ Ω× V ∼

π ⊗ µV , the process (Xt, Vt) generated through ECMC is first characterized by the following

differential flow φt for all (x, v) ∈ Ω× V and t ≥ 0,

φt(x = (xk)k∈J1,NK, v = (e, i)) = ((x1, . . . , xi−1, xi + te, xi+1, . . . , xN ), v = (e, i)). (25)

This differential flow, translating the i-th sphere along e is interrupted at events, ruled by the

pairwise interactions and refreshment, and where only the lifting variable is updated through

the Markov kernel Q.

Markov kernel Q. For all (x = (xk)k∈J1,NK, v = (e, i)) ∈ Ω× V and A ∈ B(Ω× V),

Q((x, (e, i)), A) =
N∑
k=1
k 6=i

λk(x, (e, i))

λ(x, (e, i))

∫
V
1A((x, (e′, i′)))Qk((e, i), (de

′,di′)) +
λr

λ(x, (e, i))
µV(A),

(26)

where, for all k ∈ J1, NK,k 6= i,

λk(x, (e, i)) = 〈∇xiu(xi, xk), e〉+ (27)

is the (ik)-pairwise event rate, λr ∈ R+ is a homogeneous refreshment rate, making the total

event rate now λ =
∑N

k=1
k 6=i

λk + λr, and (Qk)k∈J1,NK are Markov kernels defined on V × B(V),

so that, for all e ∈ {(1, 0), (0, 1)} and (i, i′) ∈ J1, NK2,

Qk((e, i), (de
′, di′)) = δ(e− e′)δ(k − i′)de′di′, (28)

thus coding for the k-th sphere being the one translated along e after an (ik)-pairwise event

occured.
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Boundary Markov kernel Qb. For sphere systems, the exit boundary is

Γ∗ = {(x, (e, i)) ∈ ∂Ω× V; ∃j ∈ J1, NK, (xi, xj) ∈ Γepair}, (29)

with,

Γepair = {(x, x′) ∈ ∂Ωpair; 〈∇xd(x, x′), e〉 ≤ 0}. (30)

and, given (25), (26), (27) and (28), the corresponding set of reachable exit boundary points

Γ can be determined. For (x, v) ∈ Γ, the boundary Markov kernel Qb is then of the following

form, with A ∈ B(Ω× V),

Qb((x, (e, i)), A) =

N∑
k=1
k 6=i

1Γe
pair

(xi, xk)∑N
k=1
k 6=i

1Γe
pair

(xi, xk)

∫
V
1A((x, (e′, i′)))Qk((e, i), (de

′,di′)), (31)

with the {Qk}k∈J1,NK the Markov kernels defined on (V,B(V)) as in (28). Note that this choice

of Qb can be applied in case of tangential (〈∇xid(xi, xk), e〉 = 0) or multiple collisions, but we

could have excluded these points from the definition of Qb as the set they form is small and

does not impact the invariant stationary distribution. Thus, for (x, (e, i)) not at a tangential

collision, we could also have proposed the following choice,

Q̃b((x, (e, i)), A) =

N∑
k=1
k 6=i

n−(xi, xk, e)∑N
k=1
k 6=i

n−(xi, xk, e)

∫
V
1A((x, (e′, i′)))Qk((e, i), (de

′,di′)),

with n−(·) the unnormalized negative pairwise normal component,

n−(xi, xk, e) = 1Γe
pair

(xi, xk)〈−∇xid(xi, xk), e〉

= 1∂Ωpair
(xi, xk)〈∇xid(xi, xk), e〉−,

(32)

which differs only from (31) in a multiple collision situation, where it is handled as when

dealing with n−body interactions as done in [20]. We expect these different choices to have an

impact while studying out-of-equilibrium processes though, but such consideration is delayed

for future work. We also refer the reader to the recent work of [41] for a more general

consideration into PDMP samplers for piecewise continuous densities.

Eventually, it leads to the following condition on the boundary, for (x, (e, i)) ∈ Γ and f a

continuous and continuously differentiable function on (Ω ∪ ∂Ω)× V,

f(x, (e, i)) =

N∑
k=1
k 6=i

f(x, (e, k))
1Γe

pair
(xi, xk)∑N

k=1
k 6=i

1Γe
pair

(xi, xk)
. (33)
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Soft-sphere systems. All in all, the following infinitesimal generator associated with PDMP

generated by ECMC for soft-sphere systems comes down to, with f a continuous and contin-

uously differentiable function on (ΩS ∪ ∂ΩS)× V and (x, (e, i)) ∈ ΩS × V,

ASf(x, (e, i)) = 〈∇xif(x, (e, i)), e〉+
N∑
k=1

〈∇xiuS(xi, xk), e〉+ {f(x, (e, k))− f(x, (e, i))}

+ λr

(∫
V
f(x, (e′, i′))dµV((e′, i′))− f(x, (e, i))

)
.

(34)

For soft-sphere systems, ΓS is empty, as the event rate diverges as a pair distance goes to

dpair = 0 (27), and the boundary Markov kernel is without any object.

Hard-sphere systems. For hard-sphere systems, the infinitesimal generator associated, with

f a continuous and continuously differentiable function on (ΩH ∪ ∂ΩH) × V and (x, (e, i)) ∈

ΩH × V,

AHf(x, (e, i)) = 〈∇xif(x, (e, i)), e〉+ λr

(∫
V
f(x, (e′, i′))dµV((e′, i′))− f(x, (e, i))

)
. (35)

For hard-sphere systems, ΓH = Γ∗H , as the events can only be triggered by refreshments and

they do not impact a point reachability. Then, for (x, v) ∈ ΓH , the boundary Markov kernel

is the one defined in (31) and eventually leading to the condition (33) on the reachable exit

boundary ΓH . Thus the hardcore repulsions are only appearing as boundary effects.

2. Boundary refreshment strategy

The PDMP description where the refreshment part is treated as part of the jump process is

the most common one. It can however not be used to study ECMC implementations where the

refreshment process is not an exponential process. For instance, the fixed-time refreshment is

a common and useful practice in statistical physics, all the more while dealing with periodic

boundaries. It can also alleviate some difficulties in the computation of the event times set

by the pairwise rates (λk)k∈J1,NK.

Therefore we now explain how to treat the refreshment as a boundary effect by adding

an additional variable l ∈ L, with L =]0,+∞[, ∂L = {0}, associated with the measure µL,

extended by continuity to µ̃L on L ∪ ∂L. The state space Ω is now extended to Ω × L × V

and the process (Xt, Lt, Vt) now targets as a stationary distribution π × µL × µV . We then

discuss a broader range of possible refreshment strategies.
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Differential flow. The differential flow ϕt for all (x, l, (e, i)) ∈ Ω× L× V and t ≥ 0 is now

ϕt(x, l, (e, i)) = ((x1, . . . , xi + te, . . . , xN ), l − t, (e, i)). (36)

Markov kernel Q. The Markov kernel Q is, for all (x, l, (e, i)) ∈ Ω × L × V and A ∈

B(Ω× L× V),

Q((x, l, (e, i)), A) =

N∑
k=1
k 6=i

λk(x, (e, i))

λ(x, (e, i))

∫
V
1A((x, l, (e′, i′)))Qk((e, i), (de

′,di′)), (37)

where {λk(x, (e, i))}k 6=i are the pairwise rates defined in (27), the total event rate being now

λ =
∑N

k=1;k 6=i λk and (Qk)k∈J1,NK are the Markov kernels defined on V × B(V) in (28).

Boundary kernel Qb. We first define the set of exit boundary points,

Γ∗ = {(x, l, (e, i)) ∈ ∂(Ω× L)× V;∃j ∈ J1, NK, (xi, xj) ∈ Γepair or l = 0}

and Γepair is defined as in (30). The corresponding set Γ of reachable exit boundary points

is included in Γ∗, and, for (x, l, v) ∈ Γ × V, the boundary Markov kernel Qb is, with A ∈

B(Ω× L× V),

Qb((x, l, (e, i)), A) = 1∂L(l)

∫
L

1A((x, l′, (e′, i′)))R(l,dl′)dµV((e′, i′))

+ (1− 1∂L(l))
N∑
k=1
k 6=i

1Γe
pair

(xi, xk)∑N
k=1
k 6=i

1Γe
pair

(xi, xk)

∫
V
1A((x, l, (e′, i′)))Qk((e, i),d(e′, i′))

(38)

with R a Markov kernel defined on L×B(L) and the {Qk}k∈J1,NK the Markov kernels defined

on (V,B(V)) as in (28). One could naturally consider more general choice for R than just a

kernel acting on the refreshment time l. Also, as previously mentioned, we could have given

an explicit definition of the boundary kernel on only points forming a non-small set, excluding

tangential, multiple collisions or coincidental collision and refreshment.

Eventually, the infinitesimal generator comes down to, with f a continuous and continu-

ously differentiable function on ((Ω× L) ∪ ∂(Ω× L))× V and (x, l, (e, i)) ∈ Ω× L× V,

Af(x, l, (e, i)) =〈∇xif(x, l, (e, i)), e〉 − ∂lf(x, l, (e, i))

+

N∑
k=1

λk(x, l, (e, i)) {f(x, l, (e, k))− f(x, l, (e, i))} ,
(39)
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And, we have the condition on the boundary for (x, l, (e, i)) ∈ Γ×V and for f a continuous

and continuously differentiable function on ((Ω× L) ∪ ∂(Ω× L))× V,

f(x, l, (e, i)) =1∂L(l)

∫
L
f(x, l′, (e′, i′))R(l,dl′)dµV((e′, i′))

+ (1− 1∂L(l))

N∑
k=1
k 6=i

1Γe
pair

(xi, xk)∑N
k=1
k 6=i

1Γe
pair

(xi, xk)
f(x, l, (e, k)).

(40)

This shift in description from an exponential jump process to a boundary effect could also

be carried on regarding the events stemming from the pairwise interactions and ruled by the

rates (λk)k∈J1,NK (27). It nicely reflects the picture of an energy reservoir emptied along the

differential flow from the positive energy increment, as described in the first works introducing

these algorithmic methods [14, 18]. We will present conditions on R to ensure the correct

invariance towards our target measure π × µL × µV in the next section.

IV. INVARIANCE OF THE EQUILIBRIUM DISTRIBUTION

The generator is an efficient tool to prove invariance of a measure w.r.t. a given process

(e.g. [27, Prop. 34.7]). It will be normally required to do the formal effort to characterize the

core of its generator (e.g. [31, Cor. 22]). As it is not the heart of our problematic, we will

not detail the approximation procedure, as described via [31, Prop. 23, Cor.24] or [42], so

that π⊗µV is shown to be left invariant by the PDMP by means of its infinitesimal generator

(34) applied to continuously differentiable functions. Note that as we consider the torus, f is

also bounded so that we have no problem defining the condition on the boundary and thus

requires no additional condition on Qb.

A. Standard exponential refreshment strategy

This comes down to show, with f a continuous and continuously differentiable function on

(Ω ∪ ∂Ω)× V, that, ∫
Ω×V
Af(x, (e, i))π(x)dxdµV(e, i) = 0 (41)

Remark here that, from a dynamical point of view, starting from a measure with a nonzero

density with regards to π is important, so as not to charge overlapping configurations in the
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soft-sphere case or spheres in contact in the hard-sphere one.

Expliciting A from (34) for soft spheres or (35) for hard ones, we obtain∫
Ω×V
Af(x, (e, i))dπ(x)dµV(e, i) =

∫
Ω×V

dπ(x)dµV(e, i)〈∇xif(x, (e, i)), e〉

+

∫
Ω×V

dπ(x)dµV(e, i)

N∑
k=1
k 6=i

〈e,∇xiu(xi, xk)〉+ {f(x, (e, k))− f(x, (e, i))}

+ λr

∫
Ω

dπ(x)

(∫
V

dµV(e′, i′)f(x, (e′, i′))−
∫
V

dµV(e, i)f(x, (e, i))

)
(42)

The refreshment term cancels itself. Now, by integration by parts,

=

∫
Ω×V

dxdµV(e, i)∇xi · (f(x, (e, i))π(x)e)−
∫

Ω×V
dxdµV(e, i)f(x, (e, i))〈∇xiπ(x), e〉

+

∫
Ω×D

dxdµD(e)
1

N

N∑
i=1

N∑
k=1
k 6=i

π(x)〈e,∇xiu(xi, xk)〉+ {f(x, (e, k))− f(x, (e, i))} .
(43)

Key point of these schemes, we make use of the pairwise mirror symmetry ∇xiu(xi, xk) =

−∇xku(xi, xk) to show the compensation of the transport by the events,

=

∫
Ω×V

dxdµV(e, i)∇xi · (f(x, (e, i))π(x)e)−
∫

Ω×V
dxdµV(e, i)f(x, (e, i))〈∇xiπ(x), e〉

+

∫
Ω×D

dxdµD(e)
1

2N

N∑
i=1

N∑
k=1
k 6=i

π(x)〈∇xiu(xi, xk), e〉 {f(x, (e, k))− f(x, (e, i))}

=

∫
Ω×V

dxdµV(e, i)∇xi · (f(x, (e, i))π(x)e)−
∫

Ω×V
dxdµV(e, i)f(x, (e, i))〈∇xiπ(x), e〉

+

∫
Ω×D

dxdµD(e)
1

2N

(
N∑
i=1

〈∇xiπ(x), e〉f(x, (e, i)) +

N∑
k=1

〈∇xkπ(x), e〉f(x, (e, k))

)

=

∫
Ω×V

dxdµV(e, i)∇xi · (f(x, (e, i))π(x)e).

(44)

By the divergence theorem, the first term encodes for the effects on the boundary ∂Ω× V,∫
Ω×V

dxdµV(e, i)∇xi · (f(x, (e, i))π(x)e) =

∫
(∂Ω×V)\Γ∗

dxdµV(e, i)f(x, (e, i))π̃(x) 〈ni(x, (e, i)), e〉 .

+

∫
Γ

dxdµV(e, i)f(x, (e, i))π̃(x) 〈ni(x, (e, i)), e〉

+

∫
Γ∗\Γ

dxdµV(e, i)f(x, (e, i))π̃(x) 〈ni(x, (e, i)), e〉 ,

(45)
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with ni the i-th component of the local outward normal,

ni(x, (e, i)) = −
N∑
k=1
k 6=i

1Ωpair(xi, xk)∇xid(xi, xk)

which can be rewritten as,

ni(x, (e, i)) =
N∑
k=1
k 6=i

(1Γe
pair

(xk, xi)∇xkd(xi, xk)− 1Γe
pair

(xi, xk)∇xid(xi, xk)). (46)

For soft-sphere systems, π̃(x) is 0 for x ∈ ∂Ω (8), yielding (45) to sum up to 0 and the

invariance of πS × µV . The situation is different for hard-sphere ones where ΓH = Γ∗H . Using

the relation on the boundaries (33), the relation (46) and the definition of ΓH , we get

=

∫
(∂Ω×V)\ΓH

dxdµV(e, i)f(x, (e, i))
N∑
k=1
k 6=i

1Γe
pair

(xk, xi)〈∇xkd(xi, xk), e〉

+

∫
ΓH

dxdµV(e, i)f(x, (e, i))

N∑
k=1
k 6=i

1Γe
pair

(xk, xi)〈∇xkd(xi, xk), , e〉

−
∫

ΓH

dxdµV(e, i)

N∑
j=1
j 6=i

f(x, (e, j))
1Γe

pair
(xi, xj)∑N

j=1
j 6=i

1Γe
pair

(xi, xj)

N∑
k=1
k 6=i

1Γe
pair

(xi, xk)〈∇xid(xi, xk), e〉.

(47)

Merging the first two terms and simplyfing the third as multicollisions form a small set,

=

∫
∂Ω×V

dxdµV(e, i)f(x, (e, i))

N∑
k=1
k 6=i

1Γe
pair

(xk, xi)〈∇xkd(xi, xk), e〉

−
∫

ΓH

dxdµV(e, i)

N∑
j=1
j 6=i

f(x, (e, j))1Γe
pair(xi,xj)〈∇xid(xi, xj), e〉.

(48)

As ΓH ⊂ ∂Ω× V,

=

∫
∂Ω×V

dxdµV(e, i)f(x, (e, i))

N∑
k=1
k 6=i

1Γe
pair

(xk, xi)〈∇xkd(xi, xk), e〉

−
∫
∂Ω×V

dxdµD(e)
1

N

N∑
i=1

N∑
j=1
j 6=i

1ΓH
(x, (e, i))f(x, (e, j))1Γe

pair(xi,xj)〈∇xid(xi, xj), e〉,

(49)
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which identifies with,

=

∫
∂Ω×V

dxdµV(e, i)f(x, (e, i))
N∑
k=1
k 6=i

1Γe
pair

(xk, xi)〈∇xkd(xi, xk), e〉

−
∫
∂Ω×V

dxdµV(e, j)f(x, (e, j))
N∑
i=1
i 6=j

1Γe
pair(xi,xj)〈∇xid(xi, xj), e〉

=0,

(50)

leading to the invariance of πH ×µV in the hard-sphere case. The invariance can be obtained

in the same manner when using Q̃b by noting the relation,

〈ni(x, (e, i)), e〉 =

N∑
k=1
k 6=i

(n−(xi, xk, e)− n−(xk, xi, e)). (51)

B. Refreshment as a boundary effect

We show the invariance of the target distribution π × µL × µV by verifying the invariance

condition on (39). With f a continuous and continuously differentiable function on ((Ω×L)∪

∂(Ω×L))×V and (x, l, (e, i)) ∈ Ω×L×V, we get by integration by part and running similar

computations as done in (43) and (44),

∫
Ω×L×V

Af(x, l, (e, i))dπ(x)dµL(l)dµV(e, i) =

∫
Ω×L×V

dxdµL(l)dµV(e, i)∇xi · (f(x, l, (e, i))π(x)e)

−
∫

Ω×L×V
dπ(x)dµL(l)dµV(e, i)∂lf(x, l, (e, i))).

(52)

And, by the divergence theorem and integration by parts, we obtain,

=

∫
∂Ω×L×V

dxdµL(l)dµV(e, i)f(x, l, (e, i))π̃(x)〈ni(x, (e, i)), e〉

+

∫
Ω×V

dπ(x)dµV(e, i)µ̃L(0)f(x, 0, (e, i))−
∫

Ω×L×V
dπ(x)dldµV(e, i)(−∂lµL(l))f(x, l, (e, i))

(53)

Using condition (40), we obtain the following general condition on the boundary refreshment

kernel R in order to set (53) to 0,∫
Ω×L×V

dπ(x)dµV(e, i)µ̃L(0)f(x, l, (e, i))R(0, dl) =

∫
Ω×L×V

dπ(x)dldµV(e, i)(−∂lµL(l))f(x, l, (e, i)),

(54)
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Note that here the kernel R has to compensate the transport term and strongly depends on

µL, contrary to the boundary kernel Qb which can only depend on local information as the

local normal. This condition simplifies to, for l ∈ L,

µ̃L(0)R(0, dl) = (−∂lµL(l))dl. (55)

It is equivalent to requiring µL to be of the form,

µL(l) = h(l)1D. (56)

where D ⊂ L and h a decreasing function on D so that liml→0+ h(l) > 0 and
∫
L
−∂lµL(l)
µ̃L(0) dl = 1.

Naturally we directly recover processes currently used in most algorithms, i.e. the fixed-

time refreshment or the exponential one, giving, for l ∈ L, fixed-time T : µL(l) = 1
T 1]0,T [ and R(l,dl′) = δ(l′ − T )dl′, with T > 0, D =]0, T ]

exponential of rate λr: µL(l) = λre
−λrl1l>0 and R(l,dl′) = λre

−λrl′1l′>0dl′, with λr > 0, D = L
.

But also, building on the flexibility of the boundary description, new refreshment strategies

are possible

• µL(l) = A(T − l)k10<l≤T , and refreshment R(0,dl) = k
Tk (T − l)k−1

10<l≤T ,

• µL(l) = A
(T+l)k

10<l, and refreshment R(0, dl) = kTk

(T+l)k+110<l,

• µL(l) = Ae−T l
k
10<l, and refreshment R(0, dl) = kT lk−1e−T l

k
10<l,

• ...

where (T, k) ∈ R∗2+ , l ∈ L and A is a suitable normalization constant.

We have thus provided a general framework, setting refreshment as boundary type con-

ditions, in order to allow new algorithms with different refreshment strategies. It would be

interesting to look at the effect on the speed of convergence towards the equilibrium, or equi-

libration of different observables of these algorithms. Remark that we may also combine the

usual Poisson refreshment with other refreshment conditions coming from the boundary (at

the expense of adding other variables) to enrich refreshment strategies.
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V. ERGODICITY OF ECMC

Contrary to the random-walk Metropolis-Hasting algorithm addressed in [5], which gener-

ates a reversible Markov chain where each sphere is allowed to move uniformly in a neighbor-

hood of its current position (if no collision occurs), the continuity of the underlying topological

state space imposes to take care of the existence, not simply of a single path, but of a density

of paths connecting any two states. We can gain such a density by the randomness of the

jump times, and it can be achieved using events or refreshments. Out of simplicity, we will

consider here only refreshments. It is a difficult and technical task to prove ergodicity for this

very ballistic process. We refer to the recent [38, 43] for such a study for the Zig-Zag process

and the Bouncy Particle Sampler.

It would be of course very interesting to get explicit exponential speed of convergence

towards equilibrium, suitably scaled with respect to the number of spheres. However, our

estimates are definitely too crude to provide such an evaluation and we thus stay at a qual-

itative level. We also provide an alternative reachability strategy, opening new perspectives

into getting coupling or uniform ergodicity results. Note that, even for (kinetic) Langevin

process in the soft-sphere case, the only results at our disposal are based on Lyapunov-type

techniques [44], only asserting exponential convergence but no rates. We refer to [4, 13, 14]

for numerical evidence of the efficiency of the ECMC for soft- and hard-sphere cases.

A. Results and schemes of proofs

We focus here on the usual case where the refreshment is not seen as a boundary effect.

Following [33, Th. 6.1], and a recent application in a similar context [38], we show that the

PDMP is positive Harris recurrent and that some skeleton chain is irreducible through the

control of distances and probability minorization to obtain a density of path connecting the

initial and final states. To this end, we define different paths depending on the starting and

final configurations, e.g. if the spheres are well separated or not, which impacts how easy it

is to define a connecting path which moves each sphere sequentially. In the case of spheres

being not separated enough, we thus adapt the strategy of [5] for proving the connectivity

of their reversible algorithm, while improving to some extent the density condition. We then
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use the nice tools of [37] to gain density of paths from connectivity.

More precisely, the process (Xt, Vt)t≥0 considered here is non-evanescent due to the periodic

boundary conditions of ΩS . It is Harris recurrent if it is in addition a φ-irreducible T-process

([33], Theorem 3.2) and the positivity comes from the existence of an invariant probability

distribution ([45, 46]). Finally, a positive Harris recurrent process with an invariant probability

distribution is ergodic if some skeleton chain is irreducible ([33], Theorem 6.1). This leads to

Theorem 1 If the density condition

∃ε > 0, 3N ≤
⌊

L

2dpair + ε

⌋⌊
L

dpair + ε

√
3

3

⌋
(57)

is satisfied, the PDMP (Xt, Vt)t≥0 with the differential flow (25), the Markov kernel (26), the

event rates (27) and described by the generator (34) or (35), is ergodic.

The density condition (57) simply ensures the possibility to pack without contact 3N spheres

of radius dpair in the considered torus, via a hexagonal packing.

The distribution π⊗µV is invariant for the PDMP. Following [37], to prove the irreducibility

of the process, we define the set of trajectories composed of m ∈ N∗ jumps,

Tm =
{

(t,v); t = (t1, . . . , tm) ∈ Rm+ , v = ((e0, i0), (e1, i1), . . . , (em, im)) ∈ Vm+1
}
, (58)

and the composite flow φvt = φ
(em−1,im−1)
tm ◦ · · · ◦ φ(e0,i0)

t1
for (t,v) ∈ Rm+ × Vm

′
,m′ ≥ m, with

φ
(e,i)
t : Ω→ Ω defined so that φt(x, (e, i)) = (φ

(e,i)
t (x), (e, i)). Our crucial tool will be

Lemma 1 If there exists ε > 0, 3N ≤
⌊

L
2dpair+ε

⌋ ⌊
L

dpair+ε

√
3

3

⌋
, for any pair

((x(0), v(0)), (x(f), v(f))) ∈ (Ω × V)2, there exists a trajectory (t,v) ∈ Tm,m ∈ N∗, such

that v0 = v(0), vm = v(f) and φvt (x0) = xf and the application τ = (τk)
m
k=1 →

φvm
(t′−

∑m
k=1 τk)

(
φvτ (x(0))

)
is a submersion at t for some t′ >

∑m
i=1 ti.

Proving Lemma 1 comes down to designing a trajectory (t,v) ∈ Tm,m ∈ N∗, connecting

(x(0), v(0)) and (x(f), v(f)) in which all the possible pairs v = (e, i) ∈ V appear at least once,

i.e. V ⊂ {vk}mk=0. Furthermore, the resulting path on Ω can be deformed by using another

sequence of times τ ∈ Rm+ while reaching the same endpoint xf given some additional time

t′ ∈ R∗+.
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Lemma 1 then ensures that the process can reach a neighborhood of the endpoint xf . As

a consequence, the theorem 4.2 of [37] applies. One may remark that they impose bounded

jump rates, but it is only for the construction of their process, and it does not intervene in

their proof of Theorem 4.2. Thus for all t′ >
∑m

i=1 ti, there exist neighborhoods X0 of x0, Xf
of xf , and constants c, ε > 0 such that

∀x ∈ X0, ∀(v, v′) ∈ V2, ∀t ∈ [t′, t′ + ε], P(x,v)

(
(Xt, Vt) ∈ · × {v′}

)
≥ cLeb(· ∩ Xf ), (59)

Such lower bound has the following consequences ([38, Lem 8, Th. 5]): there exist a locally

finite family of open sets (ωn)n∈N, which forms a cover of Ω × V so that every (x, v) is at

least in one and in at most a finite number of ωn, a family of open sets (Xn)n∈N in B(Ω), a

sequence (vn)n∈N in V and constants cn, tn, εn > 0, such that for A ∈ B(Ω),

∀(x, v) ∈ ωn, ∀t ∈ [tn, tn + εn],P(x,v)

(
(Xt, Vt) ∈ A× {v′}

)
≥ cn1vn=v′Leb(A ∩ Xn) (60)

which leads to bounding by below the resolvent by the following kernel K defined for (x, v) ∈

ωn and A ∈ B(Ω) as,

K((x, v), A× {v′}) =

∫
1A(y) max

n:(x,v)∈ωn

(
cn1Xn×{vn}((y, v

′))

∫ tn+εn

tn

e−tdt

)
dy, (61)

and which satisfies,

K((x, v),Xn × {v′}) ≥ cnLeb(Xn)

∫ tn+εn

tn

e−tdt > 0. (62)

Thus, the kernel K is a nontrivial lower semi-continuous kernel, as shown by considering a

sequence (xl)l converging to x satisfying K((xl, v)), A×{v′}) ≥ K((x, v), A×{v′}) for l large

enough. The process then is a T-process [47]. As more detailed in [38], another application

of (59) implies that the process is open set irreducible so that the process is a φ-process ([34],

Theorem 3.2). Finally, we use also (59) to obtain the irreducibility of the ∆-skeleton chain

ending the proof.

Finally, by considering a particular path, see Figure 2, we aim at getting closer to a uniform

ergodicity property, at least for soft spheres or for a more stringent density condition for hard

spheres.
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B. Proof of ergodicity

The following two subsections correspond to the two main steps of the proof showing the

ergodicity of ECMC: first we prove Lemma 1, and then the irreducibility of a skeleton chain.

1. Proof of Lemma 1

Let us explain briefly our strategy. First our density condition (57) implies roughly that we

may pack 3N spheres in our torus. We show that we can find a path between a starting and

final configurations of N spheres, furthermore proving that we gain density during this path.

For that, we will first exhibit a valid path depending on the initial and final configurations,

starting in the situation of well-separated spheres and then working our way to more packed

case thanks to an expansion procedure. We take profit of the works of [5] to construct such a

procedure for a correct path and [37] to get densities for such path by the notion of submersion.

In other words, we show how to construct a composite flow φvt from (x(0), v(0)) ∈ Ω × V, an

initial configuration, to (x(f), v(f)) ∈ Ω× V, a final configuration, where the control sequence

(t,v) ∈ Tm,m ∈ N∗, admits every pair v = (e, i) ∈ V.

(i) Flows and paths. We first define for any flow φvt (x), with t = (ti)
m
i=1 and v = (vi)

m
i=0,

its corresponding cumulative time sequences (Tk =
∑k

i=1 ti)
m
k=1 and flow path, i.e. a path

γ : [0, 1]→ Ω× V̄ so that

γ(s) =
(
x(0) +

∑is
i=1 tiv̄i−1 + (sTm − Tis) v̄is , v̄is

)
for Tis ≤ sTm < Tis+1 (63)

with v̄k defined by the mapping vk = (e = (e0, e1), i) ∈ V → v̄k = (0, . . . , e0, e1, . . . , 0) ∈ V̄,

with V̄ the canonical basis of R2N and e0 (resp. e1) placed at the 2i-th (resp. (2i + 1)-

th) position. Conversely, for any path γ : [0, 1] → Ω × V̄ so that we can define sequences

t = (ti)
m
i=1 ∈ Rm+ and v = (vi)

m
i=0 ∈ Vm+1 leading to a specification of γ as in (63), there is a

corresponding flow φvt .

Now, we consider a more general path γ : [0, 1]→ Ω× R2N so that

γ(s) =
(
x(0) +

∑is
i=1 tini−1v̄i−1 + (sTm − Tis)nis v̄is , nis v̄is

)
for Tis < sTm < Tis+1 (64)

with (ti)
m
i=1 ∈ Rm+ , (vi)

m
i=0 ∈ Vm+1, (ni)

m
i=0 ∈ {1} × {−1,+1}m−2 × {1}, then yielding

γ(0), γ(1) ∈ Ω × V. We can define a corresponding positive path γ+ : [0, 1] → Ω × V so
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that for (sTm) ∈ [Tis , Tis+1[ with nis = 1, γ+(s) = γ(s) and for (sTm) ∈ [Tis , Tis+1[ with

nis = −1 and vi = (ei, ki), we replace γ by a continuous path γ+ connecting the sphere con-

figuration reached at γ(Tis/Tm) to the one reached at γ(Tis+1/Tm) by repeating sequential

updates by at most ε > 0 increment along +ei of all spheres but the ki-th, until, by periodicity,

this will amount to an effective translation of −ti+1ei of the ki-th sphere. As γ(ti) ∈ Ω×R2N

is a valid configuration with spheres separated by a pairwise distance greater than dpair + ε′,

ε′ > 0, one can always consider an increment ε = ε′/2 so that a translation of any sphere by

+εei does not lead to any pairwise distance being smaller than dpair+ε′/2, making the positive

path a valid one, i.e. γ+ : [0, 1] → Ω× V̄. We then can define the flow φ
v+

t+
corresponding to

the positive path γ+.

Thus, finding a composite flow φvt from (x(0), v(0)) to (x(f), v(f)) amounts to finding a path

γ : [0, 1]→ Ω×R2N so that γ(0) = (x(0), v(0)) and γ(1) = (x(f), v(f)). We introduce ux = (1, 0)

and uy = (0, 1), the unitary vectors aligned with the x-axis and y-axis respectively. Without

loss of generality and out of simplicity, we set v(0) = (ux, 1) and v(f) 6= (uy, N), as a different

setting only impacts the construction order of t and v.

(ii) Connectivity in the fully-expanded case. For (x, x′) ∈ Ω2, we define,

I(x, x′) = min
i 6=j

d(xi, x
′
j), (65)

the minimal distance between any two spheres respectively picked in x and x′.

We first consider the case where (x(0), x(f)) ∈ Ω2 is such that

I(x(0), x(0)) > 2dpair, I(x(f), x(f)) > 2dpair and I(x(0), x(f)) > 2dpair. (66)

Considering the first sphere initially positioned in x
(0)
1 , we consider the continuous flow φṽ1

t̃1

set by

t̃1 = {tux , tuy(x
(f)
1,0 − x

(0)
1,0) mod L, (x

(f)
1,1 − x

(0)
1,1) mod L} and ṽ1 = {ux, uy}

with

tux =

 (x
(f)
1,0 − x

(0)
1,0) mod L if |x(f)

1,0 − x
(0)
1,0| > 0

L otherwise
tuy =

 (x
(f)
1,1 − x

(0)
1,1) mod L if |x(f)

1,1 − x
(0)
1,1| > 0

L otherwise
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The flow φṽ1

t̃1
pushes x(0) to (x

(f)
1 , x

(0)
2 , . . . , x

(0)
N ) and admits (ux,1) and (uy, 1) in ṽ1 over strictly

positive times. We now need to modify the sequences t̃1 and ṽ1 into sequences t1 and v1 so

that the minimal pairwise distance along φv1
t1

is strictly greater than dpair.

To do so, we consider the corresponding path γ̃1 : [0, 1] → Ω × V̄ to the flow φṽ1

t̃1
and we

modify it into a path γ1 : [0, 1]→ Ω×R2N . As the path γ̃1 is continuous and using condition

(66), the collection of times s ∈ [0, 1] at which the distance constraint is not satisfied along

γ̃1 can be written down as a disjoint union of intervals S = ∪Kk=1[ak, bk] and so that there is

only one sphere ik verifying d(x̃1 − x(0)
ik

) ≤ dpair for s ∈ [ak, bk] and γ̃(s) = (x̃, ṽ), ṽ updating

the first sphere. Now, for s 6∈ S, we set γ1(s) = γ̃1(s) and for s ∈ [ak, bk], we modify γ̃1

into a continuous path γ1 connecting γ̃1(ak) and γ̃1(bk) so that it is composed of moves of

the first sphere along ±ux and ±uy and verifies dpair + ε1/2 < d(x1, x
(0)
ik

) < dpair + ε1, ε1 > 0

for s ∈ [ak, bk] and γ1(s) = (x, v). As I(x(0), x(0)) > 2dpair, we can choose ε1 > 0 so that

I(x, x(0)) > dpair + ε1/2 for any x ∈ Ω reached by γ1(s) with s ∈ [ak, bk] and k ∈ {1, . . . ,K}.

Eventually, the modified path γ1 is continuous, connects (x(0), v(0)) and

((x
(f)
1 , x

(0)
2 , . . . , x

(0)
N ), uy) and respects a minimal pairwise distance of dpair + ε1/2. Up

to the definition of a corresponding positive path, it yields a flow φv1
t1

updating the sphere 1

to its final position while respecting a minimal pairwise distance greater than dpair + ε1/4.

The complete flow φvt is then obtained by iteration of this procedure for each sphere and

the composition of the respective flow φvi
ti

, which keeps a minimal pairwise distance of

dpair + mini∈J1,NK εi/4. Thus, the flow φvt connects (x(0), v(0)) to (x(f), v(f)), admits every

(e, i) ∈ V in v and keeps a minimal pairwise distance strictly greater than dpair.

(iii) Connectivity in the individually-expanded case. We now consider the case where

(x(0), x(f)) ∈ Ω2 is such that

I(x(0), x(0)) > 2dpair, I(x(f), x(f)) > 2dpair and I(x(0), x(f)) ≤ 2dpair.

Finding a path connecting such configurations is immediate through the procedure (ii) if we

can consider an intermediate configuration x(I) ∈ Ω so that,

I(x(I), x(I)) > 2dpair, I(x(0), x(I)) > 2dpair and I(x(I), x(f)) > 2dpair.

As noted in [5] for a more stringent density constraint, such a configuration x(I) is easily con-

structed by induction given the density constraint in lemma 1, since, for any (x(0), x(f), x(I)) ∈
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Ω3, we have Vol(∪Ni=1B(x
(0)
i , dpair)∪Ni=1 B(x

(f)
i , dpair)∪Ni=1 B(x

(0)
i , dpair)) ≤ 3Nπd2

pair <
πL2
√

3
6 ,

where π
√

3
6 is the highest achievable density of a disk packing into a periodic square box.

(iv) Connectivity in the collapsed case (expansion/collapse procedure). We now

consider the case where (x(0), x(f)) ∈ Ω2 is such that

dpair < I(x(0), x(0)) ≤ 2dpair or dpair < I(x(f), x(f)) ≤ 2dpair.

Building on the procedures (ii) and (iii), we only need to show how to find a path connecting

x(0) to a configuration x(I) so that I(x(I), x(I)) > 2dpair. The case where I(x(f), x(f)) ≤ 2dpair

can be dealt with by showing the possibility of a path connecting x(f) to a configuration

x′(I), I(x′(I), x′(I)) > 2dpair, reversing the path and taking its positive counterpart.

Adapting the expansion procedure in [5], it comes down to proving that there exists some

δ > 0 so that, for any (x, v) ∈ Ω × V with I(x, x) < 2dpair, there exists a path γδ such that

γδ(0) = (x, v̄), γδ(1) = (x′, v̄′) and I(x′, x′) ≥ I(x, x) + δ. Indeed, assuming such a δ > 0

exists, we consider the maximal pairwise distance M achievable from x(0) by a path γ, i.e.

M = max
y∈I(x(0))

I(y, y) with I(x(0)) = {y ∈ Ω;∃γ ∈ C([0, 1],Ω×V̄), γ(0) = (x(0), v̄(0)), γ(1) = (y, v̄y)},

As I is a bounded function, M is finite and given η ∈]0, δ/2[, there exists y1 ∈ I(x(0)) such that

I(y1, y1) ≥M − η. If I(y1, y1) < 2dpair, we can consider a path γδ so that γδ(0) = (y1, v̄) and

γδ(1) = (y2, v̄
′) and I(y2, y2) ≥ I(y1, y1)+ δ. By construction, y2 ∈ I(x(0)) and I(y2, y2) > M ,

which is impossible. It then shows that there exists y ∈ I(x(0)) such that I(y, y) > 2dpair.

It leads to the construction of an intermediate configuration x(I), with I(x(I), x(I)) > 2dpair

with a valid flow starting from x(0), and conversely by reverting the flow one may then find a

flow to collapse the configuration into x(f).

Starting from (x(0), v(0)), the system evolves to (x, v(0)) until a first refreshment time t0

updating the state to (x, v) ∈ Ω × V Let us now prove that there exists some δ > 0 so that,

for any x ∈ Ω with I(x, x) < 2dpair, there exists a path γδ and v ∈ V such that γδ(0) = (x, v̄),

γδ(1) = (x′, v̄′) and I(x′, x′) ≥ I(x, x) + δ. To do so, we will use the induction strategy of the

proof of [5, Lem. 4.2], and adapt it here to the PDMP scheme and torus setting.

We proceed by induction and thus have to prove that there exists δ = δ(N, dpair, L) and
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ρ = ρ(N, dpair, L) such that ∀J ∈ {1, · · · , N},

(P (J))

∀x ∈ Ω(J) s.t. I(x, x) < 2dpair,

∃v ∈ V,∃γ ∈ C([0, 1],Ω(J)× V̄), with


γ(0) = (x, v̄), γ(s) = (x(s), v̄(s)),

I(x(1), x(1)) ≥ I(x, x) + δ,

supt maxi d(xi, x(t)i) ≤ Jρ

where we remind that

Ω(J) = {x ∈ (R/LZ)2J ;∀(i, j) ∈ J1, JK2, i 6= j, (xi, xj) ∈ Ωpair},

stands for the system with only J spheres. Let us choose δ = dpair/(600N2) and

ρ = dpair/(6N).

Let us start our induction with J = 1 (only one sphere) for which there is nothing to prove.

Suppose now that P (J−1) is verified. Let us divide, as equivalence class, spheres that can be

connected by a path in ∪J1B(xk, dpair + Jρ). If there are more than two classes, then one can

consider each class individually, which then contains strictly less than N spheres, and use the

induction hypothesis. Indeed, in this case one has {1, · · ·N} = I ∪ Ĩ and for all i ∈ I, j ∈ Ĩ

one has d(xi, xj) > 2dpair + 2Jρ. The induction hypothesis enables us to build two paths

γI and γĨ each satisfying (P (I)) and (P (Ĩ)) and this defines a path γ for all spheres. As

along γI ,
∑

t maxi d(xi, x(t)i) ≤ |I|) (and respectively along γĨ , we have to impose here that

2dpair + 2Jρδ − (|I|+ |Ĩ|)ρ > 2dpair + δ resuming in Jρ > δ, to get that γ is a valid path and

I(x(1), x(1)) > I(x, x) + δ, supt maxi d(xi, x(t)i) < max(|I|, |Ĩ|)ρ ≤ (J − 1)ρ.

Thus we are reduced to consider the case where there is only one equivalence class, so

that the spheres are quite packed. Recall that our density assumption ensures that there is in

fact sufficient space for at least 3N spheres of radius dpair. One can then choose a direction

ν = (1, 0) or (0, 1) and introduce an ordering σ : J1, NK → J1, NK so that the reordered

positions {xσ(i)}Ji=1 satisfy 〈xσ(i), ν〉 ≤ 〈xσ(j), ν〉 for all (i, j) ∈ J1, NK2 with σ(i) < σ(j). As

{〈xσ(i), ν〉}Ji=1 ∈ [0, L]J , we can now consider a pair of furtherst apart σ−successive spheres

along the ν-direction, i.e. a pair of spheres iJ and i1 so that σ(iJ) = (σ(i1) + 1) mod J and

(〈xiJ − xi1 , ν〉) mod L = max
i

(
〈
(
xσ−1(σ(i)+1 modJ) − xi

)
, ν〉 mod L

)
,

which is, for a well-chosen direction ν, larger than max{d ∈]dpair,+ inf[; J ≤

bL/dcb(L/d)(2
√

3/3)c} which is in turn larger than max{d ∈]dpair,+ inf[;N ≤
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bL/dcb(L/d)(2
√

3/3)c} ≥ 2(2dpair/
√

3). Indeed, given the density condition, one can pack

3N spheres of radius dpair. Considering the densest hexagonal packing of these 3N spheres,

we can pack N spheres of radius (2dpair/
√

3) corresponding to the circumscribed circles of the

equilateral triangles forming up the 3N -hexagonal packing.

We then note the subset of indices matching iJ in its ν-coordinate IJ = {i ∈ J1, NK \

{iJ}; 〈xi, ν〉 = 〈xiJ , ν〉}. From there, we build on the ordering σ to obtain a sequence (il)
J
l=1

with iJ and i1 as previously defined and il so that σ(il) = (σ(il−1)− 1) mod J for 2 ≤ l ≤

J − 1− |I1| and il ∈ IJ for J > l ≥ J − |IJ |. Now, for j ∈ {1, ..., J}, choose aj = (J + 1− j)ρ

and consider v = (ν, i1) and the valid continuous path γ set by the sequences

t = (al)
J
l=1 , v = ((ν, il))

J
l=1

(67)

It is easy to verify as in [5] that in this case (P (J)) is verified. Indeed, we first have that

supt maxi d(xi, x(t)i) ≤ Jρ. Note that there is no periodicity effect to take care of here, as

Jρ < L/2 since L2 > 3Nπd2
pair > (dpair/3)2.

Then, we consider the evolution of d(xil(t), xim(t)) for all 1 ≤ l < m ≤ J . The periodic

distance d refers to the shortest distance between every periodic copies of the spheres il and

im. We refer to the initially involved copies as xcil and xcim . A change of the copy involved in

the computation of d means that the relative displacement (m− l)ρ > L/2− |〈xcil − x
c
im
, ν〉|.

However, as Nρ < L/2− 2dpair − δ, it means that, first the initial periodic distance is bigger

than 2dpair > I(x, x) and second that the final periodic distance is L− (|〈xcil −x
c
im
, ν〉|+ (m−

l)ρ) > 2dpair + δ > I(x, x) + δ.

Now, for pairs of spheres 2 ≤ l < m < J − |I1| with unchanged involved periodic copies,

we have,

|(xcil + alν)− (xcim + amν)|2 = |xcil − x
c
jl
|2 + 2(al − am)〈xcil − x

c
im , ν〉+ |al − am|2 ≥ |xcil − x

c
im |

2 + ρ2.

For pairs of spheres J − |IJ | ≤ l < m ≤ J , we have,

|(xcil + alν)− (xcim + amν)|2 = |xcil − x
c
im |

2 + |al − am|2 ≥ |xcil − x
c
im |

2 + ρ2.

And finally for J −|IJ | ≤ l < m ≤ J and 2 ≤ m < J −|I1|, with unchanged involved periodic

copies, we have,

|(xcil + alν)− (xcim + amν)|2 = |xcil − x
c
im |

2 + 2(al − am)〈xcil − x
c
im , ν〉+ |al − am|2
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If 〈xcil − x
c
im
, ν〉 < 0, then

|(xcil + alν)− (xcim + amν)|2 ≥ |xcil − x
c
im |

2 + ρ2.

Otherwise,

|(xcil + alν)− (xcim + amν)|2 ≥ |〈(xciJ + aJν)− (xci1 + a1ν), ν〉|2

≥
(

4√
3
dpair − (J − 1)ρ

)2

> 4d2
pair + ρ2 > I(x, x)2 + ρ2

We then deduce I(x(1), x(1))2 ≥ I(x, x)2 + ρ2 ≥ (I(x, x) + δ)2 .

Remark that using the reversed-path scheme, as described in the paragraph (i), we also

have a valid collapse scheme. Therefore using the expansion then collapse procedure we

may go from a collapsed initial configuration to an intermediate separated configuration by

expansion then move to an other intermediate separated configuration and then use a collapse

procedure (if needed) to reach the final configuration.

(v) Gaining density. Considering any (x(0), v(0)), (x(f), v(f)) ∈ Ω×V, there exist admissible

deterministic sequences (t = (ti)
m
i=1,v = (vi)

m
i=0) ∈ Tm, m ∈ N∗, so that the corresponding

flow φvt pushes (x(0), v(0)) to (x(f), v(f)) and v admits every pair in V at least once. Recalling

the notation Tk =
∑k

i=1 tk, we consider a bounded neighbourhood Uk of Tk for 1 ≤ k ≤ m.

The neighbourhoods (Uk)mk=1 can be chosen so that they do not intersect and so that, for any

sequences (τ ,v) ∈ T , with T = {s ∈ Tm;
∑k

l=1 sl ∈ Uk}, the flow φvτ preserves a minimal

pairwise interdistance strictly greater than dpair, as the initial flow φvt already does.

Following [37, section 6] and as done in the proof of lemma 8 in [38], we only need to

show that, for some t′ > Tm, the partial map τ → φv
(f)

t′−
∑m

k=1 τm
◦ φvτ (x(0)), defined on τ ∈

T ,
∑m

k=1 τk < t′, has full rank with

φv
(f)

t′−
∑m

k=1 τk
◦ φvτ (x(0)) = x(0) + τ1v̄1 + τ2v̄2 + · · ·+ τmv̄m + (t′ − τm)v̄(f).

The image of the differential of the partial mapping is spanned by the vector family,

{gi}mi=1 =
{

(v̄1 − v̄2), (v̄2 − v̄3), . . . , (v̄m − v̄(f))
}
.

As shown by the construction in the procedure (ii), the family {gi}mi=1 includes the following

family of 2N vectors,{
(v̄x,1 − v̄y,1), (v̄y,1 − v̄x,2), (v̄x,2 − v̄y,2), . . . , (v̄x,N − v̄y,N ), (v̄y,N − v̄(f))

}
,
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with v̄x,i, v̄y,i corresponding to (ux, i), (uy, i) up to the v → v̄ mapping defined in (i). Thus,

the family {gi}mi=1 spans Ω, as one can reconstruct the basis {v̄x,i}Ni=1 ∪ {v̄y,i}Ni=1 from this

family by composition since v̄y,N 6= v̄(f) and v̄(f) appears elsewhere in {gi}mi=1.

The partial mapping τ → φv
(f)

t′−
∑m

k=1 τk
◦ φvτ (x(0)) then has full rank and is a submersion at

t, proving Lemma 1.

2. Irreducibility of the ∆-skeleton

The ∆-chain (Xk∆, Vk∆)k∈N of the process, or its skeleton chain, is the sampled chain

at times tk = k∆ with k ∈ N and ∆ ∈ R∗+. It is irreducible if for all (x, v) ∈ Ω × V and

(y, v′) ∈ Ω× V, there exist a neighbourhood Y of y and n ∈ N such that P(x,v)((Xn∆, Vn∆) ∈

Y × {v′}) > 0.

Let ((x, v), (y, v′)) ∈ (Ω × V)2 and let (w, u) ∈ Ω × V. Applying Lemma 1 between the

pairs ((x, v), (w, u)), ((w, u), (y, v′)) and ((w, u), (w, u)) (looping around) yields that there

exists ε ∈ R∗+ and τ, c > 0 such that for any t ∈ [τ, τ + ε], there exists a neighbourhood Y of

y such that,

P(x,v)((Xt, Vt) ∈ · × {v′}) ≥ cLeb(· ∩ Y) > 0. (68)

While τ and c depends on (x, v), (y, v′) and (w, u), ε can be set so as to depend only (w, u)

and the ability for the process to loop around an arbitrary point. We refer to [38] for the

successive applications of Lemma 1 and corollary (59) resulting in (68).

Finally, setting ∆ = ε and n =
⌊
τ
ε + 1

⌋
such that nε ∈ [τ, τ + ε], we obtain

P(x,v)(Xn∆, Vn∆ ∈ · × {v′}) > 0.

C. Towards uniform ergodicity in the soft-sphere case

Let us see now how we can consider a modification of the reachability procedure described

in (ii), so that the initial condition dependence only appears in travel times. It may be seen as

a first step towards uniform ergodicity and coupling. The described procedure does not behave

optimally in the number of spheres and, consequently we only describe it qualitatively. The

notations of the previous subsection apply and we consider the soft-sphere case (dpair = 0).

31



a b c d

FIG. 2: In the case α > 0, to reach the configuration (d) from any initial configuration (a), the x-

coordinates of the spheres are first gathered in configuration (b) in a segment of size L
N with L the

size of the box side and N the number of spheres (b-d). They are then moved successively along their

y-coordinates until they reach their final y-position in configuration (c). From (a) to (b) and from

(b) to (c), a distance of L
N2 in the x-coordinates is preserved between any pair of spheres. They are

finally updated to their final x-position in the configuration (f), while a distance of α is preserved in

the y-coordinates.

The same could be done in the hard sphere case however with a far more stringent density

condition than (57).

We introduce the quantity,

α = max
k∈{0,1}

min
i 6=j

(
min(|x(f)

i,k − x
(f)
j,k |, L− |x

(f)
i,k − x

(f)
j,k |)

)
and consider out of simplicity that α is reached along the y-coordinate (k = 1) as, otherwise,

the following points still hold, up to exchanging k = 0 and k = 1. Note that v(f) is not really

important as we consider a final refreshment to reach it. The followed strategy is illustrated

in Fig. 2.

Starting from (x(0), v(0)), the system evolves to (x̃(0), ṽ(0)) until a first refreshment time.

There, we consider the same ordering σ along the x-coordinate as described in (iv) to deter-

mine the furthest apart successive spheres along the x-axis. We note i1 and iN the indices of

these spheres, so that
(
x̃

(0)
iN ,0
− x̃(0)

i1,0

)
mod L is either 0, in the case where all x-coordinates

are the same in x̃(0), or larger than L/N otherwise. We then note the subset of indices

matching iN in its x-coordinate IN = {i ∈ J1, NK \ {iN}; x̃(0)
i,0 = x̃

(0)
iN ,0
}. We obtain a sequence

(ik)
N
k=1 where i1 and iN as previously defined, il so that σ(il) = (σ(il−1 − 1)) mod N for

2 ≤ l ≤ N − 1− |IN | and il ∈ IN otherwise.
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We now stack the x-coordinates of the spheres on a segment[
x

(0)
iN ,0
− (N − |IN |)L/N2, x

(0)
iN ,0

+ |IN |L/N2
]
/(LZ),

by following the trajectories defined by the sequences,

tx =

((
x̃

(0)
iN ,0
− x̃(0)

il,0

)
mod L− lL

N2

)N−1−|IN |

l=1

, vx = ((ux, il))
N−|IN |−1
l=1

tINx =

(
(|IN | − l)L

N2

)|IN |−1

l=0

, vINx = ((ux, il))
N−1
l=N−|IN | .

(69)

The corresponding flow φv
IN
x

t
IN
x

◦φvx
tx

(x̃(0)) = x(x) exists as it preserves a bound for all pair event

rates λj 6=il(x, (ux, il)) ≤ λil−1
(x, (ux, il)) ≤ γσγ/(L/N2)γ+1, thanks to the (il)

N
l=1 ordering.

Case α > 0. From the configuration x(x), we then updates the y-coordinates of the spheres

to their final values by introducing the following sequences,

ty =
((
x

(f)
i,1 − x̃

(0)
i,1

)
mod L

)N
i=1

, vy = ((uy, i))
N
i=1 , (70)

and the corresponding flow φ
vy

ty
(x(x)) = x(y) exists as it preserves the same bound by keeping

a minimum pairwise distance of at least L/N2.

Eventually, the sphere x-coordinates are updated to their final values by considering the

sequences,

tf =
((
x

(f)
i,0 − x

(x)
i,0

)
mod L

)N
i=1

, vf = ((ux, i)
N
i=1 , v

(f)), (71)

and the corresponding flow φvf
tf

(x) = x(f) exists as it preserves a minimum pairwise distance

of at least α and the total composite flow φvt = φvf
tf
◦ φvy

ty
◦ φv

IN
x

t
If
x

◦ φvx
tx

, (t,v) ∈ T3N , preserves

a minimum pairwise distance of

α 6=0
tot = min

(
α,

L

N2

)
.

Case α = 0. We define the subset of indices If = {l ∈ J1, NK; ∃i ∈ J1, NK, i 6= l, x
(f)
i,1 = x

(f)
l,1 },

the equivalence classes [l] = {i ∈ If ;x
(f)
i,1 = x

(f)
l,1 } and the bijections νl : [l]→ J0,Card(l)− 1K

so that νl(i) > νl(j) if i > j. We also now consider the quantity

α 6=0 = min
{

min
(
|x(f)
i,1 − x

(f)
j,1 |, L− |x

(f)
i,1 − x

(f)
j,1 |
)

; i ∈ J1, NK \ If , j ∈ J1, NK, i 6= j
}

+1{J1,NK}(If )L.
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From the configuration x(x), we update the y-coordinates of the spheres i ∈ J1, NK \ If to

their final values as,

t 6=0
y =

((
x

(f)
i,1 − x̃

(0)
i,1

)
mod L

)
i∈J1,NK\If

, v 6=0
y = ((uy, i))i∈J1,NK\If , (72)

the corresponding flow φ
v 6=0
y

t6=0
y

being well-defined, as it preserves a minimum pairwise distance

of at least L/N2. We now update the y-coordinates of the spheres i ∈ If as,

t=0
y =

(((
x

(f)
i,1 − x̃

(0)
i,1

)
mod L

)
− α 6=0νi(i)

|[i]|

)
i∈If

, v=0
y = ((uy, i))i∈If , (73)

the corresponding flow φ
v=0
y

t=0
y

being well-defined, as it preserves a minimum pairwise distance

of at least L/N2.

Now, the x-coordinates of all the spheres are updated to their final values by considering

the sequences,

tf,x =
((
x

(f)
i,0 − x

(x)
i,0

)
mod L

)N
i=1

, vf,x = ((ux, i))
N
i=1 , (74)

and the corresponding flow φ
vf,x

tf,x
exists as it preserves a minimum pairwise distance of at least

α 6=0/maxi |[i]|.

Eventually, the y-coordinates of the spheres i ∈ If are also updated to their final values

by considering the sequences,

tf,y =

(
α 6=0νi(i)

|[i]|

)
i∈If

, vf,y = ((uy, i)i∈If , v
(f)), (75)

and the corresponding flow φ
vf,y

tf,y
exists as it preserves a minimum pairwise distance of at least

αIf = min
i∈If

min
l∈[i]
l 6=i

(
min

(
|x(f)
i,0 − x

(f)
j,0 |, L− |x

(f)
i,0 − x

(f)
j,0 |
)) > 0.

Eventually, the total composite flow φvt = φ
vf,y

tf,y
◦ φvf,x

tf,x
◦ φv

y=0
y

t=0
y
◦ φv

6=0
y

ty 6=0
y
◦ φv

I0
x

t
I0
x

◦ φvx
tx

, (t,v) ∈

T3N+|If |, preserves a minimum pairwise distance of

α=0
tot = min

(
αIf ,

α 6=0

maxi |[i]|
,
L

N2

)
.

Thus, this procedure shows how to obtain a lower bound of the reachability probability

which depends only on the travel times between initial and final positions, impacting the
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probability to get the target number of refreshment events, ruled by a homogeneous Poisson

process. In future works, it could be interesting to build on this alternative procedure to

obtain a coupling strategy.
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