
HAL Id: hal-03759125
https://hal.science/hal-03759125v1

Submitted on 23 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Differentiation for an efficient CFD solver
Bruno Maugars, Sébastien Bourasseau, Cédric Content, Bertrand Michel,
Bérenger Berthoul, Jorge Nunez Ramirez, Pascal Raud, Laurent Hascoët

To cite this version:
Bruno Maugars, Sébastien Bourasseau, Cédric Content, Bertrand Michel, Bérenger Berthoul, et al..
Algorithmic Differentiation for an efficient CFD solver. ECCOMAS 2022 - 8th European Congress on
Computational Methods in Applied Sciences and Engineering, Jun 2022, Oslo, Norway. �hal-03759125�

https://hal.science/hal-03759125v1
https://hal.archives-ouvertes.fr

ALGORITHMIC DIFFERENTIATION FOR AN EFFICIENT
CFD SOLVER

BRUNO MAUGARS1, SÉBASTIEN BOURASSEAU1, CÉDRIC
CONTENT1, BERTRAND MICHEL1, BÉRENGER BERTHOUL1, JORGE

NUNEZ RAMIREZ1, PASCAL RAUD1 AND LAURENT HASCOËT2

1 DAAA, ONERA, Université Paris Saclay, F-92322 Châtillon, France
e-mail: cedric.content@onera.fr

2 INRIA Sophia Antipolis-Méditerranée, BP 93 F-06902 Sophia Antipolis, France

Key words: Algorithmic Differentiation (AD), High Performance Computing (HPC), Compu-
tational Fluid Dynamics (CFD)

Abstract. We illustrate the benefits of Algorithmic Differentiation (AD) for the development
of aerodynamic flow simulation software. In refining the architecture of the elsA CFD solver,
developed jointly by ONERA and Safran, we consider AD as a key technology to cut development
costs of some derivatives of interest, namely the tangent, adjoint, and Jacobian. We first recall
the mathematical background of CFD applications which involve these derivatives. Then, we
briefly present the software architecture of elsA (Cambier et al. [12]) and the design choices
which give it its HPC capability while highlighting how these choices strongly constrain the
applicability of AD. To meet our efficiency requirements, we select the Source-Transformation
approach to AD through the Tapenade tool which is justified by a series of experiments and
benchmarks. Finally, we present results on large scale configurations.

1 INTRODUCTION

During the past decades, in the hope to prorogate Moore’s law (Moore [28]), computer
architecture has evolved from higher processor frequency to increasing number of cores with lower
frequency and lower amount of memory. In the context of computational fluid dynamics (CFD)
in general and more specifically for the elsA software, this implies to reimplement algorithms in
order to make the most of these new architectures and to achieve the speedup that they enable.

To this end, an effort has been made to improve efficiency both in terms of CPU and memory
costs of the explicit assembly part of the code. For instance, the work of I.Mary[27] shows
the need to reduce memory access and to vectorize loops. In the following, we refer to this
improvement as the High Performance Computing behavior.

Most fluid dynamics studies (such as computation of steady states, optimization, stability
analysis, mesh adaptation, flow control,...) are based on the inversion of either the linearized
Navier-Stokes (or RANS) equations or their adjoint. As those systems are sparse and extremely
large (up to 100 billons degrees of freedom) we select algorithms which do not require the storage
of the entire Jacobian matrix. Due to the stiffness of systems to solve, the iterative GMRES
linear algebra solver (Saad [32]) appears to be a good candidate. This method only requires the

1

Jacobian-vector product to be evaluated. On the one hand, the left Jacobian-vector product
(in use to solve the linearized system) can be easily approximated by means of a first order
Taylor series expansion, as in the JFNK method (Knoll and Keyes [24]). This naturally inherits
the good HPC behavior of the primal simulation code. Also, extensions to several numerical
schemes are straightfoward. There are two main drawbacks of this method. The first one is
the difficulty to obtain the left Jacobian-vector product with machine precision, which is key to
the good convergence of Newton algorithm and stability analysis. Secondly it does not provide
the discrete adjoint of the primal operator. On the other hand, right and left Jacobian-vector
products can be both obtained by means of Algorithmic Differentiation (AD) (Griewank and
Walther [20]) with machine precision, directly providing the discrete adjoint (see Kenway et
al. [23]). It also propagates HPC performance of the primal code on the left Jacobian-vector
product. However, the HPC behavior preservation in the adjoint is delicate, as adjoint AD
deeply modifies the structure of the code. This paper will discuss our approach to address this
problem with a special care on its efficiency.

In section 2, we present the mathematical formulation of various important CFD problems,
highlighting the central role of the Jacobian, and more accurately the use of right and left
Jacobian-vector products. Then section 3 presents the different approaches to Algorithmic
Differentiation. Section 4 motivates the choice of Tapenade (Hascoët and Pascual [21]) for CFD
needs. Then, the architectural implementation is discussed in section 5, followed in section 6
by a focus on the method we used to preserve the HPC behavior. Finally, we show a few
experimental results in section 7 before concluding.

2 MATHEMATICAL FORMULATION OF SOME CFD PROBLEMS

Fluid dynamics, like other parts of classical physics, deals with conservation laws, which can
be written as:

∂tQ+∇ · F = S (1)

with Q an m-vector of conservative quantities, ∂tQ the m-vector of its time derivative, F the
tensor of conservative fluxes, ∇·F its divergence and S an m-vector of source terms independent
on Q.

For convenience, we introduce the residual of the space operator as:

R = ∇ · F − S. (2)

Then (1) becomes:
∂tQ+R(Q) = 0 (3)

In the following, we will show that many useful analyses of these equations boil down to the
resolution of what we will call either direct equations or adjoint equations, involving Jacobian-
vector products. Moreover, an approximation of the full Jacobian matrix may be required for
preconditioning.

Direct equations
Nonlinear dynamical systems tend to admit a number of different equilibria which can take

2

the form of fixed points, periodic orbits, torus or strange attractors (Berger et al. [9]). The first
equilibria that one would like to access to form the phase space of a system (i.e. to characterize
and thus to understand it) are its fixed points. The method used to compute it is also the
milestone of the other equilibria detection and the first step of branch continuation techniques
(Tuckerman and Barkley [37]).
Obtaining a fixed point of equations which describe evolution laws is equivalent to computing a
steady state. Hence, equation (1) becomes:

∂tQ = 0⇔ R(Q) = 0 (4)

A general procedure to compute a fixed point of this kind of system is to use the first order
Newton method which consists in iterating over a sequence of linear systems:

J∆Q = −R (5)

where ∆Qn = Qn+1 −Qn is the unknown and J the Jacobian matrix of the space operator R:

J =
∂R
∂Q

(6)

As an initial guess of the flow field is generally far from solution, the Newton algorithm is not
guaranteed to show a fast convergence behavior, or even to converge at all. A classical way used
to overcome this difficulty is to solve an implicit Euler scheme:

(
1

∆t
I + J)∆Q = −R (7)

where ∆t = tn+1 − tn. This scheme used in conjunction with a local time step and a pseudo-
transient continuation technique as described in (Crivellini and Bassi [13]) can be seen as a
relaxed-Newton algorithm and leads to the same result.

Another key to understand a flow configuration is to well capture flow motion. Analysis
of unsteady features requires discretizing the time operator. While explicit schemes provide
accurate temporal resolution for PDE like equation (1), the time step size is dictated by stability
constraints of the algorithm rather than by the frequency content of the physical phenomenum
under consideration. A way of relaxing stability constraints consists in using an implicit time
integration method. The discrete time scheme for equation (3) reads:

N n+1 =
DQn+1

∆t
+R(Qn+1) = 0 (8)

In the large family of implicit Runge-Kutta methods, the class of linearly implicit Rosenbrock-
type Runge-Kutta schemes (Rosenbrock [31]) is of special interest because such methods, being
linearly implicit, require to solve only linear systems in the stages within each time step, i.e.,
the Jacobian matrix needs to be assembled and factorized only once per time step. The perfor-
mance of all the aforementioned time integration schemes have been recently investigated, and,
according to the numerical comparison presented in Bassi et al. [8]. Rosenbrock schemes turn
out to be an appealing choice both in terms of accuracy and efficiency.

3

Despite of the good behavior of the above method, multistep Backward Differentiation Formulae
(BDF) (Curtiss and Hirschfelder [14]) are often used as implicit time integrators, due to ease of
implementation and robustness. At each time step, these schemes require to solve several non-
linear systems of equations, a task that can be efficiently performed, for example, by means of
the (quasi-)Newton method. Linearization of the residual leads to the following implicit scheme

dN
dQ

∆Q = −R (9)

Considering the time discretization expressed for second order as:

DQn+1

∆t
=

3∆Qn −∆Qn−1

2∆t
(10)

one can write (9) as:

(
3

2∆t
I + J)∆Q = −R (11)

To wrap up about direct equations, equations (5) and (11) are just two emblematic cases that
require inversion of a linear equation of type AV = b at each iteration, where A is basically
the Jacobian of some known operator. Matrix-free inversion methods will only require the
Jacobian-vector product (J V).

Adjoint equations
Powerful tools that one might access to optimize a flow configuration either for its under-

standing (Luchini and Bottaro [26]) or for reducing its loss (Dwight [16]) are based on adjoint
equations. As recalled by Luchini and Bottaro [26], the ”adjoint formulation is useful when one
is seeking to obtain one or a few outputs of a system for a wide range of possible inputs. There
are several such cases in fluid mechanics (and other disciplines),[...] but the greatest advantage
is obtained in optimization. In fact, the typical optimization problem has a single objective func-
tion (possibly combining multiple objectives through suitable weights) that has to be minimized
or maximized with respect to a large number, or even a continuum, of input variables: a perfect
application for adjoints!” A detailled definition and some uses of the adjoint equation can be
found in [26, 16, 25].
Any type of optimization process corresponds to the minimization of a scalar objective func-
tion In, subject to the constraint that the discrete flow equations and boundary conditions are
satisfied (Giles and Pierce [19]). The adjoint vector Λ is the solution of

J T |Q̄ Λ =
∂In
∂Q

I (12)

Matrix-free solution methods will only require the transposed Jacobian-vector product (J T Λ).

Resolution
Solving direct and adjoint equations when applied to CFD involves sparse and extremely

large matrices in a parallel distributed environment. Thus to access to their inversions without
assemblying and storing the entire exact Jacobian matrix, iterative linear algebra methods (as

4

GMRES [32]), which only require the Jacobian-vector product, are considered. Unfortunately,
to ensure the good convergence of those matrix-free solvers, a preconditionner is required. Many
preconditionners need at least an approximate, possibly without cross-processor coupling, of the
first order Jacobian matrix J̃ .

To sum up, we have described a number of situations in our CFD applications where one
must have access to derivatives of selected operators implemented/present in the code. More
specifically, for some function F : X ∈ IRn 7→ Y ∈ IRm that we can identify with a portion of
the code P, and calling J the Jacobian of F , we may want to obtain the exact Jacobian-vector
product (J V), the exact transposed Jacobian-vector product (J T Λ), and an approximated
Jacobian matrix (J̃), possibly without its cross-processor components.

3 ALGORITHMIC DIFFERENTIATION

There are several approaches at hand to obtain these derivatives. Finite Differences (as the
one described for JFNK [24]) are maybe the simplest approach, but it introduces truncation
approximation into J , which we want to avoid. Manual discretization-then-implementation
of the differentiated equations gives derivatives that are obviously more accurate, at a huge
development cost that we want to avoid too. Moreover, the discretization errors in computing
J may be inconsistent with those in computing F , leading to possible convergence problems.
Algorithmic Differentiation (AD) is yet another approach that takes as input the implementation
P of the discretized F , which we call the ”primal” code, and turns it into another program/code
that computes the derivative J of F , or one of its projections (J V) or (J TV). AD introduces
no approximation other than the one already present in P. Other advantages of AD are that it
can be automated to a large extent, and that with due care, the efficiency of the differentiated
code compares very well with that of more manual approaches.

AD identifies the primal code P with a sequence of assignment instructions {I1; I2; . . . Ip; },
each Ik implementing a simple function fk. Thus, P computes F = fp ◦ fp−1 ◦ · · · ◦ f1. Call for
short v0 = X and vk = fk(vk−1) for each k.

The simplest form of AD, Tangent AD, computes Ẏ = F ′(X)× Ẋ for a given input direction
Ẋ, i.e.

Ẏ = f ′p(vp−1) × f ′p−1(vp−2) × . . . × f ′1(v0) × Ẋ .

Since Ẋ is a vector, efficient evaluation must be done from right to left, i.e. in the same order as
the primal code. We define v̇0 = Ẋ, then each primal instruction Ik is immediately accompanied
by a tangent instruction I ′k that computes v̇k = f ′k(vk−1) × v̇k−1. The second column of Fig. 1
shows the tangent code for one particular Ik.

Another form of AD, Adjoint AD, computes X = Y × F ′(X) (or equivalently F ′(X)T × Y T
)

for a given output weighting Y , i.e.

X = Y × f ′p(vp−1) × f ′p−1(vp−2) × . . . × f ′1(v0) .

Efficient evaluation must be done from left to right, i.e. in the reverse of the primal computation
order. We define vp = Y and then for all k, vk−1 = vk×f ′k(vk−1). The full primal sequence must
be executed before the backward sequence of derivatives computations. The third column of
Fig. 1 illustrates the adjoint code for one particular Ik. Notice that Ik and the two assignments

5

of Ik are not consecutive any more, and the value of b used in Ik is its value before evaluation
of Ik.

Primal assignment Tangent AD Adjoint AD

(Ik) b = 2*sin(a)*b+1; (İk) ḃ = 2*cos(a)*b*ȧ

+ 2*sin(a)*ḃ;

(Ik) b = 2*sin(a)*b+1;

(Ik) b = 2*sin(a)*b+1;

. . .
(Ik) a = a +

2*cos(a)*b*b;

(Ik) b = 2*sin(a)*b;

Figure 1: Tangent AD and Adjoint AD of an individual assignment

It is worth noting that the most important form of derivatives that we use in section 2, and
the one likely most expensive to compute, is the “transposed Jacobian vector product” J T Λ,
where J is the Jacobian of F . Most often, the F ’s we are dealing with have very large input
dimension n whereas result dimension m is 1 or just a few. In that case, it is well known that
efficient computation of J T Λ must be done backwards with respect to evaluation order of F ,
which in our context means using adjoint AD. The strength of adjoint AD is that it produces
a code that computes J T Λ at a cost that is proportional to m, but that is independent of
the input dimension n. However, control-flow reversal and more importantly data-flow reversal
have a cost, generally in memory. The art of adjoint AD is about implementing control-flow
and data-flow reversal on every possible construct of the application language, with a reasonable
memory cost for data-flow reversal.

We motivate the existence of two main families of AD tools in the light of this sophisticated
adjoint AD. In all cases, everything starts with a so-called forward sweep, which is mostly an
evaluation of the primal code for F , that sets up the reference control-flow and data-flow that
must be played in reverse by the coming derivative computation (the backward sweep).

• One strategy is to instrument the forward sweep so that it writes a tape of the full sequence
of arithmetic operations performed, complete with operand addresses and values, arith-
metic operation, and result address. The following backward sweep is a special code that
reads the tape backwards to propagate the derivatives. As this is most easily done on ap-
plication languages that provide overloading, this is generally called Operator-Overloading
AD (OO-AD). OO-AD easily handles ”exotic” constructs of the application language, as
they all boil down to a uniform structure on the tape. The code of the backward sweep is
written once and for all, independent from the primal code. It can be quite sophisticated.
On the other hand, the tape grows rapidly, as it stores not only values but addresses and
operations.

• Another strategy is to produce a specialized backward sweep for each primal code, repro-
ducing its control structure, only in the reverse direction. The forward sweep must still
be instrumented, but storing only (a subset of) the intermediate values, yielding a much
smaller tape. This is called Source-Transformation AD (ST-AD). ST-AD requires complex
tools, able to take in the whole primal code and generate a backward sweep code in which

6

control-flow is reversed. It must also fill this backward sweep with the adjoint counterpart
of each individual assignment of the primal code. Finally, it must orchestrate the storage
of intermediate values by the forward sweep and their retrieval in reverse order by the
backward sweep. Consequently ST-AD tools are often lagging behind OO-AD when it
comes to handling the latest and newest language constructs. For instance, there is still
no real ST-AD tool for C++. On the other hand, the resulting backward sweep is exposed
to the compiler, yielding better performance, and the tape is smaller. ST-AD tools, having
to build an internal representation of the full primal code, are able to run global software
analysis that lead eventually to a more efficient adjoint code.

To sum up, OO-AD and ST-AD are just two different implementations of the same model of
derivative computation. In particular, they will return the same derivatives in the end, with
the same approximation errors. Differences lay in run-time and memory consumption, and
sometimes in limitations of the accepted language for the primal code. In section 4 we will
compare performance of OO-AD and ST-AD for the kind of primal codes that we consider.

From a software engineering point of view, the automatic aspect of AD is appealing, reduc-
ing the development and maintenance time. It is therefore recommended that the generated
derivative code is not modified by hand afterwards. In particular, efficiency adaptations of the
derivative code, specific to the HPC behavior and the target parallel architecture, should not be
applied after AD, but rather before or during AD. Two cases arize:

• if the primal code for F already embeds performance features, such as parallelization
directives or calls, the AD tool should preserve these features and use them consistently
in the generated code for F ′. Research on AD models has made this possible in several
cases, like tangent and adjoint AD of point-to-point and global communication primitives
of parallel distributed environnements such as MPI [38].

• if the AD process has introduced new features that were not present in the primal code,
such as loops on differentiation directions in the so-called vector mode, then the AD tool
must produce code adapted to the target architecture, specified e.g. with directives in the
primal code.

At the time of design of our proposed architecture of elsA, it is essential to discuss with AD
tools developers, to choose an HPC approach that the AD tool can preserve in the adjoint code.
As we will show in section 5, this sometimes leads to additional developments in the AD tool
itself.

4 CHOICE OF ST-AD TOOL

As discussed in section 2, a CFD solver needs to provide a tangent and an adjoint modes to
treat, for examples, implicit resolution, shape optimization, goal-oriented mesh adaptation, sen-
sibility or stability. Furthermore, software architecture must provide an HPC behavior adapted
to new hardware architecture. In particular, domain decomposition, vectorization directive or
pragma in the differentiated code must be consistent with the primal implementation.

As experience shows that it is hard to maintain a handmade differentiated code, we will rely
on AD tools to rather generate it. A first question is to determine which of OO-AD and ST-AD

7

best fits our needs and constraints. To answer this question, two of the most used AD tools
software in CFD community are compared: CoDiPack (OO-AD) [1] and Tapenade (ST-AD)
[21].

In order to compare the two strategies, two toy problems of increasing complexity are con-
sidered: 2nd order finite differences which is one of the simplest operator that includes stencil
combinations, and Roe flux that involves non-linear operations. The mesh has 256 × 256 × 24
cells and 200 iterations are made. Our comparison criteria are CPU and memory costs. Direct
(13), tangent (14) and adjoint (15) computations are made for each AD-tool.

x→ Ψ(x) (13)

(x, δx)→
(
∂Ψ(x)

∂x

)
δx (14)

(x, δx)→
(
∂Ψ(x)

∂x

)T

δx (15)

To fairly compare Fortran/Tapenade and C++/CoDiPack, the same code optimization has
been performed to ensure that the comparison in terms of CPU and memory costs is relevant.

Table 1 gives the CPU cost and the memory consumtion for the direct computation of 2nd

order finite differences (FDO2) and Roe flux (Roe) in each implementation. These results (TD
and MD) will be used as the baseline to form CPU slowdown and memory increase for tangent
(TT /TD and MT /MD) and adjoint (TA/TD and MA/MD) computations. Table 2 shows no
significant differences between OO-AD and ST-AD on tangent AD, both in terms of CPU and
memory. On the contrary, table 3 shows factors up to 5 (in CPU) and 10 (in memory) on adjoint
AD.

Direct (C++) Direct (Fortran)
TD (s) MD (MB) TD (s) MD (MB)

FDO2 0.41 16 0.39 16
Roe 5.38 120 5.37 120

Table 1: CPU and memory cost comparison for direct computation

Tangent (C++) Tangent (Fortran)
TT /TD ML/MD TT /TD ML/MD

FDO2 1.20 2.00 1.28 2.00
Roe 0.96 1.53 1.15 1.53

Table 2: CPU and memory cost ratios comparison for tangent computation

Those spectacular results on adjoint mode computation must be confirmed on a full CFD
application. Indeed, these initial comparisons are limited to the flux divergence computation

8

Adjoint (C++) Adjoint (Fortran)
TA/TD MA/MD TA/TD MA/MD

FDO2 7.53 6.75 1.49 2.00
Roe 7.42 16.08 1.75 1.53

Table 3: CPU and memory cost ratios comparison for adjoint computation

and do not take into account the other CFD software components, such as boundary conditions,
initialization, pre-processing, post-processing, etc.

To experiment further, on full codes, we choose SU2 [2], an open-sources CFD solver using
CodiPack (OO-AD) for differentiation and we retain the elsA solver with Tapenade (ST-AD).

In order to investigate the memory footprint, we run both direct and adjoint simulations of
ONERA M6 wing (Schmitt and Charpin [33]) with about 580 000 nodes. In agreement with
Gauger communication (Albring et al. [5]), there is a memory factor about 7 between direct
(3.3 GB) and adjoint (21.7 GB) with SU2/CodiPack whereas this factor is only 1.5 (2.7 GB vs
4.1 GB) for elsA/Tapenade.

Based on these results and the fact that modern scalar hardware architectures provide a
memory amount up to 4 GB per core, the option that best suits our needs for CFD adjoint
computation appears to be ST-AD, e.g. with Tapenade. From now on, as we will concentrate
on the ST-AD tool, we will refer to it as the “AD tool”.

5 RESULTING IMPLEMENTATION

As a reminder, elsA [12] is a large CFD simulation software developed in collaboration be-
tween ONERA and Safran. elsA deals with internal and external aerodynamics from the low
subsonic to the high supersonic flow regime. In addition, elsA interoperates with multidisci-
plinary simulation platforms in order to integrate CFD simulation capabilities into industrial
workflows. In the last years, an effort based on the work of I. Mary [27] has been made to
challenge the two limiting factors of CFD applications, namely their CPU and memory costs.
To guarantee this improvement on any types of computation (direct, tangent and adjoint) and
to cope with a major limitation of ST-AD tools (they work at computation level, e.g. Fortran
code but not at the driver level, e.g. C++ or Python code), we organize the solver as an chain
of operators specified by user choices. Each operator (see Fig. 2) is described by its inputs, its
outputs and a low-level implementation. As the coarse-grain part of our HPC model is based
on domain decomposition, each operator must also describe the support of inputs and outputs
(i.e. on vertices, edges, facets or cells) and how computed values may become inconsistent on
overlapping halos, therefore triggering communication.

In CFD solvers, the main variables are the conservatives Q and the mesh X. We use the AD
tool to generate the code for the derivative operators with respect to Q, X and any other pa-
rameter P . For each operator under consideration, Tapenade was able to generate the tangent
(”computeLin”), adjoint (”computeAdj”), and approximated Jacobian (”computeJac”) code,
from the primal code of the operator. Consequently, each operator now comes with its differen-
tiated functions of these three kinds (see Fig. 3). The Jacobian was produced using the so-called
vector tangent mode, that computes the exact Jacobian of the first order spatial operator R for

9

Figure 2: Operator description

each processor in a parallel distributed environnement, without its cross-processor components.
The resulting overall implementation has the form of a chain of operators that has to be inversed
for the adjoint mode.

Figure 3: Operator description with code generated by ST-AD

6 PRESERVING THE HPC BEHAVIOR

Recalling section 3, one main requirement for our applications is that the AD tool should
preserve the HPC behavior. In particular, we will now discuss the efficiency question related to
loop vectorization of the generated adjoint operator.

The AD tool defines a pragma (II-LOOP for “Independent Iterations”) that the user may
set before a loop to indicate that the loop’s iterations order can be changed freely. This pragma
can improve the adjoint code dramatically, as illustrated in Fig. 4. Instead of a forward sweep
containing essentially the source loop, followed by a backward sweep containing the reversed

10

loop, the adjoint code features only one loop in which each source iteration is immediately
followed by its own adjoint iteration. In this unique loop of the adjoint code, each iteration
starts with its own forward sweep immediately followed by its own backward sweep. The main
benefit is that the peak memory size used to store intermediate numerical values is reduced,
as each iteration pushes only its own temporaries (e.g. variable right) and then immedialely
pops them in its backward sweep. An additional benefit is that we get one loop instead of two,
reducing loop overhead and probably improving locality. It is thus recommended to place an

source loop adjoint loop static taping

!$AD II-LOOP

!DIR$ IVDEP

DO i=2,n

left = A(i-1)

right = A(i+1)

right = left*SIN(right)

mid = (left*right)/2.0

B(i-1) = B(i-1) + mid

B(i+1) = B(i+1) + mid

ENDDO

!DIR$ IVDEP

DO i=2,n

left = a(i-1)

right = a(i+1)

CALL PUSHREAL8(right)or−→
right = left*SIN(right)

mid = b(i-1) + b(i+1)

left = right*mid/2.0

right = left*mid/2.0

CALL POPREAL8(right)or−→
left = left + SIN(right)*right

right = left*COS(right)*right

a(i+1) = a(i+1) + right

a(i-1) = a(i-1) + left

ENDDO

ad save = right

right = ad save

Figure 4: A primal loop with pragma II-LOOP (left), its adjoint loop (middle), and a modified
adjoint loop with static taping of intermediate values (right)

II-LOOP on every loop of the primal operator that deserves it. This is obviously the case for
loops with no loop-carried dependencies, but we may go further: the duality that is at the heart
of adjoint AD is such that a variable read in the primal code will cause an increment of its
adjoint variable in the adjoint backward sweep. Symmetrically a primal increment of a variable
will trigger a single read of its adjoint variable. Because successive increments can be exchanged
(provided they are atomic in case of parallel execution), we can extend the II-LOOP pragma to
loops whose only loop-carried dependencies are between increments of variables. Consequently,
classical gather-scatter loops can receive the II-LOOP pragma.

On its side, the primal code of operators is already equipped with IVDEP pragmas, that tell the
compiler about vectorizable loops. Unfortunately, there is no clear relation between IVDEP and
II-LOOP pragmas. We can build IVDEP loops that contain loop-carried anti-dependencies and
therefore are not II-LOOP. Conversely we can build a gather-scatter loop, deserving an II-LOOP,
but that cannot be marked IVDEP because of loop-carried dependencies between increments. All
we can recommend at that stage is that an IVDEP loop is very likely to also be an II-LOOP, and
should be examined for that in priority.

Now taking a closer look at the adjoint loop itself, we notice we cannot in general mark as
IVDEP the adjoint of a loop, be it IVDEP, II-LOOP, or both. In many cases we can (see for

11

instance the adjoint loop of Fig. 4), because the dependency distance is explicit (i+1 and i-1

versus i). However when the dependency is more intricate, e.g. using indirection arrays, the
IVDEP is forbidden.

The issue exists already on the primal code. elsA generally deals with it by coloring, as shown
on the left of Fig. 5. The loop has been rescheduled as two nested loops, such that the inner
loop guarantees that two different i never get the same value of q. The inner loop is therefore
IVDEP, while the outer loop is not. In passing, notice that both loops are II-LOOP, yielding the
adjoint loop nest on the right. Which leads to the following question: can we place an IVDEP

on the inner adjoint loop? The answer is no in general because we have no guarantee that two
different i always get different p. This leads us to our recommendation that the coloring scheme
initially devized to guarantee independence of the write operations (i.e. Y(q)=...) be refined
to also guarantee independence of the read operations (i.e. X(p)). This refinement is indeed
useless for the primal loop, and it may even slightly degrade performance, but it allows us to
place a IVDEP on the adjoint inner loop, improving its performance significantly.

source loop adjoint loop
!$AD II-LOOP

DO pp=1,nPack

first = packIdx(pp)

last = packIdx(pp+1)

!$AD II-LOOP

!DIR$ IVDEP

DO i=first,last-1

p = indGather(i)

q = indScatter(i)

temp = X(p)

Y(q) = Y(q) + temp*4

ENDDO

ENDDO

DO pp=1,nPack

first = packIdx(pp)

last = packIdx(pp+1)

!DIR$ IVDEP

DO i=first,last-1

p = indGather(i)

q = indScatter(i)

temp = X(p)

Y(q) = Y(q) + temp*4

temp= 4*Y(q)

X(p) = X(p) + temp

ENDDO

ENDDO

Figure 5: Adjoint loop when using coloring

We must not neglect the last source of dependencies in the adjoint loop i.e. those coming
from the PUSH/POP mechanism on intermediate values of primal variables. Actually, the
compiler refuses to vectorize the loop in the 2nd column of fig. 4, and rightly so since PUSHREAL8

and POPREAL8 are external procedures that use an underlying global stack. We do know that
the related dependencies are indeed local to each loop, but we need to make this obvious to
the compiler. To this end we developed an alternative save/restore through local temporary
variables that needs no stack nor subroutine calls. It is triggered by a command-line option of
the AD tool (staticTape). In the future, it will be refined to apply selectively to chosen loops.

With the (staticTape) option, the AD tool tries whenever possible to save intermediate
values into additional local variables of the enclosing differentiated procedure, as shown in the
3rd column of fig. 4. This mechanism has limitations: each intermediate value of possible inner
loops requires a storage array dimensioned after the iteration space of the loop. Inner loops
with dynamic iteration length (e.g. while loops) forbid this. Also, this mechanism may end up

12

reserving more storage space than actually needed, in case of conditionals. Those limitations
are similar to those of the classical compiler transformation known as Static Single Assignment
(SSA).

Performance-wise, adjoint code with the staticTape option behaves quite well. Applied to
elsA, the additional memory consumption (on the execution stack) is marginally larger than
the memory used by the previously existing PUSH/POP calls (on the heap). As management and
access for heap memory can be slower than for stack memory, the staticTape option slightly
improves speed. More importantly, this replaces calls to procedures PUSH/POP with simple
assignments that are significantly faster. In our context, using the staticTape option is the
last brick that allows the vectorizing compiler to use the IVDEP pragma on the adjoint loop,
improving speed dramatically as will be shown in the next section.

7 RESULTS

Duality tests on a simple CFD test case : the NACA0012 case
The NACA0012 airfoil [33] is a well-known simple CFD case that allows to test new func-

tionalities (like duality for example) of a solver without spending lots of time to prepare and
solve it. This configuration is well documented in the litterature and permits to compare results
to the other already published.

(a) Mesh (b) Density field with Mach iso-lines

Figure 6: NACA0012 Euler transonic configuration (M=0.85/AoA=2°)

The principle of this test is to make sure that the generated tangent and adjoint modes and
their operators chain are consistent and can be written as:

∀(λ, δQ) :

(
λ
∂R
∂Q

)
︸ ︷︷ ︸

AdjCompute

δQ︸︷︷︸
TestVector

= λ︸︷︷︸
TestVector

(
∂R
∂Q

δQ

)
︸ ︷︷ ︸
LinCompute

(16)

where λ is an adjoint vector and δQ a tangent vector.
To verify the precision obtained on this equality, the NACA0012 airfoil is tested for an Euler

transonic flow with an angle of attack of 2° and a Mach number of 0.85 on an unstructured mesh

13

(see Fig.6). Sequential and parallel computations with first and second order spatial schemes
have been tested. All the resulted duality errors are about 1e−15.

Performance (CPU elapsed) on a full periodic problem : the Taylor Green Vortex
Initialy introduced by Taylor and Green [36], the viscous Taylor-Green Vortex (TGV) has

been extensively studied by Brachet et al [11, 10]. This flow is one of the simplest system in which
one can study the generation of small scales and the resulting turbulence. A three-dimensional
vortex is set as an initial condition for 3D-computation. Because of vortex-stretching and vortex-
tilting mechanisms, the vortex breaks up, giving birth to smaller and smaller structures. At finite
Reynolds number, the kinetic energy is transferred from larger to smaller scales and dissipated
by the smallest one; the test case gives thereby a simple model of the energy cascade (Fig. 7)
and is often used as a good milestone to assess the applicability of numerical schemes to Large
Eddy Simulation [3, 18, 17, 22].

(a) Iso surface Q=0 at
t = 0

(b) Iso surface Q=0 at
t = 4

(c) Iso surface Q=3 at
t = 8

(d) Iso surface Q=3 at
t = 12

Figure 7: TGV: Iso surface of the Q criterion colored by k. The figure shows phases of the
vortex break-up.

In this study we verify the ability of our solver to find the trivial fixed point in which all of
the kinectic energy has been dissipated.

This test case has been run on a 14 cores/2 sockets Intel Broadwell processor. Figure 8
shows the CPU elapsed time by cell (noted τ herafter) to evaluate R (green), or R and JV
(orange) or R and J T V (purple). To check the strong scalability of each computational modes
on a single processor, TGV test case is run from 1 to 14 cores. The nearly constant magnitude
of τ confirms the good parallelization of the solver for each computation mode, i.e. the code
generated by Tapenade preserve the HPC behavior of the primal code. The factor between direct
and tangent modes can be explained by the increase of computational fields (In tangent mode,
solvers must also compute linearized fields). The discrepancy between tangent and staticTape

adjoint modes comes from the overhead computations required for control-flow and data-flow
reversal, as reported in [20] . Using staticTape instead of dynamicTape mode (removal of
push/pop, cf. part 6) yields a factor about 1.5 in terms of CPU.

Industrial test-case : the NASA rotor 37
The NASA 37 transonic rotor (Moore and Reid [29]) is a well known turbomachinery test

14

Figure 8: TGV : performances for direct, tangent and adjoint computations

case. This test case has been computed by numerous authors [4]. Experimental data were
obtained at various measurement planes using both Laser Doppler Velocimetry and classical
rake measurements of pitchwise-averaged total pressure and pitchwise-averaged total temper-
ature (Strazisar [34]). The rotor has 36 blades, a nominal speed of 17188 rpm, the nomi-
nal tip-clearance gap taken into account for all computations is equal to 0.4 mm. The up-
stream stagnation pressure and temperature are respectively equal to 101325 Pa and 288.2 K.
The measurement uncertainties are reported by Suder [35]. This test case presents a shock-
wave/boundary-layer interaction leading to a flow separation.

To solve this 1.4 million cells test case, the Roe [30] scheme is used at orders 1 and 2 by
linear reconstruction (Van Albada limiter [39]) with the negative version of Spalart-Allmaras
model (Allmaras et al. [6]). The use of this version of the Spalart-Allmaras model ensure the
regularization of the turbulent equation that is determinant in the fixed point resolution. All
the walls (blade, hub and pan) are considered adiabatic.

Results obtained on this test case show the robustness of the chosen architecture. Figure
9 shows the fixed point residual convergence of the direct equations. Thanks to the exact
differentiation of R in conjunction with the pseudo-transient continuation technique [13], the
Newton-Raphson quadratic convergence is retrieved after 1000 iterations and then the machine
precision is reached after less than 10 iterations. The Mach number field is plotted for first (see
Fig. 10a) and second (see Fig. 10b) order spatial schemes. The magnitude of local Mach numbers
are in agreement with Ameri [7] and Denton [15]. As expected, shocks are better captured and
their wakes are better described with second order. The compression ratio is 2.106 and the
nominal rate flow obtained is 20.19 kg/s, value found in the litterature.
Figure 11 shows the GMRES residual convergence of the adjoint system. Also due to the
exactness of the differentiate operator, the linear algebra iterative method converges to machine
precision. Figures 12a and 12b present the first component of the adjoint vector, at respectively

15

first and second orders, for the entropy flux as objective function. As expected, the adjoint vector
highlights zones, upstream shocks, which start at their feet. As for the direct computation, the
second order allows for a finest solution.

Figure 9: Rotor37: fixed point residual convergence of the direct equations

(a) First order (b) Second order

Figure 10: Rotor37: Mach fields

8 CONCLUSION

In the present work, we demonstrate the relevance of Source Transformation Algorithm Dif-
ferentiation (ST-AD) to obtain a maintainable, efficient, industrial solver which covers a wide
range of CFD applications in a parallel distributed environnement. We highlight the benefits

16

Figure 11: Rotor37: GMRES residual convergence of the adjoint system inversion

(a) First order (b) Second order

Figure 12: Rotor37: First component of adjoint fields

17

of Source Transformation-AD compared to Operator-Overloading-AD. Especially for adjoint
mode, ST-AD is far more efficient, both in terms of CPU and memory costs. We emphasized
the improvements made on the Tapenade ST-AD tool, in order to preserve the HPC behavior
of each operator in tangent and adjoint modes. Specifically, we discuss how to automatically
preserve vectorization and low memory consumption.

The ST-AD tool is able to generate the exact tangent, adjoint and first order Jacobian
code for each operator under consideration, preserving the efficiency qualities of the direct
operator. To implement the entire solver, operators are organized in chains of operators which
have to be reversed for the adjoint mode. Additional research is needed to reverse these chains
automatically.

The obtained solver has been validated on several test cases from academic to industrial
configurations without any major drawback. Thanks to the exactness of the differentiated
operator, the linear algebra iterative method converges to machine precision on all investigated
applications.

Acknowledgment

Many thanks to the elsA Team and to all elsA developpers.
The study presented in this article makes use of the elsA CFD software, whose co-owners are

Safran and ONERA, and of the TAPENADE software developed at INRIA Sophia-Antipolis.
Following these preliminary results, we continue these activities in collaboration with Safran

in the SONICE project funded by DGAC (French Government).

References

REFERENCES

[1] Codipack. https://www.scicomp.uni-kl.de/codi/.

[2] Su2. https://su2code.github.io.

[3] Third international workshop on high-order cfd methods. https://www.grc.nasa.gov/

hiocfd, 2015.

[4] Agard-AR-355. CFD Validation for Propulsion System Components. Technical report, May
1998.

[5] T. Albring, N. Gauger, M. Sagebaum, and B. Zhou. AD-based discrete adjoints in SU2.
https://su2code.github.io/documents/su2_dev_gauger.pdf.

[6] S. Allmaras, F. Johnson, and P. Spalart. Modifications and clarifications for the imple-
mentation of the spalart-allmaras turbulence model. In Seventh international conference
on computational fluid dynamics (ICCFD7), pages 1–11, 2012.

[7] A. Ameri. Nasa rotor 37 cfd code validation glenn-ht code. In 47th AIAA Aerospace Sciences
Meeting including The New Horizons Forum and Aerospace Exposition, page 1060, 2009.

18

[8] F. Bassi, L. Botti, A. Colombo, A. Ghidoni, and F. Massa. Linearly implicit Rosenbrock-
type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible
and incompressible unsteady flows. Computers and Fluids, 118:305–320, June 2015.

[9] Berger, Pommeau, and Vidal. Order Within Chaos. John Wiley, 1984.

[10] M. E. Brachet, D. Meiron, S. Orszag, B. Nickel, R. Morf, and U. Frisch. The Taylor-Green
vortex and fully developed turbulence. Journal of Statistical Physics, 34(5-6):1049–1063,
1984.

[11] Marc E. Brachet, Daniel I. Meiron, Steven A. Orszag, B. G. Nickel, Rudolf H. Morf, and
Uriel Frisch. Small-scale structure of the taylorgreen vortex. Journal of Fluid Mechanics,
130:411452, 1983.

[12] L. Cambier, S. Heib, and S. Plot. The ONERA elsA CFD software : input from research
and feedback from industry. Mech. Ind., page ., 2013.

[13] A. Crivellini and F. Bassi. An implicit matrix-free discontinuous Galerkin solver for viscous
and turbulent aerodynamic simulations. Computers and Fluids, 50:81–93, 2011.

[14] C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equation. Proc. Natl. Acad. Sci.
USA, 43:235, 1952.

[15] JD Denton. Lessons from rotor 37. Journal of Thermal Science, 6(1):1–13, 1997.

[16] R. Dwight. Efficiency improvements of RANS-based analysis and optimization using im-
plicit and adjoint methods on unstructured grid. PhD thesis, University of Manchester,
2006.

[17] D. Fauconnier, C. Bogey, and E. Dick. On the performance of relaxation filtering for large-
eddy simulation. Journal of Turbulence, 14(1):22–49, 2013.

[18] Dieter Fauconnier, Chris De Langhe, and Erik Dick. Construction of explicit and implicit
dynamic finite difference schemes and application to the large-eddy simulation of the Taylor-
Green vortex. Journal of Computational Physics, 228:8053–8084, 2009.

[19] M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to design. Flow
Turbulence and Combustion, 65:393–415, 2000.

[20] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, 2nd
edition, 2008.

[21] L. Hascoët and V. Pascual. The tapenade automatic differentiation tool: Principles, model,
and specification. ACM Trans. Math. Softw., 39(3):20:1–20:43, 2013.

[22] Stefan Hickel, Nikolaus A. Adams, and J. Andrzej Domaradzki. An adaptative local de-
convolution method for implicit les. Journal of Computational Physics, 213:413–436, 2006.

19

[23] Gaetan KW Kenway, Charles A Mader, Ping He, and Joaquim RRA Martins. Effective
adjoint approaches for computational fluid dynamics. Progress in Aerospace Sciences, page
100542, 2019.

[24] D.a. Knoll and D.E. Keyes. Jacobian-free NewtonKrylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193(2):357–397, January 2004.

[25] J.L. Lions. Optimal Control of Systems Governed by Partial Differential Equations. Springer
- Verlag, 1971.

[26] P. Luchini and A. Bottaro. An Introduction to Adjoint Problems. Annual Review of Fluid
Mechanics, 46:., 2014.

[27] I. Mary. Flexible aerodynamic solver technology in an hpc environment. http://www.

maisondelasimulation.fr/seminar/data/201611_poster.pdf.

[28] G.E. Moore. Cramming more components onto integrated circuits. Electronics, page .,
1965.

[29] Royce D Moore and Lonnie Reid. Performance of single-stage axial-flow transonic com-
pressor with rotor and stator aspect ratios of 1.19 and 1.26 respectively, and with design
pressure ratio of 2.05. Technical report, NASA, 1980.

[30] P. Roe. Approximate riemann solvers, parameter vectors, and difference schemes. Journal
of computational physics, 43(2):357–372, 1981.

[31] H.H. Rosenbrock. Some general implicit processes for the numerical solution of differential
equations. The Computer Journal, 5:329–330, January 1963.

[32] Youcef Saad and Martin H. Schultz. GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, July 1986.

[33] V. Schmitt and F. Charpin. Pressure distributions on the ONERA M6-wing at transonic
mach numbers, experimental data base for computer program assessment. Technical report,
1979.

[34] AJ Strazisar. Data report and data diskette for nasa transonic compressor rotor 37. NASA
Lewis Research Center, Cleveland, OH, page ., 1994.

[35] Kenneth Lee Suder. Blockage development in a transonic, axial compressor rotor. Journal
of Turbomachinery, 120(3):465–476, 1998.

[36] G.I. Taylor and A.E. Green. Mechanism of the Production of Small Eddies from Large
Ones. Proc. R. Soc. Lond. A, 158:499–521, 1937.

[37] L. Tuckerman and D. Barkley. Numerical methods for bifurcation problems and large-scale
dynamical systems – Bifurcation analysis for timesteppers. Springer, pages 453–466, 2000.

20

[38] J. Utke, L. Hascoët, P. Heimbach, C. Hill, P. Hovland, and U. Naumann. Toward Adjoinable
MPI. In Proceedings of the 10th IEEE International Workshop on Parallel and Distributed
Scientific and Engineering, PDSEC’09, page ., 2009.

[39] GD Van Albada, Bram Van Leer, and WWjun Roberts. A comparative study of compu-
tational methods in cosmic gas dynamics. In Upwind and High-Resolution Schemes, pages
95–103. Springer, 1997.

21

