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Wave drag prediction using the Lamb vector in two-dimensional steady transonic flows

Camille Fournis * ONERA-The French Aerospace Lab, 92190 Meudon, France Several studies about the Lamb vector have led to the development of the vortex-force theory, a formulation able to predict the aerodynamic force in compressible flows and decompose it into lift, lift-induced drag and profile drag. In the present paper, the aim is to achieve a complete drag breakdown by decomposing the profile drag into viscous drag and wave drag. For this purpose, three definitions of the wave drag using shock wake plane data are proposed, among which two explicitly involve the Lamb vector, while the last one is based on pressure and density variations. Once the wake of the shock wave has been separated from the viscous wake using physical sensors, the wave drag is finally estimated using the three proposed definitions on the NACA0012 airfoil and the OAT15A airfoil. 

Nomenclature

I. Introduction

F rom its beginnings at the end of the nineteenth century until today, the main paradigm of aviation has always been to improve the performance of aircraft. Indeed, better performance means better fuel consumption efficiency as well as reduced environmental footprint. For this purpose, aeronautical engineers have ceaselessly been devoting their working time to either enhancing the engine efficiency, reducing the weight of the structure, or improving the aerodynamic performance of the airframe. Yet, before improving the aerodynamic performance, it is necessary to accurately evaluate it. Hence, the present study is related to the field of aerodynamic performance assessment in terms of lift and drag. Indeed, the drag (or resistance) is the force caused by friction and pressure at the skin which opposes the aircraft motion. Consequently, the amount of drag exerted on the airframe has a direct influence on the global performance of the aircraft and fuel consumption of engines. That is why it is paramount to find tools allowing aerodynamicists to accurately predict and decompose the aerodynamic force exerted on aircraft, in order to acquire a physical understanding of lift and drag, and hence to enable the emergence of new aircraft designs which improve the aerodynamic performance.

In this regard, the aerodynamic force can be computed using the near-field and the far-field approaches. The near-field approach consists in quantifying the effect of the airflow on the aircraft, by integrating the pressure and friction forces on the body skin 𝑆 𝑏 . On the contrary, the far-field approach consists in quantifying the effect of the aircraft in motion on the air surrounding it, by performing a momentum balance in a control volume of fluid Ω and its external boundary 𝑆 𝑒 (see Fig. 1):

𝑭 = - ˛𝑆𝑏 (-𝑝 𝑰 + 𝝉) • 𝒏d𝑆 = -ˆΩ 𝜌𝒂d𝑣 + ˛𝑆𝑒 (-𝑝 𝑰 + 𝝉) • 𝒏d𝑆 ( 1 
)
where 𝒂 is the acceleration of a fluid particle, 𝝉 is the viscous-stress tensor and 𝒏 is the unit normal to the surface pointing outside the control volume. Yet, the mechanical breakdown of the drag into friction and pressure drag provided by the near-field approach is not sufficient to develop a physical understanding of the origin of lift and drag: thus this approach is less relevant in the context of improving the design of aircraft. Besides, it may be subject to discrepancies generated by the grid close to the body skin in numerical computations, which inevitably undermines the accuracy of the prediction. On the contrary, methods based on the far-field approach provide a physical decomposition of the aerodynamic force and relate the force contributors to various flow phenomena: trailing vortices, jets, viscous wakes and shock waves. Hence, in the case of a non-propelled aircraft, the total drag is the sum of three contributions; the lift-induced drag, the viscous drag and the wave drag: 𝐷 = 𝐷 𝑖 + 𝐷 𝑣 + 𝐷 𝑤 . Finally, such methods also allow to assess the unphysical spurious drag generated by the poor grid quality and by the dissipation introduced by the numerical scheme.

The circulation theorem developed independently by Kutta [START_REF] Kutta | Auftriebskräfte in Strömenden Flüssigkeiten[END_REF] in 1902 and Joukowski [START_REF] Joukowski | On Annexed Vortices[END_REF] in 1906 constitutes the first far-field approach and is now referred to as Kutta-Joukowski theorem. It provides a far-field definition of the lift in two-dimensional steady inviscid flow, and relates it to the circulation generated by the airframe. Prandtl furthered the works of Kutta and Joukowski when he developed the so-called lifting-line theory [START_REF] Prandtl | Theory of lifting surfaces[END_REF] for wings of finite span, and
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Fig. 1 Fluid domain and boundaries

identified for the first time the drag due to lift, also called lift-induced drag. The pioneering Kutta-Joukowski theorem is still under investigation nowadays, and Schmitz [START_REF] Schmitz | Finite Domain Viscous Correction to the Kutta-Joukowski Theorem in Incompressible Flow[END_REF] even discovered a finite-domain viscous correction to the circulation theorem due to the presence of the wake in viscous flows. For their part, using a small perturbation approximation, Liu et al. [START_REF] Liu | Lift and Drag in Two-Dimensional Steady Viscous and Compressible Flow[END_REF][START_REF] Liu | Lift and Drag in Three-Dimensional Steady Viscous and Compressible Flow[END_REF] recently argued that the Kutta-Joukowski theorem still applies in compressible viscous flows, and they even developed a unified force theorem applicable in practice in the linear far field.

While the pioneering aerodynamicists were building theories that helped gain insights onto the physics at stake in the generation of lift and drag, other scientists were devoting themselves to the development of methods able to assess the aerodynamic performance of aircraft from wind-tunnel measurements [START_REF] Betz | A Method for the Direct Determination of Wing-Section Drag[END_REF][START_REF] Taylor | Note on the connection between the lift on an aërofoil in a wind and the circulation round it[END_REF][START_REF] Jones | The measurement of profile drag by the pitot-traverse method[END_REF][START_REF] Kusunose | Drag prediction based on a wake-integral method[END_REF][START_REF] Kusunose | Wave Drag Extraction From Profile Drag Based on a Wake-Integral Method[END_REF][START_REF] Méheut | Drag-Breakdown Methods From Wake Measurements[END_REF]. In this regard, Betz [START_REF] Betz | A Method for the Direct Determination of Wing-Section Drag[END_REF], Taylor [START_REF] Taylor | Note on the connection between the lift on an aërofoil in a wind and the circulation round it[END_REF] and Jones [START_REF] Jones | The measurement of profile drag by the pitot-traverse method[END_REF] were the first to find ways to evaluate the profile drag (viscous drag in shockless subsonic flows) in incompressible flows, by measuring the losses in total pressure in the wake of the model. Regarding the lift-induced drag, it was desirable to have a definition valid in viscous flows: this was achieved by Maskell in viscous incompressible flows in 1972 [START_REF] Maskell | Progress Towards a Method for the Measurement of the Components of the Drag of a Wing of Finite Span[END_REF], who related the lift-induced drag to the transverse kinetic energy of the trailing vortices, and then to the longitudinal vorticity in the wake. His definition is valid only in incompressible flow, although it is still widely used in compressible regime [START_REF] Cummings | Analysis of the elements of drag in three-dimensional viscous and inviscid flows[END_REF][START_REF] Giles | Wake integration for three-dimensional flowfield computations: theoretical development[END_REF][START_REF] Hunt | Wake integration for three-dimensional flowfield computations: applications[END_REF][START_REF] Van Dam | Recent experience with different methods of drag prediction[END_REF][START_REF] Kroo | Drag Due to Lift: Concepts for Prediction and Reduction[END_REF][START_REF] Kusunose | Extension of wake-survey analysis method to cover compressible flows[END_REF][START_REF] Chao | Wing drag prediction and decomposition[END_REF][START_REF] Ueno | Far-field drag analysis of NASA Common Research Model simulation[END_REF].

This justified the need for theories able to decompose the drag also valid in compressible flows. This was done through the development of methods based on thermodynamic considerations [START_REF] Van Der Vooren | CFD-based drag prediction: state-of-the-art, theory, prospects[END_REF][START_REF] Paparone | Computational Fluid Dynamics-Based Drag Prediction and Decomposition[END_REF][START_REF] Destarac | Far-Field/Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF][START_REF] Fan | Review of far-field drag decomposition methods for aircraft design[END_REF], especially on entropy and total enthalpy. They consist in quantifying the entropy generated within boundary layers and across shock waves in order to assess the profile drag (viscous drag plus wave drag in transonic flows). They extend the definition proposed by Oswatitsch [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF][START_REF] Oswatitsch | Gas dynamics[END_REF] and also allow for a breakdown into viscous drag and wave drag. The main drawback of these methods is that the lift-induced drag is not directly defined, but rather after subtracting the profile drag from the total drag. Consequently, no obvious understanding of the physics involved in the production of lift-induced drag is available in compressible flows [START_REF] Spalart | On the far wake and induced drag of aircraft[END_REF].

Very recently, another approach based on partial pressure fields was designed by Schmitz and Coder [START_REF] Schmitz | Inviscid circulatory-pressure field derived from the incompressible Navier-Stokes equations[END_REF][START_REF] Schmitz | Drag Decomposition Using Partial-Pressure Fields in the Compressible Navier-Stokes Equations[END_REF]. This method allows to decompose the drag into an Euler component (lift-induced drag plus wave drag in transonic flows) and a dissipative component (viscous drag), and to evaluate them by integrating the partial pressure fields on the body skin as in the near-field approach. In order to decouple the wave drag from the lift-induced drag in transonic flows, the same authors [START_REF] Coder | Thermodynamic Decomposition of Compressible Wave Drag in the Euler Equations[END_REF] proposed a similar procedure which is used to decompose the density field. More recent works carried out by Hart and Schmitz [START_REF] Hart | Application of Partial-Pressure Field Drag Decomposition to the ONERA M6 Wing[END_REF][START_REF] Hart | Drag Decomposition Using Partial-Pressure Fields: ONERA M6 Wing[END_REF] use a hybrid near-field/far-field approach to deduce the wave drag.

Realizing that thermodynamic approaches do not yield a direct definition (and hence no physical understanding) of the lift and the lift-induced drag, scientists gradually focused their efforts on another type of formulations, based this time on vorticity (see examples in [START_REF] Wu | Fundamental theories of aerodynamic force in viscous and compressible complex flows[END_REF]). The most famous one is the vortex-force theory, based on the Lamb vector 𝒍 = 𝝎 × 𝒒, because it provides direct definitions of the lift and the lift-induced drag in incompressible and compressible flows: it generalizes Prandtl's lifting-line theory [START_REF] Prandtl | Theory of lifting surfaces[END_REF] to the study of more complex flows. This theory was first studied by Saffman [START_REF] Saffman | Vortex dynamics[END_REF] in incompressible steady inviscid flows, then extended by Wu et al. [START_REF] Wu | Vorticity and vortex dynamics[END_REF][START_REF] Wu | Integral force acting on a body due to local flow structures[END_REF] and Liu et al. [START_REF] Liu | A Dynamic Counterpart of Lamb Vector in Viscous Compressible Aerodynamics[END_REF][START_REF] Liu | Longitudinal-Transverse Aerodynamic Force in Viscous Compressible Complex Flow[END_REF] in viscous, unsteady and compressible flows, but they managed to decompose the drag in incompressible steady viscous flows only. A first drag breakdown in compressible steady viscous flows was achieved by Mele et al. [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF]. However this decomposition proved to be sensitive to the location of the reference point adopted for moment computation in the integral terms. This issue was solved by Fournis et al. [START_REF] Fournis | A reference point invariant Lamb vector based aerodynamic force breakdown in steady compressible flows[END_REF][START_REF] Fournis | Definition of an Invariant Lamb-Vector-Based Aerodynamic Force Breakdown Using Far-Field Flow Symmetries[END_REF] who developed a reference-point-invariant version of Mele et al.'s decomposition using far-field flow symmetries. In addition to that, the same authors investigated the physics at stake in the vortex-force theory by emphasizing its links with the Kutta-Joukowski theorem, Maskell's lift-induced drag formula and Betz's profile drag formula in compressible flows [START_REF] Fournis | Compressibility Correction to Kutta-Joukowski and Maskell Formulas Using Vortex-Force Theory[END_REF][START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF]. In particular, they devised two new mathematically equivalent formulations of the vortex-force theory, which are valid in transonic flows, and bridge the gap between classical incompressible aerodynamics and transonic aerodynamics: one is based on local flow quantities (Lamb vector and density gradient) while the other one is based on global flow quantities (circulation, pressure, density, transverse kinetic energy) [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF]. A main benefit provided by those two formulations is that they are directly invariant to the location of the reference point. Beyond all those developments and applications, the vortex-force theory has also been applied to inviscid flows [START_REF] Kang | Aerodynamic Force Breakdown in Reversible and Irreversible Components by Vortex Force Theory[END_REF], unsteady flows [START_REF] Ostieri | Linear and Nonlinear Decomposition of Aerodynamic Force Acting on an Oscillating Plate[END_REF][START_REF] Ostieri | Aerodynamic force and Lamb vector field in compressible unsteady flows[END_REF] and thrust prediction [START_REF] Russo | Thrust Extraction from Vorticity Fields in Steady and Unsteady Flows[END_REF].

Regarding the evaluation of the wave drag, some attempts have been performed using the Lamb vector, but the results were either unsatisfactory [START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF], or merely limited to non-lifting inviscid cases [START_REF] Ostieri | On a recently proposed vorticity-based definition of wave drag[END_REF]. Hence the goal of the present study is to further the work on wave drag prediction using the Lamb vector, and to address the case of a lifting airfoil immersed in a viscous flow. In section II, the various formulations of the vortex-force theory are presented. Section III is devoted to the analysis of the existing links between the vortex-force theory and the wave drag formulas defined by Oswatitsch [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF][START_REF] Oswatitsch | Gas dynamics[END_REF] and Destarac and Van der Vooren [START_REF] Destarac | Far-Field/Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF]. The goal of this latter section is to verify extracting the wave drag using the Lamb vector is achievable. Finally, three new methods for extracting the wave drag in the shock wave wake are proposed in section IV and compared to that of Ostieri and Tognaccini [START_REF] Ostieri | On a recently proposed vorticity-based definition of wave drag[END_REF] and that of Destarac and Van der Vooren [START_REF] Destarac | Far-Field/Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF].

II. Presentation of the vortex-force theory in compressible flows

A. Mele et al.'s decomposition

The formulation developed by Mele and Tognaccini [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF] has been the first one to propose a direct definition of the lift and the lift-induced drag using the Lamb vector in steady compressible viscous flows. In practice, they used the derivative moment transformation (DMT) Eq.(A.1) to re-express the compressible formulation written by Wu et al. [START_REF] Wu | Vorticity and vortex dynamics[END_REF] (p. 621) and decomposed the aerodynamic force as follows:

𝑭 = 𝑭 𝜌𝑙 + 𝑭 𝑚 𝜌 + 𝑭 𝑆 𝑒 + 𝑭 𝜏 (2) 
with

𝑭 𝜌𝑙 = -ˆΩ 𝜌𝒍d𝑣 (3) 
𝑭 𝑚 𝜌 = - 1 N -1 ˆΩ 𝒓 × ∇𝜌 × ∇ 𝑞 2 2 d𝑣 = -ˆΩ 𝒎 𝜌 d𝑣 (4) 
𝑭 𝑆 𝑒 = - 1 N -1 ˛𝑆𝑒 𝒓 × (𝒏 × 𝜌𝒍) d𝑆 (5) 
𝑭 𝜏 = 1 N -1 ˛𝑆𝑒 𝒓 × (𝒏 × ∇ • 𝝉) d𝑆 + ˛𝑆𝑒 𝝉 • 𝒏d𝑆 (6) 
Here N = 2, 3 is the dimension of the physical space and 𝒓 is the position vector. 𝑭 𝜌𝑙 , called the vortex force, is responsible for the lift 𝐿 and the lift-induced drag 𝐷 𝑖 in steady incompressible flows [START_REF] Marongiu | Lift and Lift-Induced Drag Computation by Lamb Vector Integration[END_REF], 𝑭 𝑚 𝜌 is a term present only in compressible flows which contributes to 𝐿 and 𝐷 𝑖 [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF], while 𝑭 𝑆 𝑒 is responsible for the profile drag 𝐷 𝑃 only [START_REF] Wu | Vorticity and vortex dynamics[END_REF][START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF]. In high-Reynolds-number flows, viscous stresses rapidly become negligible as 𝑆 𝑒 retreats to infinity, such that there is no need to account for 𝑭 𝜏 in the decomposition [START_REF] Marongiu | Lift and Lift-Induced Drag Computation by Lamb Vector Integration[END_REF][START_REF] Yang | Steady vortex force theory and slender-wing flow diagnosis[END_REF]:

𝐿 Mele = 𝑭 𝜌𝑙 + 𝑭 𝑚 𝜌 • 𝒆 𝑧 𝐷 Mele 𝑖 = 𝑭 𝜌𝑙 + 𝑭 𝑚 𝜌 • 𝒆 𝑥 𝐷 Mele 𝑃 = 𝑭 𝑆 𝑒 • 𝒆 𝑥 (7) (8) (9) 
This formulation is directly applicable to compressible subsonic flows but not directly in transonic flows, in which the shock wave discontinuities must be thoroughly accounted for in order to modify the expression of 𝑭 𝑚 𝜌 [START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF] (a rigorous derivation is provided in [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF]).

Although this formulation has been successfully applied to many numerical test cases, it was found that the force decomposition is sensitive to the location of the reference point used to compute the moments in 𝑭 𝑚 𝜌 and 𝑭 𝑆 𝑒 . It is clearly an issue since physically speaking, the contribution to the force coming from a given phenomenon should never depend on this parameter. A first solution was developed by Fournis et al. [START_REF] Fournis | A reference point invariant Lamb vector based aerodynamic force breakdown in steady compressible flows[END_REF][START_REF] Fournis | Definition of an Invariant Lamb-Vector-Based Aerodynamic Force Breakdown Using Far-Field Flow Symmetries[END_REF]: using a flow symmetrization technique, they devised an equivalent reference-point-invariant version of Mele et al.'s decomposition. A second solution was developed by the same authors [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF] very recently, this time by adapting the decomposition of Mele et al. in order to build two new decompositions mathematically equivalent to each other: the ONERA and Kutta-Joukowski-Maskell-Betz (KJMB) decompositions.

B. ONERA and Kutta-Joukowski-Maskell-Betz decompositions

Given the complexity of the mathematical expressions defining the terms of Mele et al.'s formulation [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF], the main reason for the development of those two new decompositions was to investigate the physics involved in 𝑭 𝜌𝑙 , 𝑭 𝑚 𝜌 and 𝑭 𝑆 𝑒 in order to better relate lift and drag to their phenomenological sources [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF]. The first step consisted in identifying the links between the terms defined in Mele et al.'s formulation and the classical analyses of Kutta, Joukowski, Maskell and Betz in compressible flows:

𝑭 𝜌𝑙 + 𝑭 𝑚 𝜌 = 𝑭 KJ + 𝑭 MSK + 𝑭 ∇𝜌 𝑭 𝑆 𝑒 + 𝑭 𝜏 = 𝑭 BETZ -𝑭 ∇𝜌 (10) (11) 
with

𝑭 KJ = 𝑼 ∞ × ˛𝑆𝑒 𝒏 × 𝜌𝛿𝒒d𝑆 + ˛𝑆𝑒 𝜌 𝛿𝑞 2 2 𝑛 𝑧 -𝑤 (𝛿𝒒 • 𝒏) d𝑆 𝒆 𝑧 (12) 
𝑭 MSK = ˛𝑆𝑒 𝜌 𝛿𝑞 2 2 𝑛 𝑥 -𝑢 (𝛿𝒒 • 𝒏) d𝑆 𝒆 𝑥 (13) 
𝑭 BETZ = ˛𝑆𝑒 𝝉 • 𝒏d𝑆 + ˛𝑆𝑒 (𝑃 ∞ -𝑃) 𝒏d𝑆 + 𝑈 2 ∞ 2 ˛𝑆𝑒 (𝜌 -𝜌 ∞ ) 𝒏d𝑆 (14) 
𝑭 ∇𝜌 = 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × 𝑞 2 -𝑈 2 ∞ 2 ∇𝜌 d𝑆 ( 15 
)
Here 𝑭 KJ is the viscous compressible version of the Kutta-Joukowski theorem providing the lift while 𝑭 MSK is the compressible version of Maskell's formula providing the lift-induced drag. Indeed, considering that 𝑆 𝑒 retreats further enough from the body skin [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF], it is possible to simplify the expressions as

𝑭 KJ = -𝜌 ∞ 𝑈 ∞ (Γ * + 𝛿Γ * ) 𝒆 𝑧 (16) 
𝑭 MSK = 1 2 ˆ𝑊 𝜌 𝑣 2 + 𝑤 2 -𝑢 2 d𝑆 𝒆 𝑥 (17) 
where

𝚪 * = ˛𝑆𝑒 𝒏 × 𝜌 𝜌 ∞ 𝛿𝒒d𝑆 = -Γ * 𝒆 𝑦 ( 18 
)
𝛿Γ * = 1 𝑈 ∞ ˆ𝑊 𝜌 𝜌 ∞ 𝑢𝑤d𝑆 ( 19 
)
Γ * is a compressible circulation and 𝛿Γ * is the compressible counterpart of the finite-domain viscous correction to Γ * identified by Schmitz [START_REF] Schmitz | Finite Domain Viscous Correction to the Kutta-Joukowski Theorem in Incompressible Flow[END_REF] in incompressible flows. Similarly, 𝑭 BETZ is an extension to compressible flows of Betz's incompressible profile drag definition based on the total pressure losses 𝑃 ∞ -𝑃. The additional contribution of

𝑈 2 ∞ 2 ˛𝑆𝑒 (𝜌 -𝜌 ∞ ) 𝒏d𝑆
appearing in compressible flows represents the variations in kinetic energy caused by density variations in compressions and expansions (see [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF] for more details). Finally 𝑭 ∇𝜌 is a compressibility correction vanishing in the far field [START_REF] Fournis | Compressibility Correction to Kutta-Joukowski and Maskell Formulas Using Vortex-Force Theory[END_REF]. However, its magnitude may still not be negligible in the near field of specific airframes, and hence Mele et al.'s aerodynamic force decomposition [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF] may well be quite different from that predicted by 𝑭 KJ , 𝑭 MSK and 𝑭 BETZ . Hence, the idea was to adapt Mele et al.'s decomposition by simply withdrawing 𝑭 ∇𝜌 from the lift and the lift-induced drag and add it to the profile drag. By doing so, the mathematically equivalent ONERA and KJMB decompositions were defined as follows [START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF]:

𝐿 ONERA = 𝒆 𝑧 • 𝑭 𝜌𝑙 + 𝑭 𝑚 𝜌 -𝑭 ∇𝜌 𝐷 ONERA 𝑖 = 𝒆 𝑥 • 𝑭 𝜌𝑙 + 𝑭 𝑚 𝜌 -𝑭 ∇𝜌 𝐷 ONERA 𝑃 = 𝒆 𝑥 • 𝑭 𝑆 𝑒 + 𝑭 𝜏 + 𝑭 ∇𝜌 (20) (21) (22) 
and

𝐿 KJMB = 𝒆 𝑧 • 𝑭 KJ 𝐷 KJMB 𝑖 = 𝒆 𝑥 • 𝑭 MSK 𝐷 KJMB 𝑃 = 𝒆 𝑥 • 𝑭 BETZ (23) (24) (25) 
The equivalence between the ONERA and KJMB decompositions provides several advantages. In fact, it allows for a better understanding of the physics responsible for lift and drag generation in compressible flows. On the one hand, it is possible to physically interpret the complex mathematical expressions of the vortex-force theory in terms of global flow quantities: circulation, pressure variations, density variations and transverse kinetic energy. On the other hand, the classical analyses of Kutta, Joukowski, Maskell and Betz may be interpreted using local flow quantities: velocity, vorticity and density gradients. In this regard, the ONERA and KJMB formulations provide for the first time two equivalent compressible versions of some of the most famous classical aerodynamic theories. Another very important benefit is that the aerodynamic force decomposition provided by both formulations is naturally invariant to the location of the reference point, since the position vector does not appear in the expressions of 𝑭 KJ , 𝑭 MSK and 𝑭 BETZ . Finally, it is also possible to apply them to lower-Reynolds-number flows, since viscous stresses are accounted for in 𝑭 𝜏 .

Despite all these advantages, the robust decomposition of the profile drag into viscous and wave drag is still not achieved. Yet, first and foremost, it is important to check whether the profile drag definitions presented earlier can also capture the wave drag. For this purpose, the existing theoretical links between the vortex-force theory and famous thermodynamic wave drag definitions must be investigated.

III. Theoretical links between the vortex-force theory and thermodynamic wave drag definitions

The goal of this section is to establish theoretical bridges between the vortex-force theory and thermodynamic approaches in order to ensure that a wave drag extraction using the Lamb vector is indeed possible. Kang et al. [START_REF] Kang | Aerodynamic Force Breakdown in Reversible and Irreversible Components by Vortex Force Theory[END_REF] already highlighted the links between the vortex-force theory and the analyses of Oswatitsch [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF][START_REF] Oswatitsch | Gas dynamics[END_REF] and Destarac and Van der Vooren [START_REF] Destarac | Far-Field/Near-Field Drag Balance and Applications of Drag Extraction in CFD[END_REF][START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF] but their analysis was based on Taylor expansions on the flow quantities in the far field. Here, the aim is to find those links without using any Taylor expansion in order to better appreciate the differences that exist between those approaches.

A. Links with Oswatitsch's wave drag definition

Oswatitsch's formula [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF][START_REF] Oswatitsch | Gas dynamics[END_REF] defines the profile drag as the flux of entropy generated in boundary layers and across shock waves. When the integration is done downstream of the shock wave, the computed drag is the wave drag. After some algebra, one can establish the links between Mele et al.'s profile drag definition [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF] and Oswatitsch's wave drag formula (see Appendix B):

𝐷 Mele 𝑃 = 𝐷 Osw 𝑤 + 𝐷 𝛿𝒒Δ𝑠 + 𝐷 Δ𝑠Δ𝑇 + 𝐷 Δ𝑠∇ 𝑝 (26) 
with

𝐷 Osw 𝑤 = 𝑇 ∞ 𝑈 ∞ ˆ𝑊sw Δ𝑠 (𝜌𝒒 • 𝒏) d𝑆 ( 27 
)
𝐷 𝛿𝒒Δ𝑠 = - 𝑇 ∞ 𝑈 ∞ ˆ𝑊sw Δ𝑠 (𝜌𝛿𝒒 • 𝒏) d𝑆 ( 28 
)
𝐷 Δ𝑠Δ𝑇 = 𝒆 𝑥 • ˆ𝑊sw 𝜌Δ𝑠Δ𝑇 𝒏d𝑆 ( 29 
)
𝐷 Δ𝑠∇ 𝑝 = 𝒆 𝑥 • 1 N -1 ˆ𝑊sw 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (30) 
It is expected that the other terms of Eq.( 26) vanish in the far wake of the shock wave. In fact, Δ𝑠 is small as long as the shock is not too strong. Moreover, it is reasonable to consider that the flow consists of a "slightly perturbed parallel flow" in the far wake [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF]. Hence there is lim

𝑊 sw →∞ Δ𝑠 (𝛿𝒒 • 𝒏) = lim 𝑊 sw →∞ 𝑢Δ𝑠 = 0 ( 31 
)
because 𝑢 is small far downstream. Furthermore, the temperature 𝑇 tends to 𝑇 ∞ in the far field: lim

𝑊 sw →∞ Δ𝑠Δ𝑇 = (𝑇 ∞ -𝑇 ∞ ) Δ𝑠 = 0 (32) 
Moreover, typical transonic shock waves are generally almost straight, hence the tangential pressure gradient 𝒏 × ∇𝑝 is expected to be small and to rapidly vanish. Consequently, lim

𝑊 sw →∞ 𝐷 𝛿𝒒Δ𝑠 = 0 (33) 
lim

𝑊 sw →∞ 𝐷 Δ𝑠Δ𝑇 = 0 (34) 
lim

𝑊 sw →∞ 𝐷 Δ𝑠∇ 𝑝 = 0 (35) so that 𝐷 Mele 𝑃 = 𝐷 Osw 𝑤 ( 36 
)
in the far wake. All those conjectures are confirmed by numerical results in subsection III.C. In the next part, the focus is given this time to the profile drag expressions of the ONERA and KJMB formulations, and their link with Destarac and Van der Vooren's wave drag definition [START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF].

B. Links with Destarac and Van der Vooren's wave drag definition

Destarac and Van der Vooren's approach considers a non-lifting flow in which there are not any trailing vortices present in the wake, hence the total drag is equal to the profile drag produced by irreversible phenomena (boundary layers, shocks, wakes). Besides, the wake plane of integration is chosen such that the viscous stresses are negligible and the pressure is equal to its freestream value. Again after some algebra, it is possible to link the ONERA and KJMB profile drag definitions to that of Destarac and Van der Vooren (see Appendix B):

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = 𝐷 VdV 𝑤 + 𝐷 Δ 𝑝 + 𝐷 𝛿𝒒Δ𝑢 (37) 
with

𝐷 VdV 𝑤 = - ˆ𝑊sw Δ𝑢 (𝜌𝒒 • 𝒏) d𝑆 ( 38 
)
𝐷 Δ 𝑝 = 𝒆 𝑥 • ˆ𝑊sw ( 𝑝 ∞ -𝑝) 𝒏d𝑆 (39) 
𝐷 𝛿𝒒Δ𝑢 = ˆ𝑊sw Δ𝑢 (𝜌𝛿𝒒 • 𝒏) d𝑆 -𝒆 𝑥 • ˆ𝑊sw 𝜌 𝛿𝑞 2 2 𝒏d𝑆 - ˆ𝑊sw (𝑢 -Δ𝑢) (𝜌𝑼 ∞ • 𝒏) d𝑆 (40) 
Once again, it is expected that the other terms of Eq.( 37) disappear in the far wake of the shock wave. First, the pressure 𝑝 progressively tends to its freestream value in 𝐷 Δ 𝑝 : lim

𝑊 sw →∞ 𝑝 = 𝑝 ∞ (41) 
Then, 𝑣 and 𝑤 tend to zero and 𝑢 tends to Δ𝑢 so that lim

𝑊 sw →∞ Δ𝑢 (𝛿𝒒 • 𝒏) -𝒆 𝑥 • 𝛿𝑞 2 2 𝒏 = lim 𝑊 sw →∞ 𝑢Δ𝑢 - 𝛿𝑞 2 2 = lim 𝑊 sw →∞ Δ𝑢 2 - Δ𝑢 2 + 𝑣 2 + 𝑤 2 2 = lim 𝑊 sw →∞ Δ𝑢 2 2 = 0 ( 42 
)
and lim

𝑊 sw →∞ [(𝑢 -Δ𝑢) (𝑼 ∞ • 𝒏)] = (Δ𝑢 -Δ𝑢) 𝑈 ∞ = 0 (43) 
Consequently, lim

𝑊 sw →∞ 𝐷 Δ 𝑝 = 0 ( 44 
)
lim

𝑊 sw →∞ 𝐷 𝛿𝒒Δ𝑢 = 0 ( 45 
)
and

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = 𝐷 VdV 𝑤 ( 46 
)
in the far wake. Those results are confirmed in the next subsection on a numerical transonic Euler simulation around the NACA0012 airfoil (see Appendix C for convergence and grid studies).

C. Numerical asymptotic study in the inviscid wake of a NACA0012 airfoil

Here, the total drag is equal to the wave drag. The evolution of the terms present in Eqs.( 26) and ( 37) is investigated in the shock wave wake. The location of the shock wake plane 𝑊 sw downstream of the trailing edge is chosen by changing the value of 𝑥 𝑊 . The near-field drag (theoretically equal to the wave drag here) is taken as reference value in the following.

The evolution of the terms of Eqs.( 26) and ( 37) is illustrated in Figs. 2a and2b. In Fig. 2a, Mele et al.'s profile drag is compared to the near-field drag and Oswatitsch's wave drag: the difference in drag is always less than one drag count for the three formulas. Besides, the profile drag rapidly converges to the constant value predicted by Oswatitsch's formula, therefore confirming Eq. [START_REF] Saffman | Vortex dynamics[END_REF]. The remaining terms of Eq.( 26) are shown in Fig. 2c: their magnitude is always less than one drag count. Moreover, 𝐷 Δ𝑠∇ 𝑝 ≃ 0 while the two other terms tend to zero, which gives further support to Eq.( 36) in the far wake.

In Fig. 2b the profile drag computed by the ONERA and KJMB formulations is compared to the near-field drag and Destarac and Van der Vooren's wave drag. This time, the difference is more pronounced in the very near wake (around 3 to 4 drag counts) but the profile drag quickly converges to the wave drag computed by Destarac and Van der Vooren's formula. Once again, the drag becomes constant in the far wake. Then, Eq.( 46) seems correct in the far wake. The evolution of the other terms of Eq.( 37) is given in Fig. 2d: 𝐷 Δ 𝑝 and 𝐷 𝛿𝒒Δ𝑢 both tend to zero in the far wake. Even more striking, they counterbalance each other, suggesting that Eq.( 46) must be satisfied in the near wake as well. As a matter of fact, it is not the case, and the discrepancies for 𝑥 𝑊 /𝑐 ≤ 20 can be explained with several arguments. First of all, 𝐷 ONERA 𝑃 and 𝐷 KJMB 𝑃 are calculated on the closed surface 𝑆 𝑒 , which is in this case a box bounded by a wake plane downstream. Consequently, the difference might come from contributions on the wake plane actually located outside the physical wake, and which progressively tend to zero as the wake plane is moved away. Secondly, it could also be due to the fact that the hypotheses considered in the derivation of Eq.( 37) are not valid close to the trailing edge.

The latter analysis has compared results of the profile drag computed with Mele et al.'s, the ONERA and KJMB formulations to the wave drag given by Oswatitch's, Destarac and Van der Vooren's approaches in the context of an Euler simulation. The goal is now to rigorously define the wave drag using a Lamb-vector-based approach. For this purpose, it is necessary to thoroughly select the grid cells on which to integrate in the wake of a RANS simulation in order to account only for the contributions coming from the presence of the shock wave. 

IV. Wave drag extraction using the Lamb vector in the shock wave wake

In this section, the goal is to assess the wave drag using several formulations of the vortex-force theory on simple two-dimensional viscous transonic airfoil flows. So far, Mele et al's, the ONERA and KJMB formulations only provide the sum of the viscous and the wave drag but no breakdown. In fact the profile drag is obtained upon integrating in the wake, with drag contributions from both the boundary layer and the shock wave. Hence, in order to achieve the desired breakdown, it is necessary to separate the shock wave wake from that of the boundary layer, and to integrate the profile drag integrand there in order to assess the wave drag.

A. Separation of the shock wave wake from the viscous wake

This wake decomposition has already been attempted many times in the literature, especially through the works of Kusunose [START_REF] Kusunose | Wave Drag Extraction From Profile Drag Based on a Wake-Integral Method[END_REF] and Toubin [START_REF] Toubin | Prediction and phenomenological breakdown of drag for unsteady flows[END_REF]. The former used a criterion based on the Lamb vector modulus while the latter used a criterion based on vorticity and entropy. The second option has been retained in this study. The physical criterion presented here is hence directly inspired from Toubin's thesis.

Before elaborating on this criterion, it is necessary to specify a location for the wake plane of integration used to evaluate the wave drag. It has been shown in several studies that the vortex-force theory tends to overestimate the profile drag when the integration is performed on a surface located close to the airframe [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Fournis | Definition of an Invariant Lamb-Vector-Based Aerodynamic Force Breakdown Using Far-Field Flow Symmetries[END_REF][START_REF] Fournis | An invariant vortex-force theory related to classical far-field analyses in transonic flows[END_REF][START_REF] Kang | Aerodynamic Force Breakdown in Reversible and Irreversible Components by Vortex Force Theory[END_REF][START_REF] Fournis | Aerodynamic force prediction and breakdown using the Lamb vector in steady compressible flows[END_REF]. The same trend is noticed when considering only the wave drag [START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF][START_REF] Ostieri | On a recently proposed vorticity-based definition of wave drag[END_REF][START_REF] Ostieri | Aerodynamic lift and drag breakdown in steady and unsteady flows[END_REF]. Consequently, the wake plane of integration must not be located too close to the shock wave. Unfortunately, it must not be located too far either, since the wake of the shock wave progressively merges with that of the boundary layer further downstream. Ideally, it must lie in a region not too close to the shock where the wakes have not merged yet. Hence, the wake plane has been defined as follows:

𝑥 𝑊 = 𝑥 te + 𝑐 ref /10 in RANS flows 𝑥 te + 𝑐 ref in Euler flows ( 47 
)
where the subscript te refers to the trailing edge. Then, on this wake plane, the separation between the wake of the shock wave and that of the boundary layer is performed. A cell is tagged as belonging to the shock wake plane 𝑊 sw if (see Fig. 3): 1) Δ𝑠 ≥ 𝛽 Δ𝑠 in order to avoid the regions characterized by the generation of spurious drag.

2) ||𝝎||𝑐 ref /𝑈 ∞ ≤ 𝛽 𝜔 to avoid the region where interactions between the wake of the boundary layer and that of the shock wave could take place. 3) cell ∉ boundary layer region in order to avoid the wake of the boundary layer. Of course, it is not completely guaranteed that the integration performed on the shock wake plane thus defined yields the correct wave drag: in fact, it is still likely that some of the shock wave wake may have already been entrained into the boundary layer. In this case, a good practice recommendation is to tune the 𝑥 𝑊 location of the integration surface by setting it closer to the trailing edge or even upstream of the trailing edge if needed. Now that the surface integration has been set, it is time to present the various expressions to be integrated in the shock wave wake.

B. Presentation of the final wave drag formulas

Several force decompositions have been analyzed so far: Mele et al.'s decomposition [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF] and the ONERA and KJMB decompositions. For each decomposition, a specific wave drag extraction method has been developed.

In an inviscid flow, considering a streamtube enclosing the shock wave and its isentropic and isenthalpic wake, Toubin [START_REF] Toubin | Prediction and phenomenological breakdown of drag for unsteady flows[END_REF] showed that the wave drag can either be evaluated on the shock wake plane 𝑊 sw or on the contour of the shock wave volume Ω sw (see Fig. 4) when using Destarac and Van der Vooren's approach. It is due to the fact that the integrand corresponds to the flux of Δ𝑢. Hence, she showed that Destarac and Van der Vooren's formula is invariant in the wake of the shock and can be equivalently expressed as follows:

𝐷 VdV 𝑤 = - ˛𝜕Ω sw Δ𝑢 (𝜌𝒒 • 𝒏) d𝑆 ( 48 
)
In CFD solutions, the shock wave volume Ω sw is identified using Lovely and Haimes physical criterion [START_REF] Lovely | Shock detection from computational fluid dynamics results[END_REF]. However, this invariance property is not satisfied by the formulations based on the Lamb vector. Then, the contribution given by 𝑭 𝑆 𝑒 in the shock wave wake may vary depending on the location of 𝑊 sw . Very recently, Ostieri and Tognaccini [START_REF] Ostieri | On a recently proposed vorticity-based definition of wave drag[END_REF] assessed the wave drag by integrating 𝑭 𝑆 𝑒 on the contour of an extended shock wave volume Ω ext sw (see Fig. 4):

𝐷 Ostieri 𝑤 = 𝒆 𝑥 • - 1 N -1 ˛𝜕Ω ext sw 𝒓 × (𝒏 × 𝜌𝒍) d𝑆 ( 49 
)
For the ONERA and KJMB formulations, the wave drag is computed on the shock wake plane 𝑊 sw defined by the 9) [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF]. A second definition called ONERA2 involves the Lamb vector and the density gradient based on the profile drag expression Eq.( 22). Then, a third definition is based on the profile drag expression Eq.( 25):

𝐷 ONERA1 𝑤 = 𝒆 𝑥 • - 1 N -1 ˆ𝑊sw 𝒓 × (𝒏 × 𝜌𝒍) d𝑆 𝐷 ONERA2 𝑤 = 𝒆 𝑥 • 1 N -1 ˆ𝑊sw 𝒓 × 𝒏 × 𝑞 2 -𝑈 2 ∞ 2 ∇𝜌 -𝜌𝒍 d𝑆 𝐷 KJMB 𝑤 = 𝒆 𝑥 • ˆ𝑊sw (𝑃 ∞ -𝑃) 𝒏d𝑆 - 𝑈 2 ∞ 2 ˆ𝑊sw (𝜌 ∞ -𝜌) 𝒏d𝑆 (50) (51) (52) 
In the following section, the results provided by Ostieri and Tognaccini's formula, the two ONERA expressions and the KJMB formulation are all compared to the reference values computed by Destarac and Van der Vooren's approach [START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF].

C. Analysis of the results

All the formulations are tested on the NACA0012 and the OAT15A airfoils (see Appendix C for convergence and grid studies) for various lift coefficients in order to check if they are reliable on two differents airfoils for a wide range of flow conditions. On the NACA0012 airfoil, the lift coefficient ranges from 0.08 to 0.5 while on the OAT15A airfoil, it ranges from 0.72 to 0.93. Thus it enables to analyze the behavior of the various wave drag formulations in low-lift conditions, cruise flight conditions (when 𝐶 𝐿 ≈ 0.5) and high-lift conditions. 

Fig. 5 Wave drag coefficient versus lift coefficient

The evolution of the wave drag coefficient with respect to the lift coefficient is shown in Figs. 5a and5b. It is seen that Ostieri and Tognaccini's formula provides results quite off the expected values, and this even at low 𝐶 𝐿 . At higher 𝐶 𝐿 , it progressively approaches the other predictions, but the gap is never completely breached. On the contrary, the results of the ONERA1 and ONERA2 formulations are always in good agreement with those of Destarac and Van der Vooren's formula. It must be noted that the ONERA1 and ONERA2 definitions are very different from the thermodynamic definition in terms of physical content, yet they predict the same wave drag which is very promising. Besides, the wave drag expression based on the KJMB formulation also yields very good results, and hence constitutes another unprecedented possible definition of the wave drag. Additional results in Euler conditions are presented in Table C.2. Those results are indeed very promising and confirm that the wave drag can easily be assessed with fair accuracy on airfoils using Lamb-vector-based approaches.

V. Conclusion

In conclusion, a theoretical bridge between the vortex-force theory and thermodynamic far-field drag extraction methods was built, therefore proving that the wave drag can be captured using Lamb-vector-based approaches. In order to correctly evaluate the wave drag, the first step consisted in separating the wake of the shock wave from that of the boundary layer: it was done upon using a physical criterion based on entropy and vorticity in order to avoid regions of spurious drag and viscous dissipation. Several wave drag definitions based on the vortex-force theory have then been established and later tested in transonic viscous flows around the NACA0012 and OAT15A airfoils. The results suggested that the wave drag is correctly captured, provided that the wake of the shock wave has not yet been entrained into the wake of the boundary layer.

Further developments will focus on the application of this method to three-dimensional flows, around wings with and without sweep angle, and also aircraft configurations, in order to push the vortex-force theory to a higher level of maturity and applicability. N = 2, 3:

ˆΩ 𝒇 d𝑣 = 1 N -1 ˆΩ 𝒓 × (∇ × 𝒇 ) d𝑣 - 1 N -1 ˛𝜕Ω 𝒓 × (𝒏 × 𝒇 ) d𝑆 (A.1) ˆ𝑆 Φ𝒏d𝑆 = - 1 N -1 ˆ𝑆 𝒓 × (𝒏 × ∇Φ) d𝑆 + 1 N -1 ˛𝜕𝑆 Φ𝒓 × d𝒓 (A.2)

B. Detailed derivations

1. Derivation of Eq.( 26)

In order to find the links between Mele et al.'s profile drag definition [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF] and Oswatitsch's wave drag formula [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF][START_REF] Oswatitsch | Gas dynamics[END_REF], it is necessary to express the Lamb vector in terms of entropy by using the Crocco-Vazsonyi equation. Considering that the flow inside and outside the shock wave wake is inviscid (𝑅𝑒 → ∞), the contribution of the viscous-stress tensor 𝝉 is negligible and the Crocco-Vazsonyi equation writes

𝜌𝒍 = 𝜌𝑇 ∇𝑠 -𝜌∇𝐻 (B.1)
Having Δ𝑠 = 𝑠 -𝑠 ∞ and Δ𝐻 = 𝐻 -𝐻 ∞ , the latter relation becomes

𝜌𝒍 = 𝜌𝑇 ∇ (Δ𝑠) -𝜌∇ (Δ𝐻) (B.2)
Across a steady shock, the total specific enthalpy 𝐻 remains constant. Besides, the flow is steady, inviscid, and thermal effects are negligible [START_REF] Oswatitsch | Der luftwiderstand als integral des entropiestromes[END_REF], then the flow is isenthalpic from the upstream infinite far field to the region upstream of the shock. In this case, Δ𝐻 is the difference in total specific enthalpy between the upstream infinite far field and the shock wave wake. Hence, Δ𝐻 = 0 everywhere in the flow. Using the perfect gas relation

𝑝 = 𝜌𝑅𝑇 (B.3)
where 𝑅 is the perfect gas constant, the Crocco-Vazsonyi equation can be expressed as follows:

𝜌𝒍 = ∇ (𝜌𝑇Δ𝑠) - Δ𝑠 𝑅 ∇𝑝 (B.4)
Before considering the wave drag, it is first necessary to start from the expression of the profile drag. In Mele et al.'s decomposition [START_REF] Mele | Aerodynamic Force by Lamb Vector Integrals in Compressible Flow[END_REF][START_REF] Mele | Vorticity Based Breakdown of the Aerodynamic Force in Three-Dimensional Compressible Flows[END_REF][START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF], the profile drag is given by 𝑭 𝑆 𝑒 :

𝐷 Mele 𝑃 = 𝑭 𝑆 𝑒 • 𝒆 𝑥 = 𝒆 𝑥 • - 1 N -1 ˛𝑆𝑒 𝒓 × (𝒏 × 𝜌𝒍) d𝑆 (B.5)
Using Eq.(B.4), 𝑭 𝑆 𝑒 is re-expressed in terms of entropy:

𝑭 𝑆 𝑒 = - 1 N -1 ˛𝑆𝑒 𝒓 × (𝒏 × ∇ (𝜌𝑇Δ𝑠)) d𝑆 + 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (B.6)
Using the second DMT Eq.(A.2), the first integral is simplified:

𝑭 𝑆 𝑒 = ˛𝑆𝑒 𝜌𝑇Δ𝑠𝒏d𝑆 + 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (B.7)
Given that 𝒆 𝑥 = 𝑼 ∞ /𝑈 ∞ , the profile drag 𝐷 Mele 𝑃 can be written as

𝐷 Mele 𝑃 = 1 𝑈 ∞ ˛𝑆𝑒 𝜌𝑇Δ𝑠 (𝑼 ∞ • 𝒏) d𝑆 + 𝒆 𝑥 • 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (B.8)
Writing the temperature 𝑇 = 𝑇 ∞ + Δ𝑇, the latter relation becomes

𝐷 Mele 𝑃 = 𝑇 ∞ 𝑈 ∞ ˛𝑆𝑒 Δ𝑠 (𝜌𝑼 ∞ • 𝒏) d𝑆 + 1 𝑈 ∞ ˛𝑆𝑒 Δ𝑠Δ𝑇 (𝜌𝑼 ∞ • 𝒏) d𝑆 + 𝒆 𝑥 • 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (B.9)
Then, decomposing the velocity vector as 𝒒 = 𝑼 ∞ + 𝛿𝒒, the first integral is written as follows:

𝐷 Mele 𝑃 = 𝑇 ∞ 𝑈 ∞ ˛𝑆𝑒 Δ𝑠 (𝜌𝒒 • 𝒏) d𝑆 - 𝑇 ∞ 𝑈 ∞ ˛𝑆𝑒 Δ𝑠 (𝜌𝛿𝒒 • 𝒏) d𝑆 + 𝒆 𝑥 • ˛𝑆𝑒 𝜌Δ𝑠Δ𝑇 𝒏d𝑆 + 𝒆 𝑥 • 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (B.10)
In Eq.(B.10), the first integral constitutes Oswatitsch's profile drag formula. Besides, Δ𝑠 = 0 outside the shock wave wake of an inviscid flow. Consequently, the integrals can be limited to the shock wake plane 𝑊 sw (see Fig. 1):

𝐷 Mele 𝑃 = 𝐷 Osw 𝑤 + 𝐷 𝛿𝒒Δ𝑠 + 𝐷 Δ𝑠Δ𝑇 + 𝐷 Δ𝑠∇ 𝑝 (B.11)
with

𝐷 Osw 𝑤 = 𝑇 ∞ 𝑈 ∞ ˆ𝑊sw Δ𝑠 (𝜌𝒒 • 𝒏) d𝑆 (B. 12 
)
𝐷 𝛿𝒒Δ𝑠 = - 𝑇 ∞ 𝑈 ∞ ˆ𝑊sw Δ𝑠 (𝜌𝛿𝒒 • 𝒏) d𝑆 (B. 13 
)
𝐷 Δ𝑠Δ𝑇 = 𝒆 𝑥 • ˆ𝑊sw 𝜌Δ𝑠Δ𝑇 𝒏d𝑆 (B. 14 
)
𝐷 Δ𝑠∇ 𝑝 = 𝒆 𝑥 • 1 N -1 ˆ𝑊sw 𝒓 × 𝒏 × Δ𝑠 𝑅 ∇𝑝 d𝑆 (B.15)
2. Derivation of Eq.( 37) Before going any further, it is important to remind the hypotheses made by Destarac and Van der Vooren. They considered the far wake of a non-lifting flow, hence with no trailing vorticity and where the pressure has returned to its freestream value:

• 𝑣 = 𝑤 = 0 • 𝑝 = 𝑝 ∞ In this case, the profile drag 𝐷 VdV 𝑃 is defined with the irreversible velocity deficit Δ𝑢 [START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF]:

𝐷 VdV 𝑃 = - ˛𝑆𝑒 Δ𝑢 (𝜌𝒒 • 𝒏) d𝑆 (B.16)
In the ONERA and KJMB formulations, considering an inviscid flow, the profile drag is given by

𝐷 ONERA 𝑃 = 𝒆 𝑥 • 𝑭 𝑆 𝑒 + 𝑭 ∇𝜌 = 𝑭 BETZ • 𝒆 𝑥 = 𝐷 KJMB 𝑃 (B.17)
with

𝑭 𝑆 𝑒 + 𝑭 ∇𝜌 = - 1 N -1 ˛𝑆𝑒 𝒓 × (𝒏 × 𝜌𝒍) d𝑆 + 1 N -1 ˛𝑆𝑒 𝒓 × 𝒏 × 𝑞 2 -𝑈 2 ∞ 2 ∇𝜌 d𝑆 (B. 18 
)
𝑭 BETZ = ˛𝑆𝑒 (𝑃 ∞ -𝑃) 𝒏d𝑆 - 𝑈 2 ∞ 2 ˛𝑆𝑒 (𝜌 ∞ -𝜌) 𝒏d𝑆 (B.19)
Now, by explicitly expressing 𝑭 BETZ with the static pressure, there is

𝑭 BETZ = ˛𝑆𝑒 ( 𝑝 ∞ -𝑝) 𝒏d𝑆 - ˛𝑆𝑒 𝜌 𝑞 2 -𝑈 2 ∞ 2 𝒏d𝑆 (B.20)
Then, with 𝒆 𝑥 = 𝑼 ∞ /𝑈 ∞ , the profile drag of both the ONERA and KJMB formulations is written using the expression of 𝑭 BETZ :

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = 𝒆 𝑥 • ˛𝑆𝑒 ( 𝑝 ∞ -𝑝) 𝒏d𝑆 - ˛𝑆𝑒 𝜌 𝑞 2 -𝑈 2 ∞ 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 (B.21)
Before going further, it is necessary to analyze the second term of Eq.(B.21). First, it is possible to write it as follows:

-

˛𝑆𝑒 𝜌 𝑞 2 -𝑈 2 ∞ 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 = - ˛𝑆𝑒 𝜌 (𝑞 -𝑈 ∞ ) 𝑞 + 𝑈 ∞ 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 (B.22)
Then, the same hypotheses as those made by Destarac and Van der Vooren [START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF] in the far wake are considered. As a consequence, the flow in the wake is parallel to the 𝑥-axis and the velocity 𝑞 simplifies as

𝑈 irr = 𝑈 ∞ + Δ𝑢 (B.23)
Hence, Eq.(B.22) becomes

- ˛𝑆𝑒 𝜌 𝑈 2 irr -𝑈 2 ∞ 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 = - ˛𝑆𝑒 Δ𝑢 1 + Δ𝑢 2𝑈 ∞ (𝜌𝑼 ∞ • 𝒏) d𝑆 = - ˛𝑆𝑒 Δ𝑢 (𝜌𝑼 ∞ • 𝒏) d𝑆 -𝒆 𝑥 • ˛𝑆𝑒 𝜌 Δ𝑢 2 2 𝒏d𝑆 (B.24)
Now, by simply adding and subtracting the term

- ˛𝑆𝑒 𝜌 𝑈 2 irr -𝑈 2 ∞ 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆
to Eq.(B.21), there is

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = 𝒆 𝑥 • ˛𝑆𝑒 ( 𝑝 ∞ -𝑝) 𝒏d𝑆 - ˛𝑆𝑒 𝜌 𝑈 2 irr -𝑈 2 ∞ 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 - ˛𝑆𝑒 𝜌 𝑞 2 -𝑈 2 irr 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 (B.25)
Then, Eq.(B.24) is introduced into Eq.(B.25) so that

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = 𝒆 𝑥 • ˛𝑆𝑒 ( 𝑝 ∞ -𝑝) 𝒏d𝑆 - ˛𝑆𝑒 Δ𝑢 (𝜌𝑼 ∞ • 𝒏) d𝑆 - ˛𝑆𝑒 𝜌 𝑞 2 + Δ𝑢 2 -𝑈 2 irr 2𝑈 ∞ (𝑼 ∞ • 𝒏) d𝑆 (B.26)
Using Eq.(B.23) and decomposing again the velocity vector as 𝒒 = 𝑼 ∞ + 𝛿𝒒, the latter relation can be written as follows:

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = - ˛𝑆𝑒 Δ𝑢 (𝜌𝒒 • 𝒏) d𝑆 + 𝒆 𝑥 • ˛𝑆𝑒 ( 𝑝 ∞ -𝑝) 𝒏d𝑆 + ˛𝑆𝑒 Δ𝑢 (𝜌𝛿𝒒 • 𝒏) d𝑆 - ˛𝑆𝑒 (𝑢 -Δ𝑢) (𝜌𝑼 ∞ • 𝒏) d𝑆 -𝒆 𝑥 • ˛𝑆𝑒 𝜌 𝛿𝑞 2 2 𝒏d𝑆 (B.27)
In Eq.(B.27), the first integral constitutes Destarac and Van der Vooren's profile drag formula [START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF]. Moreover, given that the flow is inviscid, the integrals containing 𝑢, Δ𝑢 and 𝛿𝑞 2 can be limited to the shock wake plane 𝑊 sw . Finally, assuming that the lateral parts of 𝑆 𝑒 retreat far from the body skin, the integral containing the pressure difference 𝑝 ∞ -𝑝 can also be limited to 𝑊 sw : All the simulations on the NACA0012 airfoil were performed using Spalart-Allmaras turbulence model [START_REF] Spalart | A One-Equation Turbulence Model for Aerodynamic Flows[END_REF] (for the RANS simulations) and Jameson's numerical scheme [START_REF] Jameson | Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes[END_REF] (cell-centered, 2 nd and 4 th order artificial viscosities) in the AIRBUS-SAFRAN-ONERA elsA solver [START_REF] Cambier | The ONERA elsA CFD software: input from research and feedback from industry[END_REF]. The convergence has been checked and the residuals decreased by eight to nine orders of magnitude. The same flight conditions were tested in the case of an Euler (inviscid) flow. This time, the residuals decreased by more than twelve orders of magnitude.

𝐷 ONERA 𝑃 = 𝐷 KJMB 𝑃 = 𝐷 VdV 𝑤 + 𝐷 Δ 𝑝 + 𝐷 𝛿𝒒Δ𝑢 (B.28) with 𝐷 VdV 𝑤 = - ˆ𝑊sw Δ𝑢 (𝜌𝒒 • 𝒏) d𝑆 (B.29) 𝐷 Δ 𝑝 = 𝒆 𝑥 • ˆ𝑊sw ( 𝑝 ∞ -𝑝) 𝒏d𝑆 (B.30) 𝐷 𝛿𝒒Δ𝑢 = ˆ𝑊sw Δ𝑢 (𝜌𝛿𝒒 • 𝒏) d𝑆 -𝒆 𝑥 • ˆ𝑊sw 𝜌 𝛿𝑞 2 2 𝒏d𝑆 - ˆ𝑊sw (𝑢 -Δ𝑢) (𝜌𝑼 ∞ • 𝒏) d𝑆 (B.
Table C.1 presents the computed lift and drag contributions on the three grid levels used in the study of RANS simulations. It can be seen that the grid refinement has much more impact on the Lamb-vector-based drag decompositions (ONERA and Mele et al.'s formulations [START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF]) than on Destarac and Van der Vooren's formulation [START_REF] Destarac | Drag/Thrust Analysis of Jet-Propelled Transonic Transport Aircraft; Definition of Physical Drag Components[END_REF]. The fine grid was used in this study.

Grid level

Coarse In the Euler case, the total drag is equal to the wave drag generated by the shock. As shown in Table C.2, the effect of the grid sizing on the Euler grid of the NACA0012 airfoil is weak due to the fact that all grids are fine. The results in total lift and drag computed by the ONERA and Mele et al.'s formulations [START_REF] Mele | Aircraft Lift and Drag Decomposition in Transonic Flows[END_REF] are not shown here because they cannot be used as such for the analysis of Euler flows. Only the KJMB formulation is directly applicable to Euler conditions: the computed results are very satisfying and weakly sensitive to the grid refinement. Again, the fine grid was used in this study.

OAT15A airfoil

The OAT15A airfoil is a supercritical airfoil designed at ONERA and used in numerous studies on the buffet onset in transonic flows. In this study, only RANS computations were performed on this airfoil and three grids were used, all having a C-block and an H-block as in the case of the NACA0012 airfoil (see Fig. As for the NACA0012 airfoil, the simulations were performed using Spalart-Allmaras turbulence model and Jameson's numerical scheme. Here, the residuals decreased by fourteen orders of magnitude between the first and the last iteration.

A grid convergence study was held on the three grid levels (see Table C.3). The coarsening of the grid has the same effects on the Lamb-vector-based formulations as before: the coarser the grid, the less accurate the drag prediction. Once again, the fine grid was used in this study.

Fig. 2

 2 Fig. 2 Evolution of the profile drag computed by the Lamb-vector-based methods and the wave drag computed by the thermodynamic approaches in the wake of the NACA0012 airfoil, 𝑀 ∞ = 0.72, 𝑅𝑒 → ∞, 𝛼 = 2 •

Fig. 3

 3 Fig. 3 Illustration of 𝑊 sw past the NACA0012 airfoil, 𝑀 ∞ = 0.72, 𝑅𝑒 = 3 × 10 6 , 𝐶 𝐿 ≈ 0.5

Fig. 4

 4 Fig. 4 Definition of Ω sw and Ω ext sw on the NACA0012 airfoil, 𝑀 ∞ = 0.72, 𝑅𝑒 = 3 × 10 6 , 𝐶 𝐿 ≈ 0.5

6 10

 6 NACA0012 airfoil, 𝑀 ∞ = 𝑅𝑒 = 3 × 10 OAT15A airfoil, 𝑀 ∞ = 0.724, 𝑅𝑒 = 3 × 10 6

31 )C. Convergence and grid studies 1 .

 311 Fig. C.1 Three grid levels of the NACA0012 airfoil for the analysis of RANS simulations

  C.3). The coarse grid contains 97 × 289 61 × 213 = 41, 026 points, the intermediate grid contains 385 × 193 + 97 × 425 = 115, 530 points and the fine grid contains 385 × 385 + 193 × 849 = 312, 082 points. For the three grid levels, the 𝑦+ is always lower than 0.5 and the far field lies 50, 000 chords away from the airfoil surface.

Fig. C. 3

 3 Fig. C.3 Three grid levels of the OAT15A airfoil for the analysis of RANS simulations

  𝑢𝒆 𝑥 + 𝑣𝒆 𝑦 + 𝑤𝒆 𝑧 Δ𝑢 = irreversible axial velocity deficit defined by Destarac and Van der Vooren; 𝑈 irr -𝑈 ∞

	𝑆 𝑏	= body surface
	SW	= shock wave
	𝑼 ∞	= freestream velocity; 𝑈 ∞ 𝒆 𝑥
	𝑈 irr	= irreversible axial velocity defined by Destarac and Van der Vooren
	𝑊 sw	= shock wake plane
	(𝑥, 𝑦, 𝑧)	= wind-fixed coordinate system
	𝛼	= angle of attack
	𝛾	= ratio of specific heats
	Δ𝐻	= total enthalpy variation with respect to its freestream value
	Δ𝑠	= entropy variation with respect to its freestream value
	𝛿𝒒 = perturbation velocity vector; Ω = fluid domain
	𝝎	= vorticity vector; ∇ × 𝒒
	𝜌	= density
	𝜌 ∞	= freestream density
	𝝉	= viscous-stress tensor
	𝒂	= acceleration of a fluid particle
	𝑐 ref	= reference chord
	𝐶 𝐷	= drag coefficient
	𝐶 𝐷 𝑖	= lift-induced drag coefficient
	𝐶 𝐷 𝑃	= profile drag coefficient
	𝐶 𝐷 𝑣	= viscous drag coefficient
	𝐶 𝐷 𝑤	= wave drag coefficient
	𝐶 VdV 𝐷 𝑤	= wave drag coefficient computed by Destarac and Van der Vooren's formulation
	𝐷	= drag
	𝐷 𝑖	= lift-induced drag
	𝐷 𝑃	= profile drag
	𝒆 𝑥 , 𝒆 𝑦 , 𝒆 𝑧 = wind-fixed frame
	𝑭	= aerodynamic force
	𝑰	= unit tensor
	𝐿	= lift
	𝒍	= Lamb vector; 𝝎 × 𝒒
	𝑀 ∞	= freestream Mach number
	𝒎 𝜌	= compressibility term; 𝒓 N-1 × ∇𝜌 × ∇ 𝑞 2 2
	N	= dimension of the physical space
	𝒏	= unit normal pointing outside Ω
	𝑝	= static pressure
	𝑃 𝑃 ∞ 𝒒	= total pressure (in incompressible flows); 𝑝 + 1 2 𝜌𝑞 2 = freestream total pressure (in incompressible flows); 𝑝 ∞ + 1 2 𝜌 ∞ 𝑈 2 ∞ = velocity vector; (𝑈 ∞ + 𝑢) 𝒆 𝑥 + 𝑣𝒆 𝑦 + 𝑤𝒆 𝑧
	𝑞 2	= velocity squared; (𝑈 ∞ + 𝑢) 2 + 𝑣 2 + 𝑤 2
	𝑅	= perfect gas constant
	𝒓	= position vector
	𝑅𝑒	= Reynolds number
	𝑠	= entropy
	𝑆 𝑒	= external boundary

∇ = gradient operator; (𝜕/𝜕𝑥) 𝒆 𝑥 + (𝜕/𝜕𝑦) 𝒆 𝑦 + (𝜕/𝜕𝑧) 𝒆 𝑧

Table C .1 Effect of the NACA0012 airfoil grid sizing on the force prediction and breakdown

 C , 𝑀 ∞ = 0.72, 𝑅𝑒 = 3 × 10 6 , 𝛼 = 2 • , 𝑑/𝑐 ref = 10.

			Intermediate	Fine
			𝐶 𝐷 𝑃 × 10 4	
	ONERA	126.54	122.83	122.12
	Kutta-Joukowski-Maskell-Betz	123.27	121.97	121.82
	Mele et al. [43]	125.67	122.83	122.51
	Destarac and Van der Vooren [25] 120.46	120.03	120.06
			𝐶 𝐷 × 10 4	
	ONERA	123.26	119.48	119.93
	Kutta-Joukowski-Maskell-Betz	121.62	120.21	120.04
	Mele et al. [43]	123.26	119.48	119.93
	Destarac and Van der Vooren [25] 120.46	120.03	120.06
	Near-field	120.77	120.17	120.07
			𝐶 𝐿	
	ONERA	0.33454	0.33925	0.34054
	Kutta-Joukowski-Maskell-Betz	0.33422	0.33895	0.34023
	Mele et al. [43]	0.33464	0.33935	0.34057
	Near-field	0.33385	0.33855	0.33983
	Grid level	Coarse Intermediate	Fine
			𝐶 𝐷 𝑤 × 10 4	
	ONERA	39.07	37.23	37.28
	Kutta-Joukowski-Maskell-Betz	40.61	40.23	39.77
	Mele et al. [43]	39.19	37.35	37.40
	Destarac and Van der Vooren [25]	38.58	38.37	38.54
			𝐶 𝐷 × 10 4	
	Kutta-Joukowski-Maskell-Betz	39.96	39.81	39.54
	Destarac and Van der Vooren [25]	38.58	38.37	38.54
	Near-field	40.03	39.80	39.49
			𝐶 𝐿	
	Kutta-Joukowski-Maskell-Betz	0.40084	0.40001	0.40166
	Near-field	0.40105	0.40010	0.40107

Table C .2 Effect of the NACA0012 airfoil grid sizing on the force prediction and breakdown

 C , 𝑀 ∞ = 0.72, 𝑅𝑒 → ∞, 𝛼 = 2 • , 𝑑/𝑐 ref = 10 for 𝐶 𝐷 and 𝐶 𝐿 , 𝑑/𝑐 ref = 1 for 𝐶 𝐷 𝑤 .

Table C .3 Effect of the OAT15A airfoil grid sizing on the force prediction and breakdown

 C 

	Grid level	Coarse Intermediate	Fine
			𝐶 𝐷 𝑃 × 10 4	
	ONERA	126.00	120.78	119.50
	Kutta-Joukowski-Maskell-Betz	123.06	119.49	119.22
	Mele et al. [43]	124.02	120.85	119.79
	Destarac and Van der Vooren [25] 116.71	117.42	117.50
			𝐶 𝐷 × 10 4	
	ONERA	124.98	119.45	117.28
	Kutta-Joukowski-Maskell-Betz	121.79	117.81	117.55
	Mele et al. [43]	124.98	119.45	117.28
	Destarac and Van der Vooren [25] 116.71	117.42	117.50
	Near-field	119.68	117.79	117.55
			𝐶 𝐿	
	ONERA	0.71089	0.72017	0.72368
	Kutta-Joukowski-Maskell-Betz	0.71341	0.72152	0.72382
	Mele et al. [43]	0.71104	0.72046	0.72380
	Near-field	0.71330	0.72137	0.72366

, 𝑀 ∞ = 0.724, 𝑅𝑒 = 3 × 10 6 , 𝛼 = 1.15 • , 𝑑/𝑐 ref = 10.
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Appendix

A. Integral theorems

Let 𝒇 be a differentiable vector field, Φ be a differentiable scalar field, Ω be a domain bounded by 𝜕Ω and 𝑆 be a surface bounded by 𝜕𝑆. The derivative moment transformations (DMT) state that in an N -dimensional space with