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Working on mathematical modelling tasks is usually challenging for students: several studies have 
shown, that students do not knowingly and consciously apply solution strategies when working on 
modelling tasks. In an empirical study, we investigate whether and to what extent knowledge about 
ideal-typical modelling processes has an influence on phase transitions in individual modelling 
routes. The individual acquires this knowledge in the form of an instruction that contains information 
about the modelling process, e.g. in form of a modelling cycle and a solution plan. In this article, the 
phase transitions of students who received an instruction about modelling processes are compared 
to those of students without such an instruction. The data for the study were collected, presented, and 
analysed using the Modelling-Activity-Interaction-Tool (MAI-Tool), which is based on quantitative 
methods to capture and analyse structures of modelling processes. 

Keywords: Individual modelling routes, knowledge about ideal-typical modelling processes, phase 
transitions, MAI-Tool. 

Introduction 
Studies have already shown that knowledge about mathematical modelling has a positive influence 
on the modelling process (Stillman & Galbraith, 1998). This knowledge is often provided to students 
in the form of a solution plan (Beckschulte, 2019). Schneider et al. (2021) found out that individuals 
who received knowledge about the modelling process engaged intensely with mathematics and rarely 
deviated from the solution process.  

In an empirical study, we compare individuals who have received knowledge about ideal-typical 
modelling processes (referred to as the instructed) with those who have not (the non-instructed). 
Knowledge about ideal-typical modelling processes is provided to students as an instruction in the 
form of the five-step modelling cycle of Kaiser and Stender (2013) (cf. Figure 1) and the 
corresponding solution plan of Beckschulte (2019).  

 

 

 

 

 

Figure 1: The modelling cycle of Kaiser and Stender (2013) 



 

 

In addition, the solution process of a modelling problem is discussed using the problem of colouring 
the map of Germany (Leuders, 2007). The instruction is based on the fundamentals of Vorhölter and 
Kaiser (2016) and took about 20 minutes. 

The aim of our research is to analyse how knowledge about ideal-typical modelling processes affects 
the structure of individual solution processes. Not only the phases, but also the phase transitions 
provide information about the influence of an instruction on the modelling process: especially with 
regard to the phases that are outside the modelling cycle (summary solution process and 
miscellaneous), the phase transitions can be used to show which phases occur before or after these 
phases. This particular view of individual modelling routes requires a tool that can represent 
structures of modelling processes and algorithmically evaluate them as numerical data: the MAI-
Tool. In this article, we examine individual modelling routes for differences in the relative frequency 
of phase transitions, i.e., we investigate whether the relative number of the two cohorts differ 
significantly from each other.  

Theoretical framework 
Analysis of individual modelling routes 

Methods for the representation and analysis of individual modelling processes already exist and have 
been applied in empirical studies. The modelling cycle is not passed linearly and there is a switching 
back and forth between the phases. This is what Borromeo Ferri (2007) calls an individual modelling 
route: Successive phases are connected by numerical arrows in the modelling cycle. Thus, the 
modelling cycle is not only suitable for representation, but also serves as an analysis tool for 
individual modelling processes.  

The Modelling-Activity-Diagram (MAD) is another concept for representing and analyzing 
modelling processes (Ärlebäck and Albarracin, 2019): in a linear representation, activities of an 
individual are shown over time. The activities describe what is done in the phases of the modelling 
cycle. 

The MAI-Tool is a newly developed tool for capturing, representing, and evaluating modelling 
processes (Ruzika & Schneider, 2019; Schneider et al., 2021): the tool is based on observable 
interactions within the group as they work on a modelling task. Following qualitative methodology, 
interaction units are entered into the MAI-Tool with the following information: interacting person(s) 
and content of the interaction. The content is assigned to a phase of the modelling cycle. A timestamp 
is automatically assigned to each interaction unit so that the duration is also stored. Individual 
modelling routes are automatically extracted from the group process. The evaluation is quantitative, 
as modelling processes are described with numerical data. Since the data are available digitally, they 
are evaluated by algorithms, so that an objective evaluation is given. This results in the advantage 
that the numerical data can be applied in a statistical test. The individual modelling routes are 
displayed graphically in the tool – depending on the focus of the evaluation. 

Knowledge of mathematical modelling 

Solving mathematical modelling problems is challenging for students (Blum, 2015): empirical studies 
have found that students rarely consciously follow a strategy and do not know how to proceed when 



 

 

they encounter difficulties (Kaiser et al., 2015). Therefore, it is important to provide students with 
strategies that can assist them in the solving process. In the form of a solution plan that includes the 
modelling cycle, the phases as well as their transitions are described in detail using activities. A 
solution plan belongs to the general strategy aids, as no specific help is given for the task (Borromeo 
Ferri, 2006). By describing the entire solution process in the solution plan, knowledge about the ideal-
typical course of a modelling process can be acquired: "[the] solution plan is not meant as a schema 
that has to be used by the students' but as an aid for difficulties that may occur in the course of the 
solution process" (Blum & Borromeo Ferri, 2009, p. 55). 

Schneider et al. (2021) showed in an empirical study that knowledge about ideal-typical modelling 
processes affects the structure of individual modelling routes: individual modelling routes of the 
instructed were compared with those of the non-instructed for differences in the relative number and 
relative duration of phases in the modelling process. In particular, the phases of the mathematical 
world (mathematical model and mathematical solution) occur more frequently and for longer for the 
instructed compared to the non-instructed students. In addition, two phenomena were discovered that 
have not been considered before: non-instructed students summarise their solution process more often 
and longer. Moreover, they digress more often from solving the modelling task. On the basis of these 
analysis, they concluded that the non-instructed students lack knowledge about ideal-typical 
modelling processes: since they do not know how to solve a modelling task in a structured way, they 
are not interested in an improved solution and are satisfied with their first solution found.  

Classification of phase transitions in the modelling process 

To investigate differences in individual modelling routes between the instructed and the non-
instructed students with respect to phase transitions, we assign the possible phase transitions to 
different categories. 

In a first step, we divide the phases into two phase types. Phases within the ideal-typical modelling 
cycle (INPHASE) are real problem, real model, mathematical model, mathematical solution, real 
solution, and validating. Phases outside the ideal-typical modelling cycle (OUTPHASE) are not part 
of the modelling cycle: summary solution process and miscellaneous.  

Phase transitions are characterized by their start and end phases. We distinguish between typical and 
atypical transitions. Typical transitions include adjacent phase transitions (APT). An APT 
corresponds to an ideal-typical transition in the modelling cycle with INPHASES. There is a total of 
three atypical transitions that do not correspond to an ideal-typical transition in the modelling cycle: 
The adjacent backwards phase transition (ABT) is a phase transition in which the start and end phases 
are reversed compared to APT. ABT are not typical phase transitions because they do not follow one 
another in an ideal-typical manner as in the modelling cycle. The ABT as well as at the jumps 
(JUMPS) consist of INPHASES: JUMPS are neither APT nor ABT. The third atypical phase 
transition includes at least one OUTPHASE and is called phase transition outside the modelling cycle 
(PTOUT). Start and/or end phase of the phase transition is an OUTPHASE. An illustration of the 
phases can be found in Figure 2. 



 

 

   
Figure 2: An overview of the phase transitions: APT (green), ABT (blue), JUMPS (red) and PTOUT 

(black) – illustrated on the modelling cycle 

Research question and hypotheses 

Based on the theoretical framework as well as on the classification of phase transitions in modelling 
processes, we formulate the central research question in this article: 

To what extent does knowledge about ideal-typical modelling processes affect phase transitions in 
individual modelling routes, in particular: for which phase transitions does the relative number of 
individuals with instruction significantly differ from those without instruction? 

Following the results of Schneider et al. (2021), we formulate hypotheses that are tested for significant 
differences in the phase transitions between the instructed and the non-instructed students. The 
instructed students engage with the mathematical world more frequently and more often during the 
solution process compared to the non-instructed students. From this, we derive the following 
hypothesis:  

(H1) The instructed students have a significantly higher relative number of the APT mathematical 
model to mathematical solution (MM à MS) than the non-instructed students. 

In particular, Schneider et al. (2021) highlighted the long duration and frequent occurrence of 
OUTPHASES for the non-instructed students. We hypothesize that this also affects phase transitions, 
especially PTOUT. Since the non-instructed students have not engaged as intensively with the 
mathematical world, it can be conjectured that they often switch from the real model to 
OUTPHASES. The following hypotheses emerge: 

For the instructed students, the relative number 

(H2) of the PTOUT,  

(H3) of the PTOUT summary solution process to miscellaneous (SSP à MISC), 

(H4) of the PTOUT miscellaneous to summary solution process (MISC à SSP), 

(H5) of the PTOUT real model to miscellaneous (RM à MISC) and 

(H6) of the PTOUT real model to summary solution process (RM à SSP) 

 is significantly lower than for the non-instructed students. 



 

 

Methodological framework 
The study uses a mixed-methods design, with data collection being qualitative and data analysis being 
quantitative. Tenth grade students from different Gymnasien (German Grammar School) were 
selected for the study. Only those who had indicated in a questionnaire that they had no previous 
experience in modelling and had not acquired knowledge about modelling were included in the study. 
Thus, we excluded the influence of previous experience in modelling. Working in groups of five, they 
complete the "filling-up" task in 30 minutes (Blum & Leiß, 2006). The sample includes 40 students 
(20 instructed, 20 non-instructed). The group work was videographed.  

Interactions were recorded using the MAI-Tool: Grounded Theory (Strauss & Corbin, 1996) was 
used to qualitatively code the interaction units. Each interaction unit contained information on who 
interacted (with whom), which phase of the modelling process could be assigned an when the 
interaction began and ended. To guarantee reliability in the coding, two people coded the data. The 
interrater reliability was calculated using Cohen's Kappa (Cohen, 1960) and is κ= [.72, .90] for each 
individual. Phase transitions are evaluated by absolute and relative frequencies in the MAI-Tool. The 
relative frequencies of both cohorts are analysed for significant differences using the Mann-Whitney 
U test. In contrast to t-tests, this non-parametric test requires fewer prerequisites. The significance 
level is set at α=0.05. The effect size δ is calculated according to Fritz et al. (2012) and interpreted 
according to Cohen (1988). The Mann-Whitney U test and the calculation of the effect size was done 
using the software R. Because multiple hypotheses are tested from one data set, analyses are corrected 
using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). 

Results of the study 
The hypotheses are tested using the Mann-Whitney-U-test. The results are shown in Table 1. All 
hypotheses are accepted because the p-values for the respective variables are always below the 
significance level of α=0.05. Thus, significant differences between the two cohorts can be measured 
for each variable. The effect size is at least weak for each hypothesis; this underlines that an effect is 
measured in each case. 

Table 1: Results of the Mann-Whitney-U-test for group 0 (non-instructed) and group 1 (instructed) 
with the mean values (mv), standard deviation (sd), p-values and effect size 𝜹 (rounded to 3 decimal 

positions) 

variable (corresponding 
hypothesis) 

mv cohort 1 sd cohort 1 mv cohort 0 sd cohort 0 p-value effect size 𝜹 

relative number 

MM à MS (H1)  

0.024 0.027 0.006 0.014 0.006 0.351 

relative number  

PTOUT (H2) 

0.213 0.166 0.411 0.262 0.006 0.349 

relative number 0 0 0.042 0.051 <0.001 0.53 



 

 

SSP à MISC (H3) 

relative number  

MISC à SSP (H4) 

0.001 0.004 0.025 0.045 0.032 0.259 

relative number  

RM à MISC (H5) 

0.027 0.036 0.08 0.089 0.007 0.343 

relative number  

RM à SSP (H6) 

0.01 0.012 0.002 0.006 0.007 0.343 

 

Interpretation of the results 
An overview of the phase transitions in the solution process of both cohorts can be found in Figure 
3: the thicker an edge, the higher the relative number of the respective phase transition. In particular, 
the significant differences shown by the statistical test are evident in this figure.  

 
Figure 3: Overview of the phase transitions of the instructed (left) and the non-instructed (right)  

The APT mathematical model to mathematical solution occurs often for the instructed in the solving 
process compared to the non-instructed students: when creating (and improving) the mathematical 
model, an attempt is made to translate reality into mathematics in the best possible way. From the 
instruction, students know that a mathematical model as well as its solution with mathematical 
concepts is relevant to solve the modelling task. In contrast, the non-instructed students have 
problems working mathematically: besides forming the mathematical model, there are also 
difficulties in applying mathematical concepts to solve the problem. Above all, solving the problem 
is a challenge for them, which is why the switch from mathematical model to mathematical solution 
rarely occurs. 

Especially in the OUTPHASES the influence of the instruction becomes clear: the non-instructed 
students often switch between the OUTPHASES, which is reflected in the high relative number of 
PTOUT. Thus, they often stay outside the modelling cycle, i.e. also outside the processing of the 
modelling task. The instructed students proceed in the solution process more goal-oriented and follow 



 

 

the phases of the modelling cycle, which they learned in the instruction. Therefore, they deviate less 
often from the solution process when working on the modelling task. Since the non-instructed 
students lack knowledge about modelling processes, they move away from the problem 
(OUTPHASES) and/or summarize their previous solution. By switching between the two 
OUTPHASES, they again gather new ideas on how to proceed in the solution process. The frequent 
switches from real model to an OUTPHASE and vice versa show that the non-instructed students 
have problems forming the mathematical model. Either they switch to topics that have nothing to do 
with the processing of the task or they recapitulate their solution process. This can be related to the 
phase transition mathematical model to mathematical solution: the influence of an instruction mainly 
affects those phase transitions that are related to the mathematical world. Without knowledge about 
the formation of the mathematical model, individual modelling routes are less structured and often 
outside the ideal-typical modelling cycle. 

Further research 
We have shown that individual modelling routes of the instructed and non-instructed students differ 
with respect to the relative number of certain phase transitions. In the next step, we build on these 
results: using the MAI-Tool, we will examine individual modelling routes with respect to the 
sequence of phases. For this we will develop a concept to describe them more precisely on the basis 
of patterns. 
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