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The research presented is focused on engineering education, framed in the Anthropological Theory 

of Didactics (ATD), whose objective is to design a didactic activity of mathematical modelling. For 

this purpose, didactic engineering is considered. The starting point is the analysis of a civil engineers’ 

workplace. A praxeology based on the Hazen-Williams model to design pipelines is identified using 

notions of hydraulics, topography, and mathematics. A didactic transposition on this praxeology is 

performed. A mathematical modelling activity is designed and implemented with students in the fluid 

mechanics’ course. The central task is to determine the diameter of the pipe and ensure a water flow 

rate of 50lts/s. The handling of the mathematical model requires a qualitative analysis of the variables 

at stake and to relate knowledge of various kinds. 

Keywords: Mathematical models, higher education, engineering education. 

Introduction 

Linking the mathematics that engineers use at work with the mathematics they study at university is 

a social demand, highlighted by Pollak (1988). Indeed, some research has been conducted in the 

workplace to identify the mathematics being used (e.g., Frejd & Bergsten, 2016; Gainsburg, 2007). 

Their results show the fundamental role of mathematical models, the management of which requires 

other knowledge, such as computational, practical, and engineering, and particularly, from 

experience, which is fundamental in decision-making, what Gainsburg (2007) calls the engineer’s 

judgement. These types of mathematics can occur in training through didactic proposals that are 

inspired or based on the analysis of mathematics in the workplace, as suggested by Frejd and Bergsten 

(2016). In this line, this research was carried out within the framework of the Anthropological Theory 

of Didactics (ATD), in proposing to relate the workplace and specialised training as a first step for 

designing didactic proposals for the mathematics classroom. We mainly raise two research questions: 

What kind of activities of engineer’s workplace can be transposed to engineering courses through 

mathematical modelling teaching proposals? Furthermore, what institutional conditions make it 

possible to integrate these proposals into engineering courses? 

Some elements from ATD 

The ATD proposed by Chevallard (1999; 2019) defines a model for analysing human activity in its 

institutional dimension. The praxeology [𝑇, 𝜏, 𝜃, Θ] is a minimal unit of analysis of human activity. 

Its four components are the task type (𝑇), the technique (𝜏), the technology (𝜃), and the theory (Θ). 

The ‘task’ refers to what is to be done; the ‘technique’ is how it is to be done; the ‘technology’ is a 

discourse that produces, justifies, and explains the ‘technique’; while the ‘theory’ produces, justifies, 

and explains the ‘technology’. Doing mathematics is a human activity closest to mathematical 

modelling because doing mathematics in this frame consists of and acting (produce, teach, uses) on 
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mathematical models, as stated in Barquero et al. (2019). Institutions offer resources and conditions 

that allow their subjects to develop specific activities and establish restrictions. There are different 

types of institutions, and a subject may belong to several institutions, occupying various positions 

(e.g., teacher, student, parent, citizen). According to Chevallard (1999), praxeologies can circulate 

between institutions, undergoing, in effect, transpositive processes, i.e., transformations. To analyse 

this phenomenon in the case of the training of future engineers, Romo-Vázquez (2009) classified 

institutions according to their relationship with knowledge into three types: production, teaching and 

use. Production (or research) institutions are those that produce praxeologies, such as disciplines (e.g., 

mathematics, hydraulics); teaching institutions are in charge of transmitting praxeologies (e.g., school 

mathematics, school hydraulics) and using institutions are those in which praxeologies are used (e.g., 

industry, workplace). This classification is made considering the primary vocation of each institution. 

Still, it does not mean that praxeologies are not created or taught in the workplace or that no 

praxeologies are taught in the disciplines. However, when a disciplinary praxeology is taught, it 

undergoes a didactic transposition. It means that it is transformed to become an object of teaching. 

Thus, mathematical praxeologies become school mathematical praxeologies (Chevallard, 1991). The 

didactic transposition process is illustrated by Bosch & Gascón (2006, p. 56) as follows (figure 1): 

 

Figure 1: The didactic transposition process 

In the case of training of future engineers, specific didactic transpositions can be performed. For 

example, transposing mathematical modelling praxeologies from the workplace to mathematics or 

engineering education, as suggested by some research (e.g., Frejd & Bergsten, 2016; Romo et al., 

2017), as represented in figure 2. 

 

Figure 2: Transposing mathematical praxeologies from the workplace to teaching institutions 

Performing this kind of transposition from Workplace to Engineering education demands identifying 

a local1 mathematical modelling praxeology in a specific workplace of engineers W: 

[𝑇𝑒 , 𝜏𝑒𝑚, 𝜃𝑒𝑚, Θ𝑒] ← 𝑃𝑤. Here, 𝑇𝑒 is an engineering type task and the technique 𝜏𝑒𝑚 to perform this 

type of task has mathematical and engineering elements. The technology 𝜃𝑒𝑚 that justifies the 

technique is a mathematical model used in engineering, whereas the theory is from engineering. 

Praxeology Pw is then transformed into a school mathematical modelling praxeology Ps that can be 

constructed in engineering teaching (ET) as illustrated in figure 3. 

 

 

1 Praxeology with the same logos block for different practical blocks. It corresponds metaphorically to a modelling topic 

composed of various sub-topics. 
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Figure 3: Scheme of transposition workplace praxeology to teaching praxeology 

The process of transposition demands considering the institutional conditions: workplace and 

teaching, and the way of the original praxeology can be transformed to live in the teaching 

institutions. Likewise, Pw is conceived like an epistemological model reference in the sense proposed 

by Barquero, Bosch and Gascón (2019). Thereby, Pw must be a local modelling praxeology.  

Methodology: Didactic engineering 

Didactic engineering constitutes a solid research methodology (Artigue, 2020), which allows the 

design of tasks. Its four phases are preliminary analysis, activity design and a priori analysis, 

experimentation, and a posteriori analysis. Based on this, we design and analyse a didactic activity of 

mathematical modelling for engineering education, as illustrated below.  

Phase 1. Preliminary analysis: Civil engineers’ mathematical modelling praxeology of hydraulics. 

This analysis focused on characterising a mathematical modelling praxeology of hydraulics used by 

civil engineers to design pipelines in their workplaces. It was carried out jointly by a mathematics 

education researcher and a civil engineer with 29 years of experience, who is also a university 

professor (first author) of mathematics and engineering courses and a PhD student in mathematics 

education. Analysing his professional practice is a difficult task because some knowledge is no longer 

recognised, then a researcher in mathematics education questioned and asked for explanations. Civil 

engineers’ mathematical modelling praxeology of hydraulics is represented as [𝑇ℎ, 𝜏ℎ𝑚, 𝜃ℎ𝑚, Θℎ] ←

𝑃𝑤 , where h represents hydraulics and m mathematics. Thus, task type is Th: Design a pipeline to 

transport water between two points taking advantage of the effect of gravity. Technique τhm and 

technology θhm: Step 1. Recognise the project’s requirements and the minimum initial data to 

calculate the difference in level between the supply and distribution reservoirs and the total length of 

the pipeline path. Step 2. Determine the whole 

length of the pipeline path (L) using an established 

reference system (see figure 4). Step 3. Determine 

the hydraulic head of the system (ΔH), calculating 

the difference between supply and distribution 

reservoirs. ΔH is always greater than zero since the 

level of the distribution reservoir is lower than that 

of the supply reservoir, ensuring that the effect of 

gravity generates the flow of the fluid (figure 4).  

Step 4. Select the material of manufacture of the 

pipe, considering the roughness of materials employing the Hazen-Williams coefficients (C)2. A 

material with high roughness will have a lower coefficient and a lower flow rate for the same pipe 

diameter. In contrast, the lower roughness of the material will have a higher coefficient and a higher 

 

2 See for example Alegret & Martínez (2019, p. 45). 

Figure 4: Schematic illustration of the 

pipeline path 



 

 

flow rate. Step 5. Determine the flow rate (Q) using the Hazen-Williams mathematical model: 𝑄 =

0.2785𝐶 𝐷2.63 𝑆0.54 where: Q = Flow rate at the pipe (m3/sec); C = Hazen-Williams coefficient 

(dimensionless); D = Diameter of the pipe in meters (m) and S = hydraulic head loss per length of 

pipe (dimensionless factor) obtained with the following formula: 𝑆 =  𝛥𝐻/𝐿 where: ΔH = hydraulic 

head, expressed in meters, L = Total length of the pipe path interconnecting both reservoirs. The 

applicable limits of this formula are debatable; in the third edition of Hydraulic tables by Williams & 

Hazen (1933), the pipe diameters to be used were limited to 0.05 m (2 in.) < D < 1.85 m. (6 ft.). 

Furthermore, it is recommended to be used for flow velocities values below 10 ft./sec (3.05 m/s) and 

is valid only for water flowing at ordinary temperatures (5 °C - 25 °C) (Alegret & Martínez, 2019). 

It is worth mentioning that, in the case of not complying with the described parameters, the 

mathematical model could give results different from reality. Step 6. Verify that the flow rate (Q) 

obtained is the closest (approaching from a higher value) to the project’s required flow rate (Qp); Step 

7. Check the water velocity (v) at the pipeline, which should be less than 10 ft/sec (3.048 m/sec). Step 

8. Report the pipeline design results. To perform these eight steps requires that engineers properly 

use the Hazen – Williams model, recognising the mathematical relationship of the variables involved 

and how they can be satisfied from experimental conditions. Sometimes it is necessary to adjust data 

and, above all, to contrast the results obtained by the model with the existing pipe diameters on the 

market. The theory Θe is hydraulic engineering. 

Phase 2. Didactic transposition of the civil engineers’ mathematical modelling 𝑃𝑤, design of the 

didactic activity and a priori analysis. A didactic transposition was performed on the 𝑃𝑤, obtaining 

a school praxeology 𝑃𝑠. The task type is the same; the technique is organised in Ps through three 

stages using subtasks Tn.m. The technology in both praxeologies is the Hazen-Williams mathematical 

model, and the theory is hydraulic. However, in school praxeology, the fluid mechanic’s course is 

also involved, see figure 5.  

 

Figure 5: Scheme of didactical transposition from Pw to Ps 

Thus, the school praxeology is described in this way. Th: Design a pipeline to transport water between 

two points taking advantage of the effect of gravity. The technique has three stages. In stage 1, the 

requirements and initial data of the project are recognised through three subtasks. Firstly, T1.1. 

Identify the required flow rate (Qp) at the distribution reservoir. This is the project’s main datum, for 

example, 50lts/sec; T1.2. Analyse the topographic data (see Table 1), draw up a scheme and visualise 

the general conditions of the system to be designed. This is a first approach to the establishment of 

the reference system: location of the supply point as an initial point of the system, establishment of 

scales to use and labels to identify the implicit elements in the system. Finally, T1.3. Drawing up the 

topographic profile for recognising the natural terrain and identifying key points for the design of the 

pipeline. Civil engineers usually use the software like AutoCAD, favouring parameter manipulation 

for better visualisation and detailed analysis. Students can use GeoGebra, which provides an elevation 



 

 

view and elements necessary in a simplified two-dimension drawing to apply the Hazen-Williams 

model (see figure 6). Stage 2: designing a pipeline to transport water between two points by taking 

advantage of the effect of gravity involves five subtasks. T2.1. Determination of the pipeline’s total 

length is important for calculating the hydraulic head loss per length of the pipe. The lengths of the 

pipe sections are calculated from point to point where the changes of direction in the path occur and 

add together. Students can perform these calculations in GeoGebra. T2.2. Calculation of the hydraulic 

head, a dominant factor for the natural movement of the fluid through the pipe. This is the difference 

in level between the point of supply and the point of distribution calculated in meters. T2.3. Selection 

of the type of pipe considering three main conditions: 1) installation needs, 2) cost of the pipe, and 3) 

the related Hazen-Williams coefficient, depending on the material of manufacture. The students do 

not have information on conditions 1 and 2, so they should focus on the efficiency of the material for 

fluid conduction, evaluating the Hazen-Williams coefficient. T2.4. Determine the flow rate. This is 

the central task and consists of the application of the Hazen-Williams mathematical model. Although 

their use is not identified in professional praxeology, it is considered that students could propose an 

initial value of the pipe Diameter using the continuity equation 𝐴 = 𝑄/𝑣, where v is the limiting 

velocity of the water in the pipe, Q, the flow rate for which the design is made and A, the cross-

sectional area of the pipe. Considering the formula of the area of a circle, it is feasible to obtain an 

initial datum for the Diameter. For the students to perform this same procedure, avoiding an initial 

random proposal of Diameter, they will be provided with a table that favours the qualitative analysis 

of relationships between variables. T2.5. and T2.6. Verification of compliance with limitations or 

restrictions of the method, guaranteeing the correct operation of the mathematical model to obtain 

results following reality. 1) Pipe Diameter limited to 0.05 m (2 inches) < D < 1.85 m. (6 ft.); 2) Design 

flow rate greater than or equal to that required in the project [Q ≥ Qp]; 3) Fluid velocity in the system 

must be less than 10 ft. per second (3.05 m/s). To verify it, the formula 𝑣 = 𝑄/𝐴 is used again. 

Suppose any of the restrictions are not met. In that case, students are expected to propose another 

diameter, develop the procedure, checking whether all the restrictions are met again, i.e. an iterative 

process is generated until the pipe Diameter that meets the restrictions of the method is found. As a 

means of verification (immediate feedback) and approaching the professional reality, students can 

use “Epanet”, specific software for the design of 

piping systems in which the Hazen-Williams 

mathematical model is encapsulated or implicit. 

Stage 3) Report the pipeline designed results. A T3.1 

subtask is proposed to elaborate a report of the 

pipeline designed results.  

The objective of the didactic activity is to allow students to construct or reconstruct the school 

praxeology Ps in the classroom. For this purpose, a situation similar to those faced in workplace 

practice is proposed: “A team of engineers has to connect two reservoirs for the supply of water for 

domestic use in some town, whose flow rate average required is 50 lts/sec, according to the results of 

previous studies carried out by specialists. The topographic study carried out on the path of the 

pipeline that will connect these reservoirs yields the following data on the obligatory points (Table 

1), to carry out the least amount of excavation possible.” 

Figure 6: Topographic profile in GeoGebra 

 



 

 

Table 1: Topographic data of pipeline 

 

Phase 3. Experimentation. The study was developed at the Universidad Cristóbal Colón, Veracruz, 

Mexico, in engineering education. The didactical activity was implemented in a fluid mechanics 

course. The participants were 37 students of the fourth semester, from majors of Industrial 

Engineering and Petroleum Engineering. 

Phase 4. A posteriori analysis. The analysis was performed on the basis of the students’ worksheets 

and the teacher’s notes on this activity. Three teams were chosen to analyse their praxeologies and, 

mainly, how they used the mathematical model, chose the Diameter and justified their solution to the 

project. The criteria for selecting the teams were the clarity and coherence of their reports and the 

students’ commitment to the development of the activity (according to the teacher’s notes). 

Some results 

This section presents a first analysis of the praxeologies developed by three teams of students, 

particularly in three subtasks: the determination of the Diameter and flow rate (T2.4) and the 

verification of compliance with limitations or restrictions of the method (T2.5 and T2.6), which were 

vital in the development of the didactic activity. When the students were faced with subtask T2.4, 

they had calculated the value of S and identified the material for their pipe and the Hazen-Williams 

coefficient C. So, they still had to determine the value of the Diameter D and Q (flow rate) by using 

the Hazen-Williams model: 𝑄 = 0.2785𝐶𝐷2.63 𝑆0.54. The students had no previous experience 

selecting pipe diameters; then the teacher provided them with a table with different diameter values. 

So that they could evaluate it in the mathematical model and, depending on the results of the flow 

calculation, continue with the proposal of diameters until they found the one that would provide the 

closest flow to that required by the project. Thus, we tried to avoid using the mathematical model as 

a formula and favour qualitative analysis and the relationship between the variables at stake. The 

students determined the Diameter and verified that it was as close as possible (approaching from a 

higher value) to the flow rate required by the project (Qp = 50Lts/s). (See Tables 2a, 2b, and 2c, 

corresponding to samples of work achieved by the teams 1, 2, and 3, in that order).3 

      Table 2a: Work by team 1              Table 2b: Work by team 2               Table 2c: Work by team 3 

 

 

3 These tables were made by the authors, considering some rows of the original tables. The green highlighted was also 

made by the authors. 



 

 

Team 1 selected a Diameter of 5.8 inches; it is observed that for this selection, they started evaluating 

diameters from the table they were provided (2, 3, 5) until they found values close to the required 

project’s flow rate, then by 0.1-inch diameter approximations (5.7, 5.8, 5.9). They found the closest 

value, approaching from a higher value to the project flow rate (see table 2a). Team 2 selected a 

diameter of 3¾ inches. This team presents errors in the operation of the mathematical model, it obtains 

higher flow rates using smaller diameters; the process of selecting the pipe diameter is very similar 

to that carried out by team 1, with the difference that they use approximations of 1/4 of an inch. (see 

table 2b). Team 3 selected a diameter of 5.744 inches. It can be seen that they used the same procedure 

for diameter selection as teams 1 and 2; in this case, the approximation of the diameter proposals is 

0.001 inches, trying to obtain the value of the project flow exactly equal to that required (see table 

2c). The mathematical model worked as a technology that allowed them to control the technique, not 

considering whether the Diameter obtained corresponds to existing pipes in the market. This 

knowledge is constructed in the engineer’s workplace. Moreover, we could ask students to verify the 

pipe’s existence in a new redesign of the modelling activity. Thus, they would have another element 

to validate the Diameter obtained with the Hazen-Williams model. Concerning the verification of the 

obtained flow rate to be the most adjusted (approaching from higher values), it was observed that in 

all cases the students selected the Diameter that provided the closest magnitude to the required project 

flow rate, always considering values higher than this one. T2.5 Regarding the review of the water 

velocity at the pipeline using the continuity equation: 𝑣 = 𝑄/𝐴 (where A is the cross-sectional area 

of the pipe). It was observed that some teams did not perform it. Where this was done, they only 

indicated that the parameter was not met. However, they did not make any proposal to establish a 

design that meets this requirement. 

As an extra activity, and as a possibility for future research, it was proposed to the students to work 

with more specialised software –used in the workplace–, which allows them to check their results and 

receive immediate feedback, favouring reflection on the work carried out, proposals for improvement 

and connection with reality. Modelling the system in Epanet allows inserting geometric data of the 

system (obtained from the topographic profile in GeoGebra, figure 6), characteristics of the pipe 

(diameter, length, material of manufacture), accessories and equipment (e.g., valves, pumps) with the 

corresponding characteristics obtained from the manufacturer. The software also allows an immediate 

validation of the results by consulting 

the design parameters; these are flow 

rate and fluid velocity. This can be seen 

on the screen by moving the pointer to 

the desired element (figures 7 and 8). 

Conclusion 

This research shows an avenue to design mathematical modelling activities for the training of 

engineers that connect using and teaching institutions. Didactic engineering allows performing a 

didactical transposition on the workplace’s mathematical modelling praxeology. In this case, the 

analysis of the Civil engineers’ mathematical modelling praxeology of hydraulics is developed by a 

subject of a using institution and a teaching institution. He analysed his workplace activity, identified 

a mathematical modelling praxeology, transposed it, generated a didactic activity and implemented 

Figure 7: Epanet fluid flow rate    Figure 8: Epanet fluid 



 

 

it. His professional experience as an engineer and as a teacher was fundamental in all stages of 

didactic engineering. The students have no difficulties carrying out this activity, but their lack of 

experience limits the proposed solutions: expensive materials, non-existing pipe diameters, lack of 

practical verifications. The use of GeoGebra allows an approach to mathematics courses in the first 

semesters. In contrast, the possibility of using Epanet’s software allows an approach to professional 

practice, guiding the student in the consideration and analysis of parameters and the relationship 

between them for the generation of the solution with elements very close to reality. From the teacher’s 

perspective, the software used is complementary since GeoGebra provides relevant geometric data 

for modelling the project in Epanet. It is considered that this didactic activity can also be adapted to 

be implemented in a mathematics course, and even more, it can be proposed to be developed by 

students from different semesters with different backgrounds and experiences. 
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