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Abstract

Qualitative capacities are set functions valued on a finite chain, increasing in the
wide sense with respect to set inclusion. This paper exploits formal analogies be-
tween qualitative capacities and numerical capacities: we first recall qualitative
counterparts to Möbius transforms, game-theoretic core, and conjugate set func-
tions. However, in the qualitative setting, possibility measures play the same role
as probability measures in the quantitative setting. Then possibility and necessity
measures sometimes do not convey the same type of information. This situation
creates difficulties to interpret qualitative capacities and related notions inspired
from the quantitative setting. In particular, we propose three different ways of
using qualitative capacities: either as bounds on ill-known possibility or necessity
measures, or as tools to express the decision maker attitude in qualitative criteria
under uncertainty, or yet qualitative counterparts of belief functions that handle
both incompleteness and inconsistency of pieces of information stemming from
several sources. In the latter framework possibility and necessity measures do not
represent the same type of information. We define order relations between capac-
ities with a view to compare them in terms of informational contents. We also
study a counterpart of Dempster rule of combination in the qualitative setting. We
compare several capacity combination rules in the framework of an information
fusion problem. Finally, we address the problem of eliciting qualitative capacities
based on human-originated information.
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1. Introduction

Qualitative representations and their use in reasoning processes have for a long
time been central in Artificial Intelligence (AI). In [51], K. D. Forbus argues that
qualitative representations capture a key component of human conceptual struc-
ture. Indeed, qualitative representations appear to be central to human cognition
and in common-sense reasoning. A significant advantage of these representa-
tions is their naturalness, and the fact that they support reasoning with little data.
Qualitative schemes are weaker than their quantitative counterparts, but they can
provide more robust results with much less effort.

Apart from the extensive use of Boolean variables in logical representations
of knowledge, the term “qualitative” (sometimes “symbolic”) refers to the use of
qualitative scales, i.e., finite chains of symbolic values instrumental in the descrip-
tion of non-Boolean notions.1 However, qualitative scales have been variously
interpreted. This state of facts has led to various trends of research in the AI liter-
ature, according to whether the symbols in the qualitative scale refer to numerical
quantities or not. In some approaches the qualitative scale represents a partition of
a numerical scale. For instance, the sign calculus in qualitative physics [6, 8, 73]
partitions the reals into positive, zero and negative values.

More generally, reasoning qualitatively about physical systems requires quan-
tizing the possible value of continuous properties on the positive real line (weight,
level, pressure, or probability) in meaningful units using a small vocabulary of
linearly ordered symbols (e.g., a linguistic value scale) such as

L = {zero, very low, low, medium, high, very high, top}.

However one difficulty appears when combining these symbols with operations.
The interpretation of the qualitative scale in more refined partitions of the real
line than the sign calculus, using intervals, creates algebraic difficulties, since
internal operations over the qualitative scale may fail to be consistent with the
corresponding numerical operations over real intervals, and we must then resort
to using the power set of the qualitative scale [35, 8, 73].

1In this discussion, we leave aside qualitative relational approaches to temporal and spatial
reasoning [13] as well as the calculus of orders of magnitude [65, 55].
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We can also mention Zadeh’s work who tries to exploit verbal information
in spite of its non-Boolean nature [81]. Very early, Zadeh introduced linguistic
scales for evaluation purposes via the use of linguistic variables [82] pertaining to
numerical quantities, and later on he introduced the paradigm of computing with
words [84]. A linguistic variable corresponds to a fuzzy partition of a numeri-
cal scale, and the same difficulties as in qualitative physics, for computing with
linguistic terms, viewed as fuzzy intervals, are met in the fuzzy case [35].

In this paper, we do not follow the line of the above authors who interpret
ratings from a qualitative scale in a numerical way as sets or fuzzy sets of reals.
We just consider symbolic ratings as names of classes in a linearly ordered set
thereof. In particular,

• We do not interpret L as a fuzzy partition on [0, 1] using triangular fuzzy
numbers as done by many authors in fuzzy decision analysis with linguis-
tic term sets. This translation may look arbitrary if the unit interval does
not refer to a measurable quantity for which linearity of membership func-
tions makes sense. It is at odds with Zadeh’s original intuition of linguistic
variables [82] where a linguistic term set generally referred to a measurable
scale (of heights, age, temperature, frequentist probability, etc.).

• We do not subscribe to the approach called 2-tuples [56] in preference mod-
eling, where the authors map a linguistic scale to a set of consecutive inte-
gers and further interpret intermediate real values as linguistic terms using
a rounding function, while keeping the fractional part. This is numerical
computation in disguise, since a 2-tuple is equivalent to a real number.

See [18] for a detailed critique of these approaches. Here, the linguistic scale is
just a finite totally ordered set representing terms pertaining to belief and uncer-
tainty.

Works on the qualitative representation of uncertainty have explored several
paths, notably qualitative probabilistic networks, logics of probability, partial prob-
abilities, and possibilistic logic (see [63] for an overview).

In decision theory, qualitative counterparts of expected utility were proposed
in [44] with axiomatic justifications for two qualitative criteria, which are special
cases of Sugeno integrals [71, 72]: an optimistic and a pessimistic one whose
definitions only require finite linearly ordered scales. In [21], based on a bipolar
extension of qualitative possibility theory, decision rules tailored for the joint han-
dling of positive and negative arguments in an ordinal setting are axiomatically
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characterized. It is natural to use possibility and necessity measures for qualita-
tive uncertainty representation, and for decision evaluation, since only max and
min operations are needed to compute them.

In this paper, we explore the potential of qualitative counterparts of monotonic
numerical set-functions called capacities [11] or fuzzy measures [71]. In our con-
text, a capacity with values in a finite totally ordered set not equipped with the
operation of addition is called a qualitative capacity (or q-capacity). Q-capacities
generalize qualitative possibility and necessity measures. However, they cannot
generalize probabilities since only the minimum and maximum lattice operations
are available. We may add a negation operator that reverses the scale of q-capacity
values in order to define conjugate q-capacities. However, as we shall see, adding
this operation is optional, while it is basic in the numerical setting due to the self-
duality of probability measures.

The aim of this paper is to propose a detailed presentation of a qualitative ap-
proach to capacities, showing it can be instrumental in the modeling of qualitative
decision criteria, as well as a non-numerical counterpart of the theory of evidence
by Shafer [67]. Section 2 presents basic notions of qualitative capacity theory,
highlighting the formal similarities and differences existing between qualitative
and quantitative capacities. Especially we consider Möbius transforms, core, con-
jugacy, qualitative counterparts of plausibility, commonality functions, etc. In
section 3, we discuss the issue of comparing qualitative capacities from the point
of view of their information content, in a way that parallels existing information
orderings in belief function theory. In section 4, we describe three frameworks for
interpreting qualitative capacities, playing the role of canonical examples. They
can be instrumental for:

1. representing imprecise possibility and necessity measures, adapting the Demp-
ster paradigm for imprecise probabilities to possibility theory [16];

2. modelling pessimism and optimism expressed by q-capacities in the quali-
tative criteria of decision under uncertainty [44];

3. representing pieces of information coming from several sources more or less
supporting the truth of propositions of interest, similar to belief functions in
the theory of evidence [23].

Section 5 presents the qualitative counterpart of Dempster rule of combination
for q-capacities and highlights a counterpart of Shafer separable belief functions
[67], i.e., q-capacities that are the result of combining elementary, non fully reli-
able, testimonies modelled by necessity functions. The counterpart of the Demp-
ster specialization for q-capacities is also studied. Section 6 proposes a general

5



setting for the fusion of elementary pieces of uncertain evidence modelled by ne-
cessity functions. It compares Dempster-like fusion with a non-destructive fusion
method, that encompasses the information collection set-up of Belnap four-valued
logic of incomplete and inconsistent information [2, 3]. It also provides a com-
parison with possibilistic fusion methods. Finally, Section 7 outlines an approach
for the practical elicitation of q-capacities from experts opinions.

This paper is a considerably extended version of previous papers by the au-
thors, along the same line [23, 24, 25, 26, 27, 28].

2. Basics of qualitative capacities

Set functions that are monotonically increasing in the wide sense under in-
clusion and that generalize probability measures have appeared independently in
several works, especially G. Choquet [11] in 1953, who uses the name “capacity”,
and M. Sugeno, in his 1974 PhD thesis [71] who calls them “fuzzy measures” in
reference to Zadeh’s fuzzy sets [80] introduced in 1965. In fact, Choquet defined
a non-additive extension of Lebesgue integral to capacities, and Sugeno proposed
an analog of Lebesgue integral, where the set-function is not additive and where
sum and product are respectively replaced by max and min.2 Capacities have
been a key tool especially in decision-related topics [9]. In particular, numerical
capacities may represent coalition weights in cooperative games, or uncertainty
measures, such as upper or lower probabilities, and belief functions. See [54] for
a recent monograph on capacities.

Interestingly an important special case of fuzzy measure is the possibility mea-
sure proposed by Zadeh later in 1978, where the addition, in the basic axiom of
probability measures, is replaced by the maximum. In [83], Zadeh highlights the
fact that when defining a possibility measure, the probability distribution is re-
placed by the membership function of a fuzzy set. Since then, possibility theory
has been considerably developed and applied to various fields from logic to inter-
val analysis [34, 39].

2.1. Q-capacities
Let W = {w1, . . . , wm} be a set of possible states (finite, for simplicity). We

first recall numerical capacities and related notions, then we turn to the qualitative
setting.

2They model original union and intersection connectives for fuzzy sets, which inspired Sugeno
proposal for naming his integral fuzzy.

6



Definition 1 ([54]). A capacity (or fuzzy measure) is a set function g : 2W →
[0, 1] such that:

g(∅) = 0; g(W ) = 1;

A ⊆ B ⇒ g(A) ≤ g(B) (monotonicity under inclusion).

The conjugate gc of a capacity g is defined by gc(A) = 1− g(Ac) where Ac is the
complement of A.

The capacity is said to be additive if g(A∪B) = g(A)+g(B), whenever A∩B =
∅. It is then a probability measure. As a consequence of monotonicity, it is obvious
that the following inequalities hold for a capacity g:

g(A ∪B) ≥ max(g(A), g(B)) and g(A ∩B) ≤ min(g(A), g(B)).

When the first inequality is an equality for all pairs of events (this is the maxitivity
axiom), g is called a possibility measure and denoted by Π. When the second
inequality is an equality for all pairs of events (minitivity axiom), g is called a
necessity measure and denoted by N .

In the finite setting, a possibility measure Π is completely defined by a possi-
bility distribution, i.e., a function π : W → [0, 1] such that

Π(A) = max
w∈A

π(w).

Note that we have maxw∈A π(w) = 1 (normalization for possibility distributions).
As a consequence, the associated necessity measure N is the conjugate of Π, such
that

N(A) = 1− Π(Ac) = min
w 6∈A

(1− π(w)).

In the infinite setting, these properties hold if we strengthen the maxitivity axiom
to infinite families of events.

A qualitative capacity γ is in agreement with Definition 1, except that [0, 1] is
replaced by a finite totally ordered set of symbolic values with a bottom and a top
denoted by 0 and 1 respectively, i.e., L = {0 = λ0 < λ1 < . . . < λl = 1}.3 For
instance, L can be a linguistic scale as discussed in the introduction. From now

3In practice, without loss of generality, we may use a finite set of real numbers in [0, 1] for val-
ues in L, provided we only use the natural ordering of numbers, and do not perform any operation
other than min and max, and order reversion.
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on, qualitative capacities are denoted by γ, while quantitative ones are denoted by
g. Moreover, generic elements of L will be denoted by lower case Greek letters,
such as λ, α, β, . . .

Definition 2. Let L be a finite totally ordered set. A qualitative capacity (q-
capacity, for short) is a function γ : 2W → L such that:

γ(∅) = 0; γ(W ) = 1; A ⊆ B ⇒ γ(A) ≤ γ(B).

A counterpart to the mass assignment function exists.
Purposedly, we do not define the conjugate of qualitative capacities as done

in Definition 1 in the numerical setting, because this notion is not always used in
some of the canonical examples provided later on. It requires that L be equipped
with an order-reversing map, which will not always be needed. For instance,
qualitative possibility and necessity functions can be defined independently of
one another and may not always represent the same information.

In contrast with the case of numerical capacities, a probability measure is
not a special case of a q-capacity since addition is not defined on the scale L.
The absence of probability measures in the qualitative setting creates a difficulty
when trying to understand the meaning of q-capacities. Indeed, in the numerical
framework, some capacities capture a convex family of probability measures [54],
which is very helpful to grasp their meaning: this is the case, e.g., for quantitative
conjugate possibility and necessity measures, which model the same convex set of
probabilities, respectively as upper and lower probability bounds. So, possibility
and necessity measures capture incomplete consonant information, whereas prob-
abilities capture precise and dissonant information [34]. But since, as we shall
see, any q-capacity only captures a family of possibility or necessity measures
[42], the role of possibility measures and q-capacities becomes ambiguous in the
qualitative setting.

Nevertheless, even if the framework of bounded chains is less expressive than
the reals, many existing concepts defined for numerical capacities have a qualita-
tive counterpart, such as Möbius transforms, contour functions, core (possibilities
which dominate the capacity, instead of probabilities) and extreme points, as well
as Choquet integral. This section recalls such qualitative counterparts of quantita-
tive notions, borrowing from a previous paper [42]. Since in the qualitative case,
addition is replaced by maximum, possibility measures formally play the role of
probabilities. As said above, it will raise the issue of interpreting these notions
redefined by formal analogy.
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2.2. Möbius transforms
The notion of Möbius transform is instrumental for studying capacities [54],

especially in the theory of evidence, where it is interpreted in terms of a probabil-
ity mass function over a family of subsets [67].

Definition 3. The Möbius transform mg of a capacity g on a finite set is the set
function mg : 2W → R given by:

mg(A) =
∑
B⊆A

(−1)|A\B|g(B).

It can be checked that
∑

B⊆W mg(B) = 1. The function mg is the unique
solution to the linear system of equations:

g(A) =
∑
B⊆A

mg(B), ∀A ⊆ W. (1)

One of the most important property of some capacities is k-monotonicity. The
capacity g is called k-monotone for some k ≥ 2, if for all families of k subsets
A1, ..., Ak, it holds that:

g(∪ki=1Ai) ≥
∑

∅6=I⊆1,...,k

(−1)|I|+1g(∩i∈IAi).

A capacity is called totally monotone if it is k-monotone for all k ≥ 2. If the
inequality is reversed, the capacity is called k-alternating. For example, in the
framework of the theory of evidence, belief functions and their conjugates (plau-
sibility functions) are capacities. A capacity is totally monotone if and only if it is
a belief function [67].

An important result is the following: a capacity g is a belief function if and
only if its Möbius transform mg is non-negative [67]. The so-called focal sets A
are then such thatmg(A) > 0, andmg is then called a basic probability assignment
(BPA) [67].

By analogy, in the qualitative case, we can replace mg by a normalized possi-
bility distribution over subsets of W [32]:

Definition 4. A basic possibility assignment (BΠA) is a mapping ρ : 2W → L,
such that maxA⊆W ρ(A) = 1 (top normalization) and ρ(∅) = 0.
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Any q-capacity can be put in the form:

γ(A) = max
B⊆A

ρ(B),∀A ⊆ W, (2)

where ρ is a basic possibility assignment.
This form is really similar to the definition of a capacity in terms of its Möbius

transform (1), replacing sum by maximum. However, it is important to note that
the function ρ is no longer the unique solution of the set of equations (2), given
γ (e.g., γ itself is a solution!). So there exists a whole family of basic possibility
assignments ρ generating the same q-capacity γ. This family is of the form

Σ(γ) = {ρ : ∀A ⊆ W, γ(A) = max
B⊆A

ρ(B)} = {ρ : γ# ≤ ρ ≤ γ},

for a set-function γ# first defined by Mesiar [62] (see also [54] pp. 237-239 for a
precise historical account) as follows:

Definition 5. The qualitative Möbius transform (QMT) of γ is the least solution
of Eq. (2) and is such that

γ#(A) =

{
γ(A) if γ(A) > γ(A \ {w}),∀w ∈ A;

0 otherwise.
(3)

It is such that, as expected:

γ(A) = max
B⊆A

γ#(B). (4)

Remark 1. A dual notion of QMT can be defined by replacing max by min and
inverting the direction of the inclusion in (4). It leads to consider inner and outer
focal sets, as well as inner and outer capacities. See Appendix A, where it is
shown that the outer capacity built from inner focal sets of a q-capacity loses
much information.

Example 1. The next table shows a simple example of a Boolean capacity γ (with
range in {0, 1}) and its qualitative Möbius transform γ#, withW = {w1, w2, w3}.

{w1} {w2} {w3} {w1, w2} {w1, w3} {w2, w3} W
γ 0 0 1 1 1 1 1
γ# 0 0 1 1 0 0 0

�
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An equivalence relation ∼ on basic possibility assignments can be defined as
follows: ρ1 ∼ ρ2 if and only if ρ1 and ρ2 induce the same capacity via (2). The set
Σ(γ) is the equivalence class of q-capacity γ.

The QMT γ# represents the minimal information necessary to reconstruct γ.
Note that γ#(A) ∈ L for all A ⊆ W , while in the numerical setting, mg(A)
can be negative. The sets A such that γ#(A) > 0 are again called focal sets of
γ and form the set Fγ . For all focal sets A and B such that B ⊂ A, we have
γ#(B) < γ#(A), a restricted monotony condition that is specific to the qualitative
setting. In particular if W is focal, we must have γ#(W ) = 1, a property that
characterizes non-dogmatic q-capacities. Indeed, the case 0 < γ#(W ) < 1 is
forbidden, since then γ#(A) < 1,∀A ⊆ W , which would imply γ(W ) < 1.

Example 2. Let W = {w1, w2, w3} and 0 < γ({w1}) = γ({w1, w3}) = λ1 <
γ({w1, w2}) = λ2 < γ({w2, w3}) = γ({w1, w2, w3}) = 1 and γ(A) = 0 other-
wise. ThenFγ = {{w1}, {w1, w2}, {w2, w3}}, with γ#({w1}) = λ1, γ#({w1, w2}) =
λ2 and γ#({w2, w3}) = 1.

w1 λ1 w2

λ2

w3

1

�

In the numerical case, a capacity g is a probability measure if and only if its focal
sets are singletons; it is a necessity measure N if and only if its focal sets are
nested. In the latter case, it is minitive, i.e., for any subset A,B:

N(A ∩B) = min(N(A), N(B)).

This latter property remains valid in the qualitative framework, i.e., a qualitative
necessity function has nested focal sets. However, we need a new proof of this
result in the qualitative case, as the qualitative Möbius transform differs from the
quantitative one. We cannot use the proof given by Shafer [67] in his book.

Proposition 1. A qualitative capacity is a necessity measure if and only if its focal
sets form a nested sequence E1 ⊂ E2 ⊂ · · · ⊂ Ek.

Proof: If the focal sets of γ are nested, and γ(A) = γ#(Ei), γ(B) = γ#(Ej),
where Ei ⊂ Ej , it is clear that since Ei ⊆ A and is the greatest such subset, we
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also have that Ei ⊂ Ej ⊆ B. Hence, γ(A ∩ B) = γ#(Ei) = min(γ(A), γ(B)).
So, γ is a necessity measure.
Suppose that there exists two focal sets Ei and Ej not included in each other.
If Ei ∩ Ej = ∅ then γ(Ei ∩ Ej) = 0 6= min(γ(Ei), γ(Ej)). If Ei ∩ Ej = F
then F 6= Ei, Ej , and γ(F ) < γ(Ei), γ(F ) < γ(Ej); hence γ(Ei ∩ Ej) 6=
min(γ(Ei), γ(Ej)). So, γ is not a necessity measure. �

However, if γ only has singletons as focal sets, (i.e., γ#(A) > 0 if and only if
∃w ∈ W : A = {w}), it is a possibility measure Π and it satisfies the characteristic
axiom of maxitivity:

Π(A ∪B) = max(Π(A),Π(B)).

The proof is simple, but is made independently of the one for necessity measures.

Proposition 2. A qualitative capacity is a possibility measure if and only if its
focal sets are singletons.

Proof: The maxitivity axiom ensures that Π(A) = maxw∈A Π({w}) in the finite
setting. So Π(A) = Π#({w}) = π(w) for some w ∈ A, and Π#(A) = 0 if A is
not a singleton. The opposite direction is obvious. �

Note that the least q-capacity γ0, which assigns weight 0 to all subsets but for
W is the vacuous necessity measure N ? whose only focal set is W . Likewise,
the greatest q-capacity γ1, which assigns weight 1 to all subsets but for ∅ is the
vacuous possibility measure Π? whose focal sets are all singletons in W .

The fact that focal sets of possibility measures are singletons raises the issue
of the meaning of these q-capacities. Indeed, in the numerical case, possibility
and necessity measures represent the same incomplete consonant information be-
cause possibility and necessity measures are always defined as dual set functions,
and one only considers Möbius transforms of necessity measures. In contrast,
probability measures represent precise dissonant information, expressed by sin-
gleton focal sets. In the qualitative setting, possibility measures seem to take the
role of the latter, considering their singleton focal sets, in contrast with necessity
measures. In the qualitative case, duality between q-capacities is not built-in.

2.3. Maxitive and minitive cores
The core of a numerical capacity g is the set of probability measures that

dominate g: C(g) = {P : P (A) ≥ g(A),∀A} [54]; it may be empty. When
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non-empty, the core C(g) is convex. When the capacity is 2-monotone, its core is
non-empty and represents the capacity g because in that case we have that:

g(A) = inf
P∈C(g)

P (A),∀A.

When this last property holds, g is said to be coherent in the sense of Walley [76].
The extreme points of C(g) are among probability measures with distributions of
the form

∀i, pgσ(wσ(i)) = g(Siσ)− g(Si+1
σ )

for some permutation σ of W , with Siσ = {wσ(i), . . . , wσ(t)}, where t = |W |.
In the qualitative setting, we can only consider the set of possibility measures

that dominate a q-capacity γ, i.e.,

CΠ(γ) = {Π : Π(A) ≥ γ(A),∀A}.

It is called the maxitive core of the q-capacity γ [42, 54]. It is never empty because
it contains the vacuous possibility measure (Π?(A) = 1,∀A 6= ∅). The family
CΠ(γ) is a sup-semi-lattice in the sense that:

Π ∈ CΠ(γ),Π′ ∈ CΠ(γ)⇒ max(Π,Π′) ∈ CΠ(γ),

and more generally max(min(α,Π),min(β,Π′)) ∈ CΠ(γ),∀α, β ∈ L such that
max(α, β) = 1. The q-capacity max(min(α,Π),min(β,Π′)) is a possibility mea-
sure [36] that can be viewed as the qualitative counterpart of the convex sum for
possibility measures Π and Π′. The qualitative core of a q-capacity γ character-
izes it [42]:

γ(A) = min{Π(A) : Π ∈ CΠ(γ)},

which is not always the case with the core of a quantitative capacity. Furthermore
CΠ(γ) has a finite number of minimal elements forming the set C↓Π(γ), and these
possibility measures have distributions of the form πγσ such that ∀i, πγσ(wσ(i)) =

γ(Siσ), for some permutation σ ofW . C↓Π(γ) contains the most specific possibility
measures dominating γ.4

The strong analogy between qualitative and quantitative capacities can be seen
here. There is a minimal representation of q-capacities in terms of possibility
measures in the form γ(A) = min{Π(A) : Π ∈ C↓Π(γ)} [42, 41].

4Π1 is more specific than Π2 when Π1 < Π2 [34].
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Example 3. The three most specific possibility distributions that dominate the
capacity γ in Example 2 are:

w1 w2 w3

π1 λ1 1 0
π2 λ2 0 1
π3 λ1 λ2 1

One can check that γ(A) = min(Π1(A),Π2(A),Π3(A)). �

Equivalently, q-capacities represent families of necessity measures. The mini-
tive core of a q-capacity γ is the set of necessity measures dominated by γ:

CN(γ) = {N : N(A) ≤ γ(A),∀A}.

It is also never empty because it contains the vacuous necessity measure (N ?(A) =
0,∀A 6= W ). The set CN(γ) is an inf-semi-lattice:

N ∈ CN(γ), N ′ ∈ CN(γ)⇒ min(N,N ′) ∈ CN(γ),

and more generally min(max(α,N),max(β,N ′)) ∈ CN(γ),∀α, β ∈ L, where
min(α, β) = 0. For all q-capacities it holds that

γ(A) = max{N(A) : N ∈ CN(γ)}.

Moreover, let C↑N(γ) denote the set of maximal elements of CN(γ). There is
an alternative minimal representation for any capacity, of the form [41]: γ(A) =
max{N(A) : N ∈ C↑N(γ)}. In [42] a method is proposed to calculate the maximal
necessity measures dominated by γ. One may consider all maximal chains of
nested focal subsets Ci = {E1

i ⊂ · · · ⊂ Eki
i } ⊆ Fγ . Each such chain Ci defines a

necessity measure.

2.4. Duality for q-capacities
Duality is a cornerstone of non-additive numerical uncertainty representations.

The conjugate gc or dual capacity of a numerical capacity g such that gc(A) =
1 − g(Ac), already introduced in Definition 1, can be expressed as a function of
the Möbius transform of g as

gc(A) =
∑

B∩A 6=∅

mg(B).
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For example, the plausibility function Pl is the conjugate of the belief function
g = Bel in evidence theory [67]. If the core of g is non-empty and if g is coherent
in the sense of Walley (2-monotone, for example), then the dual capacity can be
expressed as:

gc(A) = sup
P∈C(g)

P (A),∀A.

It represents the upper bound of the core. The restriction of Pl = Belc to single-
tons is (in the framework of belief functions) called contour function by Shafer
[67]. It is of the form

cfg(w) = gc({w}) =
∑
w∈B

mg(B). (5)

If g = N is minitive, cfg is the possibility distribution associated to Π = N c. Oth-
erwise, the contour function is more general, and can be a probability distribution,
namely if g is a probability measure.

In order to define the conjugate of a q-capacity γ in the qualitative setting, the
value scale L must be equipped with the involutive function ν that reverses the
order in L, what we call a negation function. Then we can define the conjugate γc

of a q-capacity:

Definition 6. Let ν : L→ L be a negation function such that ν(1) = 0, ν(0) = 1
and ν ◦ ν = Id. The conjugate γc of a q-capacity γ is defined by

γc(A) = ν(γ(Ac)).

Note that this notion is not intrinsic to q-capacities, unlike in the quantitative
case. In particular, the upper q-capacity defined by

Plγ(A) = max
B∩A 6=∅

γ#(B), (6)

is similar to the upper probability or Shafer plausibility function, but it does
not coincide with the conjugate of γ. Indeed, ν does not appear in expression
(6). So, Plγ 6= γc. In fact, the duality between numerical belief and plausibil-
ity functions degenerates in the qualitative setting into the equality ∀A ⊆ W ,
max(γ(A), P lγ(A

c)) = 1 [64], where + is changed into max. However, we do
have the dominance property Plγ(A) ≥ γ(A).

In contrast, the inequality γc ≥ γ generally does not hold because the q-
capacity γ is arbitrary. But there is a connection between the minitive core of γ

15



and the maxitive core of its conjugate, namely CN(γ) = {N = Πc : Π ∈ CΠ(γc)}
because Π ≥ γ is equivalent to N ≤ γc when N = Πc [42]. This is the qualitative
counterpart of the equivalence P ≥ Bel ⇐⇒ P ≤ Pl in evidence theory.

Interestingly, and in contrast with the numerical case, the upper q-capacity Plγ
is always maxitive. It is the possibility measure based on the qualitative counter-
part of the contour function of γ:

πγ(w) = max
w∈B

γ#(B) 6= γc({w}), (7)

namely, Plγ(A) = maxw∈A πγ(w) [42]. In contrast with the numerical contour
function, πγ is always a possibility distribution, in particular πγ(w) = 1 for some
w ∈ W .

In particular, if γ is a possibility measure Π already, then PlΠ = Π, as its focal
sets are singletons, which reminds that, in the qualitative setting, possibility mea-
sures play the role of probability measures. In contrast, the qualitative plausibility
PlN associated with necessity N is a Boolean possibility measure induced by the
largest focal set Fmax of N (it is such that N#(Fmax) = 1). Namely

PlN(A) =

{
1 if A ∩ Fmax 6= ∅,
0 otherwise.

Moreover, if γ is non-dogmatic, i.e., γ#(W ) = 1 we can observe that Plγ(A) =
1,∀A 6= ∅, namely it is the non-informative possibility measure Π?. So, the set-
function Plγ generally loses part, and sometimes all, of the information contained
in γ.

In summary, there is a clear disconnection between conjugate and upper ca-
pacities in the qualitative setting, the latter being possibility measures related to
the contour function, not to duality.

2.5. What becomes of commonality in the qualitative setting
In the numerical setting, there is a third set-function that is useful, i.e., the

commonality function
Qg(A) =

∑
A⊆B

mg(B).

This function takes values in [0, 1] only when masses are positive (i.e., for masses
of belief functions). It is then decreasing in the wide sense with respect to set
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inclusion, and dual to a belief function in the following sense: if mg is the com-
plement of mg defined by mg(A) = mg(A

c),5 and g is the belief function induced
by mg as g(A) =

∑
B⊆Amg(B), we have that if g = Bel, then Q(A) = g(Ac)

[33]. Moreover all the information contained in g can be recovered from Q.
It is tempting to define its qualitative counterpart as done in [64]:

Qγ(A) = max
A⊆B

γ#(B).

This is clearly an anti-monotonic set function. Note that Qγ(∅) = 1, but we
do not have that Qγ(W ) = 0 in general, since Qγ(W ) = γ#(W ) (like in the
quantitative setting of usual commonality functions). For instance if γ#(W ) = 1
(non-dogmatic capacity), then Qγ(A) = 1 for all A ⊆ W . So, since γ# is strictly
monotonic when positive, it is clear that a part of the information contained in γ
is lost by Qγ . More generally we can prove the following result.

Proposition 3. Given a q-capacity γ with set of focals Fγ , let F̂γ = {E ∈ Fγ :
@F ∈ Fγ, E ⊂ F} be the maximal elements for inclusion in Fγ . Let γ̂ be the
q-capacity whose set of focals is F̂γ and such that ∀E ∈ F̂γ, γ̂#(E) = γ#(E).
Then Qγ = Qγ̂ .

This result is straightforward because γ# is strictly increasing on Fγ . Note that
the same result is valid for the contour function, i.e., πγ = πγ̂ , since it is clear
that Qγ({w}) = πγ(w). However, Qγ(A) = minw∈A πγ(w) does not hold. In-
deed, take for instance a q-capacity such that γ#(E) = 1 and γ#(F ) = α < 1
where E,F are disjoint and not singletons, and γ#(A) = 0 otherwise. Then sup-
pose A overlaps E,F but does not include them. Then clearly Qγ(A) = 0, but
minw∈A πγ(w) = α.

In fact, it is easy to see that for any possibility measure Π,QΠ(A) 6= minw∈A π(w)
(which is the expression of the commonality associated to a possibility measure
in the numerical case), since QΠ(A) = 0 as soon as A is not a singleton (indeed,
the focal sets of Π are singletons). In short, the qualitative counterpart of the
quantitative commonality is not very attractive.6

Remark 2. As recalled above, the quantitative commonality of a belief function
can be expressed using its complementary mass function. Consider now the set

5Note that we may have mg(∅) > 0.
6Of course, we could define the commonality of γ as: ∆γ(A) = minw∈A πγ(w),which would

behave like a standard commonality function. But it keeps even less information from γ.
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function γ defined as in the numerical case from the complement of the QMT
function γ#: γ#(A) = γ#(Ac). The function γ# is not a QMT, since it is strictly
decreasing on the set {E : Ec ∈ Fγ}. Then we can define another qualitative
counterpart of the commonality as the decreasing set-function [43]:

γ(A) = γ(Ac) = max
B⊆Ac

γ#(B) = max
A⊆Bc

γ#(B) = max
A⊆B

γ#(Bc) = max
A⊆B

γ#(B).

It is clear that Qγ(A) 6= γ(A) (contrary to the numerical setting), and γ contains
the same amount of information as γ, but it does not bring more insight.

3. Ordering relations on the set of q-capacities

In this section we propose different methods to compare q-capacities. These
methods are formally similar to comparison methods existing in the quantitative
context, especially the one of belief functions. There exist several non-equivalent
ways of expressing that a belief function, defined by its mass functionm1, contains
more information than another belief function, defined by its mass function m2.
We denote it by m1 vx m2, where x indicates the chosen comparison principle.
The main definitions are as follows:

1. cf-ordering [46]: m1 vcf m2 iff cf1({w}) ≤ cf2({w}),∀w ∈ W where
cfi({w}) = Pli({w}) is the contour function of mi, i = 1, 2. This is pre-
cisely the comparison according to relative specificity in possibility theory.

2. bel-ordering [33]: m1 vbel m2 iff Bel1(A) ≥ Bel2(A),∀A ⊆ W . It sug-
gests that making information more precise leads to higher beliefs.

3. pl-ordering [33]: m1 vpl m2 iff Pl1(A) ≤ Pl2(A), ∀A ⊆ W . It is equiva-
lent to the bel-ordering by duality.

4. q-ordering [33]: m1 vq m2 iff Q1(A) ≤ Q2(A),∀A ⊆ W . The idea is that
the larger the focal sets, the less informative the belief function and then the
greater is the commonality function.

5. s-ordering [77]: m1 vs m2 iff there exists a stochastic matrix S(A,B)
whereA is focal form1 andB is focal form2 such that

∑
A:A⊆B S(A,B) =

1 (so S(A,B) = 0 if A 6⊆ B), and m1 = S · m2 (short for m1(A) =
ΣB:A⊆BS(A,B)m2(B)). Then, m1 is called a specialization of m2. For-
mally, it corresponds to a random set inclusion of m1 in m2. It thus ex-
presses that m1 is more informative than m2 through the relative extent of
their focal sets.
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These information comparison relations are more or less strong. It has been
proved in [33] that

m1 vs m2 ⇒
{

m1 vq m2

m1 vbel m2 ⇐⇒ m1 vpl m2

}
⇒ m1 vcf m2 (8)

Note that in the case of necessity and possibility measures, all orderings above
coincide with the specificity ordering vcf [33].

The aim of this section is to study counterparts of such information orderings
for q-capacities.

3.1. Natural dominance between capacities
Let us consider two q-capacities γ1 and γ2. A simple idea to compare γ1 and

γ2 is to consider γ1 ≥ γ2 as a counterpart of the bel-ordering Bel1 ≥ Bel2, we
name natural dominance between q-capacities.

Proposition 4. γ1 ≥ γ2 if and only if ∀B ∈ Fγ2 ∃A ∈ Fγ1 such that A ⊆ B and
γ1#(A) ≥ γ2#(B).

Proof: Let us suppose that ∀B ∈ Fγ2 ∃A ∈ Fγ1 such that A ⊆ B and γ1#(A) ≥
γ2#(B). We have γ2(B) = γ2#(B0) for a focal set B0 ⊆ B. According to the
hypothesis, ∃A0 ∈ Fγ1 such that A0 ⊆ B0 and γ1#(A0) ≥ γ2#(B0). Hence we
have γ1(B) ≥ γ1(A0) = γ1#(A0). Hence γ1(B) ≥ γ2(B).

Now we suppose γ1 ≥ γ2 and we consider B ∈ Fγ2 . We have γ2#(B) ≤
γ1(B) = maxA⊆B γ1#(A) hence ∃A ∈ Fγ1 such that A ⊆ B and γ1#(A) ≥
γ2#(B). �

Intuitively, γ1 ≥ γ2 means that γ1 has smaller focal sets than γ2, and with
greater weights. Mind that γ1(A) ≥ γ2(A) does not imply that γ1#(A) ≥ γ2#(A)
(while the converse is true); for instance the necessity measure NA with focal sets
A and W 7 naturally dominates the necessity measure NB with focal sets B ⊃ A
and W . But NA#(B) = 0 < NB#(B).

3.2. Contour function ordering
The contour function dominance, denoted by ≥cf is defined as follows:

7Later on called simple support function in Definition 10.

19



Definition 7. The cf-order relation γ1 ≥cf γ2 stands for πγ1(w) ≥ πγ2(w) ∀w ∈
W where πγ(w) = maxw∈B γ#(B).

The relation γ1 ≥cf γ2 intuitively means that the contour function of the former is
above of the latter.

Note that the cf -dominance πγ1 ≥ πγ2 is the same as comparing the qualitative
counterpart of the plausibility functions (Plγ1 ≥ Plγ2), since in possibility theory,
π1 ≥ π2 is equivalent to Π1 ≥ Π2 and since the plausibility function Plγ induced
by γ is the possibility measure associated to the contour function. Hence defini-
tions of cf-ordering and of Pl-ordering, distinct in the quantitative case, coincide
in the qualitative case.

Moreover if γi = Πi, i = 1, 2 are possibility measures, the natural dominance
and the cf-dominance coincide. However if they are necessity measures they are
at odds with each other, since N1 ≥ N2 implies πN1 ≤ πN2 .

Proposition 5. γ1 ≥cf γ2 iff for each w and each B ∈ Fγ2 such that w ∈ B,
∃A ∈ Fγ1 such that w ∈ A and γ1#(A) ≥ γ2#(B).

Proof: γ1 ≥cf γ2 if and only if for allw, πγ1(w) ≥ πγ2(w), i.e., maxw∈A γ1#(A) ≥
maxw∈B γ2#(B). Equivalently, for all w ∈ W , and all B focal sets of γ2 con-
taining w, γ2#(B) ≤ maxw∈A γ1#(A), i.e., ∃A ∈ Fγ1 such that w ∈ A and
γ2#(B) ≤ γ1#(A). �

The above result shows that any dogmatic q-capacity is cf-dominated by any
non-dogmatic capacity since the contour function of the latter is 1 everywhere.
Non-dogmatic capacities are all equivalent for this ordering relation, which indi-
cates a lack of discrimination power. For Boolean capacities γ1, γ2 with values
in {0, 1}, it is obvious that γ1 ≥cf γ2 if and only if the union of focal sets of γ1

contains the union of the focal sets of γ2.
Besides Proposition 5 implies a property that allows for a comparison with the

natural dominance of capacities (based on ≥).

Proposition 6. γ1 ≥cf γ2 implies for eachB ∈ Fγ2 , ∃A ∈ Fγ1 such thatA∩B 6=
∅ and γ1#(A) ≥ γ2#(B).

Proof: Suppose that for each w and each B ∈ Fγ2 such that w ∈ B, ∃A ∈ Fγ1
such thatw ∈ A and γ1#(A) ≥ γ2#(B) (equivalent to γ1 ≥cf γ2 after the previous
proposition). It clearly implies ∀B 6= ∅,∃A,A∩B 6= ∅, γ1#(A) ≥ γ2#(B), using
the same set A as before for all B. The case B = ∅ is trivial. �

The converse is not true:
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Counter-example. Suppose γ1 has focals {w1, w2}with weight λ < 1 and {w2, w3}
with weight 1; γ2 has focals {w2} with weight λ < 1 and {w2, w3} with weight 1.

w1 w2

λ

w3

1

capacity γ1

w1 w2
λ

w3

1capacity γ2

It is clear that each focal set of γ2 intersects one focal set of γ1 that has greater
weight in the wide sense. But, we can check that πγ2 < πγ1 , so, γ1 <cf γ2.

Moreover, in contrast with the numerical setting, we cannot relate the cf-
ordering to the natural dominance of capacities, since γ1 > γ2 does not imply
γ1 ≥cf γ2 (πγ1 ≥ πγ2) as shown by the case when capacities are possibility mea-
sures (the two orderings coincide) or necessity measures (they are at odds). In-
deed, the contour function of a necessity measure is the characteristic function
of its largest focal set. Let N1, N2 be necessity measures with respective largest
focal sets E1 and E2. The cf-dominance N1 >cf N2 comes down to E2 ⊂ E1.
But clearly, we have N1(E2) < N2(E2) = 1.

3.3. Commonality-based orderings for q-capacities
We can also discuss the qualitative counterpart of the q-ordering for common-

alities. Again we can express the q-order in terms of the QMTs.

Definition 8. The q-order relation γ1 ≥q γ2 stands forQγ1 ≥ Qγ2 , whereQγ(A) =
maxA⊆E γ#(E).

Proposition 7. Qγ1 ≥ Qγ2 iff ∀F ∈ F̂γ2 ∃E ∈ F̂γ1 such that F ⊆ E and
γ1#(E) ≥ γ2#(F ) where F̂ is the set of maximal subsets in F .

Proof: Suppose ∀A,Qγ1(A) = maxA⊆E γ1#(E) ≥ maxA⊆F γ2#(F ) = Qγ2(A).

For any F̂ maximal focal set of γ2, 0 < Qγ2(F̂ ) = γ2#(F̂ ) ≤ maxF̂⊆E γ1#(Ê),
where Ê is a maximal focal set of γ1 such that F̂ ⊆ Ê and γ1#(Ê) ≥ γ2#(F̂ ). If
Qγ2(A) = 0, there is no constraint on γ1.

Conversely, for any set A, Qγ2(A) = maxA⊆F γ2#(F ) = γ2#(F̂ ) for A ⊆ F̂

where F̂ is maximal in Fγ2 . Hence, by assumption, Qγ2(A) = γ2#(F̂ ) ≤ γ1#(Ê)

with F̂ ⊆ Ê, where Ê is maximal in Fγ1 .
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So Qγ1(A) ≥ maxA⊆F γ2#(F ) = γ2#(F̂ ) = Qγ2(A). �

It follows that:

Corollary 1. γ1 ≥q γ2 implies γ1 ≥cf γ2.

Proof: Indeed, Qγ and πγ coincide on singletons. �

However, the converse is false.

Example 4. Suppose γ1 has focal sets {w1, w2} and {w1, w3} both with weight
λ, and {w2, w3} with weight 1; γ2 has focal sets {w1, w2} and {w1, w3} both with
weight 1. We can check that πγ1 < πγ2 , so, γ1 <cf γ2. However if A = {w2, w3},
it is clear that Qγ2(A) = 0 < Qγ1(A) = 1. �

The following counter-examples show that the natural dominance of capacities
neither implies nor is implied by the commonality ordering.

Example 5. W = {w1, w2, w3}.

{w1} {w2} {w3} {w1, w2} {w1, w3} {w2, w3} {w1, w2, w3}
γ1 0 λ 0 λ 1 λ 1
γ#1 0 λ 0 0 1 0 0
γ2 1 1 0 1 1 1 1
γ#2 1 1 0 0 0 0 0
Qγ1 1 λ 1 0 1 0 0
Qγ2 1 1 0 0 0 0 0

Here, γ1 ≤ γ2 while Qγ1 Qγ2 are not comparable.

W = {w1, w2}.
{w1} {w2} {w1, w2}

γ1 λ λ 1
γ2 0 1 1

{w1} {w2} {w1, w2}
γ#1 λ λ 1
γ#2 0 1 0

{w1} {w2} {w1, w2}
Qγ1 1 1 1
Qγ2 0 1 0

Here, Qγ2 ≤ Qγ1 while γ1 γ2 are not comparable. �
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3.4. Qualitative specialisation
We can try to define a qualitative counterpart of the specialization ordering as

a generalization of inclusion between focal sets. In the numerical case, masses
flow from focal sets of one belief function to larger focal sets of the other, while
preserving the total mass. This is equivalent to letting the masses of the focal sets
of the second belief function flow down to smaller focal sets of the first one [33].
However here we need two conditions, one from the first capacity to the other,
and one from the latter to the former. A big difference with the quantitative case
is that we cannot split the masses.

One shall thus view specialisation as a generalized form of set inclusion. In
the case of Boolean capacities, we say that γ1 is more specific than γ2 (γ1 ≥s γ2)
if each focal set E1 of γ1 is contained in some focal set F2 of γ2 and each focal set
F2 of γ2 contains some focal set E1 of γ1. For general q-capacities, we may also
require that γ1#(E) ≥ γ2#(F ) like for natural dominance. Then formally, in the
general case, γ1 ≥s γ2 should stand for the satisfaction of the two conditions

1. ∀F ∈ Fγ2 ∃E ∈ Fγ1 such that E ⊆ F and γ1#(E) ≥ γ2#(F )

2. ∀E ∈ Fγ1 ∃F ∈ Fγ2 such that E ⊆ F and γ1#(E) ≥ γ2#(F ).

The first condition, with this inequality, is precisely natural dominance γ1 ≥ γ2,
in view of Proposition 4.

However, this proposal is not satisfactory. For instance suppose γ1 is a neces-
sity measure focused on E ⊂ W with weight λ on E and 1 on W , and γ2 is the
vacuous capacity with a single weight 1 on W . Then it is clear that γ1 should be
considered as included in γ2 as W contains both focal sets of γ1. However the in-
equality γ1#(E) ≥ γ2#(F ) is violated since the weight λ of E can be assigned to
no focal set of γ2, that contains it with smaller or equal weight (the only possible
focal set of γ2 is W ). Worse, consider another necessity measure γ′1 of the same
form with the same weight on E ′ ⊃ E. It is clear that γ1 ≥s γ′1,while they are not
specialisations of the vacuous capacity.

One way out is the use of cuts of capacities, that is γα(A) = 1 if γ(A) ≥ α,
and 0 otherwise. Then we can use the specialisation of Boolean capacities:

Definition 9. γ1 ≥s γ2 if and only if γ1α ≥s γ2α, ∀α > 0, that is

1. ∀F ∈ Fγ2α ∃E ∈ Fγ1α such that E ⊆ F .
2. ∀E ∈ Fγ1α∃F ∈ Fγ2α such that E ⊆ F .

This definition solves the previous counterexample, since at levels α > λ, γ1α =
γ2α = γ0 and at levels α ≤ λ, focal sets are E and W , respectively, that is
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γ1α = NE and γ2α = γ0. It is clear that in the above definition, the first item is
equivalent to natural dominance, which is also equivalent to γ1α ≥ γ2α,∀α > 0.
It would be of interest to find a definition of specialization equivalent to the above,
however without resorting to α-cuts.

The relations between the various informational orderings studied in this sec-
tion are summarized as follows:

γ1 ≥s γ2 ⇒ γ1 ≥ γ2;

γ1 ≥q γ2 ⇒ γ1 ≥cf γ2;

but γ1 ≥ γ2 6⇒ γ1 ≥cf γ2.

4. Three uses of q-capacities

In the numerical framework, capacities, seen as representations of uncertainty,
are found in several situations:

1. to represent certain convex sets of probabilities, in particular lower and up-
per probabilities induced by incomplete statistical information (Dempster
[16]);

2. to generalize the expected utility criterion so as to take into account aversion
to incomplete information (Choquet integral [9]);

3. to model the fusion of uncertain evidence with Shafer’s simple support and
belief functions [67].

The same program can be carried out in the qualitative framework, but we will
see that we are not going to interpret q-capacities, especially maxitive functions,
in the same way in each case. Moreover, in contrast with the numerical setting,
the interpretation, in terms of information content, of ordering relations between
q-capacities in the previous section is problematic in the qualitative setting, as
the same ordering may be interpreted as “more informed than” or “less informed
than” according to the intended meaning of the q-capacities. As a consequence,
we shall have to revisit the notion of information content in each of the three
applicative settings considered in this section.

4.1. Imprecise possibilities
The approach to imprecise probabilities proposed by Dempster [16] consists

of a probabilistic space (U, P ) and a multiple-valued mapping Γ : U → W .
Precise observations in u ∈ U are imprecisely interpreted in W , as expressed by
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Γ(u). The incomplete knowledge of a function f : U → W is represented by Γ,
where f(u) is the correct interpretation of u in W .

The idea is that if a random experiment provides a result u, the resulting
observation is an ill-known value x = f(u) ∈ Γ(u). We are dealing with an
ill-observed random variable. Hence, we do not know the probability measure
Pf (A) = P (f−1(A)) for A ⊆ W precisely, because we only know that A∗ ⊆
f−1(A) ⊆ A∗ ⊆ U , where

A∗ = {u : Γ(u) ⊆ A}, and A∗ = {u : Γ(u) ∩ A 6= ∅}.

Note that (A∗)
c = (Ac)∗. Thus, we only know the lower bound: P (A) = P (A∗)

and the upper bound: P (A) = P (A∗) of Pf (A).
This amounts to defining a probability allocation mP : 2W → [0, 1] such that

mP (E) = P ({u : Γ(u) = E}) and we verify that P coincides with the belief
function induced by mP . In particular, since (A∗)

c = (Ac)∗, we have

P (A) = 1− P (Ac),

so that P and P are dual set functions.
Suppose in the qualitative setting that we only have access to a single quali-

tative possibility distribution π on U . The presence of an imprecise link between
U and W induces imprecise knowledge on the possibility measure Πf (A) =
Π(f−1(A)) on W . Therefore, lower and upper possibilities are defined such that
Π(A) = Π(A∗) and Π(A) = Π(A∗) [32, 74]. This amounts to defining a basic
possibility assignment ρ : 2W → [0, 1] such that ρ(E) = Π({u : Γ(u) = E})
where Π is the possibility measure associated with the possibility distribution π.
We obtain:

Π(A) = max
E⊆A

ρ(E) = γ(A) for a q-capacity γ (9)

Π(A) = max
E∩A 6=∅

ρ(E) = max
w∈A

Π({w}) = Plγ(A) (10)

where Π is a possibility measure whose possibility distribution is the contour func-
tion πγ of γ = Π. It is known that the upper possibility is a possibility measure,
while the lower possibility is any q-capacity [32, 74]. Hence the value of the de-
gree of possibility Πf (A) ofA ⊂ W lies between Π(A) and Π(A). Note that here,
Π and Π are not dual set functions.

In this framework, a q-capacity γ is induced from a BΠA ρ that is not its QMT
since γ(A) ≥ ρ(A) ≥ γ#(A). Such a q-capacity is interpreted as an imprecisely
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known possibility measure in the maxitive core such that Π(A) ∈ [γ(A), P lγ(A)].
Here, γ(A) = 0 only means thatA is potentially impossible. Imprecise possibility
measures have been used in possibilistic belief networks [5].

Symmetrically, using the possibility distribution π on U , and the necessity
measure N on U such that N(S) = infu6∈S ν(π(u)),∀S ⊆ U , lower and upper
necessities on W can be defined as N(A) = N(A∗) and N(A) = N(A∗) [32, 74],
more precisely:

N(A) = N({u : Γ(u) ⊆ A}) and N(A) = N({u : Γ(u) ∩ A 6= ∅}).

By duality, we clearly have ν(N(A)) = ν(infu6∈A∗ ν(π(u))) = supu∈(Ac)∗ π(u) =

Π(Ac) = Π({u : Γ(u) ∩ Ac 6= ∅}), so the lower necessity is a measure of neces-
sity, while the upper necessity is any q-capacity γ′. Similarly we can check that
ν(N(A)) = Π(A). Moreover, it is obvious that Π ≥ max(Π, N) ≥ min(Π, N) ≥
N . However, there is no inequality between N and Π since they both can be any
kind of capacity.

In this canonical application setting, the meaning of the q-capacities is patent
in the following cases, on the basis of π and Γ:

• N(A) = 1 means that A is a sure event: ∀u s.t. π(u) > 0,Γ(u) ⊆ A.

• N(A) = 0 means that ∃u /∈ A∗ s.t. π(u) = 1, so A is fully uncertain, i.e., it
is unknown whether A is sure or not.

• N(A) = 1 means that ∀u s.t. π(u) > 0, u ∈ A∗, i.e., A is potentially a sure
event.

• N(A) = 0 means that ∃u /∈ A∗ s.t. π(u) = 1, so, it is certain that A cannot
be sure.

• Π(A) = 1 means that ∃u ∈ A∗ s.t. π(u) = 1, i.e., it is unknown if A is
possible or not. In other words, A is potentially possible.

• Π(A) = 0 means that A is surely an impossible event since π(u) = 0
whenever u ∈ A∗.

• Π(A) = 1 means that ∃u ∈ A∗ s.t. π(u) = 1, i.e., A is surely at least
possible.

• Π(A) = 0 means that ∀u ∈ A∗, π(u) = 0, i.e., A is potentially impossible,
but not surely.
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The above cases provide a full-fledged interpretation of q-capacities in terms
of possibility theory.

Example 6. (Inspired from [45]). Let U be a set of car types. Γ(u) is the set of
second-hand cars of type u ∈ U on sale at a given store. Let π be a possibility
distribution representing the type preferences of a customer. π(u) represents the
degree to which the type u is suitable for the customer’s need. It means that the
customer is more likely to buy a car of type u than of type u′ if π(u) > π(u′).
Let A be a set of second-hand cars of various types. The set functions N , N , Π,
Π can then be used for evaluating to what extent it is certain, potentially certain,
possible, potentially possible that the customer will buy a car in the set A.

�

We can figure out what informational ordering is natural in this setting. On the
set U , if there are two possibility distributions π and π′ representing the value of a
variable x, and π ≤ π′, then π′ provides less information than π. In this situation,
one can expect that the upper and lower possibilities and necessities induced on
W by π′ and the multimapping Γ are less informative than those using π. We can
indeed show that

Proposition 8. If π ≤ π′ then Π′ ≥ Π, and Π′ ≥ Π, where Π′ and Π′ (resp. Π
and Π) are defined from (π′,Γ) (resp. (π,Γ).

Proof: This is an obvious consequence of known inequalities Π′ ≥ Π, when
π ≤ π′. �

Note that denoting by γ the capacity Π and γ′ the capacity Π′, the obtained
pair of inequalities Π′ ≥ Π, and Π′ ≥ Π corresponds to the pair of inequalities
γ ≤ γ′ and πγ ≤ πγ′ . It makes it clear that the effect of the multimapping Γ is only
to turn the inequality Π(A) ≤ Π′(A) into its interval extension (the same ordering
between upper and lower bounds of the intervals). It says that if the imprecise
information Γ were precisiated in the form of a selection function f ∈ Γ, the
possibility distribution (representing incomplete information about the value of a
variable onW ) induced onW from π would be more specific than the one induced
from π′ whatever f is. Here we must interpret a contrario the natural dominance
γ′ ≥ γ as γ being more informative than γ′ (in the sense that each event A is
potentially less possible under γ than under γ′).

In contrast, if we consider two multivalued mappings Γ ⊆ Γ′, in the sense that
∀u ∈ U,Γ(u) ⊆ Γ′(u), then Γ′ loses more information than Γ about π, i.e., the
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knowledge about the ill-known mapping f is less with Γ′ than with Γ, resulting in
less information about the image of π on W .8

Proposition 9. If Γ ⊆ Γ′ then Π′ ≥ Π, and Π ≥ Π′, where Π′ and Π′ (resp. Π
and Π) are defined from (π,Γ′) (resp. (π,Γ).

Proof: If Γ ⊆ Γ′ then {u|Γ(u) ∩ A 6= ∅} ⊆ {u|Γ′(u) ∩ A 6= ∅} then Π′(A) ≥
Π(A). If Γ ⊆ Γ′ then {u|Γ′(u) ⊆ A} ⊆ {u|Γ(u) ⊆ A} then Π(A) ≥ Π′(A). �

Noticing that Π can be any capacity γ, and Π is the plausibility function
Plγ induced by its contour function, we have proven, under the scenario of the
above Proposition, that γ′ is less informative than γ when γ ≥ γ′ and πγ ≤ πγ′ ,
which joins natural dominance and cf-ordering. The intuitive meaning of this
information ordering is clear. Letting the set of possible possibility measures
induced by (π,Γ) (resp., (π,Γ′)) on W be P = {Π : γ ≤ Π ≤ Plγ} (resp.
P′ = {Π : γ ≤ Π ≤ Plγ′}) where γ = Π, the inequalities γ ≥ γ′ and πγ ≤ πγ′ ,
express the inclusion P ⊆ P′, which corresponds to a natural view of relative
information for imprecise possibilities, namely the idea that P provides more in-
formation about the possibility distribution on W than P′.

4.2. Using q-capacities to express pessimism and optimism in decision criteria
In decision theory, Wald’s maximin and maximax criteria [75] are among the

most well-known and oldest approaches to decision making under uncertainty.
Let f be a potential decision, seen as a mapping from a set of states W to a set
of consequences X . Let u : X → L be a utility function. Suppose we have no
information about the state of the world. The maximin criterion considers that the
best decision is the one that maximizes the worth of the worst outcome

W−(f) = min
w∈W

u(f(w)),

while the maximax criteria considers that the best decision is the one that maxi-
mizes the worth of the best outcome

W+(f) = max
w∈W

u(f(w)).

It is clear that the first criterion is very pessimistic whereas the second is very
optimistic.

8and not so much about the actual value of the variable of interest on W .
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These criteria are special cases of Sugeno integral [71, 72]. Its first appearance
seems to be under the name of Ky Fan distance [48]. It takes two equivalent forms
(see, e.g., [54]):

Sγ(f) = max
A⊆W

min(γ(A),min
w∈A

u(f(w))) (11)

= min
A⊆W

max(γ(Ac),max
w∈A

u(f(w))). (12)

In the setting of decision under uncertainty, it assumes that uncertainty about the
state of the world is represented by a q-capacity γ [44]. It may express a less
drastic attitude in the front uncertainty than Wald criteria [31, 44].

It is easy to verify that

• if γ is the maximal q-capacity, the possibility measure Π?(A) = 1 if A 6= ∅
then SΠ?(f) = W+(f)

• if γ is the minimal q-capacity, a necessity measureN ?(A) = 0 by ifA 6= W
then SN?(f) = W−(f).

Note that Π? and N ? are dual q-capacities (Π?(A) = ν(N ?(A))) and such that
Π? > N ?. They represent the same information (total ignorance), but the choice
between the two q-capacities reflects the optimism or the pessimism of the deci-
sion maker.

Suppose L is equipped with the negation function ν. In this context, general-
izing the situation of Π? and N ?, the criterion Sγ(f) (and therefore the q-capacity
γ) will be said to be pessimistic if γ(A) ≤ γc(A),∀A ⊆ W , and optimistic if
γ(A) ≥ γc(A),∀A ⊆ W . In the first case, it is clear that Sγ(f) ≤ Sγc(f).
In this context, the two q-capacities γ and its ν-dual γc are therefore supposed
to represent the same information, but they reflect different attitudes in front of
uncertainty.

But in general, a q-capacity will be neither optimistic nor pessimistic and we
can have γ(A) < γc(A) and γ(B) > γc(B) for A 6= B. In this case, γ is
pessimistic for some events and optimistic for other ones. In [40, 41], each q-
capacity γ is associated with its pessimistic and optimistic counterparts γ− and
γ+ respectively:

γ−(A) = min(γ(A), ν(γ(Ac))) (13)
γ+(A) = max(γ(A), ν(γ(Ac))). (14)
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We can verify that γ− and γ+ are dual q-capacities (γ− = γc+). Then we
define an equivalence relation whose equivalence classes contain all q-capacities
supposed to reflect the same information, but are more or less optimistic: γ ∼I
γ′ ⇐⇒ γ− = γ′− ⇐⇒ γ+ = γ′+. This means that the sets {γ(A), γ(Ac)}
and {γ′(A), γ′(Ac)} are equal, for any A. The criteria Sγ−(f) and Sγ+(f) are
respectively pessimistic and optimistic, and generalize the maximin and maximax
criteria.

There exist self-dual q-capacities [40] such that γ = γc (namely, γ(Ac) =
ν(γ(A)) for all A). For such a q-capacity, we have that γ = γ− = γ+, so the
criterion Sγ(f) corresponds to a neutral attitude in the face of uncertainty, a role
played by probabilities in the numerical framework. Unlike the latter framework,
where a belief function is a probability if and only if it is self-dual, if and only if
its focal sets are singletons, the focal sets of self-dual q-capacities cannot be just
singletons.

As in the quantitative framework, the notions of informativeness and degree
of pessimism can be told apart [40, 41]. In this particular setting of decision
under uncertainty, a q-capacity γ is said to be at least as informed as γ′ 6= γ
if and only if γ−(A) ≥ γ′−(A),∀A ⊆ W . This is a definition not proposed in
the previous section. It expresses natural dominance between pessimistic rep-
resentatives of the q-capacities. It corresponds to the inclusion of the intervals:
[γ−(A), γ+(A)] ⊆ [γ′−(A), γ′+(A)]. If γ and γ′ are possibility or necessity mea-
sures, this informational order coincides with the cf-ordering, the possibilistic
order of specificity [34]. In this framework, self-dual q-capacities are maximally
informed because all intervals [γ−(A), γ+(A)] are then reduced to single values.
They play in the qualitative case the role of probabilities in the quantitative case
for decision under uncertainty. On the other hand, possibility and necessity mea-
sures generally only express a limited form of incomplete information because
[γ−(A), γ+(A)] is of the form [0,Π(A)] or [N(A), 1].

Sugeno integral is formally similar to the discrete Choquet integral, which can
be put in the form:

Cg(f) =
∑
A⊆W

mg(A) ·min
w∈A

ut(f(w))

with numerical utility function ut : X → [0, 1] andmg the Möbius transform of g.
When g = Bel the mass functionmBel is non-negative and the Choquet integral is
clearly an extension of the pessimistic Wald criterion. Note that when g = Pl is a
plausibility function, the Möbius transform of Pl can take negative values, which
blurs the meaning of the expression of CPl in terms of mPl. But we can check that
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CPl(f) =
∑

A⊆W mBel(A) · maxw∈A ut(f(w)), which is clearly an extension of
the optimistic Wald criterion. Like in the qualitative setting, the choice of g = Bel
or Pl determines the pessimistic or optimistic nature of the criterion.

We know [19] that the ordering on functions f (decisions) induced by Sugeno
integral can be refined by a Choquet integral with respect to a belief function
obtained by ad hoc functions φ : L → [0, 1] mapping L to the unit interval. Pes-
simistic (13) and optimistic (14) Sugeno integrals are refined by Choquet integrals
of the form CBel(f) (resp. CPl(f)), where ut(f) = φ(u(f)), and Bel (resp. Pl) is
induced by the mass function mγ = φ(γ#). Functions φ are super-increasing,9 so
as to ensure that Sγ(f) > Sγ(f ′) implies CBel(f) > CBel(f ′).

Remark 3. A trade-off between pessimistic and optimistic Wald decision criteria
in the face of uncertainty may be achieved in the numerical setting by means
of Hurwicz’s criterion, of the form of the weighted arithmetic mean H(f) =
αW−(f) + (1 − α)W+(f), where α is a degree of pessimism. This criterion
has been generalized to belief functions by Jaffray [57]. However, it cannot be
directly adapted to the qualitative framework. A qualitative counterpart of Hur-
wicz’s criterion is proposed by Fargier and Guillaume [49], combining the max-
imin and maximax criteria by means of a qualitative uninorm [79], a semi-group
operation generalizing triangular norms and conorms, whose identity is inter-
preted as a degree of optimism. Giang [53] did the same using the α-median
G(f) = med(W−(f),W+(f), α), an associative operation originally proposed
in [52].

4.3. Qualitative support functions
This third view is based on interpreting q-capacities as counterparts of belief

functions, namely expressing degrees of support from uncertain evidence, based
on the analogy between them [64], observed in equations (2) and (4). In (2), a
q-capacity is defined from the BΠA ρ, in a way similar to the way belief functions
are defined from probabilistic mass functions, replacing the sum of supports by
the maximal one. Indeed, in Shafer’s mind, the mass mg(E) expresses how much
the information x ∈ E is supported by a source of information. It also expresses
the degree of belief in E due to a single more or less reliable testimony on the
value of x, of the form x ∈ E. In the numerical case, such testimony is mod-
elled by a simple support function [67], i.e., a mass function mg that assigns a

9φ(λi) >
∑
j<i φ(λj) for i = 1, . . . , `.
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mass s to a subset A of W and the remaining mass 1 − s to the whole set W .
The corresponding capacity is a consonant belief function, i.e., it is a necessity
measure.

It is thus easy to adapt this notion to the qualitative case.

Definition 10. A (qualitative) simple support q-capacity (SSC) focused on a set
E 6= W is a non-dogmatic necessity measure, denoted by NE , with focal sets E
and W . Its qualitative Möbius transform is thus of the form

NE#(A) =


α < 1 if A = E

1 if A = W

0 otherwise
.

Clearly NE(A) = α whenever E ⊆ A 6= W and 0 if E 6⊆ A. We restrict
this definition to E 6= W , since the set-function NW corresponds to the vacuous
capacity γ0 = N ? such that N ?(A) = N ?

#(A) = 0 for A 6= W . Hence, in this
framework of modelling unreliable pieces of information, the qualitative value
ρ(E) = N#(E) has a stronger meaning than a mere degree of possibility in the
usual sense, it is a degree of support. We assume that N#(E) < 1 if E 6= W
(and therefore N#(W ) = 1), to express the fact that a testimony is never fully
reliable. Such q-capacities based on BΠA of this form were already said to be
non-dogmatic (only tautologies have full support).

An uncertain elementary testimony is thus modelled by an SSC in the sense of
Definition 10, using a BΠA that gives support to a unique proposition of the form
x ∈ E 6= W .

More generally, the degree γ(A) represents the degree to which the proposi-
tion A is supported by the evidence described by the set of weighted focal sets
generating γ. This statement is justified by the following result:

Proposition 10. Any non-dogmatic q-capacity can be expressed as
γ = maxE∈Fγ NE , with NE#(E) = γ#(E).

Proof: For A 6= W , γ(A) = maxE∈Fγ ,E⊆A γ#(E) = maxE∈Fγ ,E⊆ANE#(E). It
is clear that this equality also holds trivially for A = W , since γ is non-dogmatic.

�

So, unlike in the previous sub-section, here a q-capacity represents informa-
tion completely different from that captured by its dual. In fact, we do not use
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duality with respect to ν. In particular, a q-necessity function models impre-
cise but coherent support information (nested imprecise focal sets), whereas a
q-possibility function models precise but conflicting support information (focal
sets are singletons). Hence under this particular setting of modeling testimony-
based information by q-capacities, necessity functions play the same role as in
the quantitative case (modeling incomplete information), while possibility mea-
sures play in the qualitative setting the same role as probability measures in the
quantitative case.

More generally, a q-capacity can represent incomplete and inconsistent infor-
mation. Namely

• If γ(A) is close to 1 and γ(Ac) is close to 0, there is strong support in favour
of A.

• If γ(A) is close to 0 and γ(Ac) is close to 1, there is strong support against
A.

• If γ(A) and γ(Ac) are both close to 0, there is a lack of information about
A.

• If γ(A) and γ(Ac) are both close to 1, there is conflicting knowledge about
A.

As a consequence, a q-capacity described as pessimistic in the previous sub-
section (such that γ(A) ≤ γc(A)) cannot represent contradictory information,
since γ(A) = 1 implies γ(Ac) = 0, while we may have γ(A) = γ(Ac) = 0;
whereas a q-capacity qualified as optimistic (such that γ(A) ≥ γc(A)) cannot rep-
resent incomplete information, since γ(A) = 0 implies γ(Ac) = 1, while we may
have γ(A) = γ(Ac) = 1.

We can compare events in terms of how believed they are and how informed
they are, given a capacity γ. The informational order ≥I between events A and B
is of the form

A ≥I B ⇐⇒ γ(A) ≥ γ(B) and γ(Ac) ≥ γ(Bc),

which means that the sources supportA and its negation more than they supportB
and its negation, so they inform at least as much about A as about B. According
to relation >I a conflicting opinion on a proposition A is interpreted as an excess
of information.
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A credibility ordering ≥t between events can also be expressed, by requiring
that γ supports A more than B and supports the negation of B more than the
negation of A; so A is considered to be at least as credibly true as B is formalized
as follows:

A ≥t B ⇐⇒ γ(A) ≥ γ(B) and γ(Bc) ≥ γ(Ac).

From an algebraic point of view, the structure (L × L,≥I ,≥t) is known as a
bilattice, and more specifically a so-called rectangular bilattice [17].

Under this interpretation, it is clear that natural dominance is the most adapted
information ordering between capacities. Clearly, it is a partial ordering. In-
deed γ1 ≥ γ2 means that for all events A, there is more evidence in favor of A,
according to γ1 than to γ2, at the risk of having γ1 expressing more conflicting
evidence than γ2. In particular, the least informative capacity is the vacuous one
γ0 = N ? whose only focal set is W (corresponding to the tautology, i.e., no in-
formation), while the most informative one is the uniform possibility measure Π?

which grants maximal weight to all singletons of W , this being the strongest form
of inconsistency. Note that this interpretation is at odds with the one in the previ-
ous section 4.2 for possibility measures: here, π1 ≥ π2 means that the former is
more informed than the latter, since it expresses more inconsistency; on the con-
trary, when possibility measures express the same incomplete information as their
dual necessity measures, π1 ≥ π2 means that π2 is more specific than π1, hence
brings more information, as it is the case in the previous section 4.2.

As shown later on in Section 6 of this paper, such a view of q-capacities en-
compasses Dunn-Belnap logic of incomplete and conflicting information due to
the presence of a bilattice for ordering the pairs (γ(A), γ(Ac)) [2, 3].

This particular view of q-capacities as support functions modeling testimonies
of sources of information is particularly adapted to the problem of information
fusion for which we need counterparts to, for instance, Dempster rule of combi-
nation, which is the topic of the next section.

5. Merging rules for capacities

The problem of merging capacities is of primary importance for the purpose
of information fusion. In the numerical case, if g1 and g2 are two capacities, then
so is the function g12 = g1 ? g2, defined by ∀A ⊆ W , g12(A) = g1(A) ? g2(A),
where ? is a monotonically increasing two-place function such that 1 ? 1 = 1
and 0 ? 0 = 0. This fact remains true in the qualitative setting, in particular

34



if ? = min or max. However, for belief functions, this combination method is
generally not valid, i.e., Bel1 ? Bel2 is generally not a belief function, except
if ? is a weighted average, or the product. Expressed by means of the Möbius
transform, the latter combination comes down to a union of random sets [33].
However the most popular combination rule for belief functions is Dempster rule
of combination [67] (here given without the normalization step), namely m1�m2

such that

(m1 �m2)(A) =
∑

B,C:A=B∩C

m1(B) ·m2(C),∀A ⊆ W. (15)

where mi is the BPA of the belief function Beli, i = 1, 2. It is clearly an intersec-
tion of independent random sets.10

In this section we study a qualitative counterpart of this combination rule for
q-capacities, first suggested in [32].

5.1. Dempster-like combination of basic possibility assignments
Definition 11. Let ρ1 and ρ2 be two basic possibility assignments. The qualitative
conjunctive combination rule ⊗ is defined by
∀A ⊆ W , (ρ1 ⊗ ρ2)(A) = maxB∩C=A min(ρ1(B), ρ2(C)).
We call this merging rule Dempster-like maxmin conjunctive rule of combina-

tion (maxmin combination, for short).

This combination rule is a clear qualitative counterpart to (15). It is is com-
mutative, associative and possesses an identity: the vacuous basic possibility as-
signment ρ0 = γ0

#, equal to 0 everywhere except on W (ρ0(W ) = 1); indeed,
ρ0 ⊗ ρ = ρ for all ρ.

However, the set function ρ1⊗ρ2 may fail to be a basic possibility assignment.
First it may be that (ρ1⊗ ρ2)(∅) 6= 0 (if there exists B and C such that B ∩C = ∅
and ρ1(B) > 0, ρ2(C) > 0). We may even get (ρ1 ⊗ ρ2)(∅) = 1 if the two
possibility distributions ρ1 and ρ2 bear on disjoint subsets with Möbius weights 1,
which makes the combination ineffective.

This difficulty is already observed in the numerical setting on the unnormal-
ized Dempster rule of combination (15) since the resulting mass function can
assign a positive mass to the empty set in case of conflict, reaching 1 on ∅ if two
combined mass functions bear on disjoint focal sets. Hence the use of a final

10This combination rule can also be computed from the product of commonalities [67].
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renormalization step in Dempster rule. It rescales the mass function, doing away
with the empty focal set, and ensuring that the sum of the masses on non-empty
sets is 1.

In the qualitative setting, the maxmin combination may also fail to preserve
top normalization, when there are no B and C such that ρ1(B) = ρ2(C) = 1
with B ∩ C 6= ∅. Moreover, if the two possibility distributions ρ1 and ρ2 bear on
disjoint subsets, we may even have (ρ1 ⊗ ρ2)(A) = 0 for all A 6= ∅.

Contrary to the quantitative case, there is no way to normalize the resulting
qualitative mass function by a suitable rescaling. In order to respect the closure
property for this combination rule, we can, in conformity with evidence theory,

• either consider a more general class of monotonic set functions than capac-
ities whereby γ(∅) > 0 is allowed. However it is not clear what it means.

• or modify the combination rule by bottom and top renormalization of the
result.

In the following, we use a bottom- and top-normalized conjunctive rule denoted
by ⊗̂ such that:

• the bottom normalization condition (ρ1⊗̂ρ2)(∅) = 0 is enforced and added
to Def. 11 (as done in [10]);

• if possibility assignments are such that ρ1(A) = 1 and ρ2(B) = 1 imply
A ∩ B = ∅, we add the whole set W with mass 1 (in the spirit of Yager’s
suggestion for renormalization of the conjunction of random sets in the nu-
merical setting [78]).

We thus propose the following modification of Definition 11:

Definition 12. Let ρ1 and ρ2 be two basic possibility assignments. The normal-
ized qualitative conjunctive combination rule ⊗̂ is defined by

(ρ1⊗̂ρ2)(A) = (ρ1 ⊗ ρ2)(A) if A 6= ∅,W
(ρ1⊗̂ρ2)(∅) = 0,

(ρ1⊗̂ρ2)(W ) =

{
1 if @A: (ρ1 ⊗ ρ2)(A) = 1

(ρ1 ⊗ ρ2)(W ) otherwise.
.

It can be checked that, omitting the top normalization step (the third condition
above), this definition preserves the associativity of the combination rule for basic
possibility assignments. Indeed:
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• if A 6= ∅, then (ρ1⊗̂ρ2)⊗̂ρ3(A) = ρ1 ⊗ ρ2 ⊗ ρ3(A) since ⊗ is associative,

• (ρ1⊗̂ρ2)⊗̂ρ3(∅) = (ρ′⊗̂ρ3)(∅) = 0 and ρ1⊗̂(ρ2⊗̂ρ3)(∅) = (ρ1⊗̂ρ′′)(∅) = 0.

But top normalization leads to losing associativity. For instance suppose that
@A1, A2 : A1 ∩ A2 6= ∅ and ρ1(A1) = ρ2(A2) = 1. But there exist A2, A3

that overlap and such that ρ2(A2) = ρ3(A3) = 1, and ρ3(W ) 6= 1. It can be
checked that

• (ρ1⊗̂ρ2)(W ) = 1 and (ρ1⊗̂ρ2)⊗̂ρ3(A3) = ρ3(A3) = 1 and the result is
obviously top-normalized, but (ρ1⊗̂ρ2)⊗̂ρ3(W ) < 1.

• (ρ2⊗̂ρ3)(A2 ∩A3) = 1, and ρ1⊗̂(ρ2⊗̂ρ3)(W ) = 1 since there is no A1 with
weight 1 that intersects A2 ∩ A3.

However, it is better to carry out the top normalization step after combining all
the items of information ρi, that is, compute (ρ1⊗̂ρ2⊗̂ρ3)(A), A 6= W first (which
is associative).

Remark 4. Alternatively, we could renormalize ρ1 ⊗ ρ2 in the style of qualita-
tive possibility theory. Namely, if the two BΠAs are partially inconsistent, i.e.,
maxA⊆W (ρ1 ⊗ ρ2)(A) = ĉ12 < 1, then by we assign 1 to all sets A 6= ∅ with
(ρ1 ⊗ ρ2)(A) = ĉ12. This re-normalization works only if ĉ12 > 0; otherwise the
two BΠAs are totally inconsistent. Moreover the obtained combination rule is
again not associative.

5.2. Conjunctive combination of qualitative capacities
Adapting the maxmin combination rule from basic possibility assignments to

capacities is not trivial because as we shall see, choosing different BΠAs gener-
ating the same capacities may lead to different results after combination. Indeed,
the conjunctive combination of equivalent basic possibility assignments (generat-
ing the same fuzzy measures via (2)) does not yield equivalent basic possibility
assignments: ρ1 ∼ τ1 and ρ2 ∼ τ2 do not imply ρ1 ⊗ ρ2 ∼ τ1 ⊗ τ2. The result of
the conjunctive combination rule extended to capacities thus depends on the basic
possibility assignments used to represent the capacities.

Example 7. For instance consider A,B,C with ρ1(W ) = 1, ρ1(A) = α >
ρ1(A ∩ B) = β where A ∩ B 6= ∅, and ρ1(E) = 0 otherwise. Let τ1 = ρ1 but for
τ1(B) = β. Clearly, ρ1 ∼ τ1. Lastly let ρ2(C) = δ, with B ∩ C 6= ∅, ρ2(W ) = 1
and ρ2(E) = 0 otherwise. Suppose A ∩ C = ∅.
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A B C

Note that (ρ1⊗ρ2)(B∩C) = 0 and it yields a capacity γ12 such that γ12(B∩C) =
0. However (τ1 ⊗ ρ2)(B ∩ C) = min(β, δ) yielding a capacity γ′12 such that
γ′12(B ∩ C) = min(β, δ). �

More generally, when merging two SSCs NA with weight α on A and NB

with weight β on B, suppose we consider A′ ⊃ A and B′ ⊃ B and let ρ1 = NA#

but for ρ1(A′) = α and likewise ρ2 = NB# but for ρ2(B′) = β. In the case
when A ∩ B = ∅ but A′ ∩ B′ 6= ∅ containing neither A nor B, we have that
(NA#⊗̂NB#)(A′ ∩ B′) = 0, while (ρ1⊗̂ρ2)(A′ ∩ B′) = min(α, β) > 0, yielding
a capacity that is positive on A′ ∩B′.

A natural option is to combine the QMTs of the capacities, as the QMT con-
tains the minimal amount of information to recover the capacity.

Definition 13. The maxmin conjunctive combination of any k-tuple of q-capacities
γi consists in first computing the basic possibility assignment

ρ⊗̂(A) =


maxE1...Ek:∩ki=1Ei=A 6=∅ min(γ1#(E1), . . . , γk#(Ek))

0 if A = ∅.
1 if A = W.

and the resulting capacity is γ(A) = maxE⊆A ρ⊗̂(E). This combination is de-
noted by γ = ⊗̂ki=1γi. We then call (γ1, . . . , γk) a conjunctive decomposition of
γ.

Properties of the QMT-based maxmin conjunctive definition. This combina-
tion rule is commutative. Note that if we do not add the last item in the definition
of ρ⊗̂, we might end up with γ(W ) < 1. And since the result of combining q-
capacities is a q-capacity, we must delete from ρ⊗̂ redundant sets and extract the
QMT γ# from it, prior to combining the result with other capacities.

Example 8. Consider two simple support functions (SSCs)NA andNB where the
focal set weights are respectively NA#(A) = α ≥ NB#(B) = β. Then the result
of the combination NA#⊗̂NB# is a basic possibility assignment ρAB such that

ρAB(A ∩B) =

{
β if A ∩B 6= ∅,
0 otherwise (enforced value).

ρAB(A) = α, ρAB(B) = β, ρAB(W ) = 1.
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This combination of Möbius transforms does not always yield a Möbius transform
as the resulting capacity γAB does not have focal set B if A ∩ B 6= ∅ and α > β.
This capacity γAB thus has focal sets that depend upon A,B, α, β:

• γAB#(A ∩B) = β, γAB#(A) = α, γAB#(W ) = 1 if A ∩B 6= ∅ and α > β
(since γAB#(B) = 0);

• γAB#(A ∩B) = α, γAB#(W ) = 1 if A ∩B 6= ∅ and α = β;

• γAB#(A) = α, γAB#(B) = β, γAB#(W ) = 1 if A ∩B = ∅.

• When A and B are nested (A ⊂ B) then NA#⊗̂NB# = NA# since β ≤ α.

�

Even if we put aside the renormalization step (ρ⊗̂(W ) = 1), our maxmin
Dempster-like conjunctive combination of q-capacities will not preserve the asso-
ciativity of the combination of BΠAs, a property which holds for Dempster rule in
the numerical setting.11 Namely, when performing the combination (γ1⊗̂γ2)⊗̂γ3

as

(i) first obtaining γ12 from the basic possibility assignment γ1#⊗̂γ2#, then
(ii) combining γ12 and γ3 by computing γ12#⊗̂γ3#,

the result may not be the same q-capacity as γ1⊗̂(γ2⊗̂γ3). This is because at each
step we extract the QMT from the result of combining QMTs.

Example 9. Consider 3 SSCs NA, NB, NC focused on sets A,B,C, with respec-
tive weights β < α and β < δ, such that A ∩ C = ∅ but where B and A, as well
as C and B overlap.

A,α B, β C, δ β < α and β < δ

Suppose we compute (NA⊗̂NB)⊗̂NC and we compare it with NA⊗̂(NB⊗̂NC):

11Our rule is actually the qualitative counterpart to Yager proposal [78], which is not associative
either.
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1. NA⊗̂NB yields a q-capacity γAB whose QMT is such that γAB#(A ∩B) =
β, γAB#(A) = α, γAB#(W ) = 1 and 0 otherwise.

2. γAB⊗̂NC is a q-capacity γ(AB)C with QMT γ(AB)C# such that γ(AB)C#(A∩
B) = β, γ(AB)C#(A) = α, γ(AB)C#(C) = δ, γ(AB)C#(W ) = 1 and 0
otherwise.

3. NB⊗̂NC yields a q-capacity γBC whose QMT is such that γBC#(B ∩C) =
β, γBC#(C) = δ, γAC#(W ) = 1 and 0 otherwise.

4. NA⊗̂γBC is a q-capacity γA(BC) with QMT γA(BC)# such that γA(BC)#(B∩
C) = β, γA(BC)#(A) = α, γA(BC)#(C) = δ, γA(BC)#(W ) = 1, and 0
otherwise.

As a consequence, NA⊗̂(NB⊗̂NC) 6= (NA⊗̂NB)⊗̂NC and both differ from
the result obtained by jointly combining the three capacities as NA⊗̂NB⊗̂NC

according to Definition 13, which yields (we let the reader check it) a capac-
ity γABC with QMT γABC# such that γABC#(A ∩ B) = γABC#(A ∩ C) =
β, γABC#(A) = α, γABC#(C) = δ, γABC#(W ) = 1, and 0 otherwise. It is also
equal to NB⊗̂(NA⊗̂NC). It can be seen that (NA⊗̂NB)⊗̂NC misses the focal set
B ∩ C, while NA⊗̂(NB⊗̂NC) misses the focal set A ∩B. �

These facts justify defining the Dempster-like conjunctive maxmin combina-
tion of more than two (say k) capacities γi like in Definition 13, that is, by com-
bining their Möbius transforms via Definition 11 in one step, avoiding the issues
of associativity and lack of stability with respect to ∼.

Let us exemplify this combination rule on k simple support capacities. If the
γ′is are SSCs NEi , each focused on a subset Ei with weight αi, the result of their
conjunctive combination can be computed as follows. Note that ρ⊗̂(A) > 0 if and
only if A = ∩{Ei ∈ T } 6= ∅ for some family T ⊆ {E1, . . . , Ek} of overlapping
subsets (we use γj#(Ai) = αi if Ai = Ei ∈ T , and consider γj#(W ) = 1
otherwise). Then

ρ⊗̂(A) = max
T :A=∩{Ei∈T }

min
Ei∈T

αi

and ρ⊗̂(A) = 0 otherwise.
Let Kj, j = 1, . . . , p be the set of maximal families of overlapping subsets of

{E1, . . . , Ek}. The focal sets of ⊗̂ki=1NEi are thus only among the non-empty sets
∩{Ei ∈ T ⊆ Kj} for some j, including sets Ei themselves. In particular, all sets
of the form ∩{Ei ∈ Kj}, j = 1, . . . , p are focal sets of ⊗̂ki=1NEi . Given a maximal
consistent family {E1, . . . , Ek} with weights α1 < α2 < · · · < αk, the elements
of the nested family ∩ki=`Ei of focal sets receive weights α`, ` = 1, . . . , k.
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Various forms of consistency between capacities. The three cases appearing in
Definition 13 are motivated by possible inconsistencies between the capacities to
be combined. There are various forms of mutually (in)consistent capacities:

Definition 14. Two capacities γ1 and γ2 are said to be (the definitions are ordered
by increasing strength)

• top mutually consistent if ∃E,F : E ∩ F 6= ∅, γ1#(E) = γ2#(F ) = 1

• mutually consistent if they are top-consistent and

– all focal sets of γ1 intersect at least one focal set of γ2;

– all focal sets of γ2 intersect at least one focal set of γ1.

• strongly mutually consistent if

– all focal sets of γ1 intersect at least one focal set of γ2 with weight 1;

– all focal sets of γ2 intersect at least one focal set of γ1 with weight 1.

• fully mutually consistent if

– all focal sets of γ1 intersect all focal sets of γ2;

– all focal sets of γ2 intersect all focal sets of γ1.

If the QMTs are not top-consistent (in the sense that if γ1#(Ai) = 1, ∀i =
1, . . . , k then ∩ki=1Ai = ∅), we still get a capacity as the result since we enforce
γ(W ) = 1. It avoids restricting the combination rule to top-consistent capacities.
This problem does not appear in the case of combining non-dogmatic capacities.
If the capacities are mutually consistent, no focal set of any capacity is lost via
combination, since it will be refined non-trivially by focal sets of other capacities.
If the capacities are fully mutually consistent, only the first case in Definition 13
is activated, i.e. ρ⊗̂ = γ1# ⊗ γ2#, with no normalization step needed.

The maximum combination rule. We may replace the QMTs γi# by γi’s them-
selves in Definition 13, viewed as basic possibility assignments. In this case,
ρ⊗̂(A) = maxki=1 γi(A), since due to γi(W ) = 1, ∀i, the maximum in Def. 12 is
attained for a k-tuple of sets of the form (W, . . . ,W , A,W, . . . ,W ) where the set
A is in some position i in the vector. Moreover, γ = ρ⊗̂, so we get the max-rule
for capacities

γ =
k

max
i=1

γi. (16)
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Clearly, if ∩ki=1Ai is not focal for any γi, and γi#(Ai) > 0,∀i = 1, . . . , k, then
∩ki=1Ai gets positive weight for ⊗̂ki=1γi# but has zero weight for maxki=1 γi. So the
two combination rules differ.

Conjunctive combination and contour functions. Finally we can prove the
qualitative counterpart of a result in the theory of evidence, concerning contour
functions. Namely, it is known in the quantitative setting that the contour func-
tion of the result of combining two belief functions without normalization is the
pointwise product of their two contour functions. Here we prove the following:

Proposition 11. If two capacities γ1 and γ2 are top-consistent, then the following
identity is valid: πγ1⊗̂γ2 = min(πγ1 , πγ2).

Proof: The top-consistency assumption means that the case where W is forced to
be a focal set of the result with weight 1 is excluded. Then:

πγ1⊗̂γ2(w) = max
A:w∈A

max
A=E∩F

min(γ1#(E), γ2#(F ))

= max
E,F :w∈E∩F

min(γ1#(E), γ2#(F )) (monotonicity of QMTs)

= max
E:w∈E

min(γ1#(E), max
F :w∈F

γ2#(F ))

= min( max
E:w∈E

γ1#(E), max
F :w∈F

γ2#(F )) = min(πγ1(w), πγ2(w)).

�

Note that in the absence of top-consistency, the capacity obtained by combi-
nation is non-dogmatic (W is focal with weight 1), so that its contour function is
not informative (πγ1⊗̂γ2(w) = 1,∀w ∈ W ), which is not the case for γ1 and γ2.

Lastly, let us mention that while in the numerical case where the Dempster
conjunctive combination rule corresponds to the product of commonalities [67],
the qualitative counterpart of the combination applied to commonalities yields
their minimum [64]:

Proposition 12. [64] If two capacities γ1 and γ2 are top-consistent, then:

Qγ1⊗̂γ2 = min(Qγ1 , Qγ2)

Proof: If the two capacities γ1, γ2 are not top-consistent, the commonality func-
tion induced by γ1⊗̂γ2 is equal to 1 everywhere (since the latter is non-dogmatic,
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adding W to focal sets to ensure normalization), while this is not the case for
γ1, γ2, which are dogmatic since not top-consistent. Under top-consistency, we
have:

Qγ1⊗̂γ2(A) = max
A⊆B

max
E,F :E∩F=B

min(γ1#(E), γ2#(F ))

= max
E,F :A⊆E∩F

min(γ1#(E), γ2#(F ))

= min(max
A⊆E

γ1#(E),max
A⊆F

γ2#(F ))

= min(Qγ1(A), Qγ2(A))

�

However, since here commonalities lose a part of the information contained
in the QMTs, the q-capacity obtained by the maxmin combination of γ1 andγ2

cannot be recovered fromQγ1⊗̂γ2 . So, the practical interest of this result is limited,
in contrast with numerical commonality functions.

5.3. Separable non-dogmatic capacities
In the numerical setting a belief function is said to be separable, according

to Shafer [67], if it can be obtained as the result of combining simple support
functions by means of Dempster rule of combination. This decomposition is put
in such a way that it is unique. Only a subclass of belief functions is of this form.
In particular, the set of focal sets of a separable belief function is closed under
intersections.

In the qualitative setting we can try to introduce a notion of separability for
capacities in a similar way:

Definition 15. A q-capacity γ is said to be separable if and only if there exist some
SSCs NEi such that γ = ⊗̂ki=1NEi .

Note that in this case, γ is non-dogmatic since W is a focal set. Separable
capacities are characterized as follows [10, 23]:

Proposition 13. Let γ : 2W → [0, 1] be a capacity. Then γ is separable if and
only if W ∈ Fγ and

∀A,B ∈ Fγ, either A ∩B = ∅ or A ⊆ B or B ⊆ A, (17)

where Fγ is the set of the focal elements of γ.
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Proof: Necessity: Since γ = ⊗̂ki=1NEi , suppose A,B ∈ Fγ with A ∩ B 6= ∅.
It means that A = ∩{Ei ∈ TA} and B = ∩{Ei ∈ TB} for some families of
overlapping subsets TA, TB of {E1, . . . , Ek}. Suppose neither A ⊆ B nor B ⊆ A
hold. Then the set A ∩ B is of the form ∩{Ei ∈ TA ∪ TB}. In other words,
ρ⊗̂(A ∩B) = min(ρ⊗̂(A), ρ⊗̂(B)). As a consequence, A ∩B ∈ Fγ , hence either
A 6∈ Fγ or B 6∈ Fγ .

Sufficiency: Consider γ′ = ⊗̂E∈FγNE , with NE#(E) = γ#(E). Let us
show that γ′ = γ under the condition (17). Suppose A ∈ Fγ then ∀B ∈ Fγ ,
A ∩ B = ∅, B, or A. So when computing ρ⊗̂(A) one can only use families of
sets E1, . . . Ek ∈ Fγ such that ∩ki=1Ei = A where each Ei contains A, and one
of them is A, due to the condition (17), where γ#(Ei) > γ#(A) if Ei 6= A.
So, ρ⊗̂(A) = γ#(A). If A 6∈ Fγ it cannot be such that ∩ki=1Ei = A for any
A1, . . . , Ak ∈ Fγ due to the condition (17). So, ρ⊗̂ = γ# and γ′ = γ. �

So we have shown the following result:

Theorem 1. γ is separable if and only if γ = ⊗̂E∈FγNE .12

This result strikingly differs from the case of numerical separable belief func-
tions, whose focal sets do not satisfy Eq. (17), but are closed under conjunction
[67]. For instance the result of combining two necessity functions NA and NB

with respective weights a and b, and A∩B 6= ∅ is a belief function Bel with focal
sets A∩B,A,B,W with respective weights ab, a(1− b), b(1−a), (1−a)(1− b).
We have Bel = NA �NB, not Bel = NA �NB �NA∩B (as with Theorem 1).

Remark 5. The decomposition of capacities into simple support functions is not
unique. This is because ifA ⊂ B thenNA⊗̂NB = NA ifNB(B) ≤ NA(A). So we
can artificially add SSCs to the decomposition of γ = ⊗̂E∈FγNE . If γ can be de-
composed into a combination of simple support functions then the decomposition
based on the focal elements is minimal.

Separability and idempotence. The structure of the set of focal sets of a sepa-
rable capacity is very peculiar. Going top down, W is focal with degree 1. Then
we may have disjoint focal sets, each containing a nested sequence of focal sets.
In each sequence, the smallest set may also contain disjoint focal sets, and so on,
recursively. In other words, for any focal set A, the set of focal sets B that con-
tain A (if any) forms a chain of nested sets, which is another way to express the

12γ = ⊗̂E∈Fγ ,E 6=WNE , since NW = N? does not affect the combination.
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necessary and sufficient condition ( 17) for a capacity to be separable. We call
families of sets satisfying this condition disjoint-nested. The disjoint-nestedness
property is closely related to the existence of idempotent elements for the maxmin
conjunctive combination:

Proposition 14. γ⊗̂γ = γ if and only if γ has a disjoint-nested set of focal sets.

Proof: If Fγ is disjoint-nested and E,F are among its focal sets, then either
E ⊆ F , and E ∩ F = E, or E ∩ F = ∅ and the pair E,F plays no role in the
combination. So γ⊗̂γ(E) = maxF⊇E min(γ(E), γ(F )) = γ(E). Conversely if
Fγ is not disjoint-nested, there are focal sets E,F that non trivially intersect, so
that E ∩ F 6= ∅ is different from E,F and is not focal for γ. However it is then
focal for γ⊗̂γ since γ⊗̂γ(E ∩F ) ≥ min(γ(E), γ(F )) > 0 but γ(E ∩F ) = 0. So
γ⊗̂γ 6= γ. �

In particular, separable q-capacities are idempotent elements. But possibility
measures, which are not separable, are also idempotent elements (Π⊗̂Π = Π)
since their focal sets are singletons, hence have a disjoint-nested set of focal sets.
But, in the qualitative setting, possibility measures are dogmatic.

Contrary to the numerical case of separable belief functions, we do not have
that separability of a q-capacity γ imposes that the family of focal sets Fγ is
closed under intersection. For instance the non-dogmatic q-capacity with focals
such that γ#(A) = λ3 > γ#(B) = λ2 > γ#(A ∩ B) = λ1 is not separable
in the form ⊗̂(NA, NB, NA∩B) since the latter is the necessity measure N with
N#(A) = λ3, N#(A∩B) = λ2 (indeed ρ⊗̂(A∩B) = λ2, obtained by combining
A with weight λ3, B with weight λ2 and W from NA∩B).

The case of non separable capacities. As shown in Section 2.3 and [41], each
qualitative capacity γ is the maximum of necessity measures: γ(A) = maxmi=1Ni(A).
This decomposition is different from the one defined by the separability property
using ⊗̂. However they coincide for separable capacities.

Proposition 15. A capacity γ is separable if and only if ⊗̂E∈FγNE = maxE∈Fγ NE .

Proof: Suppose γ is separable. Then γ = ⊗̂E∈FγNE . This is equivalent to having
γ(B) = maxA⊆B ρ⊗̂(A), where ρ⊗̂(A) = maxT ⊆Fγ :A=∩{E∈T }minE∈T γ#(E),
forA 6= ∅. If E is a focal set of a separable γ, ρ⊗̂(E) = γ#(E) due to the disjoint-
nestedness structure of focal sets of γ. So it reduces to γ(B) = maxE⊆B γ#(E) =
maxE⊆B,E∈Fγ γ#(E), which can be written as maxE∈Fγ NE(B) due to Prop. 10.
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In the previous subsection, we noticed that using the QMT of a capacity to
apply the maxmin conjunctive combination does not give the same result as when
using the q-capacity itself since we get the max rule in the latter case. The above
result tells that a q-capacity is separable if and only if the two combination rules
applied to SSCs focused on focal sets coincide.

Proposition 16. Suppose a q-capacity γ is not separable, and let γ̂ = ⊗̂E∈FγNE .
Then γ̂ > γ.

Proof: γ̂ is a separable capacity whose family of focal sets Fγ̂ contains only non-
empty intersections of focal sets of γ. We have, for A 6= ∅

ρ⊗̂(A) = max
T ⊆Fγ ,∩{E∈T }=A

min
E∈T

γ#(E) ≥ γ#(A) if A ∈ Fγ letting T = {A}.

It is clear that ρ⊗̂(A) ≥ γ#(A) ifA 6∈ Fγ . Then we have γ̂(A) = maxE⊆A ρ⊗̂(E) ≥
maxE⊆A γ#(E) = γ(A). As γ is not separable, γ̂(A) > γ(A) for some A. �

The inequality γ̂ > γ in this result will be interpreted in terms of relative
information content in the next section.

Noticeable cases of separable capacities. It is clear that non-dogmatic necessity
measures N are separable since FN is nested. Likewise, capacities whose set of
focal sets contains only disjoint subsets, on top of W , are separable. Note that
possibility measures are not separable because they are dogmatic since their focal
sets are all singletons.

However, non-dogmatic capacities whose focal sets are singletons but for W
are separable. There exists a subnormal possibility distribution π (maxw∈W π(w) <
1), such that the capacity γπ is defined by γπ(A) = maxw∈A π(w), A 6= W , and
γπ(W ) = 1. The capacity γπ can be called a pseudo-possibility measure and is
such that

γπ(A ∪B) = max(γπ(A), γπ(B)) if A ∪B 6= W.

The conjugate of a pseudo-possibility measure is a capacity γcπ such that

γcπ(A ∩B) = min(γcπ(A), γcπ(B)) whenever A ∩B 6= ∅,

which can be called a pseudo-necessity measure.
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Proposition 17. A pseudo-necessity measure is separable.

Proof: We shall give the structure of its family of focal sets. Let εγ = min{γ({w}) :
w ∈ W} and let w∗ be an element with γ({w∗}) = εγ .

If εγ = 0, then γ is a necessity measure. Indeed if A ∩B = ∅ then
min(γ(A),γ(B))≤min(γ(A∪{w∗}),γ(B∪{w∗}))=γ((A∪{w∗})∩(B∪{w∗}))
= γ({w∗}) = 0.

Suppose εγ > 0: so ∀w ∈ W , γ({w}) ≥ εγ . Note that there can be only onew,
γ({w}) > εγ . For if γ({wi}) > εγ , i = 1, 2, then min(γ({w1, w∗}), γ({w2, w∗})) =
γ({w∗}) = εγ . So , for instance γ({w1, w∗}) = εγ , so γ({w1}) = γ({w∗}) = εγ .

Let Nγ be the capacity defined by Nγ(A) = γ(A) if γ(A) > εγ , and 0 other-
wise. It is clear that Nγ(A) is a necessity measure since:

• if γ(A∩B) > εγ , then A∩B 6= ∅ and Nγ(A∩B) = min(Nγ(A), Nγ(B));

• if γ(A ∩ B) = εγ and A ∩ B 6= ∅, then γ(A ∩ B) = γ(A) or γ(B), so
Nγ(A ∩B) = min(Nγ(A), Nγ(B)) = 0;

• the case when A ∩ B = ∅ and min(γ(A), γ(B)) > εγ is impossible since
min(γ(A), γ(B)) ≤ min(γ(A), γ(Ac)) ≤ min(γ(A∪{w∗}), γ(Ac∪{w∗}))
= εγ .

Let the focal sets of Nγ form the nested sequence A0 = W ⊃ A1 ⊃ · · · ⊃ Ap
with weights 1 > α1 > · · · > αp > εγ , where αi = γ(Ai). The capacity γ can be
reconstructed for A 6= ∅ as

γ(A) =

{
Nγ(A) if Nγ(A) > 0,

εγ otherwise.

Its focal sets are thus {W,A1 ⊃ · · · ⊃ Ap} ∪ {{w} : w ∈ W}, where γ#({w}) =
εγ (except perhaps for one of thew’s). They are disjoint-nested, i.e., clearly satisfy
the separability condition (17). �

But not all separable capacities take this form, since pseudo-necessities may
have only one nontrivial chain of non-singleton focal sets.

Example 10. The non-dogmatic capacity γ with two disjoint focal sets E1, E2

such that γ#(Ei) = αi > 0, i = 1, 2 is separable: γ = NE1⊗̂NE2 . However let
Ai ⊃ Ei, i = 1, 2 with A1 ∩ A2 6= ∅, such that A1 ∩ A2 does not contain E1, E2;
then γ(A1 ∩ A2) = 0, but γ(Ai) > 0, i = 1, 2, so it is not a pseudo-necessity
measure. �
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5.4. Disjunctive maxmin combination rule
Like in the numerical case, there is a qualitative counterpart of the disjunctive

combination rule for belief functions [33], obtained by replacing intersection by
the union in the qualitative maxmin rule of combination [64]:

Definition 16. The disjunctive maxmin combination of two q-capacities γi is de-
fined by γ⊕ = γ1 ⊕ γ2, where γ⊕(A) = maxE⊆A ρ⊕(E) and

ρ⊕(A) = max
E,F :E∪F=A

min(γ1#(E), γ2#(F ))

specializing the “union rule” ⊕ to two operands.

It is associative since, like in the numerical case, the expression for this combina-
tion drastically simplifies down to the minimum combination of capacities [64]:

Proposition 18. γ⊕ = min(γ1, γ2).

Proof:

γ⊕(A) = max
G⊆A

max
E,F :E∪F=G

min(γ1#(E), γ2#(F )) (18)

= max
E,F :E∪F⊆A

min(γ1#(E), γ2#(F )) (19)

= min(max
E⊆A

γ1#(E),max
F⊆A

γ2#(F )) = min(γ1(A), γ2(A)). (20)

�

Note that there is no counterpart to this property with the conjunctive maxmin
rule of combination, namely γ1⊗̂γ2 6= max(γ1, γ2).

As an example, consider the disjunctive merging of k SSCsNEi withNEi#(Ei)
= αi. It is easy to check that ⊕ki=1NEi = minki=1NEi is an SSC focused on
∪ki=1Ei with weight minki=1 αi. In contrast, the disjunctive merging of possibil-
ity measures is not a possibility measure: namely Π1 ⊕ Π2 = min(Π1,Π2) has
focal sets that are 1- and 2-element sets. It is the qualitative counterpart of the
merging of probability measures using the disjunctive version of Dempster rule of
combination [33].
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5.5. Dempsterian qualitative specialisation
An informational ordering relation between belief functions, called d-ordering,

has been proposed by Klawonn and Smets [59] based on Dempster rule of com-
bination. It relies on the postulate that the combination of belief functions via
Dempster rule increases informativeness:

m1 vd m2 iff there exists a BPA m such that m1 = m�m2.

Then, m1 is said to be a Dempsterian specialization of m2.
The idea is that if a mass function results from combining information com-

ing from two sources, the former is more informed than each source individually.
Dempsterian specialisation is more demanding than the usual specialisation rela-
tion, i.e., m1 vd m2 implies m1 vs m2.

It is then tempting to compare q-capacities using the Dempster-like maxmin
combination rule introduced in Section 5.2.

General case. We propose the following tentative definition as a qualitative coun-
terpart to the d-ordering for belief functions:

Definition 17. γ1 ≥d γ2 iff ∃γ such that γ1 = γ⊗̂γ2, where γ1(A) = maxE⊆A ρ⊗̂(E)
and

ρ⊗̂(A) =


maxE1,E2:E1∩E2=A min(γ#(E1), γ2#(E2)) if A 6= ∅,W
1 if A = W

0 if A = ∅,

specializing the combination rule ⊗̂ to two operands.

More precisely, according to the definition of γ⊗̂γ2 it is easy to check that:

Proposition 19. A non-empty set E1 6= W is a focal set of γ⊗̂γ2 if and only
if ∃E ∈ Fγ and ∃E2 ∈ Fγ2 such that E1 = E ∩ E2 and (γ⊗̂γ2)#(E1) =
min(γ#(E), γ2#(E2)).

It is worth noticing that in the above property, E and E2 are the maxima of
the function min(γ#(A), γ2#(B)), over all the focal sets satisfying the property
E1 = A ∩B. As a consequence note that any focal set of γ⊗̂γ2 different from W
is included in a focal set of γ and in another one of γ2 (possibly W ).

Intuitively, merging two pieces of information γ and γ2 should increase infor-
mativeness, i.e., γ⊗̂γ2 ≥ max(γ, γ2), at least when these pieces of information
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are mutually consistent [30], hence the rationale of the definition, that produces
smaller focal sets (i.e., more informative) since it performs the intersection of orig-
inal ones. But the resulting weight is not increased by the maxmin conjunctive rule
of combination. In particular, as shown in Proposition 14, this combination rule
possesses idempotent elements, namely capacities γ such that γ⊗̂γ = γ. They
are such that their focal sets are nested or disjoint. The combination yields no
additional information in that case.

Moreover, if we omit any consistency condition, γ1 = γ⊗̂γ2 may fail to be
more informative than γ and γ2. First, the lack of top-consistency (in the sense of
Definition 14) means that focal sets of γ with weight 1 (say E) do not intersect
any focal set of γ2 with weight 1 (say E2). In this case, the capacity obtained by
combination may be less informative than each of γ1 and γ. Indeed, neitherE2 nor
E are focals of γ⊗̂γ2. So γ⊗̂γ2(E2) < γ2(E2) = 1 and γ⊗̂γ2(E) < γ(E) = 1.
Here is a counter-example.

Example 11. Suppose L contains levels 0 < λ1 < λ2 < 1 and consider

• γ with focal sets γ#({1}) = λ2, γ#({2}) = 1;

• γ2 with γ2#({3}) = λ1 and γ2#({1, 3}) = 1;

• and consider γ⊗̂γ2.

w1
λ2

w3 w2

1

capacity γ

w1w3

λ1 1
capacity γ2

w1 w2 w1 w3w2

λ2

capacity γ⊗̂γ2

γ⊗̂γ2 has a focal set {1} with weight β (the other one being W ), and the table
below shows that γ⊗̂γ2 < γ and neither γ⊗̂γ2 ≤ γ2 nor γ⊗̂γ2 ≥ γ2 hold.

{1} {2} {3} {1, 2} {1, 3} {2, 3} W
γ λ2 1 0 1 λ2 1 1
γ2 0 0 λ1 0 1 λ1 1
γ# λ2 1 0 0 0 0 0
γ2# 0 0 λ1 0 1 0 0
γ⊗̂γ2 λ2 0 0 λ2 λ2 0 1

�
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Remark 6. The maxmin conjunctive Dempster-like combination takes the form:
γ1#(E1) = maxF2 min(S(E1, F2), γ2#(F2)) for a matrix S. Indeed:

γ1#(E1) = max
E,F2:E1=E∩F2

min(γ#(E), γ2#(F2))

= max
F2

min( max
E:E1=E∩F2

γ#(E), γ2#(F2))

letting S(E1, F2) = maxE:E1=E∩F2 γ#(E). Although, in the numerical case, this
kind of remark led to show that the d-specialization ordering is a special case
of specialization [59], there is no clear connection between d-specialization and
specialization (as discussed in Section 3.4) in the qualitative setting.

Top-consistent q-capacities. Satisfying the top-consistency property, i.e., there
are focal sets of γ and of γ2 with weights 1 that intersect, is sometimes sufficient
for the maxmin conjunctive combination to increase informativeness as shown in
the following example.

Example 12. Consider two top-consistent capacities γ and γ2:

w1

λ1

w2

1

w3

capacity γ

w2 w1 w3

λ2 1
capacity γ2

w1

λ1

w3w2

1
capacity γ⊗̂γ2

{1} {2} {3} {1, 2} {1, 3} {2, 3}
γ# λ1 0 0 0 0 1
γ2# 0 0 λ2 0 1 0

γ1 = γ⊗̂γ2 λ1 0 1 λ1 1 1
γ λ1 0 0 λ1 λ1 1
γ2 0 0 λ2 0 1 λ2

So, γ1 = γ⊗̂γ2 ≥ γ and γ1 = γ⊗̂γ2 ≥ γ2. �

The top-consistency of two capacities, in the sense of Definition 14, is un-
fortunately not enough to ensure that their maxmin Dempster-like combination
increases informativeness, as shown in the next example.
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Example 13. Suppose γ#({w1}) = γ2#({w1}) = 1, γ#({w2}) = γ2#({w3}) =
λ. Then γ⊗̂γ2 has only one focal set {w1}. So neither γ⊗̂γ2 ≥ γ nor γ⊗̂γ2 ≥ γ2

hold. �

In the above counterexample, there remains a form of inconsistency due to the
fact that there is a focal set of γ (namely {w2}) that does not intersect one focal
set of γ2 (namely {w3}) . In this case merging the capacities γ and γ2 does not
increase information in the sense of natural dominance.13

Mutual consistent q-capacities. Unfortunately we can check that enforcing mu-
tual consistency in the sense of Definition 14, that is, top-consistency and

• all focal sets of γ intersect at least one focal set of γ2,

• all focal sets of γ2 intersect at least one focal set of γ,

does not guarantee any form of information improvement.

Proposition 20. If γ1 and γ2 are mutually consistent q-capacities, then we have
the inequality γ1⊗̂γ2 ≥ min(γ1, γ2).

Proof: Let F be a focal set of γ1⊗̂γ2 different from W .
Then γ1⊗̂γ2(F ) = min(γ1#(E1), γ2#(E2)) with F = E1∩E2 6= ∅ for some focal
sets E1, E2. So, γ1⊗̂γ2(F ) = min(γ1(E1), γ2(E2)) ≥ min(γ1(F ), γ2(F )).

Finally, due to top-consistency, W is a focal set of γ1⊗̂γ2 if and only if it is a
focal set of γ1 and γ2. �

The inequality γ1⊗̂γ2 ≥ min(γ1, γ2) does not ensure increasing informative-
ness since min(γ1, γ2) is the result of the maxmin disjunctive combination of γ1

and γ2. So, even this form of mutual consistency is not enough to ensure that
γ1 = γ⊗̂γ2 is more informed than any of γ and γ2. It just says that, under mutual
consistency, the maxmin Dempster-like fusion rule is more informative than the
disjunctive maxmin rule of section 5.4.

Example 14. Suppose L = {0 < λ1 < λ2 < 1}.

• γ with focal sets γ#(E) = λ1, γ#(F ) = λ2, γ#(G) = 1 where E, F and G
are disjoint.

13The counter-example involves two possibility measures. Remember that in this context of
information fusion, Π1 ≥ Π2 means that Π1 is more informed (more inconsistent) than Π2.
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• γ2 has the same focal sets with γ2#(E) = λ2 and γ2#(F ) = λ1, γ2#(G) =
1.

E
λ1

F
λ2

G
1

Capacity γ

E
λ2

F
λ1

G
1

Capacity γ2

Then γ⊗̂γ2 = min(γ, γ2), but γ⊗̂γ2 < γ and γ⊗̂γ2 < γ2. �

Strongly mutual consistent q-capacities. A stronger form of mutual consistency
is needed to ensure that the qualitative Dempsterian combination rule improves
informativeness in the sense that γ1⊗̂γ2 dominates both γ1 and γ2. We need strong
mutual consistency in the sense of Def. 14, that is, all focal sets of γ1 intersect at
least one focal set of γ2 with weight 1; and all focal sets of γ2 intersect at least one
focal set of γ1 with weight 1.

Proposition 21. If γ1 and γ2 are strongly mutually consistent q-capacities, then
γ1⊗̂γ2 ≥ max(γ1, γ2).

Proof: The set of focal sets of γ1⊗̂γ2 will contain:

• non-empty intersections E = F ∩G of all focal sets of F of γ1 with a focal
set G of γ2 with weight 1. So the weight of the focal sets E will be at least
γ1#(F ). So γ1⊗̂γ2 ≥ γ1.

• non-empty intersections E = F ∩ G of all focal sets G of γ2 with a focal
set F of γ1 with weight 1. So the weight of the focal set E will be at least
γ2#(G). So γ1⊗̂γ2 ≥ γ2.

�

Under one-sided strong consistency, the d-ordering implies natural dominance
of capacities:

Proposition 22. If there is a capacity γ such that γ1 = γ⊗̂γ2, where all focal sets
of γ2 intersect a focal set of weight 1 of γ, then γ1 ≥ γ2.
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Proof: Indeed it is clear that γ⊗̂γ2 possesses at least focal sets of the form F ∩G,
where F is focal of weight 1 for γ and G is focal for γ2. The weight of F ∩ G is
not less than γ2#(G). Generally, γ⊗̂γ2 will possess more focal sets, of the form
F ∩G where F is some other focal set of γ and G a focal set of γ2, but such that
F ∩G is not focal for γ nor γ2. Then, γ⊗̂γ2 > γ2, i.e., the combination improves
informativeness over γ2. �

In this case, we have the following result relating d-ordering and natural dom-
inance:

Corollary 2. If γ1 ≥d γ2, where the capacity γ2 is strongly consistent with the
capacity γ such that γ1 = γ⊗̂γ2, then γ1 ≥ γ2.

Besides, there are cases when natural dominance holds but the d-ordering does
not hold. For instance, if γ1 is an SSC focused on E with weight α and γ2 is an
SSC with weight β < α focused on E as well, there is no way of expressing
γ1 as the combination of γ2 and some other γ, since (γ2⊗̂γ)#(E) is of the form
min(γ2#(E), γ#(F )) ≤ β for E ⊆ F .

As a special case of the above result, the Dempster-like combination rule does
increase information when one of the combined capacities is non-dogmatic.

Corollary 3. If γ is non-dogmatic, then γ⊗̂γ2 ≥ γ2.

Proof: Let A ∈ Fγ2 . Since γ#(W ) = 1, then
(γ⊗̂γ2)(A) = (γ⊗̂γ2)#(A) ≥ min(γ#(W ), γ2#(A)) = γ2#(A) = γ2(A).
If A 6∈ Fγ2 , then there is a focal set E ⊂ A of γ2 such that γ2(A) = γ2#(E). Then
γ⊗̂γ2(A) ≥ γ⊗̂γ2(E) = γ2#(E) = γ2(A). �

Contour functions and commonalities. Besides, there is a link between the d-
ordering and the contour function ordering.

Proposition 23. If γ1 = γ⊗̂γ2 where γ is top-consistent with γ2, then πγ1 ≤ πγ2 .
Moreover, if γ is non-dogmatic, πγ1 = πγ2 .

Proof: In the first case, by Proposition 11, πγ1 = min(πγ, πγ2) ≤ πγ2 . If γ is
non-dogmatic, πγ has value 1 everywhere, and the contour functions of γ1 and γ2

are the same. �

We can then compare the Dempsterian specialisation and the ordering of qual-
itative commonalities:
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Proposition 24. Under top-consistency assumption between γ and γ2 such that
γ1 = γ⊗̂γ2, we have γ1 ≥d γ2 ⇒ Qγ1 ≤ Qγ2 where Qγ(A) = maxA⊆B γ#(B).

Proof: Qγ1(A) = maxA⊆B γ1#(B) = γ1#(B0) with A ⊆ B0. Let us suppose
γ1 ≥d γ2. Then, assuming top-consistency between γ and γ2, we have γ1#(B0) =
min(γ#(B1), γ2#(C1)) with B0 = B1 ∩ C1. So we have Qγ1(A) ≤ γ2#(C1) with
A ⊆ C1, which entails Qγ1(A) ≤ Qγ2(A) (since γ2#(C1) ≤ maxA⊆B γ2#(B)),
i.e., γ1 ≥q γ2. �

In summary, we proved the following implications, concerning the d-specialisation:

Under top-consistency: γ1 ≥d γ2 ⇒ γ1 ≤q γ2 ⇒ γ1 ≤cf γ2; (21)
Under strong consistency: γ1 ≥d γ2 ⇒ γ1 ≥ γ2. (22)

Implications between ≥d, ≥q and ≥cf are exact counterparts of those in the quan-
titative case. This is not true for ≥ and ≥cf , which are not directly related.

6. A qualitative framework for information fusion

An important potential application of q-capacities is information fusion. Con-
sider a set of k sources providing testimonies of the form x ∈ Ei, each with
strength αi on an entity x. Each elementary testimony is modeled by a (non-
dogmatic) SSC NEi with a degree of support αi < 1 on the focal set Ei. In the
following we consider several qualitative combination rules aiming at merging in-
formation pieces that model such testimonies, some of which have counterparts in
the numerical setting, some not.

This problem comes back to concerns expressed in the XVIIth and XVIIIth
centuries by forerunners of probability such as Jacques Bernoulli and Jean-Henri
Lambert [68] or yet George Hooper [69], about representing and merging the
unreliable statements of witnesses at court of laws. See also the article Probabilité
(attributed to Benjamin de Langes de Lubières) in the Encyclopédie by Denis
Diderot and Jean le Rond d’Alembert [7]. These works were the occasion of
introducing special cases of Dempster rule of combination. Here we hint that this
program could be addressed by qualitative methods.

6.1. Non-destructive information fusion
By non-destructive information fusion, we mean a mode of fusion where no

useful piece of initial information coming from sources is lost. In particular all
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non-redundant pieces of information are kept as such and are not refined by cross-
checking, at the risk of preserving existing conflicts between them. The most
obvious non-destructive fusion method applied to information coming from sev-
eral unreliable sources modelled by SSCs NEi with confidence degree αi < 1 is
obtained by computing, via the maximum rule, the q-capacity

γmax(A) =
m

max
i=1

NEi(A),

obtained using results recalled in Subsection 2.3. It is easy to see that Fγ ⊆ {Ei :
i = 1, . . . ,m} ∪ {W}, with γ#(Ei) = αi i.e., it simply collects the existing
testimonies with their strengths, and eliminates the redundant sources. A source i
is said to be redundant when there exists another source k such that Sk ⊆ Si and
αi ≤ αk.

Thus, this non-destructive fusion process only collects non-redundant pieces
of information. Moreover, under this combination, we cannot infer x ∈ Ei ∩ Ej
from x ∈ Ei and x ∈ Ej . This kind of fusion is therefore unusual, because it
does not try to make the result more informative and coherent via cross-checking,
unlike conventional fusion methods.

Example 15. Consider two SSCs, NEi with a confidence degree αi on the focal
set Ei, i = 1, 2 with α1 < α2. If E1 * E2 or E2 * E1, then the q-capacity
γmax(A) = max(NE1(A), NE2(A)) is such that γmax(E1 ∩ E2) = 0, γmax(E1) =
α1, γmax(E2) = α2, so the information items collected by the sources 1, 2 are
not cross fertilized as we do not conclude x ∈ E1 ∩ E2. If E1 ⊆ E2 we have
γmax(E1) = α1, γmax(E2) = α2. Lastly if the converse inclusion holds, i.e.,
E2 ⊆ E1, we have γmax(E1) = γmax(E2) = α2, and the more imprecise and less
reliable source 1 is considered redundant and eliminated.

�

The q-capacity framework under this fusion mode is in fact powerful enough
to capture Dunn-Belnap logic [2, 3], using Boolean capacities (an extreme case of
our setting with weights αi = 1). It is one of the oldest and best known paracon-
sistent logics for handling both incomplete and inconsistent information coming
from several sources. It can be viewed as the most well-known non destructive
fusion set-up.

In the Belnap model, each source i is assumed to be reliable and declares each
atomic proposition pj, j = 1, . . . , q of a Boolean propositional language to be true
(ti(pj) = T ), or false (ti(pj) = F ), or unknown (ti(pj) = N). An “epistemic
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truth-value” τ(pj) ∈ {T,F,N,B}14 summarizes what the sources declare about
pj:

τ(pj) =


T if ∃i, ti(pj) = T ∧ @k, tk(pj) = F

F if ∃i, ti(pj) = F ∧ @k, tk(pj) = T

N if ∀i, ti(pj) = N

B if ∃i, ti(pj) = T ∧ ∃k, tk(pj) = F

The epistemic status of non-atomic propositions is determined by means of truth-
tables involving the four epistemic truth-values [3].

This set-up is clearly one example of non destructive information fusion. In-
deed all propositions supported by at least one source will receive an epistemic
truth value equal T, F or B.

We can capture this setting by means of Boolean q-capacities. Suppose there
are m sources, and let Ej be the set of models of atomic variables pj . Each source
i can be modelled by a Boolean q-capacity γi with focal sets

Fi = {Ej : ti(pj) = T} ∪ {Ec
j : ti(pj) = F}.

Note that there is no inclusion relationship between the sets Ej since they are
logically independent.

It is the limit case of sure pieces of evidence coming from several sources,
namely, SSCs with confidence degrees 1. Focal sets Fi of γi represent sure pieces
of information provided by sources i = 1, . . . ,m. Let γ = maxmi=1 γi. It is obvious
to check that the set of focal sets of γ is Fγ =

⋃m
i=1Fi (there is no redundancy

because atomic propositions are logically independent). Then γ(A) = 1 means
that there is a source with information Ej ∈ F that supports A (Ej ⊆ A), and
γ(A) = 0 means that no source with information Ej ∈ F that supports A (i.e.,
Ej 6⊆ A).

It is then not surprising that the pairs (γ(A), γ(Ac)) ∈ {0, 1}2 allow a (non-
truth-functional) encoding of the 4 epistemic truth values T (True), F (False), N
(Unknown), B (Conflict) of Belnap’s logic as follows:

• T corresponds to γ(A) = 1, γ(Ac) = 0 (support only for A);

• F corresponds to γ(A) = 0, γ(Ac) = 1 (support only for Ac);

14In Belnap’s logic ‘N’ stands for ‘None’ (no source supports either A or Ac), while ‘B’ is
short for ‘Both’ (some sources support A, others Ac: the set of sources support both A and Ac).
Note that T and F are not usual classical truth values, and differ from T, F .
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• N corresponds to γ(A) = 0, γ(Ac) = 0 (ignorance on A);

• B corresponds to γ(A) = 1, γ(Ac) = 1 (conflicting information on A).

In [12], it is shown that Belnap logic can be encoded in a simplified modal
logic where modalities are interpreted by means of Boolean capacities.

In Belnap model, the set {T,F,N,B} is equipped with two orderings, thus
forming the well-known bilattice structure: the informational ordering >I such
that B >I T >I N and B >I F >I N, expressing the idea of being more
informed, and the truth ordering >t such that T >t N >t F and T >t B >t

F, expressing the idea of being more credible. Under the above translation of
Belnap epistemic truth-values in terms of Boolean capacities, it is easy to see that
the information orderings ≥I and ≥t introduced in Section 4.3 generalize these
Belnap orderings to general q-capacities. It allows to naturally generalize the
Belnap bilattice structure to a gradual framework, as done in [17].

6.2. Fusion using the Dempster-like rule of combination
In contrast, suppose we merge the unreliable pieces of information using the

qualitative counterpart of Dempster rule of combination studied in detail in the
previous section, namely γd = ⊗̂mi=1NEi .

In this case, we accept to improve the information given by the sources, by
cross-checking them, namely if a source i1 supplies Ei1 and source i2 supplies
Ei2 with Ei1 ∩Ei2 6= ∅, we add the focal set Ei1 ∩Ei2 with weight min(αi1 , αi2).
We keep the focal set Ei1 if αi1 > αi2 but we lose Ei2 which becomes redundant
with respect to Ei1 ∩ Ei2 . So, this is a form of destructive fusion. This type
of qualitative fusion was already suggested in [1, 64]. This approach is already
illustrated in Example 8 for the case of two sources.

Note that the result of the fusion of such uncertain testimonies yields a separa-
ble q-capacity in the sense of Section 5.3, namely its focal sets are either disjoint
or nested, but never partially overlapping, which also highlights the destructive
feature of this fusion method (after fusion we cannot retrieve original pieces of
information from the result). Moreover, it is clear that the obtained capacity γd
is such that γd ≥ maxmi=1 NEi , namely it is more informative than each testimony
and more informative than the non destructive max rule as known from Corollary
3 in Section 5.5.

In the case where 0 < αi = λ < 1,∀i, it is easy to check that γd = ⊗̂mi=1NEi

has disjoint focal sets of the form Fj = ∩{Ei ∈ Kj}, j = 1, . . . , p, where the
Kj’s are maximal consistent subsets of Ei’s, each Fj having weight λ (plus W ,
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with weight 1). It comes close to methods of handling inconsistency by means of
so-called weak and inevitable inferences due to Rescher and Manor [66].

Given an inconsistent base of formulas (whose sets of models are sets E ′is)
another formula (with a set A of models) can be non-trivially inferred in several
ways from its maximal consistent sub-bases, considering all of them (inevitable
consequences) or one of them (weak consequences). These methods can be cap-
tured using capacities and the Dempster-like merging rules.

Indeed letting NFj be the SSC focused on Fj , we have that γd = maxpi=1 NFj .
Computing all subsets A such that γd(A) > 0 comes down to the weak inference,
i.e., a formula with set of models A weakly follows from an inconsistent base of
formulas whose sets of models are {Ei : i = 1, . . . ,m} iff and only if ∃j, Fj ⊆
A. In contrast, using the disjunctive counterpart of the maxmin Dempster-like
combination yields the SSC NF = minpi=1 NFj with focal sets F = ∪pi=1Fj with
weight λ, and W with weight 1. Computing all subsets A such that NF (A) > 0
comes down to the inevitable (or cautious) inference, i.e., a formula with set of
models A inevitably follows from an inconsistent base of formulas whose sets of
models are {Ei : i = 1, . . . ,m} iff and only if ∀j, Fj ⊆ A.

Finally, we also capture the so-called argumentative inference of Benferhat et
al. [4]: a formula (with a set A of models) is inferred if it is a consequence of
a consistent subset of the base, and its negation is not. The set of such inferred
formulae are all those with sets of models A such that γd(A) > 0, γd(A

c) = 0.

Remark 7. An alternative attempt to define qualitative belief functions is pro-
posed by Kohlas [60]. Cast in our framework, it considers a family {E1, . . . , Em}
of focal sets (inducing a Boolean capacity γ in our setting). The degree of belief
in a proposition A is replaced by the so-called support of A. Let SAk be a min-
imal family of Ei’s whose intersection is included in A, and kA be the number
of such families. The support of A is sp(A) = ∪kAk=1 ∩Ei∈SAk Ei. It is such that
sp(A ∩B) = sp(A) ∩ sp(B), i.e., a set-valued necessity function (see also [61]).
The counterpart of the plausibility function is pl(A) = (sp(Ac))c. The author also
defines a symbolic counterpart of Dempster rule of combination.

6.3. Possibilistic fusion methods
In the possibilistic approach to information fusion [37], it is assumed that the

evidence supplied by sources takes the form of possibility distributions interpreted
in the usual sense as pieces of incomplete or imprecise information (as opposed to
the view developed in this section). Given an SSC NEi the following possibility
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distribution is obtained

πiν(w) =

{
1 if w ∈ Ei,
ν(αi) otherwise,

(23)

where ν is the order-reversing map on the totally ordered scale L. Note that, here,
πiν is just an encoding of NEi , expressing incomplete information. The usual fu-
sion approach in possibility theory consists in conjunctively combining the possi-
bility distributions πiν associated with SSC’s stemming from sources using a fuzzy
set intersection. The conjunctive possibilistic fusion operation π∧ = minki=1 π

i
ν .

So π∧(w) = mini:w 6∈Ei ν(αi), which is equivalent to computing the necessity mea-
sure

N∧(A) = min
w 6∈A

max
i:w 6∈Ei

αi.

This combination tends to make the resulting knowledge more informative
than what each source supplies, but also more inconsistent. Namely, if the sets Ei
do not intersect (i.e., if maxπ∧ < 1), it is easy to see that N∧(∅) > 0, i.e., the
result is not a capacity. In that case we just consider a normalized version of it,
that is N̂∧(A) = N∧(A) if A 6= ∅ and N̂∧(∅) = 0.

Again, this mode of fusion is destructive, i.e., the conjunctive fusion leads to
eliminate part of the information from the sources, that can no longer be retrieved.

Example 16. Consider two conflicting sources providing an elementary uncer-
tain testimony of the form x ∈ Ei, i = 1, 2, such that E1 ∩ E2 = ∅, ∀w ∈
W,π∧(w) = ν(max(α1, α2)), or equivalently N̂∧(A) = max(α1, α2),∀A 6= ∅.
The two pieces of information are destroyed by this fusion operation while they
are preserved using the max rule of Section 6.1. The use of Dempster-like minmax
conjunctive combination also preserves the two antagonistic pieces of evidence
E1 and E2. �

The possibilistic fusion process is thus very destructive. Whatever the evidence
provided by the sources, the result is always a necessity measure (with consonant
focal sets), at the risk of being non-informative at all.

On the contrary, if we combine the (Ei, αi) by the qualitative counterpart of
Dempster rule (γd(A) = ⊗̂ki=1NEi(A)) we obtain a separable q-capacity that im-
proves the pieces of information when possible, like the possibilistic fusion rule
(from x ∈ Ei and x ∈ Ej , with αi > αj andEi∩Ej 6= ∅, we infer x ∈ Ei∩Ej with
weight αj and x ∈ Ei with weight αi); but the maxmin conjunctive rule avoids
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trivialization in case of inconsistency (if x ∈ Ei and x ∈ Ej , with Ei ∩ Ej = ∅,
we infer NEi⊗̂NEj = max(NEi , NEj)), i.e., the max rule. It is a less destructive
fusion than the conjunctive possibilistic combination rule.

The dual disjunctive fusion (π∨ = maxki=1 π
i
ν , that isN∨(A) = minki=1 NEi(A))

is also destructive, but it increases ignorance. Moreover it is equal to the disjunc-
tive counterpart of Dempster rule, as shown by Proposition 18 in Section 5.4.

6.4. Non-destructive vs. conjunctive Dempster-like fusion: A discussion
The non-destructive approach to information fusion only collects information

items supplied by sources, in the spirit of Belnap information processor, with-
out trying to cross-fertilize them. However, as many fusion methods do, we can
cross-fertilize information items if we push the previous non-destructive merging
further, by constructing γd = ⊗̂mi=1NEi , a non-dogmatic separable capacity, which
presupposes αi < 1,∀i.

Suppose there are p maximal subsets of consistent sources Kj, j = 1, . . . , p.
Each Kj yields a nested family of focal sets of γd. Namely suppose Kj =
{Ej1 , . . . , Ejnj }, with αj1 > · · · > αjnj , then the setsEj1 , Ej1∩Ej2 , . . . ,

⋂nj
`=1Ej`

are focal sets of γd, with respective weights αj1 > · · · > αjnj . There are p such
chains inFγd . Again we can compare the epistemic statuses of propositions x ∈ A
from the information provided from sources after combination, by applying the
information and the truth orderings to pairs (γd(A), γd(A

c)), A ⊆ W . Note that
γd is more informative than the capacity γmax obtained by the max rule since
(γd(A), γd(A

c)) ≥I (γmax(A), γmax(Ac)), as exemplified in Example 17 and in
Table 1.

Table 1: Non-destructive vs. conjunctive Dempster-like fusion (Example (17))

A {4} [2, 4] {5} [1, 3] {2, 5}
(γmax(A), γmax(Ac)) (0, 0.4) (0.4, 0.2) (0, 0.8) (0.4, 0.5) (0, 0)

(γd(A), γd(A
c)) (0.5, 0.4) (0.5, 0.4) (0.2, 0.8) (0.4, 0.5) (0.2, 0)

Example 17. Suppose W = [1, 6] is the set of integers between 1 and 6. There
are 4 weighted sources and E1 = [1, 4], E2 = [4, 5], E3 = [2, 3], E4 = [5, 6], with
respective weights 0.8, 0.5, 0.4, 0.2. Using the non-destructive approach results in
a capacity that has these 4 focal sets plus [1, 6]. Using the maxmin conjunctive
Dempster-like rule, the maximal consistent subsets are K1 = {[1, 4], [2, 3]},K2 =
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Table 2: The Peter, Paul and Mary case

(A,Ac) (γmax(A), γmax(Ac)) (γd(A), γd(A
c))

({Pa}, {Pe,Ma}) (0, α) (α, α)
({Pe}, {Pa,Ma}) (0, β) (0, β)
({Ma}, {Pe, Pa}) (α, α) (α, α)

{[1, 4], [4, 5]},K3 = {[4, 5], [5, 6]}. Capacity γd has focal sets with weights:
{([2, 3], 0.4), ([1, 4], 0.8), ({4}, 0.5), ({5}, 0.2)}, plus ([1, 6], 1). Table 1 compares
the two approaches via pairs (γmax(A), γmax(Ac)) and (γd(A), γd(A

c)). Note that
precise information items, rejected by the capacity obtained by the non-destructive
approach become conflicting with the conjunctive Dempster-like one. But regard-
ing {2, 5}, the latter restores consistency where the non-destructive approach is
ignorant. �

Finally we can exemplify the above fusion methods on a qualitative coun-
terpart of the famous Peter, Paul and Mary case after Smets [70], a celebrated
example illustrating the use of belief functions.

Example 18. A crime has been committed and the killer is known to be among
Peter, Paul and Mary. There are three pieces of evidence. One source claims the
killer is a male (with weight α: N1({Pe, Pa}) = α) and another source claims
it is a female (with the same weight α: N2({Ma}) = α). Finally, a last source
claims that Peter has an alibi (with stronger confidence β > α: N3({Ma,Pa}) =
β).

So we first define the capacity γmax using the non-destructive rule on {Pe, Pa,
Ma} as follows:

γmax #({Pe, Pa}) = γmax #({Ma}) = α, γmax #({Ma,Pa}) = β and
γmax #({Pe, Pa,Ma}) = 1.

See Table 2 for results. One can see that under the max rule, none of the
male suspects has evidence pointing individually against him (γmax({Pe}) =
γmax({Pa}) = 0), contrary to Mary, because she is the only female, but the
strongest piece of evidence exonerates Peter since γmax(not Peter) > γmax(not
Paul) > 0. Under the non-destructive fusion mode, Mary remains the most
likely killer, from Table 2. The non-destructive fusion seems to exonerate Paul
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against Mary (even if information concerning her is just contradictory). These
conclusions can be summarized using the credibility ordering >t of subsection
4.3, noticing that Mary >t Paul >t Peter.

Now let us combine these information items via Dempster-like rule, and get
the separable more informative upper bound γd of γmax. It is easy to check that
the qualitative Möbius transform of γd is the same as the one of γmax but for the
focal set ({Pe, Pa}, α) replaced by {Pa} with weight:

γd#({Pa}) = min(N3#({Ma,Pa}), N1#({Pe, Pa})) = α.

Under the maxmin Dempster-like combination, as expected, Peter is considered
the least credible killer (since the strongest piece of evidence exonerates him and
γd({Pe}) = 0 < γd(not Peter). This conjunctive combination puts Mary and Paul
back on a par as most plausibly guilty (γd({Pa}) = γd({Ma}) = α), contrary
to Peter). In terms of the credibility ordering: Mary ∼t Paul >t Peter. This is the
same result as in the numerical case with Dempster rule of combination applied
to m1

g(Ma) = m1
g({Pe, Pa}) = 0.5, combined with the crisp information “not

Peter”, modelled by m2
g({Ma,Pa}) = 1 [70]. �

7. Toward the elicitation of qualitative capacities

An important issue is how to come up with qualitative capacities describing
expert opinions in practice. As said in the introduction, it is natural for humans
to express information about likelihood, confidence and the like in a qualitative,
e.g., linguistic, form.

7.1. Collecting qualitative expert opinions
This concern is present in the works by Jøsang [58] who considers the dis-

tinction between likelihood of an event according to experts and the uncertainty
about their judgment. He tries to represent expert opinions about arguments us-
ing linguistic terms in two term sets respectively representing belief about state-
ments, and amount of confidence in these beliefs. This scheme is also exploited
by Cyra and Gorski [14] for collecting confidence measures in the definition of
safety cases.

Two linguistic term sets can be used, for which we propose our own terminol-
ogy:

• The first term set L we call (qualitative) probability scale (likelihood scale
for Jøsang, decision scale for Cyra and Gorski). It is a bipolar scale [38]
that indicates a trend (from belief to disbelief in a proposition).
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C/L 0 λ1 λ2 λ3 1
0 (0, 0) (0, λ1) (0, λ2) (0, λ3) (0, 1)
λ1 (λ1, 0) (λ1, λ1) (λ1, λ2) (λ1, λ3) (λ1, 1)
λ2 (λ2, 0) (λ2, λ1) (λ2, λ2) (λ2, λ3) (λ2, 1)
λ3 (λ3, 0) (λ3, λ1) (λ3, λ2) (λ3, λ3) (λ3, 1)
1 (1, 0) (1, λ1) (1, λ2) (1, λ3) (1, 1)

Table 3: Likelihood-information scale (ι(A), ρ(A)) ∈ C × L

• The second term set C refers to uncertainty pervading the former judgment
(confidence scale for Cyra and Gorski) and reflects the amount of evidence
justifying the probability statement.

The opinion of an expert regarding the truth of some proposition A is given by
a pair of values (ρ(A), ι(A)) ∈ L×C, where ρ(A) refers to the probability of the
event as seen by the expert, and ι(A) refers to the amount of evidence supporting
the probability claim. Table 3 gives an example of term sets with 5 elements,
where for simplicity, L and C have the same elements {0 < λ1 < λ2 < λ3 < 1}
forming a finite chain.

For instance, we consider the following linguistic interpretations for symbols in
Table 3:

• Probability scale: 1 = full certainty of truth, λ3 = probable, λ2 = equal
chances, λ1 = improbable, 0 = certainty of falsity;

• Information scale: 1 = completely informed, λ3 = much informed, λ2 =
somewhat informed, λ1 = little informed, 0 = total ignorance.

Note that the probability scale, in the style of Jøsang, seems to refer to ob-
jective chances of occurrence, while the information scale, named certainty by
Jøsang is more clearly subjective and expert-dependent. On the contrary, the ter-
minology of Cyra and Gorski for the probability scale is subjective as it describes
whether the expert accepts, tolerates opposes to, or rejects proposition A. How-
ever, their terminology is ambiguous as the word “decision” refers as much to a
choice without uncertainty as to the computation of a truth-value (decidability in
logic). Moreover the decision scale of Cyra and Gorski uses an even number of
elements, which forces the expert to take side, even if he has no reason to. We
think it is more faithful to the available information to use a bipolar scale with an
odd number of steps in order to allow for a midpoint [38].

64



The set-function ρ for the qualitative probability evaluation is assumed to be
self-dual and uses a bipolar scale. Suppose L = {0L = λ−n, λ−1, . . . , λn = 1L}
without loss of generality. Then we assume that if Ac is the complement of A, we
have ρ(Ac) = νL(ρ(A)), where νL : L → L is the order-reversing function on
L, namely νL(λi) = λ−i. We denote by e the midpoint of L, e = λ0 expressing
neutrality.

As to the second dimension, we prefer to refer to the amount of evidence
justifying the experts opinion. Indeed the situation is very different whether the
expert judgment is based on little information or a lot of information (that may
be conflicting). Note that the information scale C is unipolar positive [38], since
its top represents full certainty based on a lot of information, while its bottom
represent full uncertainty (due to a lack of information). So it is of the form
C = {0C = λ0, λ1, . . . , λn = 1}, where here 0C has neutral flavour (there is no
“negative information”). The order reversing map on C is νC such that νC(λi) =
λn−i.

7.2. From qualitative expert opinions to q-capacities
Both Jøsang [58] and Cyra-Gorski [14] turn qualitative evaluations into quan-

titative ones, changing the scales L and C into finite subsets of [0, 1] containing
equidistant values. Jøsang then defines his so-called “opinions” (a special case
of belief functions assigning masses only to singletons and the tautology), while
Cyra-Gorski use belief functions on Boolean (true, false) frames.

In our view it is perhaps more natural to stick to a qualitative setting, and turn
a qualitative expert evaluation in the style of Jøsang into a qualitative capacity γ,
attaching to each eventA a degree of confidence reflecting its support by evidence.
The convention for capacities is as follows: to each event A is attached the pair
(γ(Ac), γ(A)) where Ac is the complement of A. The extreme values for this
support pair are defined like in the previous section:

• Full support in A: (γ(Ac), γ(A)) = (0, 1)

• Full support in Ac: (γ(Ac), γ(A)) = (1, 0)

• Total ignorance about A: (γ(Ac), γ(A)) = (0, 0)

• Totally conflicting information about A: (γ(Ac), γ(A)) = (1, 1)

Here again we assume that the support scale for γ(A) contains more than two
elements and is unipolar, ranging from no support (0) to full support (1) in favor
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of A. Formally we need a mapping f from L× C to another support scale S that
turns the pair of evaluations (ρ(A), ι(A)) ∈ L × C, given by an expert, into a
qualitative capacity, in the form of a pair (γ(Ac), γ(A)) ∈ S × S.

To facilitate the translation, we shall assume that if the probability scale L has
2n+1 elements {0L = λ−n, λn−1, . . . , λ0 = e, . . . λn = 1L}, then the information
scale C has n+ 1 elements {0C = λ0, λ1, . . . , λn = 1C} (by convention), and the
support scale likewise. In particular note that the midpoint λ0 of L, when used
as the bottom of C means no information and has a neutral flavor as in positive
unipolar scales. The scale S uses the same symbols as C, and is also unipolar
positive (from no support to full support).

This mapping must satisfy some conditions:

• If the expert declares ignorance, or no information, the result is f(ρ(A), 0) =
(0, 0), whatever the trend expressed on the qualitative probability scale.

• If the expert is fully informed, then f(1, 1) = (γ(Ac), γ(A)) = (0, 1),
f(0, 1) = (1, 0), f(e, 1) = (1, 1). Indeed, for the latter condition, there
is a total conflict and the expert is maximally informed, and cannot decide
between A and its negation.

• max(γ(A), γ(Ac)) = ι(A): the support pertaining to A or its negation can-
not be stronger than the amount of evidence available.

• if ρ(A) is the midpoint of L, then γ(A) = γ(Ac) = ι(A) (no reason to take
side).

• if ρ(A) is less than the midpoint of L, then γ(A) < γ(Ac) = ι(A), and the
smaller ρ(A), the smaller γ(A).

• if ρ(A) is greater than the midpoint of L, then γ(A) = ι(A) > γ(Ac), and
the greater ρ(A), the smaller γ(Ac).

These conditions lead to propose the following translation from a qualitative
(probability, informativeness) pair to a qualitative capacity:

γ(A) = min(νC(νL(ρ(A))), ι(A)) and γ(Ac) = ι(A), if ρ(A) < ρ(Ac) = νL(ρ(A))

γ(A) = ι(A) and γ(Ac) = min(νC(ρ(A)), ι(A)), if ρ(A) > ρ(Ac)

γ(A) = γ(Ac) = ι(A) if ρ(A) = ρ(Ac) = e

If ρ(A) < e (negative opinion) and ι(A) < νC(νL(ρ(A))), then the expert has
no strong support towards the falsity of A (ρ(A) is close to the mid-point) and the

66



transformation leads to equal support towards A and Ac. Dually the same result
obtains if ρ(A) > e (positive opinion) but ι(A) < νC(ρ(A)) (no strong support
for this opinion).

1C (1, 0) (1, λ1) (1, λ2) (1, 1) (λ2, 1) (λ1, 1) (0, 1)
λ2 (λ2, 0) (λ2, λ1) (λ2, λ2) (λ2, λ2) (λ2, λ2) (λ1, λ2) (0, λ2)
λ1 (λ1, 0) (λ1, λ1) (λ1, λ1) (λ1, λ1) (λ1, λ1) (λ1, λ1) (0, λ1)
0C (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
C/L 0L λ−2 λ−1 e = λ0 λ1 λ2 1L

Table 4: From L× C to (γ(Ac), γ(A)) ∈ S × S

Example 19. As a practical example, suppose n = 3 so that L has seven ele-
ments, denoted by 0 < λ−2 = ν(λ2) < λ−1 = ν(λ1) < λ0 < λ1 < λ2 < 1.
Suppose the information scale is C = {0, λ1, λ2, 1} = S. Table 4 gives the
translation from pairs (ρ(A), ι(A)), provided by an expert, to pairs (γ(A), γ(Ac))
expressing a qualitative capacity.

The first line corresponds to full information, and the last to no information.
Note that the preference of the expert in favor of A against its complement, or
the converse, is deleted in the case the expert says the opinion is based on little
information: γ(A) = γ(Ac) > 0. If the expert expresses a strong opinion with no
confidence at all, it is deleted as inconsistent, and we get (0, 0) �

This method could allow to derive elementary q-capacities attached to sources
of information from non-numerical human-originated data. These q-capacities
could be further on merged using the information fusion methodology discussed
in the previous section. This is a topic for further research.

8. Conclusion

This paper has proposed a detailed overview of a qualitative theory of un-
certainty, where the basic notion is a monotonic set-function valued on a finite
ordinal scale. This framework does not include probability measures, that are
formally replaced by possibility measures. Formally, many notions that one can
define on numerical capacities such as Möbius transform, conjugates, probabilis-
tic core, Dempster rule of combination, possess a qualitative counterpart.

However, since probabilities are replaced by possibility measures, it is not al-
ways obvious to grasp the meaning of q-capacities. In particular, the use of duality
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between possibility and necessity becomes optional in the qualitative setting. Ei-
ther this notion remains central, and we consider that a q-capacity and its dual
represent the same imprecise information, the choice being between a pessimistic
or optimistic attitude in front of incomplete information; or we do not use it, and
we consider that a q-capacity represents information coming from several sources
that may be imprecise and coherent (necessity measures) or, on the contrary, accu-
rate but inconsistent (possibility measures) or both imprecise and possibly incon-
sistent (other q-capacities). The latter framework seems to stand as a qualitative
version of Shafer’s belief functions, and we have shown that it encompasses the
information collection set-up of Belnap paraconsistent logic. We have recalled
the existence of yet another view of q-capacities as imprecise meta-information
on a possibility distribution where duality is only used to move from imprecise
possibilities to imprecise necessities. The proper use of q-capacities requires the
choice of the most appropriate among these three interpretations in the concerned
practical context.

The potential advantage of the qualitative framework is to avoid the question-
able translation of pieces of information supplied by experts in natural language
into precise values on an arbitrary numerical scale. Computations can be directly
carried out using qualitative values. A procedure to elicit qualitative capacities
from experts has been outlined. The framework seems to be general enough to
provide a qualitative counterpart of the theory of evidence for the merging of
uncertain conflicting information coming from several sources. Moreover, quali-
tative settings are more liable to explainability of results than purely quantitative
ones.

One limitation of the approach is the idempotent nature of its combination
rules, that prevents the modeling of reinforcement effects in the presence of inde-
pendent sources. In the future we could consider an extension of this framework
using lexicographic refinements of qualitative capacities and of the Dempster-like
combination, in the spirit of previous works in qualitative utility theory by Fargier
and colleagues [50, 19], or maxmin optimisation [29]. The study of qualitative
counterparts of probabilistic and Dempster conditioning for q-capacities is also
worth studying in the future. Yet another line of further research is to move from
capacities valued on a totally ordered scale to a distributive lattice such as a set
of subsets (see preliminary work by Kohlas [60] as well as Kramosil and Daniel
[61]). We might also wonder what would be the qualitative counterpart to the idea
of prejudice introduced in the quantitative setting for expressing the attenuation
of the support granted to the result of merging pieces of uncertain evidence, due
to meta-information possessed by the receiver [22].
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Appendix A. Outer qualitative measures

The capacity value γ(A) is recovered from its QMT γ# via weights assigned
to subsets of set A, which reminds of inner measures. Hence γ# can be called
an inner qualitative mass function. Using supersets instead, another qualitative
counterpart of Möbius transforms, we can call outer qualitative Möbius transform,
can be used to represent a capacity γ. It is a mapping γ# : 2W → L defined by

γ#(A) =

{
γ(A) if γ(A) < minA⊂F γ(F )

1 otherwise.
(A.1)

Due to the monotonicity of γ, the condition γ(A) < minA⊂F γ(F ) can be equiv-
alently replaced by γ(A) < minw 6∈A γ(A ∪ {w}). The set of outer focal sets of γ
is Foγ = {A ⊆ W : γ#(A) < 1}. In particular, Foγ contains all largest sets A with
γ(A) = 0.

The original capacity is then retrieved as [20]:

γ(A) = min
A⊆F

γ#(F ). (A.2)

Note that an outer QMT is a set function that is strictly increasing on the set
of outer focal sets, with some set E ∈ Foγ such that γ#(E) = 0 (to be sure that
γ(∅) = min∅⊆F γ

#(F ) = 0.)

Example 20. In Example 3, it can be checked that γ#({w2}) = γ#({w3}) = 0,
γ#({w1, w2}) = λ2, γ#({w1, w3}) = λ1 (and γ#(E) = 1 otherwise).

w2 0 w1

λ2

w3 0

λ1
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The outer focal sets of possibility and necessity measures can be found by duality
using the order reversing function. However, it is interesting to get them without
duality.

Proposition 25. A q-capacity is a necessity function N if and only if its outer
focal sets are in the family {W\{w} : w ∈ W}.

Proof: For a necessity function, N(A) = minw 6∈AN(W\{w}) = N(W\{w∗})
for somew∗ 6∈ A. So it is clear thatN(W\{w∗}) = N#(W\{w∗}) ifN#(W\{w∗}) <
1. Moreover, if A 6= W\{w} for any w, then N#(A) = 1 by construction. �

So we can write

N(A) = min
A⊆W\{w}

N#(W\{w}).

In contrast,

Proposition 26. A q-capacity is a possibility measure if and only if its outer focal
sets are nested.

Proof: γ(A∪B) = minA∪B⊆F γ
#(F ) ≥ max(minA⊆F γ

#(F ),minB⊆F γ
#(F )).

But if FA, FB are such that γ(A) = γ#(FA) and γ(B) = γ#(FB), then by as-
sumption FA and FB are nested so that γ(A ∪ B) = max(γ(A), γ(B)). So γ is
a possibility measure. Conversely assume there are non-nested focal sets of γ:
F1, F2. Then:
γ(F1 ∪ F2) = minF1∪F2⊆F γ

#(F ) > max(minF1⊆F γ
#(F ),minF2⊆F γ

#(F )) =
max(γ(F1), γ(F2)).
Indeed, either there is an outer focal set containing F1 ∪ F2 hence with strictly
larger weight, or there is none and γ(F1 ∪ F2) = 1 by default. So, γ is not a
possibility measure. �

It is worth noticing that the inner qualitative Möbius transform γc# of γc is
related to the outer qualitative Möbius transform γ# [20, 19]:

γ#(E) = ν(γc#(Ec)) (A.3)

since γ(A) < minA⊂F γ(F ) also writes γc(Ac) > maxF c⊂Ac γ
c(F c). So if we use

capacities and their conjugates, using the inner and the outer qualitative Möbius
transforms conjointly is redundant.
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It is tempting to consider a kind of duality between q-capacities by exchanging
inner and outer QMTs in the expressions (4) and (A.2) of γ. For instance γ̃(A) =
minA⊆F γ#(F ). Unfortunately, if done without caution, it is easy to see that this
set function is not monotonic.

Example 21. Consider an inner Möbius function with disjoint focal sets E1, E2

such that γ#(E1) = α < 1, γ#(E2) = 1 and 0 otherwise. Then if A 6= ∅,

γ̃(A) = γ#(A) =


α if A = E1,

1 if A = E2,

0 otherwise

In particular γ̃(W ) = 0 and γ̃(∅) = α. If we restrict γ# to {E1, E2}, we get
γ̃(A) = 1 if A 6⊆ E1, A 6⊆ E2 as we take the minimum over an empty set. But we
have that γ̃(∅) = α. �

To fix this difficulty one may consider a kind of generalized QMT, we denote
by δ : M → L where M ⊆ 2W . The mapping δ is strictly increasing with
inclusion on M, and δ(E) = 0 for some E ∈ M (it can be ∅) and 1 for some
other set F ∈ M containing E (it can be W ). For instanceM is a set of inner
focal sets plus another set of weight 0, or a set of outer focal sets plus another set
of weight 1.

Two q-capacities can be induced by δ:

• An inner q-capacity γ∗(A) = maxE∈M,E⊆A δ(E)

• an outer q-capacity γ∗(A) = minF∈M,F⊇A δ(F ).

It is easy to see that γ∗ and γ∗ are such that:

• γ∗(A) ≥ γ∗(A) for all A ⊆ W

• if 1 > δ(A) > 0, then γ∗(A) = γ∗(A) = δ(A)

• if A 6= ∅,W and A 6∈ M, then γ∗(A) > γ∗(A)

Proof: γ∗(A) = δ(E) for some E ⊆ A and γ∗(A) = δ(F ) for some F : A ⊆ F .
So, γ∗(A) ≥ γ∗(A) for all A ⊆ W . Moreover if A ∈ M and 1 > δ(A) > 0,
then E = A = F in the expressions of inner and outer capacities. It is clear
that γ∗(∅) = γ∗(∅) = 0 and γ∗(W ) = γ∗(W ) = 1. Otherwise, if A 6∈ M then
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γ∗(A) = δ(E) < δ(F ) = γ∗(A). �

These results remind of inner and outer measures in probability theory [47].
NamelyM plays the role of the family of measurable subsets, and sets out ofM
are not measurable, but their measure can be approached from above and from
below.

For instance, suppose γ∗ = N is a necessity measure with nested focal sets
Ep ⊂ Ep−1 · · · ⊂ E1 with αi = δ(Ei), α1 = 1, δ(∅) = 0. Here α1 > α2 > · · · >
αp. It is easy to check that N∗ is a possibility measure with distribution π such
that π(w) = αi ifw ∈ Ei\Ei+1, i = 2, . . . , p and π(w) = αp ifw ∈ Ep. Indeed as
seen already, a capacity with nested outer focal sets is a possibility measure. Note
that the possibility measure N∗ is obtained from N without the use of negation-
based duality (but it differs from the genuine conjugate Πc(A) = ν(N(Ac))).

Any q-capacity γ expressed from its QMT can be viewed as an inner q-
capacity, i.e., the counterpart of a belief function or inner measure (γ = γ∗ for
M = Fγ ∪{∅}). The capacity γ∗ then can be viewed as a counterpart of a plausi-
bility function or outer measure. Conversely using outer focal sets, any q-capacity
γ expressed from its QMT can be viewed as a counterpart of a plausibility or outer
measure, if we add W with weight 1 to the set of outer focal sets. And we can
construct the corresponding inner q-capacity.

However this concept of outer q-capacity has a number of drawbacks:

• It is not interesting for Boolean capacities, since in that caseM = F ∪ {∅}
where all focal sets in F have weight 1. So, for outer Boolean capacities
constructed from a set of inner focal sets, only ∅ is a useful outer focal set
since when A 6= ∅, γ∗(A) = 1 whether A is contained in a focal set of γ
or not (then it is 1 by default). So if γ is Boolean, then its outer function
γ∗(A) = γ0∗(A) = 1 except if A = ∅, i.e., it is the vacuous possibility
measure Π?.

• More generally, when γ ranges over the set of q-capacities, γ∗ ranges over
a small subset of them, namely all those without non-empty zero-weight
outer focal sets.

This point illustrates the weakness of this, in other respects, intuitively natural
notion, which is yet another possible qualitative counterpart of a plausibility or
upper probability function.
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